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Efficient method for the quantum Monte Carlo evaluation of the static density response function
of a many-electron system
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In a recent letter we introduced Hellmann-Feynman operator sampling in diffusion Monte Carlo calcula-
tions. Here we derive, by evaluating the second derivative of the total energy, an efficient method for the
calculation of the static density-response function of a many-electron system. Our analysis of the effect of the
nodes suggests that correlation is described correctly and we find that nodal issues can be dealt with.
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I. INTRODUCTION

Diffusion Monte Carlo (DMC) represents a powerful
method for the accurate computation of properties of mol-
ecules and solids.! However, so far few attemptsz’3 have been
made to use DMC to calculate the static density-response
function,* which is a central quantity in the analysis of many-
electron systems and time-dependent density-functional
theory.”> One reason is the technical difficulty inherent in the
most straightforward method to do so: for a given perturbing
potential one calculates the total energy at different strengths
and numerically determines the second derivative. This then
gives a DMC estimate of the diagonal term of the static
response function y. There are, however, several obvious dif-
ficulties with this. One needs one loop for various perturba-
tion strengths, another loop for each k that one wishes to
sample, and if one wants the off-diagonal terms a third loop
for the k’. Inside each of these loops sits an entire wave
function reoptimization cycle and a complete DMC run. The
perturbations must be small enough not to change the wave
function qualitatively and large enough to allow for sensible
numerical derivatives.

In a recent letter,’ we showed how “applying” the
Hellmann-Feynman’ (HF) derivative to the DMC algorithm
leads to a new algorithm, Hellmann-Feynman sampling
(HFS), that correctly samples the first derivative of the en-
ergy, i.e., an expectation value of an operator. HFS works
because DMC yields the correct total energy for nodes de-
fined by the trial wave function. For technical reasons the
operators sampled must be diagonal in real space. Extending
the analysis to the second derivative yields a DMC algorithm
for the frozen-node (fn) static density-response function.
Note that even for a trial wave function with correct nodes
the frozen-node density response is not exact as the real re-
sponse includes effects from the change of the nodes, hence
the moniker frozen node. However, comparison with Ref. 2
where the nodal variation in an underlying Kohn-Sham (KS)
system is implicitly used, shows that these effect can be ac-
counted for by generalizing the RPA analysis® to fn systems.
The resulting method can be performed within a single DMC
run and in the case of inhomogeneous systems can produce
off-diagonal elements of y as easily as the diagonal terms.

1098-0121/2010/81(24)/245116(6)

245116-1

PACS number(s): 71.10.Ca, 71.15.—m

The present paper is organized as follows. After a brief
recapitulation of HF sampling, we derive formulas for the
DMC sampling of x along the same line. We then briefly
discuss technical aspects (convergence with respect to popu-
lation size, time step, etc.). Finally, we look at the density
response of the interacting and noninteracting uniform elec-
tron gas, analyze the effects of the nodes, and compare our
results with the literature. Our method should also enable
DMC calculations of the static-response function of real sol-
ids, never done before. We use atomic units throughout.

II. HELLMANN-FEYNMAN SAMPLING AND THE
DENSITY RESPONSE FUNCTION

A. Application to the second derivative of the energy

Fixed-node DMC yields by construction the normalized
expectation value (O)pyic=(V,|O[FM/(¥,|¥™), where

(f)“ is the ground-state wave function constrained by the
nodes of the Fermionic many-body trial wave function ¥;
HFS correctly calculates (¥|O|¥™) /(¥ | W) while main-
taining the basic DMC algorithm that samples \I’T\I’(f)“. This is
because the total energy is evaluated correctly within stan-
dard DMC and crucially operator expectation values can be
cast as HF derivatives of the total energy. Keeping in mind
that ultimately the DMC algorithm is nothing but a large sum
that yields the total energy, we see that the HF derivative can
be applied to the algorithm itself. One advantage over nu-
merical derivatives is that the resulting formula can handle
several operators simultaneously in a single DMC run and
maintaining orbital occupancy for perturbed Hamiltonians
ceases to be a problem. The DMC algorithm only involves
numbers so noncommutability of operators is no problem.
Writing down the DMC algorithm as a mathematical formula
and applying the HF derivative to it yields an object that
when sampled using standard DMC produces the exact op-
erator expectation value. We find that given a Hamiltonian

H (a)=I:I +a0, evaluating the growth estimator of the energy
ECR at time step i to first order in « yields a growth estimator

that samples the operator 0. Similarly the direct estimator E
of the energy yields another estimator. These are Egs. (8) and
(9) of Ref. 6
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where the bar refers to the DMC sampling at time step i:
Xi=2ijwing,~,j. N,, is the possibly i dependent n]umber of
walkers, w; ; is the total weight of walker j, Xi’j=;22=10ij,

; . . . oV
t=iAt the time of sampling, and Of,j is \I,—TT evaluated for
walker j at time step k. Now we assume two perturbations of

the form aéA and ,BOB, and following Ref. 6 we obtain
growth and direct estimators of the response function x,p

10) 0 L
= ﬁ<{wA >=&<ﬁaﬂ> from the second derivative of the growth and

direct estimators of the energy

X5R(i) = — [ X3XF - X2 - XP], (3)

Xis(i) == (X} O = X[ OF + 07X} - OF - X7
+PLE-EDX - XD -XD). @)

Any number of operators O and O® can be sampled in par-
allel within a single DMC run. At this point it is important to
note that while we let the Hamiltonian vary with a and S the
variation in the quantum system is constrained to a Hilbert
space with the nodes kept frozen at their a=8=0 position
even for nonzero values of a and B because the method is
based on performing a single fixed-node DMC calculation at
a=£=0. In the case of evaluating expectation values the
result is equivalent to using the fixed-node approximation.®

From now on we use the Fourier components of the den-
sity sin kx and cos kx. Note also that, as in the case of the
first derivative discussed in Ref. 6, the growth estimator at i
is already an averaged quantity. This property makes it an
attractive choice for a DMC calculation. Equation (4) is not
only a more complicated formula than Eq. (3), it also has to
be summed at each time step i. If we wish to sample many
components of y at the same time, a large array with a size
quadratic in the number of components of y in Eq. (4) has to
be generated and dealt with at each time step. By contrast,
Eq. (3) only has to be built at whatever time step one wishes
to calculate y. This means that at each time step one only has
to maintain the X?/B, which is less memory intensive and
much faster to compute. Hence we shall only use the growth
estimator Eq. (3).

B. Computational implementation

The growth estimator has the advantage that for each time
step and walker we only need to deal with simple sampling
of N, variables for the components of the density. The entire
density-response function, including off-diagonal elements,
can then be calculated as a correlation function? of these
variables at the end of the run saving computer time and
memory. As in HFS, we find that noise rises as the sampling
progresses, thus limiting the statistical error of the final result
even if the sampling is continued indefinitely. So to reduce
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statistical noise, we increase the number of walkers instead.
This has the additional advantage of reducing any population
bias. We converged this by looking at population sizes of
200, 1000, 5000, and 50 000 walkers. We used the latter for
the main results shown here (at N,;=114 electrons). Looking
at different time steps, we found that too large a time step
shows up as a leveling off of y at a finite value at larger k
instead of showing the correct 1/k* behavior. Interestingly,
even at Ar=0.1 the calculated y remained unbiased up to and
well beyond k=5ky. A large time step is desirable as equili-
bration will be faster. Here we use Ar=0.01. To monitor
equilibration we artificially extract a value ); that when
summed over all time steps 1,...,N gives the growth esti-
mator x(N) at time step N of sampling: from

1 N-1
mE X(i)=x(N-1) (5)
and
1 N
]—VEi X(i) = x(N) (6)

it follows that

X(N)=Nxy—(N=1)x(N-1). (7

Following, e.g., three typical k’s as the sampling
progresses we found that } converges exponentially. A quick
run using few walkers in a smaller system can then be used
to roughly estimate the convergence time which one then
uses in an actual run. Convergence can be improved by set-
ting up the sampling such that one ignores the implied Y
during equilibration. In order to do that it is not necessary to
actually reverse engineer these ) for each element of the
density response function. Once one has decided on an
equilibration time, N,, the desired result is

N
LS w0
X\1) =
N_Neqi:Neq+1

1
N-N,,

[NX(N) - NeqX(Neq)]' (8)

It is thus sufficient to perform the costly sampling of the full
growth estimator only twice during the run, once after equili-
bration, and once at the end of the run. Doing so, efficiently
removes much of a 1/N-like term without incurring much
extra computation. We found that equilibration was essen-
tially independent of &t and seemed to depend only weakly
on the population size. We note that while in this paper we
only calculate the diagonal terms of y, sampling the full
density-response function, including all the off-diagonal
terms, is not more difficult: all that is needed is the evalua-
tion of the correlation function of X;s at different k and k'.

III. RESULTS
A. System

In order to demonstrate our method we calculated the di-
agonal terms of the static density response function of an
unpolarized free electron gas for electron-density parameter
ry=2, 5, and 10 and corresponding density n,. We set up the

245116-2



EFFICIENT METHOD FOR THE QUANTUM MONTE CARLO...

FIG. 1. The dashed line shows the density response function xj
of an infinitely large unpolarized noninteracting homogeneous elec-
tron gas (Lindhard function) at r,=2. The black lines close to the
Lindhard function show the exact finite-size Lindhard function X(f)s
with 114 and 4218 electrons, the latter following the Lindhard func-
tion closer. The dotted line shows the RPA response function ygpa.,
and the three remaining dot-dashed lines show (from top to bottom)
the frozen-node Lindhard function X(f)" at 114 electrons, the corre-
sponding frozen-node density response of an interacting system x'™,
and the frozen-node RPA X{;‘PA. The “wiggles™ are not noise [see
Fig. 2 and the text for details] as they correspond to the shell struc-
ture seen in the exact noninteracting finite size ng.

DMC calculation using 114 electrons in a simple-cubic super
cell. We also looked at fcc unit cells and smaller systems
with 66 electrons, however, we found no significant differ-
ence. In all, we calculated the density response at all 119
independent k vectors between k=0 and k=5k;. Our DMC
calculations employed trial wave functions W of the Slater-
Jastrow type with a standard correlation term. Prior to the
DMC run ¥, was optimized in a variance minimization run.
We used the CASINO (Ref. 10) code for all our computations.

B. Density-response function

In general, the response function is given by

15

FIG. 2. x¥™ (solid line) and X "' (dashed line) at r¢=5 including
error bars calculated as described in the text. The inset shows rela-
tive errors. Note that these seem to be independent of k. The results
for r;=2 and 10 are similar.
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FIG. 3. The density response at r,=5 for an unpolarized 114
particle homogeneous electron gas. The dotted lines show the
Lindhard function y, (top) and ygpa (bottom). The dashed lines are
X (top) and xi,. (bottom). Finally, the solid lines show the fixed
node x™ (bottom) and extrapolated interacting y. The dots corre-
spond to the results in Ref. 2. Our data reaches to smaller k values
as our system is larger (114 vs up to 66 electrons).

(0]0,]i)i| 0|0
Ey-E;

XAB= E 2R > )

where the sum runs over all excited states of the many-
electron system. fn DMC yields the ground-state energy for
nodes given by the trial wave function. Therefore the second
derivative yields the fixed-node response ™ of a system for
which the nodes are the same for all perturbing potentials.
Since in the case of a fixed-node system the sum entering Eq.
(9) runs over a set of fixed-node excited states that differ
from the actual excited states of the many-electron system,
the fixed-node and nonfixed-node noninteracting density-
response function differ considerably (Fig. 1). Another inter-

— N =114
el
—- N _=66

el —

FIG. 4. The ratio ﬁ at ry=5 for N,;=66 and N,;=114 electrons.

Except for the omnipresent DMC noise [see Fig. 2] this graph is

independent of the value of r, due to scaling. Note the pronounced
shell structure for k< 2ky.

245116-3



R. GAUDOIN AND J. M. PITARKE

O~ 7171 OF—TT1 71 0
r=5 i

| S

2 -50
o?
4 100
| I R
o 1 2 3
k/k,,

FIG. 5. f at r,=2,5,10. The value at k=0.4189% clearly is an
outlier. Interestingly, there is a slight dip in ff('(‘: for k/kp<2 as
demonstrated in Ref. 12. The dots correspond to the data in Ref. 2.

esting observation is the shell structure exhibited by all
finite-size (fs) results. In order to visualize both the fixed-
node error and the finite-size effects, we have plotted in Fig.
1 the following calculations: the static density-response func-
tion of (i) an infinitely large noninteracting free electron gas,
the well-known Lindhard function'! x, (dashed line), (ii) x§
of a noninteracting system of 114 and 4218 electrons (solid
lines), (iii) an infinitely large interacting free electron gas in
the random-phase approximation (RPA), ygpa (dotted line),
(iv) a finite system of 114 noninteracting electrons within the
frozen-node approximation giving xi' (top dot-dashed line),
(v) a finite system of 114 interacting electrons within our
frozen-node DMC scheme (middle dot-dashed line), and (vi)
a finite system of 114 interacting electrons in the fn RPA
X, (dot-dashed line at the bottom, see below for details).
We see that the finite-size shell structure is not negligible
even for a system of 4218 electrons. Nevertheless, the exact
noninteracting density-response function nicely reproduces
the well-known Lindhard function especially for k/kf> 2.

To support the notion that the “wiggles” in Fig. 1 are the
result of a shell structure and not statistical noise we have
also estimated the latter in Fig. 2: the DMC calculations
yield data for all k& vectors and each data point in our figures
is, in fact, an average over between six and 64 underlying k
vectors of the same length. This multiplicity allows us to
estimate the statistical error. For each value of r, we also
performed two independent DMC runs and the differences
between these (not shown) are consistent with our estimate
of the error bars.

C. Discussion

Since the fn Lindhard function )(g‘ (top dashed line in Fig.
3) is smaller than the real Lindhard function y, (dotted line
at the top of Fig. 3) the fn interacting x™ is also too small
(lower solid line in Fig. 3 compared to the dots showing the
relevant data of Ref. 2). However, assuming that the effect of
the fixed-node nature of the calculation is the same for the
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FIG. 6. As Fig. 5 but showing the local field factor.

interacting and noninteracting case, we should still be able to
extract meaningful correlation data and reverse the effects of
the fn approximation.® Let us start with the definition for the
exchange correlation (xc) kernel f,. and the local field factor
G

_fxc(k) = UC(k)G(k)

v
Xk xrea(k)
1 1
:@_MMCU{)’ (10)

where vC(k)=‘;<—7;. In practice, we do not have access to y(k)
but only to its finite-size equivalent in the fixed-node
approximation. Moroni and co-workers,”> who include the
nodal variation at a Kohn-Sham level argue that while the
density response contains finite-size effects, f,. is less af-
flicted by these. Hence, they extract f,. and add that back on
to the nonfixed-node infinite-cell Lindhard function to cor-
rect for finite-size effects, thus eliminating the shell structure.
There is no reason to expect the nodal variation in the KS
nodes to correctly describe the nodal variation in the fully
interacting system with respect to y: the KS nodes and the
true many-body nodes are unrelated. Furthermore, different
DMC systems at different numbers of electrons N,; also cor-
respond to distinct nodes but the data for f,. (e.g., Ref. 2 or
Fig. 8) for different values of N,; is mutually compatible.
Finally, the effect of the nodal variation on ), seems univer-
sal, i.e., independent of N except for shell effects (see Fig. 4).
It therefore seems reasonable to assume that f,. is indepen-
dent of nodal effects and can thus be used to correct for
wrong or absent nodal variation. Hence, by using the frozen-
node quantities in Eq. (10), implicitly defining a frozen-node
Xia» We can derive a fn fi and G™ (Figs. 5 and 6). These
are remarkably similar to the data in Ref. 2. In fact, f}; even
has a slight dip as suggested in Ref. 12 which however is not
really visible in Ref. 2. This is encouraging and indeed we
can use our data for G™ in conjunction with the real ygp, in
Eq. (10) to estimate the non-fn interacting y. The result can
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FIG. 7. RPA (dotted), fn RPA (dashed), fn DMC (solid), and
extrapolated (dot-dashed) density response function calculated us-
ing a 114 particle homogeneous electron gas at r;=2, 5, and 10. The
dots correspond to the results in Ref. 2. Note that for r;=2 the
uncorrected DMC data is lower still than standard RPA.

be seen in Fig. 3: all the fn quantities are too small compared
to their non-fn counterparts. However our extrapolated data
(solid line at the top) is very close the extrapolated data of
Ref. 2 (dots).

For completeness sake Fig. 7 shows details of the extrapo-
lated x at r,=2, 5, and 10. Also, in Fig. 8 we show a direct
comparison between our results and Ref. 2 where it is pos-
sible, i.e., at N, =66 electrons in addition to our results for
N,;=114 electrons confirming that all our data is compatible
with Ref. 2. Except for noise there is no significant differ-
ence between data at different N, corroborating the assump-
tion that f, . is independent of finite-size effects.

In general, our results nicely follow the data in Ref. 2,
who take into account the change in the nodes at a Kohn-
Sham level, whereas our calculations do not take into ac-
count any nodal effect on xc quantities. The fact that the
methods yield consistent results for f,. suggest that assuming
fxc to be free from nodal effects is justified and that in either
case the resulting data is an accurate description of systems
with the full interacting nodal variation.

IV. CONCLUDING REMARKS

We have generalized Ref. 6 to the second derivative of the
energy. This yields a novel method and an efficient algorithm
to calculate the static response function within DMC. Our
algorithm permits the computation of a large number of di-
agonal and off-diagonal terms in a single DMC run without
the need for numerical derivatives or reoptimization. Noise
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FIG. 8. A comparison of our results for f,. at r;=5 and the finite
size corrected y with the data in Ref. 2 where comparison is pos-
sible, i.e., at N,=66 electrons. All our other data uses a larger
simulation cell with 114 electrons and more configurations in the
DMC run. The solid dots are the four data points for N,;=66 elec-
trons of Ref. 2 and the solid line corresponds to our data (just under
100 data points in the shown region). The dashed line shows our
data for the N,;=114 electron system. As suggested in Ref. 2 there
is no significant difference between N,,=66 and N,;=114. Note that
for N=66 we use fewer walkers than for our main results at N
=114.

can be efficiently controlled by increasing the number of
DMC walkers and we have found that we can use large
DMC time steps without introducing a bias, potentially
speeding up calculations greatly. The wave function nodes
have a strong effect on y, particularly for k <3k and gener-
alizing the RPA analysis using Xg" yields a frozen-node Xglp A
Using this to extract the xc contribution of y we find that our
method’s results are broadly in line with previous DMC
calculations? which, however, are much more cumbersome,
yield potentially fewer data points, and are effectively lim-
ited to diagonal terms only.
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