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We show for the Ising model that it is possible to construct a discrete time stochastic model analogous to the
Langevin equation that incorporates an arbitrary amount of damping. It is shown to give the correct equilibrium
statistics and is then used to investigate nonequilibrium phenomena, in particular, magnetic avalanches. The
value of damping can greatly alter the shape of hysteresis loops, and for small damping and high disorder, the
morphology of large avalanches can be drastically affected. Small damping also alters the size distribution of
avalanches at criticality.
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I. INTRODUCTION

In many situations, it is useful to discretize continuous
degrees of freedom to better understand them, both from a
theoretical standpoint and for numerical efficiency. Ising
models are perhaps the best examples of this and have been
the subject of numerous theoretical and numerical studies.
Renormalization group arguments1 have explained the rea-
son why this discretization gives equilibrium critical proper-
ties of many experimental systems, and these kinds of argu-
ments have been extended to understanding their equilibrium
dynamics.2 For nonequilibrium situations, such as the study
of avalanches, such arguments probably also apply to large
enough lengths and time scales as well. However, there are
many situations where it would be desirable to understand
smaller length scales where other factors should become rel-
evant.

This is particularly true with the dynamics of magnetic
systems, where damping is often weak in comparison to pre-
cessional effects. For studies of smaller scales, it has been
necessary to use more time consuming micromagnetic simu-
lations utilizing continuous degrees of freedom, such as the
Landau–Lifshitz–Gilbert equations,3 which is a kind of
Langevin equation that gives the stochastic evolution of
Heisenberg spins,

ds

dt
= − s � �B − �s � B� , �1�

where s is a microscopic magnetic moment, B is the local
effective field, and � is a damping factor, which measures the
relative importance of damping to precession. In real mate-
rials, it ranges4 from �=0.01 to 1. In contrast, the dynamical
rules implemented for Ising models are most often “relax-
ational” so that energy is instantaneously dissipated when a
spin flips, as with the Metropolis algorithm.

However, there is a class of “microcanonical” Ising
dynamics5 that is reviewed in Sec. II where auxiliary degrees
of freedom are introduced and all moves conserve the total
energy. The other degrees of freedom can be taken to be
variables associated with each spin and allowed moves can
then change both the state of the spins and the auxiliary

variables. This can be thought of crudely, as a discretized
analogy to molecular dynamics, and is also similar to dis-
crete lattice gas models of fluids.6,7 These models give the
correct equilibrium Ising statistics of large systems and can
also be used to understand dynamics in a limit different from
the relaxational case.

Real spin systems are intermediate between these two
types of behavior and, as mentioned above, are better de-
scribed by Langevin dynamics. In the context of spins, the
question posed and answered here is: How does one formu-
late a discrete time version of stochastic dynamics that in-
cludes damping and gives the correct equilibrium statistics?
In Sec. II A, we are able to show that there is a fairly simple
method for doing this using a combination of microcanonical
dynamics and an elegant procedure that incorporates damp-
ing and thermal noise. This procedure differs from that of the
Langevin equation in that it requires non-Gaussian noise.
Despite this, the noise has surprisingly simple but unusual
statistics.

We will show that this procedure gives the correct equi-
librium statistics and verify this numerically in Sec. II B by
means of simulation for the two dimensional Ising model
with different amounts of damping.

Because the value of damping is an important physical
parameter in many situations, it is crucial that there is a
straightforward way of incorporating its effects in Ising
simulations. This is particularly noteworthy as Ising kinetics
are a frequently used means of understanding dynamics in
many condensed matter systems.

In Sec. III, we will turn to nonequilibrium problems
where, using this approach, we can study the effects of
damping on a number of interesting properties of systems
displaying avalanches and Barkhausen noise.8 We first show
how to modify the kinetics for this case and then study sys-
tems in two and three dimensions. With modest amounts of
computer time, we can analyze problems that are out of the
reach of micromagnetic simulations and allow us to probe
the effects of damping on the properties of avalanches. This
is related to a recent work9 by the present authors on how the
Landau–Lifshitz–Gilbert equation �Eq. �1�� and relaxational
dynamics of avalanches10 are modified at small to interme-
diate scales by the inclusion of finite damping. With the
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present approach, we find new features and modifications of
avalanche dynamics. Specifically, we observe that the shape
of hysteresis loops can be strongly influenced by the amount
of damping. One of the most striking findings is that there
exists a parameter regime of high disorder and small damp-
ing where system-size avalanches occur, which are made up
of a large number of disconnected pieces. We can also ana-
lyze the critical properties of avalanches when damping is
small and give evidence that there is a crossover length scale,
below which avalanches have different critical properties.

II. NONRELAXATIONAL DYNAMICS

We start by considering a model for a magnet with con-
tinuous degrees of freedom, such as a Heisenberg model with
anisotropy. The Ising approximation simplifies the state of
each spin to either up or down, that is, si= �1, with i
=1, . . . ,N. One important effect that is ignored by this ap-
proximation is that of spin waves that allow the gradual
transfer of energy between neighbors and, for small oscilla-
tions, give an energy contribution per spin equal to the tem-
perature T �here, we set kB=1�. This motivates the idea that
there are extra degrees of freedom associated with every spin
that can carry �a positive� energy ei. Creutz5 introduced such
degrees of freedom and posited that they could take any
number of discrete values. He used these auxiliary variables
ei to construct a cellular automaton, which gives the correct
equilibrium statistics for the Ising model in a very efficient
way that did not require the generation of random numbers.
Thus, we have a Hamiltonian Htot that is the sum of both spin
Hspin and auxiliary degrees of freedom He: Htot=Hspin+He.
Hspin can be a general Ising spin Hamiltonian and He=�iei.
In our model, there is a single auxiliary variable ei associated
with each lattice site i that can take on any real value �0.

However, for the purposes of trying to model the dynam-
ics of spins, it also makes sense to allow the ei’s to interact
and exchange energy between neighbors. For example, one
precessing spin should excite motion in its neighbors. This
exchange was formulated in the context of solidification by
using a Potts model instead of an Ising model by Conti et
al.11 but can equally well be used here.

Now, we can formulate a microcanonical algorithm for
the Ising model using the following procedure, very similar
to Ref. 11.

�1� We choose a site i at random.
�2� We randomly pick with equal probability either a spin

or an auxiliary degree of freedom, i.e., si or ei.
�a� si’s: We attempt to move spins �such as the flipping of

a single spin�. If the energy cost in doing this is �ei, we
perform the move and decrease ei accordingly. Otherwise,
we reject the move.

�b� ei’s: We pick a nearest neighbor j and repartition the
total energy with uniform probability between these two
variables. That is, after repartitioning, ei�= �ei+ej�r and ej�
= �ei+ej��1−r�, where 0�r�1 is a uniform random vari-
able.

Note that these rules preserve the total energy and the
transitions between any two states that have the same prob-
ability. Therefore, this will give the correct microcanonical

distribution. For large N, this is, for most purposes,12 equiva-
lent to the canonical distribution �exp�−�Htot�. Note
that the probability distribution for each variable ei, P�ei�
=� exp�−�ei� so that the �ei�=T. That is, a measurement of
the ei average directly gives the effective temperature of the
system.

A. Extension to damping

The question we ask is how to extend this equilibrium
simulation method to include damping. In this case, the sys-
tem is no longer closed and energy is exchanged with an
outside heat bath through interaction with the auxiliary vari-
ables. As with the Langevin equation, there are two effects.
The first is that the energy is damped. We call the dissipation
parameter for each step 	, which will lie between 0 and 1.
Then, at each time step, we lower the energy with ei→	ei
for all sites i. By itself, this clearly will not give a system at
finite temperature and we must also include the second effect
of a heat bath, which adds energy randomly to the system. In
the case of the Langevin equation, a Gaussian noise term n�t�
is added to keep the system at finite temperature. A dis-
cretized version of this that evolves the energy e�t� at time
step t is

e�t + 1� = 	e�t� + n�t� . �2�

This equation will not work if the noise n�t� is Gaussian
as this does not give the Gibbs distribution Peq�e�
=� exp�−�e�. Therefore, we need to modify the statistics of
n�t�. It is possible to do so if we choose n�t� at each time t
from a distribution

p�n� = 	
�n� + �1 − 	��e−�n��n� , �3�

where � is the Heaviside step function. To show this, we
write down the corresponding equation for the evolution of
the probability distribution for e,

P�e�,t + 1� = �
�e� − �	e + n���

=� � P�e,t�p�n�
�e� − �	e + n��de dn . �4�

We require that the P as t→� obeys P�e , t+1�= P�e , t�
= Peq�e�=� exp�−�e� for e
0. It is easily verified that by
choosing this form of P�e , t� and by choosing p�n� as in Eq.
�3�, we satisfy Eq. �4�.

Therefore, to add damping to this model, we add the fol-
lowing procedure to the steps stated above:

�3� Choose a uniform random number 0�r�1. If r�	,
then ei→	ei. Otherwise, ei→	ei−T ln�r��, where r� is an-
other uniform random number between 0 and 1.

If we assume that the probability distribution for
the total system is of the form PGibbs�exp�−�Htot�
=exp�−�Hspin�exp�−�He�, we will now show that steps 1–3
of this algorithm preserve this distribution. By following the
same reasoning as above for the microcanonical simulation,
moves implementing steps 1 and 2 do not change the total
energy, and they preserve the form of PGibbs because PGibbs
depends only on the total energy �Htot�, and steps 1 and 2
explore each state in an energy shell with uniform probabil-
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ity. Because of the form of PGibbs, its dependence on the
variable ei is �exp�−�ei�. According to the above argument,
after step 3, it will remain unchanged. Therefore, all steps in
this algorithm leave PGibbs unchanged. The algorithm is also
ergodic, and therefore, this will converge to the Gibbs
distribution13 as t→�.

Because each step preserves the Gibbs distribution, the
ordering of the steps is not important in preserving equilib-
rium statistics. For example, we could sweep through the
lattice sequentially instead of picking i at random. We could
perform step 3 after steps 1 and 2 were performed N times.

The form of this noise �Eq. �3��, although quite unusual,
can be qualitatively understood to some extent. For a large
damping or a small 	, the strength of the 
 function becomes
small, and the effect is dominated by the second term, which
is �exp�−�n� �for positive n�. Although this is non-Gaussian,
n can be thought of as a random amount of positive energy.
In the Langevin equation, noise is often added to a velocity
degree of freedom. In terms of a velocity, the exponential
form that we have obtained would correspond to a Gaussian
if this was expressed in terms of a velocity instead. In the
limit of a small damping, where 	 is close to 1, the effect of
the noise becomes small because the first term, which is to
add no noise, will dominate the distribution. This is in accord
with what happens in the Langevin equation where, if dissi-
pation is small, little thermal noise is needed to keep the
system at a given temperature.

B. Equilibrium tests

We performed tests on this algorithm and verified that it
did indeed work as expected. We simulated the two dimen-
sional Ising model on a 1282 lattice with different values of
the damping parameter and compared it with the exact re-
sults. The average magnetization per spin m is plotted in Fig.
1 as a function of the temperature T and compared to the
exact result14 for large N �dashed curve�. The �’s are the
case 	=1, which is then just an implementation of the mi-
crocanonical method11 described above. In this case, the tem-

perature was obtained by measuring �ei� because the energy
was fixed at the start of the simulation. The only point that is
slightly off the exact solution is in the critical region.15 The
case 	=0.5 is shown with the +’s and lies on the same curve.
The results were obtained for 	=0.9 but are to close to be
distinguishable and therefore are not shown.

We also checked that the distribution of auxiliary vari-
ables had the correct form. We analyzed the probability dis-
tribution for the energy P�ei� versus energy ei, which is av-
eraged over all sites i on a linear-logarithmic scale for 	
=0.5. We found that the curves are straight lines over four
decades and show the correct slopes. For T=0.8, �ei�
=0.8002, and for T=1.1, �ei�=1.1003.

III. AVALANCHE DYNAMICS

The avalanche dynamics of spin systems have been
mainly studied using models that are purely relaxational.
There is a whole range of interesting phenomena that have
been elucidated by such studies and have yielded very inter-
esting properties. The simplest model that can be used in this
context is the random field Ising model with a Hamiltonian,

H = − �
�ij�

Jsisj − �
i

hisi − h � si, �5�

where J is the strength of the nearest neighbor coupling, hi is
a random field with zero mean, and h is an externally applied
field. A magnet is placed in a high field h and then this is
very slowly lowered. As this happens, the spins will adjust to
the new field by flipping to lower their energy. In the usual
situation, the system is taken to be at T=0, so that the only
moves that lower the energy are accepted. The flipping of
one spin can cause a cascade of additional spins to flip, caus-
ing the total magnetization M to further decrease. The occur-
rence of these cascades is called an “avalanche.” At zero
temperature, there is one parameter j that characterizes the
system, i.e., the ratio of nearest neighbor coupling to the
distribution width of the local random fields. When j is
small, the system is strongly pinned and will exhibit a num-
ber of small avalanches generating a smooth hysteresis loop.
For large j, the system will have a system-size avalanche
involving most of the spins in the system, leading to a pre-
cipitous drop in the hysteresis loop. There is a critical value
of j where the distribution of avalanche sizes is a power law
and self-similar scaling behavior is observed.

Here, we investigate how this behavior is modified by
adding damping to these zero temperature dynamics accord-
ing to the following rules.

�1� The field is slowly lowered by finding the next field
where a spin can flip.

�2� The spins then flip, exchanging energy with auxiliary
variables ei, as described above. The number of times this is
attempted is nm times the total number of spins in the system.
Here, we set nm=16. In more detail:

�i� Spin moves: An attempt to move each spin on the
lattice is performed by attempting to flip sequentially every
third spin in order to minimize artifacts in the dynamics due
to updating contiguous spins. �The lattice sites are linearly
ordered using “skew” boundary conditions.� Then, all three
sublattices are cycled over.

FIG. 1. �Color online� Plot of results obtained for the two di-
mensional Ising model on a 1282 lattice for two different values of
the damping parameter. This is a plot of the average magnetization
per spin m vs T. The �’s are for no dissipation, 	=1, which is a
purely microcanonical simulation. The +’s are for 	=0.5. The
dashed curve is the exact solution to this model in the thermody-
namic limit.
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�ii� Energy moves: Exchange of energy with nearest
neighbors is performed cycling through all directions of the
nearest neighbors. By using the same sequence of updates,
the ei’s exchange energy with their nearest neighbors in one
particular direction.

�iii� Dissipation: The energy of each ei is lowered to 	ei.
�3� We check for when the spins have settled down as

follows: if ei’s are not all below some energy threshold
ethresh, set below to be 10−4, or the spin configuration has
changed. Step 2 is repeated until these conditions are both
met.

�4� When the spins have settled down, we go back to
step 1.

The parameters nm and ethresh were varied to check that the
correct dynamics were obtained. The larger the 	, the
smaller the dissipation and the larger the number of iterations
necessary to achieve the final static configuration at each
field.

A. Two dimensional patterns

We first investigate the case of two dimensions where it is
simpler to visualize the avalanches in various conditions than
in three dimensions. Much experimental work and theoreti-
cal work on avalanches has been done on two dimensional
magnetic films and this case should be highly relevant.10

We first examine how the hysteresis loops change as a
function of the coupling j and the damping parameter 	 for a
642 system. The major downward hysteresis loops are shown
in Fig. 2 for a variety of parameters described below. We
examine a strong damping, i.e., 	=0.5. For j=0.3, the hys-
teresis curve is quite smooth with all avalanches much less
than the system size �dashed-dotted line�. Now, consider the
same value of j but with a small damping, 	=0.99. The
curve now is a single downward step with a small tail at

negative h. The lower damping has allowed that system to
form a system-size avalanche. The difference is due to the
fact that with small damping, the energy of avalanched spins
is not immediately dissipated and, as a consequence, heats up
neighboring spins, allowing them to more easily avalanche
as well. Therefore, a system-size avalanche is seen in the
small damping case, leading to the precipitous drop in the
hysteresis loop.

When the value of the coupling j is lowered to 0.15 for
	=0.99, smooth loops are obtained. Figure 2 shows the in-
termediate values of the coupling parameter as well.

To better understand the reason why the energy of the
auxiliary variables can trigger further spins to flip, in Fig. 3
we show the state of a system during a system- size ava-
lanche for j=0.35 and a moderately small damping value,
	=0.9, with h=−0.400 007. Figure 3�a� shows that the
flipped spins form a fairly compact cluster and Fig. 3�b�
shows the corresponding values of ei’s in a grayscale plot,
which is suitably normalized. It has the appearance of a halo
around the growth front of the avalanche. The spins in the
growth front have just flipped and so energy there has not

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

M

h

α = 0.99, j=0.15
α = 0.99, j=0.20
α = 0.99, j=0.25
α = 0.99, j=0.30
α = 0.50, j=0.30

FIG. 2. �Color online� The major branch of the descending hys-
teresis loop for 642 systems using different values of the damping
parameter and the spin coupling. Strong damping, 	=0.5 �dashed-
dotted line�, is shown in the left most curve as judged from the top
of the plot for coupling j=0.3, which starts decreasing from M =1 at
h=−0.2, and does not have large abrupt changes. All the other
curves are for weak damping, 	=0.99. In this case but also for j
=0.3, we see that although M starts to decrease at the same location
as for strong damping, it abruptly drops as the field is lowered. As
the coupling j is decreased, smooth curves are eventually seen
again. Going from left to right, as judged from the top, j=0.3, 0.25,
0.2, and 0.15.

(b)

(a)

FIG. 3. �a� Snapshot of the spin configuration for a 2562 system
with j=0.35, 	=0.9, during a system-size avalanche at the field h
=−0.400 007. �b� A grayscale plot of the auxiliary variables at the
same time.
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had a chance to diffuse or dissipate, and thus it has a higher
spin temperature. The interior is cold because damping has
removed energy from the auxiliary degrees of freedom. This
higher temperature diffuses into the unflipped region allow-
ing spins to flip by thermal activation.

Because large avalanches are possible for small damping
in a parameter range where the relative effect of the random
field is much larger, it is of interest to see if avalanches have
a different morphology from that of typical large avalanches
for high damping systems. Figure 4 shows such spin con-
figurations first at the beginning of the avalanche and further
along during propagation when it has reached roughly half
the system size, and finally, when it has reached its final
configuration and the maximum auxiliary variable value is
�4�10−4. The morphology of this is very different from
what is seen for large avalanches with stronger coupling, as,
for example, Fig. 3. At very small fields, in this figure
h=−7�10−5, surface tension precludes the formation of mi-
nority domains, but because disorder is large, there will be
many small regions where the local field is much stronger
and these will want to form downward oriented �black� do-
mains. There is a finite activation barrier to forming these
that can only be overcome at a finite temperature. However,
the majority of the spins still strongly disfavor flipping.
However, because damping is small, heat has a chance to
diffuse through these regions into the favorable regions, al-
lowing disconnected regions to change orientation by ther-
mal activation. Note that we have numerically checked that
small damping with strong coupling also leads to compact
configurations, so disorder is an essential ingredient in this
new morphology.

B. Three dimensions

We first check that as with two dimensions, the value of
the damping parameter can have a large effect on the shape
of a hysteresis loop. Figure 5 shows the downward branches
of the major hysteresis loop when the only parameter that is
changed is the damping 	. The system is a 323 lattice with
j=0.19. A value for high damping, 	=0.5, is the upper line.
The lower line is for small damping with 	=0.99.

A more subtle effect of damping is what happens near
criticality. In this case, the value of the critical j will depend
on the value of 	, as is apparent from the results of Fig. 5. At
this point, the distribution of avalanche sizes is expected to
follow a power law distribution for large sizes. We located
this point and examined system properties in this vicinity.
Figure 6 shows examples of such runs for 323 systems. Fig-
ure 6�a� shows a plot of the magnetization per spin M versus
the applied field h for j=0.165 and j=0.167. For larger val-
ues of j, the avalanches rapidly become much larger, as seen
in Fig. 5, and for smaller values, avalanches all become
small. Figure 6�b� shows a plot of the same quantity with
relaxational dynamics near criticality. The avalanches take
place over a much smaller range in an applied field.

To quantify this difference, we studied the avalanche size
distribution exponent that is obtained by calculating the dis-
tribution of avalanche sizes over the entire hysteresis loop.
This was studied by averaging avalanches of many runs �200

for 	=0.99� for 323 systems and for different values of pa-
rameters. We show a comparison of the avalanche size dis-
tribution for 	=0.99, which is shown with +’s, and for 	

(b)

(a)

(c)

FIG. 4. Snapshots of the spin configurations for a 2562 system
with j=0.25, 	=0.99, during an avalanche at the field h=−7
�10−5. �a� The beginning of the avalanche. �b� When the avalanche
is of order of half the system size. �c� The final configuration of the
avalanche.

DYNAMICS OF ISING MODELS WITH DAMPING PHYSICAL REVIEW B 77, 094437 �2008�

094437-5



=0.9, which is shown with �’s in Fig. 7. For 	=0.99, the
curve fits quite well to a power law with an exponent of
−1.4�0.1, as shown in Fig. 7. For purely relaxational dy-
namics, the same exponent has been carefully measured16 to
be 2.03�0.03 �which is consistent with our results for relax-
ational dynamics on much smaller systems�. With smaller
damping, we expect to have a crossover length correspond-
ing to the length scale associated with the damping time,
above which the dynamics should appear relaxational. 	
=0.9 appears to show such a crossover from a slope of ap-
proximately −1.4 for small avalanches to a higher slope for
large ones. A line with a slope of −2 is shown for comparison
and appears to be consistent with this interpretation.

IV. DISCUSSION

This paper has introduced a new set of dynamics for Ising
models that incorporates damping in a way that has not be-
fore been achieved. The dynamics that has been devised has
a lot in common with Langevin dynamics, except for the fact
that they are for discrete rather than continuous systems. In
Langevin equations, a continuous set of stochastic differen-
tial equations are used to model a system. It differs from
molecular dynamics in that thermal noise and damping are
both added so that the system obeys the correct equilibrium
statistics. In the case studied here, we start by considering
microcanonical dynamics,5,11 which introduces auxiliary de-
grees of freedom. We then add damping and thermal noise.
Whereas the thermal noise is typically Gaussian in the case
of the Langevin equation, here it must be taken to be of a
special exponential form �Eq. �3�� in order for it to satisfy the
correct equilibrium statistics.

The fact that it is possible to model damped systems in
this discrete manner should have many useful applications
and is easily extended to other kinds of systems, aside from
Ising models, especially in applications where computational
efficiency is an important criterion.

The case of avalanches in magnetic systems is an inter-
esting nonequilibrium use of these dynamics. Although one
might expect that in most situations, for large enough dis-
tance and time scales, finite damping will be unimportant,
physics at smaller scales is still of great interest, and effects
at those scales can propagate to larger scales. Because damp-
ing in real materials can be quite small, their effects are
readily observable experimentally. This work is expected to
be important at intermediate scales. We have investigated the
phenomenon seen in this model with varying degrees of
damping and found that it makes a qualitative difference to
many of the features seen on small and intermediate scales.
This work is by no means exhaustive and there are many
other effects that can be investigated by straightforward ex-
tensions. The effect of dipolar interactions that is in conjunc-
tion with damping could also be explored. We have chosen to
update the spin and auxiliary variables at equal frequencies.

FIG. 5. �Color online� The major branch of the descending hys-
teresis loops in two 323 systems with j=0.19 for two different val-
ues of the dissipation: upper curve: 	=0.5 and lower curve: 	
=0.99.

(b)

(a)

FIG. 6. �Color online� �a� Magnetization versus field for the
Ising model with damping described in the text. The system size is
323 and the two lines represent two runs close to criticality: one
with a coupling of j=0.165 and the other of 0.167. �b� The plot for
relaxational dynamics �large damping� with couplings of 0.21 and
0.212.

FIG. 7. �Color online� The avalanche size distribution, which is
measured for the entire hysteresis loop for 	=0.99 �+� and 	=0.9
���. The x axis is the number of avalanches normalized by its mean
size. The y axis is the normalized distribution of sizes. The less
negative sloped straight line is a fit of the 	=0.99 curve and has a
slope of −1.4. The more strongly sloped one has a slope of −2.

J. M. DEUTSCH AND A. BERGER PHYSICAL REVIEW B 77, 094437 �2008�

094437-6



Varying this should lead to a different value for the heat
diffusion coefficient that should change the quantitative val-
ues for length and time scales.

It is interesting to compare avalanches in spin systems
with those in elastic manifolds17,18 where effects of momen-
tum have been considered. An inertial parameter M was in-
troduced to model the effects of momentum locally. If M is
small, the depinning transition is continuous and in the same
universality class as the relaxational limit. However, for large
M, the behavior changes. There is no evidence that in the
simulations described here for spin avalanches, the damping
parameter is relevant to the long distance, long time behav-
ior. Figure 7 shows a crossover for large sizes to the same
power law as that found with relaxational dynamics, at least
within the error bars of the simulation.19 We cannot rule out
the possibility that in the regime of small damping and large
disorder, as illustrated in two dimensions in Fig. 4 that the
situation will be different, but this is hard to simulate in three
dimensions for the appropriate system sizes. Work on spin
systems, with a conserved order parameter �e.g., the Heisen-
berg model without disorder�, has shown that precessional
motion is relevant to the equilibrium dynamic critical
behavior20 and this deserves closer scrutiny. It is still pos-
sible that if angular momentum was included, which was not
done here, it could affect critical properties in a way similar
to the above work on elastic manifolds.

The phenomena we have found was in qualitative agree-
ment with earlier work using the Landau–Lifshitz–Gilbert

equations.9 As avalanches progress, the effective tempera-
ture, which can be quantified by �ei� at site i, will increase as
energy is released. This energy then diffuses to the surround-
ing regions, giving those spins the opportunity to lower their
energy by thermal activation. This allows avalanches to more
easily progress when the damping is small in contrast to
relaxational dynamics, which has effectively infinite damp-
ing, 	=0. This can lead to some substantial differences in
avalanche morphology, particularly since for small damping,
highly disordered systems can avalanche. At low fields, this
leads to a single avalanche, which is composed of many
disconnected pieces. Experiments have been devised21,22 that
are close experimental realization of the two dimensional
random field Ising model, and it would be interesting to de-
termine if systems such as this one, or similar to it, show
avalanches with this type of morphology.
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