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We resolve the long-standing controversy over the metal surface energy: Density-functional methods
that require uniform-electron-gas input agree with each other, but not with high-level correlated
calculations such as Fermi hypernetted chain and diffusion Monte Carlo calculations that predict the
uniform-gas correlation energy. Here we apply the inhomogeneous Singwi-Tosi-Land-Sjölander method,
and find that the density functionals are indeed reliable (because the surface energy is bulklike). Our work
also vindicates the use of uniform-gas-based nonlocal kernels in time-dependent density-functional
theory.
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Density-functional theory (DFT) [1] provides ground-
state electron densities and energies [or, in its time-
dependent version (TDDFT) [2], excitation energies] for
atoms, molecules, and solids. Because of its simple self-
consistent-field structure, DFT is used for electronic-
structure calculations almost exclusively in condensed
matter physics, and heavily in quantum chemistry. Exact
in principle, the theory requires in practice approximations
for the exchange-correlation (xc) energy (or for the xc
kernel) as a functional of the density. All commonly used
nonempirical approximations require input from the uni-
form electron gas, which is transferred to inhomogeneous
densities. The reliability of these approximations must be
judged a posteriori, and there is a long-standing puzzle
related to their reliability for solid surface energies, with
implications for vacancies and clusters.

The surface energy � is the energy cost per unit area to
split a bulk solid along a plane. This is not only of tech-
nological importance but also a classic and highly sensitive
test case for theories of exchange and correlation in many-
electron systems. The simplest model is jellium, in which a
uniform positive background of density n � 3=4�r3

s �
k3
F=3�3 terminates sharply at a plane and is neutralized

by electrons that penetrate into the vacuum. A local-
density approximation (LDA) calculation of jellium and
simple-metal surface energies [3] showed that the xc com-
ponent�xc can be several times bigger than the total �, and
stimulated work [4] that led to the development of more
sophisticated functionals.

There is now a ladder of nonempirical semilocal density
functionals, with each new rung corresponding to the
addition of another ingredient for the energy density. The
first rung (LDA) [1] predicts [3,5] a positive �xc for
jellium. The second rung or generalized gradient approxi-
mation (GGA) [6] predicts [5] values about 3% smaller

than LDA, while the third rung or meta-GGA [7] predicts
[5] values about 2% larger than LDA. Ascent of the ladder
brings steady improvement [5] in the exactly known [8]
exchange part �x. The random-phase approximation
(RPA), which predicts inaccurate correlation energies for
the uniform gas, predicts values for �xc about 6% larger
than LDA [8]. The semilocal functionals may be corrected
for long-range Coulomb effects [5], and the RPA may be
corrected semilocally for short-range correlation [9], pro-
ducing values 2% or 3% bigger than LDA. The use, in the
framework of TDDFT, of a uniform-gas-based nonlocal xc
kernel [10] to correct RPA produces an RPA-like �xc,
because RPA makes compensating errors for density fluc-
tuations of large and intermediate wave vectors [10].

The surface xc energies from all of the above methods
disagree strongly with those from existing high-level cor-
related methods: At rs � 4 (the bulk density of sodium
metal), �xc is about 45% bigger than its LDA value in the
Fermi hypernetted chain (FHNC//0) [11] and diffusion
Monte Carlo (DMC) [12] calculations for jellium slabs.
One conclusion from this might be that both existing semi-
local density functionals (in the framework of DFT) and
uniform-gas-based versions of TDDFT are not valid for
predicting correlation energies, a very dissappointing out-
come that would severely limit the practical usefulness of
DFT and TDDFT. In this Letter, we show that this is not the
case, and in the process we resolve the controversy over the
surface energy of simple metals.

References [10,13] already showed that a careful analy-
sis of the DMC slab calculations might bring them into
agreement with the density-functional or RPA values, and
also with surface energies extracted from DMC calcula-
tions for jellium spheres [14,15], suggesting that the
surface-energy puzzle had been solved. Nevertheless, one
piece of the puzzle remained. Krotscheck and Kohn [16]
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examined a collective RPA and used several xc kernels to
correct for short-range effects. When they used an isotropic
xc kernel derived from the uniform gas, in the spirit of the
TDDFT calculation of Ref. [10] (see also Ref. [17]), they
found surface energies very close to RPA, as in Ref. [10];
when they used an orbital-based Fermi hypernetted chain
approximation (FHNC//0), corresponding to an anisotropic
kernel constructed explicitly for the jellium surface, they
found a large positive correction to the RPA surface energy.
Because of this, they concluded that ‘‘The local-density
approximation for the particle-hole interaction is inade-
quate to calculate the surface energy of the simple metals.’’

Here we apply a very high-level correlated approach to
calculate �, finding values that lie in the narrow range
between meta-GGA and RPA, and much lower than the
existing DMC or FHNC//0 slab extrapolations. We use an
inhomogeneous orbital-based approach [18] that general-
izes the Singwi-Tosi-Land-Sjölander (STLS) formalism
[19]. Inhomogeneous STLS (ISTLS) is, like the RPA it
corrects, a fifth-rung density functional that employs the
occupied and unoccupied Kohn-Sham orbitals. A compari-
son between our calculations, which do not use an isotropic
xc kernel derived from the uniform gas, and the calcula-
tions of Ref. [10] leads us to the conclusion that the LDA
for the particle-hole interaction is indeed adequate to de-
scribe simple-metal surfaces and that existing DFT and
RPA surface-energy calculations are reliable.

For the homogeneous electron gas, the STLS approach
made a remarkably accurate prediction of the correlation
energy, as confirmed by later DMC calculations (see
Table I). For an arbitrary inhomogeneous many-electron
system, Dobson et al. [18] proposed what they called an
ISTLS scheme, which can be written as a Dyson-like
‘‘screening’’ integral equation for the density-response
function:

 ��r; r0;!� � �0�r; r0;!� �
Z
dr00Q�r; r00;!���r00; r0;!�;

(1)

where

 Q�r; r0;!� � �
Z
dr00�0�r; r00;!� � g�r00; r0�rr00

1

jr00 � r0j
:

(2)

Here, �0�r; r0;!� is a vector response function defined
from the equation �0�r; r0;!� � rr0 � �

0�r; r0!�,
�0�r; r0; !� being the density-response function of non-
interacting Kohn-Sham electrons [24], and the equilibrium
pair-correlation function g�r; r0� is obtained from the
fluctuation-dissipation theorem as follows [4]:

 g�r; r0� � 1�
1

�n�r�n�r0�

Z 1
0
du��r; r0; iu� �

��r� r0�
n�r0�

:

(3)

Equations (1)–(3) are solved self-consistently, starting

from �RPA (or �0), until a converged solution is obtained
[25].

By setting g�r; r0� � 1 (the Hartree limit) in Eq. (2) and
performing an integration by parts, the RPA is nicely
recovered, as expected. In contrast, the inhomogeneous
FHNC//0 does not recover the actual RPA but a ‘‘collec-
tive’’ RPA instead [16]. We note, however, that the ISTLS
scheme cannot be written using an xc kernel and does not
satisfy the reciprocity constraint, i.e., �ISTLS�r; r0;!� �

�ISTLS�r0; r;!�, although for jellium slabs this constraint
is found to hold rather well. We also note that ISTLS is
exact for all one-electron densities, for which g�r; r0� � 0,
and is exact in the high-density limit.

For the evaluation of the ISTLS density-response func-
tion, we extend the method described in the appendix of
Ref. [26]. We consider a jellium slab, assume that n�z�
vanishes at a large enough distance z0 from either jellium
edge, and expand the single-particle orbitals �l�z� and the
density-response function ��r; r0;!� in sine and double-
cosine Fourier representations, respectively. Because the
integral in Eq. (3) is slowly convergent and must cancel out
a space delta function, we use an expression for g�r; r0� in
terms of the Hartree-Fock pair-correlation function and the
density-response functions �0�r; r0;!� and ��r; r0;!�. We
then use the adiabatic-connection fluctuation-dissipation
formula [4,8] to obtain the xc surface energy from the
following equation:

 �xc �
Z 1

0
d�q=kF��xc

q ; (4)

where q represents the magnitude of a wave vector parallel
to the surface, and �xc

q is given by Eqs. (2) and (3) of
Ref. [10], the density-response function �q;��z; z0;!� now
being the 2D Fourier transform of our ISTLS density-
response function ���r; r0;!� of a fictitious jellium slab
of fixed density n�z� at coupling strength �e2.

TABLE I. The negative of the correlation energy per electron
(in mRyd) of a uniform electron gas in three and two dimensions,
where rs is the radius, respectively, of a sphere or circle con-
taining on average one electron. FHNC//0: Ref. [11]. STLS 3D:
Ref. [20]. STLS 2D: Ref. [21]. DMC 3D: Perdew-Wang parame-
trization of Ceperley-Alder diffusion Monte Carlo calculations
[22]. DMC 2D: Parametrization of Eq. (21) of Ref. [23].

Dim. rs FHNC//0 STLS DMC

3D 2 81.5 91.4 89.5
3 65.3 74.7 73.9
4 55.0 64.0 63.7
5 47.8 56.3 56.4

2D 1 211 219
2 155 165
4 108 113
8 66 72
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If one replaces the interacting density-response function
�q;��z; z0;!� entering Eq. (3) of Ref. [10] by the noninter-
acting density-response function �0

q�z; z0;!�, then the ex-
act �x is obtained, as in Ref. [8]. Here we focus our
attention on �c, which for comparison we also calculate
(i) in the LDA by replacing ncq;� in Eq. (2) of Ref. [10] by
the uniform-gas correlation-hole density at the local den-
sity n�z�, and (ii) within TDDFT by introducing in Eq. (3)
of Ref. [10] the TDDFT density-response function
�TDDFT
q;� �z; z0;!�. Within TDDFT, the xc kernel entering

Eq. (4) of Ref. [10] is taken to be either zero (RPA) or
the uniform-gas-based isotropic xc kernel given by Eqs. (6)
and (7) of Ref. [10].

Figure 1 shows the wave vector analysis �cq of our ISTLS
correlation surface energy�c (solid line), together with the
corresponding wave vector analysis of (i) the LDA corre-
lation surface energy (dotted line), as obtained by using the
Perdew-Wang (PW) parametrization of the uniform-gas
correlation-hole density [27], (ii) the RPA correlation sur-
face energy (thin dashed line), and (iii) the isotropic
xc-kernel-based TDDFT correlation surface energy of
Ref. [10] (thick dashed line). We observe that in the
long-wavelength limit (q! 0) both ISTLS and TDDFT
calculations coincide with the RPA, which is exact in this
limit, while the LDA fails badly [28]. In the large-q limit,
both ISTLS and TDDFT calculations approach the LDA,
as expected, while the RPA is wrong [29]. The important
lesson that we learn from Fig. 1 is that two independent
schemes: (i) our ISTLS approach, which does not use an
isotropic kernel derived from the uniform gas, and (ii) the
TDDFT approach of Ref. [10], which uses a uniform-gas-
based isotropic xc kernel, yield essentially the same wave
vector analysis of �c. This supports the conclusion that the

local-density approximation for the particle-hole interac-
tion is indeed adequate to describe simple-metal surfaces.

To extract the surface energy of a semi-infinite medium,
we have considered three different values of the slab
thickness: the threshold width at which the n � 5 subband
for the zmotion is completely occupied and the two widths
at which the n � 5 and n � 6 subbands are half occupied,
and have followed the extrapolation procedure of Ref. [8].
In Table II, we show our extrapolated RPA, TDDFT, and
ISTLS xc surface energies, for various values of rs. Our
ISTLS calculations indicate that a persistent cancellation
of short-range xc effects (beyond the RPA) still occurs, as
in the case of the uniform-gas-based TDDFT calculations
of Ref. [10]. However, this cancellation is found not to be
as complete as in Ref. [10], and yields xc surface energies
that are slightly lower than in the RPA but still a little
higher than in the LDA. Indeed, the difference between our
ISTLS surface energies and their RPA counterparts is very
close to the difference between the conventional GGA [6]
surface energies and the corresponding RPA-based GGA
surface energies, thereby supporting the assumption made
in Ref. [9] that the short-range (beyond RPA) part of the
correlation energy can be treated within the GGA. Our
ISTLS calculations are also very close to the xc surface
energies obtained by using the nonempirical TPSS [7]
meta-GGA xc energy functional.

The FHNC//0 approach yields a large positive correction
to the RPA surface energy. However, the FHNC//0 ap-
proach used in Ref. [16] is, in fact, less accurate than
STLS for the homogeneous 3D electron gas (see Table I).
STLS also does very well for the 2D electron gas (see
Table I). These are reasons to prefer the ISTLS over
FHNC//0 for the surface problems we are considering.

The fixed-node DMC calculations of Ref. [12] were
critiqued in Refs. [10,13,30]. Recent DMC calculations

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 0  0.5  1  1.5  2  2.5  3

γ q
||c (e

rg
/c

m
2 )

q/kF

LDA

TDDFT
ISTLS

RPA

rs=2.07

FIG. 1. Wave vector analysis �cq of the correlation surface
energy for a jellium slab of thickness 7:21rs and rs � 2:07.
Solid, thick dashed, thin dashed, and dotted lines represent
ISTLS, uniform-gas-based TDDFT (as reported in Ref. [10]),
RPA, and LDA calculations, respectively. q is the magnitude of
the 2D wave vector (in the surface plane) of the density fluctua-
tions. The area under each curve amounts to the correlation
surface energy �c. (1 hartee=bohr2 � 1:557� 106 erg=cm2).

TABLE II. LDA, RPA, ISTLS, TDDFT, TPSS [7], and recent
DMC [30] [per Eq. (5)] xc surface energies. Units are erg=cm2.
The numerical grids we use for ISTLS are found to be inade-
quate even for RPA when rs > 3:28; nevertheless, our best
ISTLS estimates for rs > 3:28 are found to be very close to
the RPA. Values in parentheses represent extrapolations on rs
from Eq. (5). Extrapolated values from slab calculations (as here
for RPA, ISTLS, TDDFT) typically agree within 1 erg=cm2 with
values from a semi-infinite jellium code (as here for LDA,
TPSS).

rs �xc
LDA �xc

RPA �xc
ISTLS �xc

TDDFT �xc
TPSS �xc

DMC

2.00 3357 3467 3417 3466 3380 (3392� 50)
2.07 2962 3064 3026 3063 2983 2993� 45
2.30 2019 2098 2072 2096 2034 2039� 27
2.66 1188 1240 1227 1239 1198 1197� 13
3.00 764 801 800 797 772 768� 10
3.28 550 579 580 577 557 551� 8
4.00 262 278 (281) 278 266 (261� 8)
6.00 53.6 58 (60.5) 58 55 (53� . . . )
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by Wood et al. [30] suggest that the fixed-node approxi-
mation introduces an error that is slightly larger in the slab
than in the bulk and indicate that actual DMC surface
energies are larger than in the LDA but smaller than in
the RPA, as occurs with our ISTLS calculations.

The recent DMC calculations [30] report total surface
energies for LDA orbitals (from which �xc is easily ex-
tracted) and error bars for rs � 2:07, 2.30, 2.66, 3.25, and
3.94. To refine, interpolate, and extrapolate these values,
we fit to them the physically motivated form [15]

 �xc�rs� � A=	r7=2
s �1� Bx� Cx2 �Dx3�
; (5)

where x �
�����������������
�1� rs�

p
� 1. We choose typical values A �

50 000 erg=cm2 (correct rs ! 0 limit) and D � 0:248
(LDA fit), and then vary B and C to minimize the sum of
the squares of the fit deviation divided by the DMC error
bar, finding B � 0:6549 and C � �0:511. Note from
Table II that LDA and TPSS both lie within the error
bars of the recent DMC calculations, while RPA,
TDDFT, and ISTLS lie a little higher. The same fit has
been made for ISTLS, with B � 0:7437 and C � �0:653.

Finally, we note that an analysis of the origin of the xc
surface energy brings us to the conclusion that this quantity
is actually ‘‘bulklike,’’ arising mostly from the moderately
varying density region inside the classical turning plane.
(For rs � 2, only �3% of the total �xc comes from the
region outside. This increases to�18% for rs � 4.) Inside,
the reduced density gradient s falls in a range (0 � s <
1:9) found in the bulk of real solids, where gradient cor-
rections to LDA exchange and LDA correlation tend to
cancel [31].

In summary, we have used a very high-level numerically
expensive correlated approach, the ISTLS method, to ana-
lyze the jellium surface energy into contributions from
dynamical density fluctuations of various 2D wave vectors.
This analysis rules out the belief that the LDA for the
particle-hole interaction might be inadequate to calculate
the surface energy of simple metals. Furthermore, our
calculations, which are reasonably close to uniform-gas-
based TDDFT calculations [10] and not far from the LDA,
support the old idea that the xc surface energy should be
well-described within LDA [4], and resolve the long-
standing surface-energy controversy.
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