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The temperature dependence of the training effect is studied in an exchange coupled thin-film bilayer
composed of a hard ferromagnetic pinning �CoPtCrB� layer in proximity of a soft ferromagnetic pinned �CoCr�
layer. Interlayer exchange shifts the hysteresis loops of the soft layer along the magnetic-field axis. This shift
is quantified by the bias field in far reaching analogy to the exchange bias field of conventional
antiferromagnetic/ferromagnetic heterostructures. A ferromagnetic domain state induced in the hard layer ex-
periences aging very similar to the training behavior of the antiferromagnetic domain state in conventional
exchange bias systems. Training originates from changes in the spin structure of the pinning layer with
consecutive magnetization reversals of the pinned layer. Here we perform a detailed investigation of the
temperature dependence of the bias field and its training effect. Consecutively cycled hysteresis loops of the
soft layer are measured at various temperatures. We also derive a theoretical description of the temperature
dependence of the training effect which is in agreement with the experimental data.
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I. INTRODUCTION

Exchange bias �EB� is a coupling phenomenon which can
be observed when an antiferromagnet and an adjacent ferro-
magnet share a common interface. Exchange coupling at the
interface of antiferromagnetic �AF�/ferromagnetic �FM� thin
films gives rise to a unidirectional anisotropy. Among the
variety of effects related to the EB phenomenon the shift of
the magnetic hysteresis loop along the magnetic field is the
most prominent. This loop shift is quantified by the exchange
bias field �0HEB.

The EB phenomenon was originally discovered more than
50 years ago by Meiklejohn and Bean.1,2 Since then EB has
been observed in a vast variety of systems including AF/FM
and FM/ferrimagnetic thin-film heterostructures, AF/FM
core shell nanoparticles, FM precipitates in AF and spin
glass matrices, and spin valves; but details of its origin still
remains elusive to date.3–7

Similar to exchange-spring magnets,8–11 AF coupled bi-
layers of soft and hard FM films show exchange-induced
coupling phenomena analogous to conventional EB
heterolayers.4,12–14 The FM hard layer �HL� pins the mag-
netically soft layer �SL� and shifts its hysteresis loops along
the magnetic-field axis. The shift is quantified by the bias
field �0HB. In the case of AF �FM� coupling, �0HB is posi-
tive �negative� when the HL magnetization is set in a positive
magnetization state and vice versa when the HL magnetiza-
tion is negative. Antiferromagnetically coupled HL/SL bilay-
ers are not only important in magnetic recording technology
but can also be used as model systems to study EB and its
related effects.15–17 HL/SL systems have several advantages
over conventional AF/FM systems. For example, a FM pin-
ning layer provides unique experimental access to the change
in its magnetization state. In addition, the dependence of the
bias field on the pinning layer magnetization can be directly
measured by simple magnetometry.15,16 Moreover, AF mate-
rials are naturally inert to applied magnetic fields which limit

the control of the AF domain state. Hence, isothermal tuning
of the EB field and its training is very much limited to rare
AF/FM systems.18,19 The situation is different when the pin-
ning layer couples strongly to an applied magnetic field as it
does in HL/SL heterostructures.

Training effect �TE� is one of several commonly observed
features associated with EB and biasing in HL/SL systems. It
is defined as alteration of the EB/bias field upon cycling the
system through consecutive hysteresis loops and is quantified
by �0HEB/B vs n, where n is the number of cycled loops.20–27

Training can be observed when the spin structure of the pin-
ning layer is initially out of equilibrium and approaches the
equilibrium spin configuration triggered via subsequent re-
versals of the pinned magnetization.17

Many investigations have been done on the EB TE which
focus for instance on the influence of temperature, AF and
FM film thicknesses,26,28 and dilution of the AF.13,29 The
temperature dependence of the TE in conventional AF/FM
systems is rather complex.30 Recent attempts to measure the
correlation between aging of the interface magnetization in
an AF pinning layer and the training of the EB field in
AF/FM heterostructures faced serious difficulties because of
the smallness of the excess magnetic moment in the AF pin-
ning layer that gives rise to conventional EB.31,32 Theoreti-
cally the description of the T dependence of the TE in
AF/FM systems is challenging due to the nontrivial relation
between the AF order parameter and the magnetization.33 It
is the AF interface magnetization which ultimately gives rise
to the EB effect and its training behavior. Also, in these
systems, proportionality between the moment at the interface
and the AF bulk magnetic moment is a faintly motivated
assumption. The latter is far more realistic in the case of a
very thin FM pinning layer with a homogeneous spin struc-
ture along the normal of the film as demonstrated by the
linearity of the effect. Recently it has been observed that
small deviations from linearity can appear.34

In all FM coupled systems training is initialized by partial
demagnetization of the HL. Interestingly, and as an experi-
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mental big advantage, the HL magnetization can be isother-
mally tuned by a specific magnetic-field protocol.16 It is
given by initial saturation and subsequent demagnetization of
the HL unlike the tedious field-cooling procedure in AF/FM
systems. Moreover, T dependence of the TE is also expected
in HL/SL systems due to the temperature dependence of the
HL domain state and its thermally assisted approach toward
equilibrium on SL cycling. Thus, coupled HL/SL hetero-
structures are intriguing systems to investigate various train-
ing related effects.

In this article, we report a systematic study of the T de-
pendence of bias field TE in all FM bilayers, in which a
pinned SL is antiferromagnetically exchange coupled via a
Ru intermediate layer with a pinning HL. We present a
theory of the T dependence of TE which shows excellent
agreement with our experimental data. The work presented
in this paper is structured as follows. In Sec. II we describe
details of the sample, the experimental protocols, and the
results of the measurements. In Sec. III we develop the
theory, apply it to our experimental results, and bring it into
context of our previous work including the training effect of
AF/FM exchange bias systems.17,24,26,30,33 Finally we con-
clude in Sec. IV with an intuitive interpretation of our re-
sults.

II. EXPERIMENTAL DETAILS AND RESULTS

The SL of the sample under investigation is a CoCr film
of 3 nm thickness. It is exchange coupled with a magneti-

cally hard CoPtCrB pinning layer of 15 nm thickness via a
Ru interlayer of thickness of 0.7 nm.17 Details of the sample
fabrication can be found elsewhere.15,16 In the left frame of
Fig. 1 the dotted line shows the overall magnetic hysteresis
loops m vs �0H, where m is the magnetic moment and H is
the applied magnetic field. The inset shows a sketch of our
sample. The shape of the overall loop reflects the well-
separated switching field distributions of the HL and SL,
respectively. Two minor loops in the first and third quadrants
in Fig. 1 �solid lines� resemble the reversal of the SL. The SL
loops shown in Fig. 1 have been measured within a field
range of −100��0H�100 mT when the HL magnetization
is closely below its saturation. As noticed from the figure the
position of the SL loops are shifted along the m axis due to
the remanent magnetic moment mr of the HL and along the
field axis due to the Ru mediated interlayer exchange field
�0HB�mr.

15,17

The right frame of Fig. 1 shows several schematics that
are depicting the evolution of the domain structures in the
HL during typical experiment via arrows representing the
local HL magnetization. These HL magnetization states cor-
respond to the initialization ��a� and �b�� of the measurement
process and subsequent SL training cycles ��c� first cycle and
�d� after large number of cycles�. The initialization involves
first saturation at �0Hsat=1 T such that the HL and SL mag-
netizations are completely aligned along the applied mag-
netic field. In a second step, a set field −�0Hsat��0Hset
��0HC1 is applied where �0HC1 is the negative coercive
field of the overall loop �Fig. 1 shows an example for
�0Hset=−400 mT�. This set field partially demagnetizes the
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FIG. 1. �Color online� Overall magnetic hysteresis loop m vs �0H �dotted red line�. Solid black lines are typical minor �SL� loops after
applying a set field of Hset=− / +400 mT. The horizontal line visualizes mr for the upper SL loop, the vertical line indicate the shift of the
SL loop along the field axis relative to �0H=0. The inset is the schematic of the sample. The right frame sketches the magnetic domain state
of HL/SL heterostructure at different stages during the training cycle.
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HL and brings it in a domain state as shown in schematic �b�.
This partial HL demagnetization finalizes the initialization of
the TE. Subsequently we measure the SL hysteresis loops in
a magnetic-field range of 0��0H�100 mT leaving the HL
magnetization virtually unperturbed. Upon consecutive SL
magnetization reversal, the HL interface spins are dragged
back closer to the equilibrium spin configuration bringing the
HL domain state closer to uniform HL magnetization. There-
fore the HL quasiequilibrium which is reached in the limit of
a large number of SL magnetization reversals has an in-
creased magnetization with respect to the initial state of the
training cycle. The schematics �c� and �d� resemble the HL
domain states after first and a large number n of SL hyster-
esis loops, respectively.

Figure 2 shows the overall magnetic hysteresis loops m vs
�0H at different temperatures 10�T�395 K. All measure-
ments are done with the help of a superconducting quantum
interference device �SQUID� magnetometer �MPMS-XL,
Quantum Design�. Magnetic fields are applied within the
easy anisotropy plane of the sample. As expected, the overall
hysteresis loop broadens with decreasing temperature since
domain-wall pinning is more effective when thermal activa-
tion is reduced.35 Note that the HL magnetization did not
reach full saturation during the overall loop at T=10 K. As a
consequence the overall loop shows a small asymmetry and,
consistent with our training data, the SL magnetization rever-
sal is broadened for a partially demagnetized HL.

In addition to the overall loops, Fig. 2 displays three hori-
zontal lines which are isomagnetizations intercepting the
loops at MISO1=0, MISO2=−9.0, and MISO3=−18.0 nA m2.
These isomagnetization lines define our specific experimen-
tal protocols of training initializations. We group those ini-
tializations at temperatures T=300, 350, and 395 K together
which belong to the same isomagnetization line. By doing so
we obtain groups of data sets labeled by j=1,2 ,3. Different
temperatures within a group refer to various HL states ini-
tialized according to one of the isomagnetization lines MISOj.
Figure 2 allows us to assign the set fields �0Hset=−360,
−280, and −220 mT for group 1 which gives rise to MISO1

=0 at T=300, 350, and 395 K, respectively. Analogously
�0Hset=−380, −300, and −240 mT are the set fields for the
initializations in group 2 and �0Hset=−400, −320, and
−260 mT correspond to group 3. Points MISOj��0Hset� are
displayed as solid symbols for j=1,2 ,3. The grouping into
isomagnetization initializations is necessary because our the-
oretical description requires the knowledge of the initial and
the quasiequilibrium magnetization states of the HL as im-
portant inputs. In order to get data points which allow for
comparison it is mandatory to start with an identical initial
magnetization state of the HL.

Figure 3 shows the cycle-dependent evolution of the SL
hysteresis loops reflecting typical training behavior of our all
FM bilayer at four different temperatures in group MISO3.
The first �n=1, squares�, second �n=2, circles�, sixth �n=6,
diamonds�, and 15th �n=15, triangles� hysteresis loops of the
SL reveal a clear cycle-dependent relative shift along the
field axis. The n dependence is most pronounced for T
=395 K. It can be quantified by the relative change in the
bias field �HB

max /HB�n=1�ª �HB�n=15�−HB�n=1�� /HB�n
=1� which is 2.0% at T=395 K, 1.5% at T=350 K, 0.6% at
T=300 K, and experimentally not resolvable at T=200 K
for MISO3 initialization. �HB

max /HB�n=1� is nonzero even be-
low T=300 K but is rapidly dropping with decreasing tem-
perature due to reduced thermal assistance of the triggered
relaxation dynamics.

Figure 4 shows the detailed analysis, �0HB vs n, of the SL
training loops at T=300, 350, and 395 K for MISO3 initial-
ization. The n dependence of �0HB reflects the tendency of
the HL to approach its quasiequilibrium of increased magne-
tization on subsequently cycled SL loops. The circles are the
experimental data and the lines are the least-square fits of Eq.
�5�. Its theoretical background will be discussed later in the
text. It is observed that the change in �0HB is more pro-
nounced for lower n and it attains saturation for higher n.

It is the aim of the presented work to evidence that we
achieve consistent description of all our experimental data
with our theory of the TE. Particular emphasis lies on the
understanding of the temperature dependence of the rate of
change in �0HB vs n which up to now entered the theory as
a free-fitting parameter only. Our Landau-type theory pro-
vides a functional form of the latter.

III. THEORY AND ANALYSIS OF EXPERIMENTAL
RESULTS

The TE originates from the nonequilibrium nature of the
spin structure in the pinning layer23,25,36–39 reflecting the
gradual recovery of equilibrium triggered by consecutive
hysteresis loops of the SL. Significant TE is achieved only
when a set field drives the HL far out of saturation into a
domain state. Consecutively cycled loops of the SL then trig-
ger partial relaxation of the HL back toward saturation. Re-
cently this mechanism has been experimentally evidenced.17

In the framework of this physical picture, the TE in all FM
bilayers has been described theoretically by means of the
discretized Landau-Khalatnikov �LK� equation,

S�n + 1� − S�n�
�

= −
1

�

��F

�S
. �1�

Here S is the interface magnetization of the HL, � and � are
the time and damping constants, respectively,24 and �F is the
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FIG. 2. �Color online� Overall magnetic hysteresis loops m vs
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HL domain states MISOj with j=1,2, and 3.
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nonequilibrium free energy of the HL. �F quantifies the free
energy increase when the HL magnetization M deviates from
its quasiequilibrium value Me. The magnetization M which
plays the role of the order parameter allows us to express the
free energy in terms of Landau-type series expansions. The
overall HL magnetizations, M and S, are proportional since
�M /�z=0 is a reasonable assumption for all positions �x ,y�
in the sample plane. The derivative −��F /�S can be inter-
preted as a force that drives the HL domain state back toward
the quasiequilibrium state of magnetization Me. Hence, Eq.
�1� is a discretized form of the equation of motion for S in
the regime of overcritical damping.33 Since �0HB=c1S and
M =c2S we express the free energy in terms of M and use
later �0HB�n�=

c1

c2
M�n�, with c1,2=const.

Note that the description of dynamics via the Landau-
Khalatnikov approach is unusual in magnetism but well es-
tablished in ferroelectricity.40,41 Typically magnetization dy-
namics is described by the Landau-Lifshitz-Gilbert equation
where an effective magnetic field creates a torque.42,43 This
torque and a damping term together change the orientation of
the magnetization vector. Here, however, the integral magne-
tization of the pinning layer is nonconserved since changes
in the domain pattern are accompanied by changes in the
overall magnetization. Relaxation of a nonconserved order
parameter is dynamics of the model A type within the Ho-
henberg and Halperin44 classification schema and known to
be described by the Landau-Khalatnikov equation.45 It has
been explicitly shown for the simple case of a perfect ferro-

magnet with a regular array of up and down domains that the
connection between the dynamic behavior and the domain
structure is consistent with our Landau-Khalatnikov ap-
proach leading to Eq. �1�.46 Note that the LLG approach
when embedded in a micromagnetic simulation which di-
vides a sample into homogeneously magnetized interacting
finite elements or grains that is by all means capable of de-
scribing domain effects and is able to fully explain nonuni-
form magnetization reversal and realistic hysteresis loops.
Our aim here is, however, a simple analytic approach that
catches the essentials and allows for intuitive interpretation.
For this purpose our integral view on the overall magnetiza-
tion of the pinning layer with the help of the Landau-
Khalatnikov approach is useful.

In our recent paper17 we derived the functional form
�0HB=�0HB�n� from Eq. �1� using the Landau-type free-
energy expansion,

F = F0 + �1

2

�2F

�M2�
M=Me

�M − Me�2, �2�

in the vicinity of the quasiequilibrium magnetization, Me,
attained by the HL after a large number of SL hysteresis
loops. A straightforward result using Eqs. �1� and �2� and the
proportionalities above is the implicit sequence,

HB�n + 1� = �K + 1�HB�n� − KHB
e , �3�

where
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K = −
�

�
c2

2� �2F

�M2�
M=Me

� 0. �4�

Next we investigate the explict temperature dependence of
� �2F
�M2 �M=Me

	0 and �.
The implicit sequence �Eq. �3�� can be transformed into

the explicit fitting function,17

�0HB�n� = �K + 1�n−1��0HB�n = 1�

− K�0HB
e� �K + 1�n+1 − 1

K�K + 1�n−1 − �K + 2�	
 , �5�

appropriate to fit isothermal training data with K as a crucial
fitting parameter quantifying the rate of change in �0HB�n�.
Equation �5� further involves the equilibrium bias field
�0HB

e =�0HB�n→
� and the initial bias field �0HB�n=1� ob-
tained from the asymptotic behavior and the first point of the
�0HB vs n data, respectively.

The objective of this paper is to extend our analysis quali-
tatively by deriving the explicit temperature dependence of K

which hitherto entered the theory as a fitting parameter only.
We use Eq. �5� to obtain K values for all of our training data
�0HB vs n such as those shown exemplarily in Fig. 4. Least-
squares fits of the function K�T� to these K values will evi-
dence the consistency of the theory. Subsequently we outline
the derivation of the function K�T� from Eq. �4�.

In order to obtain the temperature dependence of
� �2F
�M2 �M=Me

which contains the temperature dependence of K
we compare Eq. �2� with the Landau expansion,

F = F0 +
1

2
aM2 +

1

4
bM4 − HM , �6�

in the vicinity of M =0, where a=a0�T−TC�, TC is the Curie
temperature of the HL and a0 ,b	0 are the constants. From
Eq. �6� we obtain,

� �2F

�M2�
M=Me

= a + 3bMe
2 �7�

where Me is the solution of aMe+bMe
3−H=0 derived from

� �F
�M �M=Me

=0. Since the magnetic fields applied during the
training cycles are small in comparison to the HL coercive
fields the Zeeman term in Eq. �6� is negligible and the equi-
librium magnetization Me can be expressed by the simple
Landau expression Me=�−a /b allowing us to simplify ex-
pression �7� which then reads � �2F

�M2 �M=Me
=2bMe

2=2a0�Tc−T�.
Substituting the latter expression into Eq. �4� we obtain,

K = −
�

�
c2

2a0�TC − T� . �8�

Note that the decreasing accuracy of the simple Landau ex-
pression away from Tc is compensated to a large extent by
the strong temperature dependence of the damping constant,
�, resulting in K�T→0�→0 independent of the specific func-
tional form of Me�T�. It can be shown that a mean-field so-
lution for Me�T� yields very similar results for K vs T while
the advantage of a simple analytic form of the results is lost,
however.

The damping constant is known to be temperature depen-
dent in other ferroic systems such as organic thin-film
ferroelectrics45 having the functional form,

� � �T exp�2U

kT

 , �9�

with U being an energy barrier. The latter has the micro-
scopic interpretation of a dipole/spin-flip energy. Using
mean-field arguments this energy is given by U= �zJs2�,
where z is the number of nearest neighbors, J is the exchange
energy, s is the spin quantum number, and �. . .� denotes an
average over the distribution of local configurations in the
pinning layer alloy CoPtCrB. In mean-field approximation47

U is related to TC via U=3s2kBTC/�s�s+1��. In order to esti-
mate an effective value of s for the alloy CoPtCrB we recall
the Slater-Pauling curve and in particular the strong devia-
tions from the latter for Co-alloys involving elements which
are two atomic numbers or more apart such as Co-Cr for
instance.48 Taking the strong suppression of the atomic mag-
netic moment in Co-alloys into account we use s=1 /2 to
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FIG. 4. �Color online� SL training effect �0HB vs n at T=395,
350, and 300 K for initialization with isomagnetization MISO3 set
fields after saturating the bilayer sample in �0Hsat=1 T at different
temperatures. Circles are experimental data and lines represent
least-squares fits of Eq. �5� to the data sets.
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obtain U=kBTC. Using this result for the energy barrier and
substituting Eq. �9� into Eq. �8� we obtain

K = −
P
�T

e−2TC/T�TC − T� , �10�

where P	0 is a free parameter.
The Curie temperature, TC, of the HL enters Eq. �10� and,

therefore, makes it preferable to have independent experi-
mental access to its value. We estimate TC experimentally
from the temperature dependence of the HL coercivity �0HC
vs T through extrapolation of the data to the intercept with
the temperature axis. The left axis of Fig. 5 shows the coer-
civity data �0HC vs T of the HL. The latter are obtained from
the overall hysteresis loops displayed in Fig. 2. Note, how-
ever, that the apparent HL coercivity, HC

broad, has contribu-
tions from the intrinsic HL coercivity, HC, and from a
coupling-induced HL loop broadening. HC

broad itself is ob-
tained from the overall loops after subtracting the SL mag-
netization. Correcting with respect to the coupling-induced
broadening is a small but somewhat involved effect. The
SL/HL coupling at HC of the HL is given by the bias field
created by the fully saturated SL. Thus the bias coming from
the SL and affecting the HL coercivity has to be related to
the bias onto the SL that a fully magnetized HL generates
HB

max. Quantitatively the effect on the HL depends on the
ratio of the SL/HL magnetizations and hence on the weight-
ing factor mSL /mHL. The SL coupling contribution has to be
subtracted to get the genuine HL coercivity. This correction
is done by using HC=HC

broad− �HB
maxmSL /mHL�. The hexagons

in Fig. 5 are experimental �0HC vs T data. The correspond-
ing dotted line is the best linear fit. Extrapolation down to
�0HC=0 yields the HL Curie temperature TC=583.5 K. The
linear extrapolation is the best we can do in the absence of a
rigorous theory for �0HC vs T. In fact the simple Landau

expression aMe+bMe
3−H=0 predicts the nonlinear behavior

HC=�−4�a0�T−TC��3

27b which approaches the T axis slower than
the linear extrapolation implying a higher value of TC. How-
ever, the intrinsic coercivity considered in the latter expres-
sion is never relevant in real ferromagnets. In addition TC
=583.5 K obtained from the linear extrapolation is strongly
supported by the fits of �0HB

e vs T discussed in the next
paragraph.

The right axis of Fig. 5 shows the equilibrium bias fields
�0HB

e vs T for the initializations MISO1 �squares�, MISO2
�circles�, and MISO3 �triangles�. The lines represent single
parameter fits of the function

�0HB
e �T� = �0HB

e �T = 0��TC − T

TC
, �11�

yielding �0HB
e �T=0�=99.73�0.97, 96.93�0.82, and

92.01�0.17 mT for MISO1, MISO2, and MISO3, respectively.
Note that the successful fit of Eq. �11� reconfirms the appli-
cability of the simple Landau expression for the temperature
dependence of the HL magnetization which leads to Eq. �8�.

Finally Fig. 6 shows all K vs T data obtained from least-
square fits of Eq. �5� to the experimental �0HB vs n data �see
lines for fits and circles for typical training data in Fig. 4�.
The experimental K data in Fig. 6 originate from training
initializations MISO1 �squares�, MISO2 �circles�, and MISO3
�triangles�. Lines represent the results of a best fits of Eq.
�10� to the respective data set where P is the single free
fitting with P=0.626�0.009, 0.570�0.023, and
0.572�0.0396 K−1/2 for MISO1, MISO2, and MISO3, respec-
tively. As a typical example we show error bars for the MISO1
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FIG. 5. �Color online� HL coercivity �0HC vs T �left axis�.
Hexagons represent experimental data, the dotted line is an empiri-
cal linear best fit. Its extrapolation to �0HC=0 provides an estimate
of the HL Curie temperature TC=583.5 K. The right axis shows the
equilibrium bias field �0HB

e vs T for all three isomagnetization set
fields. Squares �MISO1�, circles �MISO2�, and triangles �MISO3� are
the experimental data. Lines are single parameter best fits of Eq.
�11�.
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and calculated from Eq. �13�. The inset shows simulated plots of
Eq. �5� visualizing the role of K in the characteristics of HB vs n.
Value of K decreases from close to zero toward K=−1 in the direc-
tion of the arrow. Identical arbitrary values of the first and the
equilibrium bias value are used for all simulated curves.
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data. Next we briefly describe how those error bars are ob-
tained.

While the K values shown in Fig. 6 are determined from
best fits of Eq. �5� to respective training data, an alternative
determination of optimized K values is obtained from the
expression

K =

�
n=1

N−1

�HB�n� − HB
e ��HB�n + 1� − HB�n��

�
n=1

N−1

�HB�n� − HB
e �2

. �12�

Here the HB
e is an input obtained from the fit of Eq. �5�.

Equation �12� is derived from a least-squares condition using
Eq. �3�. Expression �12� is used to calculate the standard
deviation SK of K from Gauss’ law of error propagation
which reads as

SK =��
n=2

N−1 � �K

�HB�n�
�HB�n�
2

, �13�

where �HB�n� is the error in the bias field of the nth training
loop. The derivatives entering SK are calculated from Eq.
�12� and read as

�K

�HB�n�
=

�HB�n − 1� + HB�n + 1� − 2HB�n��

�
n=1

N−1

�HB�n� − HB
e �2

− 2K
�HB�n� − HB

e �

�
n=1

N−1

�HB�n� − HB
e �2

. �14�

With ��0HB�n��0.1 mT ∀ n it is straight forward to nu-
merically determine SK. The results of this analysis are
shown for one example �MISO1� in Fig. 6 as error bars. Note
that the magnitude of the error bars increases with decreasing
temperature. When applying the same analysis to the T
=200 K data set where �0�HB

e −HB�1���0.1 mT is ex-
tremely small SK=0.3 in turn becomes even significantly
larger than the theoretically expected value of �K�=0.05.
Note that this increase in the error bar takes place despite the
fact that the absolute accuracy of the bias fields remains
��0HB�n��0.1 mT �see Fig. 3�d��. Hence it is obvious that
any attempt to determine K values at low temperatures where
�HB=HB

e −HB�1�→0 will become experimentally virtually
impossible.

The inset of Fig. 6 provides an intuitive understanding of
the role of K for the characteristics of the TE. A family of
curves is displayed where K is varied within the range of
−1�K�0. This interval defines the range of convergence
for the geometrical series involved in the transformation of
the implicit sequence �3� into the explicit Eq. �5�. The value
of K changes from 0 to −1 along the direction of displayed
arrow. Inspection of Eq. �3� shows that K=0 yields HB�n
+1�=HB�n� which means no training at all. Note that this
does not imply that the bias field has to be zero. Similarly
�HB=HB

e −HB�1�→0 does not necessarily imply K→0. K

=−1 in turn yields HB�n+1�=HB
e ∀n�1 which means a step-

like change in the bias field between the first two points and
zero training for n	2. Intuitively K�T�TC�=0 has to be
fulfilled because HB�n+1�=HB

e =0∀n�1 at T�TC reflect-
ing the absence of biasing and, hence, training. Similarly
K�T=0�=0 holds. Here, however, K�T=0�=0 reflects the
nontrivial situation where a nonzero-bias field can be accom-
panied by zero TE. Instead of zero-bias field associated with
zero pinning layer magnetization a nonzero pinning layer
magnetization can be frozen in at T=0. Domain walls are
pinned and the absence of thermal activation keeps the pin-
ning layer in the initial domain state. In the framework of Eq.
�3� this freezing behavior is reflected by a diverging damping
constant �see Eq. �9�� which give rise to K=0. In addition the
K=0 state at T=0 is approached with dK /dT �T=0=0 similarly
to the asymptotic behavior of equilibrium thermodynamic
properties obeying the third law of thermodynamics.

It is hard to imagine any arbitrary single parameter fitting
function which is consistent with the constraints K�T=0�
=0, dK /dT �T=0=0, and K�T=TC�=0 providing the quality of
the fits as shown in Fig. 6. Moreover, the fitting parameters
of Eqs. �10� and �11� reflect the ratio PISO1 / PISO2=1.10
��HB

e �T=0, ISO1� /HB
e �T=0, ISO2��2=1.06 as expected

from Eqs. �4� and �10� and the proportionality between HB
e

and Me.

IV. CONCLUSIONS

We have shown that bilayers of antiferromagnetically
coupled hard and soft ferromagnetic thin films have proto-
typical properties providing fundamental understanding of
exchange bias and its training effect. We demonstrated that in
far reaching analogy to antiferromagnetic/ferromagnetic ex-
change bias heterolayers quantitative understanding of the
temperature dependence of the training effect is achieved.
Large training effects reflected by the parameter −1�K�0
require thermal activation allowing for triggered changes in
the domain structure of the pinning layer but at the same
time sufficient thermal stability of the pinning layer magne-
tization. This competition between thermal activation and
stability creates maximum training effects at T=TC��41
−5� /2. The successful modeling of the temperature depen-
dence of the training effect in our all FM bilayer system
confirms the consistent description of training behavior in
the discretized Landau-Khalatnikov approach.
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