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Transverse magneto-optical effects in nanoscale disks
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We have investigated the optical and magneto-optical responses of nanoscale ferromagnetic disks by means
of numerical simulations, using an extension of the discrete-dipole approximation. Specifically, we studied the
case of 5 nm thick cobalt disks in the diameter range from 200 to 1000 nm, illuminated under normal incidence
with a wavelength of λ = 632.8 nm. We furthermore assumed the magnetization to lie in the plane of the disk
and to be oriented perpendicular to the electric field of the incoming electromagnetic wave, i.e., the transverse
magneto-optical Kerr effect configuration. The induced polarization pattern and the near- and far-field optical
and magneto-optical responses have been calculated, finding clear nanoscale confinement effects as one reduces
the diameter of the disks. However, we also observe that the rather weak magneto-optical response essentially
mimics the optical response, and we demonstrate that it can be calculated as a perturbation of the latter with a
high degree of accuracy. This strong similarity between the optical and magneto-optical nanoscale confinement
effects also results in the fact that the normalized magneto-optically induced far-field light intensity change,
which is the quantity measured in experiments, is only weakly affected even in the case of sub-wavelength-sized
disks.
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I. INTRODUCTION

Electromagnetic scattering from nanometer-scale particles
is currently a topic of great interest, which is being investigated
both theoretically and experimentally for the purpose of
understanding the underlying physics and investigate novel
near- and far-field optical effects.1–3 Also, the technological
challenge of reducing the scale to work with light has opened
new and better possibilities of applications in crucial fields
such as those related to health,4–6 optical communications,7

information storing,8 and photonics in general.9–11 Much
of this recent drive has been triggered by the availability
of nanofabrication facilities that allow for the design and
realization of nanoscale materials.12 Also, the development
of nanometer-scale optical probes such as near-field scan-
ning optical microscopy13 are a crucial development in this
respect. The vast majority of recent studies are performed
on metal nanostructures and are focused on the effects on
the scattered field due to the excitation of resonances from
surface or localized plasmons.14–17 On the other end, the recent
interest in magnetoplasmonics, i.e., solid-state materials that
combine magnetic and plasmonic functionalities, has brought
forward numerous studies of the interplay between plasmon
excitations and magnetism in nanosized or nanoscale defined
structures.18–24 However, little attention has been paid to other
potentially interesting effects arising from the mutual interplay
between magneto-optical activity and light-matter coupling in
spatially confined geometries,25–27 which are independent of
resonance excitations. At the same time, the exploration of
these effects poses fundamental questions in magneto-optics

of nanoscale materials and requires new impulses toward
experimental28,29 and modeling efforts.30–32

To address these fundamental issues of magneto-optical
scattering from nanometer-scale magnetic structures, we
developed a modeling approach that relies on a recently
developed finite-element computational method, which is an
extension of the discrete dipole approximation.32 The method
allows for the calculation of the optical and magneto-optical
scattering from nonspherical nanostructures. This aspect is
particularly relevant as the majority of experiments are carried
out using flat, nonspherical nanometer-scale objects.26,33 In
addition, and since the far-field scattering is measured from
a collection of many nano-objects, we have extended the
calculations to the experimentally relevant case of an ordered
array of noninteracting identical nanostructures.

In order to separate optical and magneto-optical effects
that are arising from the nanometer-scale confinement, we
have also compared our calculations to a reference case that
neglects the effects of the lateral confinement on the induced
dipole distribution. Hereby, we define a fictitious (dummy)
laterally confined structure made of identical dipoles behaving
as if they were part of an infinite film, viz., modeled as a
single layer of dipoles under the assumption of translational
invariance of the induced dipole moment. This reference case,
which has the same level of discretization as well as the same
local material properties and approximation assumptions, is
what we later call our infinite-layer (IL) approach.

We applied these two approaches to predict the optical
and magneto-optical responses in the near and far fields
for cobalt disks of sizes from 200 to 1000 nm, illuminated
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with a wavelength of λ = 632.8 nm under normal incidence.
The nanostructures are magnetized in the disk plane and the
magneto-optical response is calculated for the so-called trans-
verse magneto-optical Kerr effect (T-MOKE) configuration, in
which the electric field of the linearly polarized incoming light
is parallel to the scattering plane, while the magnetization of
the disk is perpendicular to it.

Our results show that although the nanoconfinement effects
appear in the near-field optical and magneto-optical responses
of all disk diameters, far-field effects show up only for disks
that have a diameter smaller than the wavelength of the
incoming light in vacuo λ. More importantly, we observe
that the optical and magneto-optical contributions to the
far-field intensity scale in an almost identical fashion, so
that the normalized magneto-optical response, which is the
experimentally relevant quantity, is only very weakly affected
by the confinement even in the case of sub-wavelength-sized
disks.

The work is organized as follows: In Sec. II, the theoretical
background, on which our numerical method is based, is
presented. In Sec. III, the scattering geometry together with
the sample magneto-optical properties are shown. Sec. IV is
devoted to the presentation and discussion of the main results
obtained from our numerical model. Finally, in Sec. V, the
main conclusions of this research are summarized.

II. THEORY

A. Finite-particle (FP) approach

Our approach for modeling the optical and magneto-
optical responses of nanoscale objects utilizes the recently
developed E-DDA (extended discrete dipole approximation)
methodology.32 This extension of the discrete dipole approx-
imation (DDA, also known as the coupled dipole method)
has been devised to allow for the calculation of scattering
objects with general (scalar or tensorial) electric and magnetic
properties. The DDA itself, as well as the E-DDA, relies on the
same direct-space discretization scheme that is widely used to
study the scattering of light by finite objects. Specifically, the
assumptions of this methodology are as follows:

(1) The volume of the object is considered as the union of
nonoverlapping, simple connected cells j of volume Vj (j =
1, . . . ,N ) with the total volume of the object given by V =∑

j Vj .
(2) Each cell j is assumed homogeneous in its material

properties and, because of its small size, the electric and
magnetic fields are considered as constant throughout the
volume Vj .

There are two criteria for validity of the DDA:34 (1) |n|kd �
1 (so that the dipole lattice spacing d is small compared with
the wavelength of a plane wave in the target material, given
by the product |n|k, with n being the complex refractive index
of the material and k = ω/c), and (2) d must be small enough
(N must be large enough) to describe the target shape with
sufficient precision.

In conventional DDA,34,35 the optical response of each cell
is modeled as the excitation of an oscillating electric point
dipole Pj located in its center.36 Cells are built up from a simple

cubic lattice. Each induced electric dipole Pj is determined by
a polarizability tensor ¯̄αj , reacting to a local electric field:

Pj = ε0 ¯̄αj Ej , (1)

where Pj is the instantaneous (complex) dipole moment, ε0 is
the vacuum permittivity, and Ej is the instantaneous (complex)
electric field at position j due to all sources external to the j th
cell, i.e., due to the incident electric field at that site and the
contributions of all the other N − 1 oscillating dipoles:

Ej = Einc
j +

∑
k �=j

¯̄AjkPk, (2)

where Einc
j = E0 exp(ik · rjk) is the incident electric field at

position j and ¯̄Ajk is the transfer function tensor, describing
the electric field at j created by an oscillating electric dipole
at k, given by

¯̄AjkPk = 1

4πε0

[
Pk

eikrjk

rjk

(
k2 − 1

r2
jk

+ ik

rjk

)

+ rjk(rjk · Pk)
eikrjk

r3
jk

(
−k2 + 3

r2
jk

− 3ik

rjk

)]
, (3)

where k = 2π/λ, rjk = rj − rk , and rjk = |rjk|.
Let us assume that the magneto-optical material is magne-

tized along the z direction; then the relative dielectric tensor
¯̄εr is given by37

¯̄εr =

⎛
⎜⎝ εd −ıεdQ 0

ıεdQ εd 0

0 0 εd

⎞
⎟⎠ , (4)

where Q is the magneto-optical Voigt parameter accounting for
the coupling between the electric field and the magnetization.
The electric polarizability tensor can be related to the relative
dielectric tensor through the well-known Clausius-Mossotti
relation, exact for electrostatic (zero-frequency limit) polariz-
able point dipoles located on a cubic lattice (see, e.g., Purcell,38

pp. 333–338; Jackson;39 and Kittel40):

¯̄αCM
j = 3Vj (¯̄εr − ¯̄I)(¯̄εr + 2¯̄I)−1, (5)

where ¯̄I is the 3 × 3 identity matrix. At finite frequencies, a
radiative correction needs to be added to take into account the
phase lag between the incident light and the scattered light
radiated by the dipole, due to absorption:31,41

¯̄αj = ¯̄αCM
j

(
¯̄I − ik3 ¯̄αCM

j

6π

)−1

. (6)

Under these conditions, it can be shown that the electric
polarizability tensor, neglecting second-order terms, O(ε2

off),
has the following form:

¯̄αj =

⎛
⎜⎝ αd αoff 0

−αoff αd 0

0 0 αd

⎞
⎟⎠ , (7)

where αd and αoff are the diagonal and the off-diagonal
elements of the electric polarizability tensor, respectively.
Direct application of the E-DDA to the actual disk shape
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FIG. 1. (Color online) Two interacting electric dipoles in the
electrostatic limit. (a) Longitudinal configuration. (b) Transversal
configuration.

structure will provide the solution that we refer to as the
finite-particle (FP) approach.

Equation (3) gives the electric field produced by an
electric dipole at a given distance including near- and far-field
contributions. It is instructive for a preliminary discussion to
consider only the near-field contribution to the electric field as
this provides a good insight into the physics that defines the
crucial aspects of this work. The near-field contribution can be
obtained from Eq. (3) by imposing that rjk � λ. By doing so,
we end up with the well-known expression of the electric field
produced by an electric dipole P at distance r and direction n
from the electric dipole, in the electrostatic limit:

Enf ≈ 1

4πε0r3
[3n(n · P) − P]. (8)

We now consider the particularly simple case of only two
interacting electric dipoles. Based on Eq. (8), we can see that
two aligned electric dipoles (longitudinal configuration) will
produce on each other identical electric fields, as shown in
Fig. 1(a). For zero or negligible phase shift, these fields are
oriented in the same direction as the induced dipole moment,
thus supporting each other:

E12 = E21 ≈ 1

4πε0r3
(3P − P) = P

2πε0r3
. (9)

On the contrary, two parallel electric dipoles (transversal
configuration) that are oriented perpendicular to their connect-
ing vector, as shown in Fig. 1(b), will produce identical electric
fields that are antiparallel to the direction of the induced dipole
moment, thus counteracting each other:

Ẽ12 = Ẽ21 ≈ − P
4πε0r3

. (10)

Moreover, for a given interacting distance in the near-field
range, the longitudinal configuration is more efficient than the
transversal one, in the sense that the electric field produced by
the electric dipoles in the first case is twice that produced by
the transversal configuration, as stated by Eqs. (9) and (10).

We will see later how this simple picture explains key
aspects of the relevant physics described by our numerical
simulations.

B. Infinite-layer (IL) approach

For the purpose of evidencing finite lateral size effects in
our calculations, we implemented a numerical approach to the
problem having the same level of local property representation

and numerical approximations but which neglects the effects
of the lateral confinement on the induced dipole distribution.
Therefore, we calculated the polarization [Eq. (2)] induced in a
laterally infinite film, modeled as a single layer of dipoles [each
of them having an electric polarizability ¯̄αj given by Eq. (6)],
under the assumption of translational invariance of the induced
dipole moment PIL. Subsequently, this induced dipole PIL is
inserted in each cell of the discretization mesh to model any
arbitrary planar shape (no further interaction is considered).
Due to the normal incidence geometry, the translational
invariance of this approach does not require phase factors for
the electric field of the incoming wave front. Details of this
discretized IL reference model are described in the Appendix.

III. SAMPLE GEOMETRY AND MATERIAL
PARAMETERS

In order to obtain the optical and magneto-optical responses
of disk-shaped objects, we have used material parameters
of cobalt, as given in Ref. 42 with εr = −12.6 + 22.88ı

and Q = 0.034 + 0.014ı, for λ = 632.8 nm. All calculations
are performed twice: first as fully self-consistent FP particle
calculations, and then for comparison purposes within the
framework of the IL approach. Figure 2 shows the specific
MOKE configuration used here, with a set of disks arranged
on a two-dimensional square lattice of period a. The scat-
tering properties of the complete lattice will be considered
specifically in Sec. IV B 2. The disks are illuminated by a
monochromatic incident beam under normal incidence. The
incident electric field Einc

j is linearly polarized along the y
direction and the sample magnetization is perpendicular to the

H

D

e

k

x

y

z

M

a

Einc
j

FIG. 2. T-MOKE configuration typically used in an experimental
setup, with an array of disks of thickness e with constant lattice
period a along both surface-plane dimensions. The incoming-light
wave vector, with λ = 632.8 nm, is in the −x direction, the incident
electric field Einc

j is linearly polarized along the y direction, and
the magnetization M is perpendicular to the chosen scattering plane
(considering the X-Y plane).
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incident electric field, so that the wave vector k, the incident
electric field Einc

j , and the magnetization M are all orthogonal
to each other. This arrangement corresponds to the T-MOKE
geometry where changes in the sample magnetization lead
to changes in the intensity of the scattered field, leaving its
polarization state unchanged.37 Applying the above values
in Eq. (4), the relative dielectric tensor becomes (assuming
that the external magnetic field is large enough to reach
magnetization saturation along the z axis of the sample)

¯̄εr =

⎛
⎜⎝ εd ±εoff 0

∓εoff εd 0

0 0 εd

⎞
⎟⎠ , (11)

where εd = −12.6 + 22.88ı and εoff = 0.60152 + 0.74872ı.
Notice as well that, according to the T-MOKE configuration
shown in Fig. 2 (magnetization M in the z direction), only
the diagonal and the xy elements of the dielectric tensor are
different from zero, with their sign depending on the direction
of the magnetization along the z axis.

In our numerical calculations, different diameters for the
disks have been considered, ranging from D = 200 nm to D =
1000 nm, with all of them having a thickness of e = 5 nm.
The lattice period a has been chosen large enough, ranging
from 700 nm to 15 μm, that interactions between the disks are
very weak and can be neglected. Thus, we can simplify our
simulations to calculations on a single disk only and, with these
results, predict the diffracting behavior of the entire array under
uniform illumination. The single disk simulations have been
performed by using the E-DDA code, with a dipole spacing of
d = 5 nm. Correspondingly, we only consider a single layer
of electric dipoles for cubic cells of volume Vj = d3. We
used a grid with d = 5 nm that is much finer than the widely
used one34 based on |n|kd � 1, which would correspond to
d < 20 nm.43 Calculations using a finer grid of d = 2.5 nm
produced no significant changes in the results.

The E-DDA code solution is based on an iteration scheme
that uses the complex-conjugate gradient (CCG) method
with enhancement to maintain convergence in finite-precision
arithmetic.44 Being an iterative technique, the CCG requires an
initial guess for Pj . Here, we assume that the electric dipoles
are initially excited by the incident electric field only, so that

Pinitial
j = ε0 ¯̄αj Einc

j . (12)

In each iteration, a new solution for the dipole moment, Pnew
j ,

is found. The cutoff criterion for self-consistency in all our
calculations, if not stated otherwise, is∣∣Pnew

j − Pj

∣∣
|Pj | � TOL, (13)

where TOL is the error tolerance, set to TOL = 10−5 in order
to solve the problem to high accuracy (see Sec. 11 in Ref. 45).

The scattered intensity I is defined as the absolute value of
the time-averaged Poynting vector 〈S〉, calculated as 〈S〉 =
1
2 Re{E × H∗}, where E and H are the scattered electric
and magnetic fields, respectively.46 Of course, the scattered
intensity is strongly angle dependent.

In the single-layer calculation, all dipoles are contained in
a planar structure, so that in the absence of magneto-optical

effects, only the y and z components of the local polarization
are different from zero. This allows us to easily relate the
out-of-plane (x) component of Pj with the MO contribution.

It is important to note that the general observations made
here would still hold if one were to replace the single-
layer calculation with a multilayer calculation, but it is not
as straightforward to isolate the magneto-optically induced
polarization pattern in this case.

The T-MOKE is usually characterized by the parameter �I ,
which here we define as the absolute change in the intensity
of the light scattered by a medium when the magnetization M
of the medium is reversed:

�I = |I (M) − I (−M)|, (14)

where I is the scattered light intensity.

IV. RESULTS AND DISCUSSION

A. Dipole moment distributions

A comparison of the resulting polarization pattern is
summarized in Fig. 3, where the spatial distributions of the
primary optical (y component) and MO (x component) dipole
moment are shown for a set of disks, ranging from D =
200 nm to D = 1000 nm, calculated with the FP approach
and normalized by the dipole moment obtained with the IL
reference method; i.e. (on each cell j ),

|Py | = |Py |FP

|Py |IL and |Px | = |Px |FP

|Px |IL . (15)

The first thing to notice when looking at Fig. 3 is that
the distributions of |Py | and |Px | are not homogeneous and
show noticeable departures from 1; i.e., there are important
confinement modifications to both the primary optical (y) and
the MO (x) responses of the disks. The second important aspect
that is visualized by the polarization pattern in Fig. 3 is the fact
that the MO response pattern is very similar to, if not outright
indistinguishable from, the lateral Py structure, indicating that
the magneto-optical effect is a small perturbation of the optical
response and thus mimics its behavior. These results are in
agreement with recent results obtained by other authors.47

In general, a confined geometry results in the appearance
of different oscillation modes in the dipole amplitude spatial
distribution, coming from the finite-size (and shape) self-
interaction. This is clearly seen in the third row of Fig. 3,
where line profiles along the y direction (z = 0) are shown for
both the primary optical (red lines) and the magneto-optical
(blue lines) component. These geometry-induced interactions
not only modify the lateral distribution of the dipole pattern
but can also result in collective effects, as hinted by the
overall enhancement found in the smallest disk size shown,
D = 200 nm, Fig. 3(a). Indeed, the D = 200 nm presents the
most important deviation from the IL approach, with high
values of the dipole moment even in the central region of the
disk.

The case D = 400 nm [Fig. 3(b)] already starts to show
the appearance of a new central minimum, as well as two
regions with high values of dipole moment. This is clearly
seen in the case D = 600 nm [see Fig. 3(c)]. As D increases,
Figs. 3(d) and 3(e), the oscillation of the spatial distribution of
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FIG. 3. (Color online) Absolute value of the primary optical (y) and MO (x) components of the induced dipole moment for several
sizes normalized to the IL calculation. From left to right, each column corresponds to one disk size, (a) D = 200 nm, (b) D = 400 nm,
(c) D = 600 nm, (d) D = 800 nm, and (e) D = 1000 nm. The color scale is the same for all maps. The third row shows line profiles along the
y direction (z = 0) for both the primary optical (red lines) and the magneto-optical (blue lines) components.

the dipole moment amplitude appears, resulting in new minima
and maxima that nucleate in the center of the disk and expand
(and squash together) toward the edges.

Both in the optical and the MO components, the phase
distributions are all very uniform, the dipole moments inside
the particle being almost in phase with the IL reference dipole.

Following the simple arguments presented when discussing
the case of two interacting electric dipoles, we can understand
two important features of the maps of the primary optical
response, i.e., the y component, shown in the first row of Fig. 3.
For all sizes, it is found that along the y direction, there is a
decrease near the boundaries of the disk. This can be explained
due to the absence of neighboring electric dipoles outside the
particle. The missing dipoles would be supporting those at
the boundary, the same way neighboring dipoles support each
other in the interior of the disk due to their alignment [see
Fig. 1(a)]. Thus the induced dipole moment at the boundary is
smaller than inside the disk or in the case of the IL reference
calculation, for which the neighbors extend to infinity.

In the case of the MO (x) response (see Fig 3, second row), it
can be seen that it follows the Py even in the boundary region.

In order to show the global behavior of the induced dipole
moment in the disks as a function of both the MO constant Q

and the size, we have calculated the averaged dipole moment
inside the disks. In Fig. 4, all results correspond to the spatial
average over the disk, normalized to the IL results:

|〈Py〉| = |〈Py〉|FP

|Py |IL and |〈Px〉| = |〈Px〉|FP

|Px |IL . (16)

Fig. 4 shows the absolute value of the averaged primary optical
(y) and MO (x) components of the induced dipole moment
normalized to IL results, as a function of the disk diameter D.

Obviously, the averaged dipole moment in the FP calcu-
lation tends to the IL when the size of the disk is increased,
and therefore the average of the relative amounts tends to
1, as observed in Figs. 4(a) and 4(b). As we decrease the
disk diameter, the average dipole moment grows, according
to what we had already discussed in relation to the case of
the D = 200 nm disk and its induced polarization distribution
[Fig. 3(a)]. Again, we can see how the MO component
enhancement resembles the optical one, although they are
not fully identical (one can see quantitatively that the overall
Px enhancement is a bit larger than the Py enhancement for
small disks, D � 400 nm). These results indicate that we are
in the small perturbation regime of magneto-optics. In order to
corroborate this, we have performed calculations varying the
strength of the magneto-optical coupling Q, either dividing it
or multiplying it by 10, which is also shown in Fig. 4 (blue
squares and black triangles, respectively).

It is clearly seen from the results in Fig. 4 that, if we make
the MO coupling constant Q ten times either smaller or larger,
the results normalized to a corresponding IL calculation are
completely preserved. This confirms that we are in the linear
perturbation regime,47 as anticipated by the close similarity
of the x and y patterns in Fig. 3. It is important to keep in
mind that, of course, the magneto-optical effect is changed
with Q, but this is normalized out by the IL normalization.
Thus, Q, Q/10, and Q × 10 are perfectly linear in the
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FIG. 4. (Color online) Absolute value of the averaged (a) primary
optical (y) and (b) MO (x) components of the induced dipole moment
for three different values of the MO constant (full red circles for Q,
blue squares for Q/10, and black triangles for Q × 10), as a function
of the disk diameter D.

MO-induced effects. This point will be addressed in further
detail in Sec. V.

B. Far field

Experimental measurements of MO effects rely primarily
on far-field observation of the scattering changes induced by
the presence of a net magnetization. In this section we first
calculate and discuss the properties of single disks to achieve a
good understanding of their general response. Then, we derive
and discuss the magneto-optical response of an array of disks,
since experiments make use of arrays.

1. Single disks

Figure 5 shows the far-field patterns of scattered intensity I

and the MO signal �I calculated in the X-Y plane, which is the
relevant plane for T-MOKE. The IL reference calculation is
also shown, in order to compare both approaches and illustrate
the confinements effects.

According to the previously discussed findings on the
optical and MO dipole distributions, the far-field scattered
intensity patterns converge to those obtained with the IL
approach (see first row of plots in Fig. 5), as the disk diameter
is increased. All disks show mostly dipolar behavior, i.e., a
two-lobe scattering pattern with almost no scattered intensity
at 90◦ and 270◦ (direction of oscillation of the incident electric
field). In the case of small disks (D < λ), a size-dependent

enhancement of the scattering intensity is observed. Moreover,
scattering from large disks tends to be more directional, around
the forward and backward directions, as should be expected
for particles of radius larger than the wavelength. The case
D = 200 nm clearly shows the biggest difference between FP
and IL in both I and �I , in accordance to results shown in
Fig. 3, indicating that phase changes inside the particle are
minimal.

The �I patterns (second row in Fig. 5) show values about
three orders of magnitude smaller than the scattered intensity I

patterns, this ratio being consistent with the relative magnitude
between the MO and optical effects in a material such as
Co. As in the case of the I patterns, the �I patterns also
converge to those obtained with the IL reference method upon
increasing the disk diameter. In the forward and backward
directions (transmission and reflection, respectively), �I is
zero, since at those directions, the MO response produces
only a second-order scattering effect [see Eq. (3) in Ref. 48],
which is insensitive to the sign of M and thus does not show
up in a difference measurement based upon magnetization
reversal, such as �I . Along the 90◦ and 270◦ direction, the
scattered intensity coming from dipoles oscillating along the x
direction is maximum, although insensitive too to the direction
of magnetization, therefore producing a deep minimum of �I

along this axis. The characteristic four-lobe shape of these
patterns arises as a consequence of those minima. Of course
the curve shape and the direction of the maxima depend on
both the relative phase of the radiation coming from the optical
and magneto-optical dipoles as well as on the different optical
paths, so that they cause an intensity change that depends
strongly on the radiation direction.

The normalized MO signal, �I/I , the so-called figure of
merit of T-MOKE, remains nearly constant, regardless of the
disk size in the entire range investigated here, and it is strongest
around the 90◦ and 270◦ directions, because the total scattered
intensity into those directions is almost zero.

2. Disk lattice

The computed results shown so far correspond to isolated
cobalt disks. However, and in order to compare the computed
results with those of real experiments,18 we have implemented
a two-dimensional array of disks in our calculation, as shown in
Fig. 2. Experimentally, the MO scattering behavior of a single
nanodisk cannot be accurately obtained. However, an ordered
array, while preserving all the conditions assumed for each
individual scatterer, allows for a more efficient measurement
of the scattering, not only for the signal increase produced
by the large number of objects, but also for its constructive
interference effect. The diffracted spots allow for sampling
the scattering pattern at different angles simultaneously, while
maintaining the very simple normal incidence geometry, where
measurements in reflection are not useful because no T-MOKE
effect can be expected in such direction.

From the MO response corresponding to single disks,
as obtained with the FP calculation, the far-field scattered
intensity is computed along the diffraction directions, ne-
glecting any optical interaction between different disks in the
array. The lattice equation at normal incidence for horizontal
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FIG. 5. (Color online) Polar plots of the far-field scattered intensity (first row) and �I (second row) patterns for several sizes for both the FP
and the IL approaches. From left to right, each column corresponds to one disk size, ranging from D = 200 nm to D = 400 nm, D = 600 nm,
D = 800 nm, and D = 1000 nm. Solid (red) and dashed (blue) lines correspond to the FP and IL approaches, respectively. The �I patterns
are obtained by computing the difference in scattered intensity under magnetization reversal. Notice that 0◦ and 180◦ are the backward and
forward directions, respectively, while the incident electric field oscillates in the 90◦-270◦ direction.

observations, i.e., scattering in the X-Y plane containing both
the surface normal and the incident electric field, is

mλ = a sin ϕ, (17)

where m is the horizontal diffraction order, λ the incoming light
wavelength (in vacuo), a the lattice period, and ϕ the horizontal
diffraction angle, measured with respect to the lattice normal
direction. From Eq. (17), one can easily obtain the angular
positions at which we must sample the scattered intensity
patterns (Fig. 5), given by ϕ = arcsin(mλ

a
).

Figure 6(a) shows the normalized MO signal �I/I for the
case D = 200 nm, as a function of the lattice parameter a

and for several diffraction orders from m = 1 to m = 5. For
each value of a, the MO signal increases with the order. More
precisely, Fig. 6(b) shows that �I/I vs m behavior is due to
its dependence on the diffraction angle ϕ. The increase in the
T-MOKE signal with the diffraction angle is primarily a direct
consequence of the drop in intensity I , although there is also
an increase in the MO signal �I , simply due to the increase of
the diffraction angle ϕ, as can be seen in Fig. 5, first column
second row.

Using this representation, the �I/I for all the diffracted
beams lie on top of each other, with the starting angle
depending on the diffraction order. In Fig. 6(b), �I/I (ϕ)
computed using the IL approach is also shown, with an
almost perfect match between �I/I (ϕ) computed using
the FP approach. We chose the case D = 200 nm since it
presents substantial deviations from the IL approach and
therefore allows us to confirm very visibly that the geometric
confinement does not substantially affect the far-field results
in terms of the magneto-optically induced relative intensity
change, which is the conventional experimental observable.
The results for all other sizes look nearly identical, i.e., show
almost exactly the expected behavior that one would derive
from the IL approximation for �I/I .

The gap between neighboring disks, given as g = a − D,
imposes a minimum for the physically meaningful lattice
period corresponding to g = 0; i.e., amin = D. However, in
order to avoid the near-field optical interactions between the

0.0001

0.001

0.01

0.1

I/I

14121086420

a ( µm)

 m=1
 m=2
 m=3
 m=4
 m=5

(a)

0.0001

0.001

0.01

0.1

I/I

806040200

  (deg)

 m=1
 m=2
 m=3
 m=4
 m=5
 IL

(b)

FIG. 6. (Color online) Normalized MO signal for several hor-
izontal diffraction orders m for D = 200 nm, with λ = 632.8 nm.
(a) �I/I vs lattice period. (b) �I/I vs diffraction angle ϕ.
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disks, which will complicate the issue and is beyond the scope
of this work, it is a good experimental strategy to use values
that are substantially larger than amin, also because this would
make more diffraction orders available, i.e., more values of ϕ

accessible, although there should be enough magnetic material
in the unit cell in order to keep I and �I above the noise level.
These considerations are among those to be taken account,
when it comes to the design of disk lattices to be used in
experiments.

V. CONCLUSIONS

The main conclusion one can draw from the presented
results is the fact that the experimentally accessible �I/I

ratio seems virtually unaffected by the geometric confinement
of the disks, despite the remarkable size-induced differences
that are found in the dipole moment distributions especially for
sub-wavelength disks. We have shown that the insensitivity of
the �I/I ratio to lateral confinement is a consequence of the
close similarity of the optical and magneto-optical polarization
patterns, irrespective of disk size, and of the fact that their
contribution to the far-field intensity scales nearly in the same
way.

To discuss this aspect further, we make the following
argument of how the magneto-optical response primarily
originates. Ex is the result of the MO effect only because it does
not exist in the case without MO coupling. Therefore Ex is only
caused by the Px from neighboring dipoles: Ex = sxxPx [using
the notation of the Appendix; see Eq. (A6)]. Furthermore,
the entire dipole Px is a small correction being driven by

Ey . Consequently, as a first approximation we can use Ey

from the MO-free system as the leading contribution, or
equivalently neglect the MO term, αoffEx , for the calculation
of Py . Thus, we approximate Py ≈ Pyscalar = ε0αdEy, where
Pyscalar is the optical component coming from a MO-effect-free,
purely scalar calculation without off-diagonal elements in the
dielectric tensor, so that

Px ≈ Pxscalar = ε0

(
αdsxxPx + αoff

ε0αd
Pyscalar

)
, (18)

Pxscalar = 1

1 − ε0αdsxx

αoff

αd
Pyscalar . (19)

If we now have a look at Eq. (A5) from the Appendix, it
can be shown that, neglecting second-order MO terms, i.e.,
O(α2

off) terms,

1

1 − ε0αdsxx

= αxxeff

αd
, (20)

so that the approximative relation between the optical and the
MO dipole moment components is given as

Pxscalar = αxxeff

αd

αoff

αd
Pyscalar . (21)

Figure 7 shows an example of this approximate relation
and demonstrates how close this semiscalar approach is to the
exact result. Both the primary optical and the MO components
for the case D = 600 nm are shown, from both tensorial and
scalar calculations, all normalized to the same infinite-layer
calculation. This result opens up a pathway to undertake time-
efficient calculations of magneto-optical responses, in which

FIG. 7. (Color online) Primary optical (first row) and MO (second row) components for the case D = 600 nm, from both tensorial (left
column) and scalar (right column) calculations, all normalized to the IL calculation. The color scale is the same for all the plots.
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FIG. 8. (Color online) Infinite-layer approach. Every dipole interacts with all the other dipoles. Subsequently, this dipole is inserted in each
cell of the discretization mesh to model any arbitrary planar shape (no further interaction is considered).

the true magneto-optical nature of materials is considered only
after the confinement-induced optical polarization pattern has
been calculated by means of relations similar to Eq. (21). It is,
however, important to stress that the scalar approach reached
in Eq. (21) no longer holds in conditions of strong MO effect.

As a summary, in this work we have investigated the optical
and magneto-optical responses of nanoscale ferromagnetic
disks by means of numerical simulations, using a discrete
dipole approximation. The disks were illuminated under
normal incidence with a wavelength of λ = 632.8 nm, as-
suming the transverse magneto-optical Kerr effect (T-MOKE)
configuration. Results show that the strong similarity between
the optical and magneto-optical nanoscale confinement effects
also results in the fact that the magneto-optically induced
far-field light intensity relative change �I/I , which is the
quantity measured in experiments, is only weakly affected even
in the case of sub-wavelength-sized disks, so that the far-field
predictions coming from a film electromagnetic solution18

remain highly accurate. We demonstrate this by calculating
the diffracted light intensities and intensity changes produced
by nanodisk arrays, which are commonly used in experimental
studies of nanostructure magneto-optics.
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APPENDIX: INFINITE-LAYER APPROACH

In the IL approach, the dipole-dipole interactions are
assumed to be the same as for an infinite film at every point
of the structure, so that any particle can be represented by
placing noninteracting dipoles on a properly shaped grid,
whose polarizability tensor has been renormalized to include
the infinite-film interactions exactly. In the derivation of this
approach, each electric dipole interacts with an infinite number

of surrounding electric dipoles, each of which having an
electric polarizability ¯̄αj given by Eq. (6), as shown in Fig. 8.

The dipole moment acquired by each of these electric
dipoles is given by

Pj = ε0 ¯̄αj

⎛
⎝Einc

j +
∑
k �=j

¯̄AjkPk

⎞
⎠ . (A1)

To express this dipole moment in terms of an effective electric
polarizability that incorporates all interactions, we define

Pj = ε0 ¯̄αeffEinc
j . (A2)

For normal incidence radiation, the exciting field as well as
the lateral film structure are translationally invariant, so that,
assuming all the dipoles have the same electric polarizability
tensor ¯̄αj ≡ ¯̄α, the resulting polarization pattern also has
translational invariance and all electric dipoles within the film
acquire the same dipole moment; i.e., Pj = Pk = PIL. Then,⎛

⎝¯̄I − ε0 ¯̄α
∑
k �=j

¯̄Ajk

⎞
⎠ PIL = ε0 ¯̄αEinc, (A3)

PIL = ε0

⎛
⎝¯̄I − ε0 ¯̄α

∑
k �=j

¯̄Ajk

⎞
⎠−1

¯̄α

︸ ︷︷ ︸
¯̄αeff

Einc, (A4)

leading to

¯̄αeff =
⎛
⎝¯̄I − ε0 ¯̄α

∑
k �=j

¯̄Ajk

⎞
⎠−1

¯̄α. (A5)

For the calculation of the infinite sum in Eq. (A5), a
suitable truncation criterion must be established by studying
its convergence. For this purpose, we analyzed the “order”
1
2N

1
2 (N being the total number of dipoles) dependence of the

numerical values. Here we found that calculation of up to an
order of 1000, corresponding to 4 000 000 dipoles, allowed for
a very accurate extraction of the effective polarizability tensor.
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Once converged, the transfer function tensor sum
∑

k �=j
¯̄Ajk

becomes

∑
k �=j

¯̄Ajk =

⎛
⎜⎝ sxx 0 0

0 syy 0

0 0 szz

⎞
⎟⎠ , (A6)

with

sxx = −6.50 ± 0.04 × 1035 + ı 0 ± 4 × 1033 [F−1 m−2],

syy = 3.24 ± 0.02 × 1035 + ı 2.2 ± 0.2 × 1034 [F−1 m−2],

szz = syy.
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