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We present analytical calculations and kinetic Monte-Carlo modeling of rate-dependent behavior

of switching field distributions (SFDs) in an ensemble of Stoner-Wohfarth particles, assuming

distributions of anisotropies and volumes, and thermal activation included by the N�eel-Brown

theory. By applying probabilistic arguments, we show that the SFD can be self-consistently

separated into the contribution from distributions of intrinsic properties of particles and the

(irreducible) contribution resulting solely from thermal fluctuations, which is shown to become a

significant effect at sweep rates relevant to the recording process. This provides a unifying

framework for systematic analysis of different classes of systems. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4765085]

The intrinsic switching field distribution (SFD) is a fun-

damental characteristic of granular magnetic materials

which, in addition to inter-granular interactions, governs the

nature of the magnetization reversal.1 As such it is an impor-

tant technological design factor; for example, it determines

the recording quality of perpendicular magnetic recording

(PMR) materials.2–4 It may also turn out to be an essential

optimization criterion for the emerging heat assisted mag-

netic recording technology, where it is necessary to control

the Curie temperature distribution as a result of the underly-

ing distributions of intrinsic properties of grains.5–7

Formally, the SFD is defined as the probability distribu-

tion DðHS;iÞ for grains i to switch at external field thresholds

HS;i in the absence of inter-granular interactions. Conse-

quently, an important task of materials characterization is the

accurate identification of DðHS;iÞ from hysteresis loops in the

interacting case. Various methodologies have already been

developed for this purpose with varying ranges of validity

and sophistication.8–12 Furthermore, the DðHS;iÞ—assuming

it can be identified, depends on the distributions of grain vol-

umes DðViÞ, anisotropy fields DðHK;iÞ, and angles DðwiÞ.
Also, due to the thermal relaxation, there is a further depend-

ence on the measurement time scales such as the external

field sweep rate R¼ dH(t)/dt.13–18 Identifying general scaling

laws relating all these distributions to the overall SFD at

different R is essential, and this is the primary focus of the

current letter.

Here, we study analytically, and by means of a numeri-

cal kinetic Monte-Carlo model, the sweep rate dependence

of DðHS;iÞ in an ensemble of non-interacting Stoner-

Wohlfarth particles with thermal activation included by the

N�eel-Brown approach.19,20 It is shown that the DðHS;iÞ can

be self-consistently separated into a contribution resulting

from distributions of intrinsic properties DðViÞ; DðHK;iÞ,
and DðwiÞ, such as investigated, e.g., in Refs. 17 and 18, and

a contribution resulting purely from thermal fluctuations,

e.g., Refs. 13–16. The latter contribution is an irreducible

thermodynamic phenomenon, becoming a very significant

effect at sweep rates corresponding to the recording process.

To simplify notations it is convenient to define the

“intrinsic property vector” of a grain ~pi ¼ ðHK;i;Vi;wiÞ and

joint probability distribution Dð~piÞ ¼ DðHK;i;Vi;wiÞ. Assum-

ing Stoner-Wohlfarth particles, the energy barriers separating

the “up” and “down” particle states depend on ~pi and are

given by Dei ¼ bið1� H=ðHK;i/iÞÞai . Here bi ¼ KiVi=kBT
is the magnetic stability ratio with Ki; kB, and T being the

anisotropy and Boltzmann constants and temperature, and

HK;i ¼ 2Ki=l0Ms with Ms being the saturation magnetization

of particles. The function /i ¼ ðcos2=3 wi þ sin2=3 wiÞ
�3=2

describes the angular contribution to the anisotropy field and

is related to the exponent ai by the Pfeiffer approximation

ai ¼ 0:86þ 1:14 /i.
21

We consider a swept field experiment with time-

dependent external field HðtÞ ¼ Rðt� t0Þ � Hsat, where t0 is

the reference time at the start corresponding to the negative

saturation field �Hsat and we take R > 0. We first evaluate

the probability PiðHÞ of finding an external field value H at

which the grain reverses to its down state.22 The solution fol-

lows from the master equation valid for PMR media,2

namely, dPiðHðtÞÞ=dt ¼ R � dPiðHÞ=dH ¼ �wiðHÞPiðHÞ.
The wi ¼ f0 expð�DeiÞ is the Arrhenius relaxation rate for

transitions out of the negative state and we assume constant

attempt frequency f0 ¼ 109 s�1. Solving for PiðHÞ allows to

find the magnetization as MiðHÞ ¼ 1 � 2PiðHÞ

MiðHÞ ¼ 1� 2exp
�
�f0R�1Iið�Hsat;HÞ

�
; (1a)

Ii ¼
ðH

�Hsat

exp �bi 1� H0

HK;i/i

� �ai
� �

dH0; (1b)

which can be, for arbitrary ai, integrated by standard numeri-

cal techniques. Equations (1) define the relationship between

the grain magnetization, the external field applied at the

sweep rate R, and the intrinsic properties ~pi. Typical shapes

of single-particle MiðHÞ for different bi and fixed R are plot-

ted in Fig. 1(a). Similarly, Fig. 1(b) shows the normalized

field-derivative of MiðHÞ, which directly corresponds to thea)Electronic mail: ondrej.hovorka@york.ac.uk.
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probability density DiðHÞ ¼ dPiðHÞ=dH for the reversal

field to the downward state given the intrinsic properties ~pi

and sweep rate R. It can be seen in these two figures that

as b decreases the broadening of the magnetization transition

region becomes more pronounced, which is a direct conse-

quence of the energy barrier reduction enhancing the thermal

relaxation effect. The magnetization transition can be quanti-

fied by an average field fHgi equal to the mean of DiðHÞ
and defining the switching threshold of a particle, i.e.,

HS;i ¼ fHgi, and the thermal fluctuation-induced broad-

ening of the transition around HS;i, equal to the variance

r2
t;i ¼ fH2gi � fHg

2
i of DiðHÞ. Both HS;i and r2

t;i depend on

the sweep rate R. Note that in the definitions above we

denoted by fgi the field-averages over the single-particle

DiðHÞ, to be distinguished below from the averages over

the intrinsic properties distribution Dð~piÞ, which will be

denoted by triangular brackets hi.
Assuming an ensemble of non-interacting particles with

Dð~piÞ, the overall probability density Dð~pi;HÞ to observe the

switching of a particle with properties ~pi to occur at the

field H is the product Dð~piÞDiðHÞ.23 Then the average

switching field in the ensemble is obtained as HS

¼
Ð1
�1
Ð1
�1 HDiðHÞDð~piÞdH d~p ¼ hfHgii ¼ hHS;ii, where we

used the field-independence of Dð~piÞ to sequence integra-

tions during the averaging procedure. Similarly, the overall

switching field variance can be calculated as r2
S ¼ hfH2gii

�hfHgii
2
. Thus, these relations indicate that Dð~piÞDiðHÞ is

the probability distribution governing the statistical behavior

of switching fields of particles and as such it directly defines

the intrinsic SFD: DðHS;iÞ �Dð~piÞDiðHÞ, essentially express-

ing the implicit dependence of HS;i on ~pi and on the thermal

contribution entering through DiðHÞ.
The starting point to study the variance r2

S of the

DðHS;iÞ, which is the practically relevant quantity,1–3 is its

definition in the preceding paragraph, which we rewrite as r2
S

¼ hfH2gii � hfHg
2
i i þ hfHg

2
i i � hfHgii

2
or equivalently as

r2
S ¼ ðrt

SÞ
2 þ ðrin

S Þ
2: (2)

In Eq. (2), ðrt
SÞ

2 ¼ hr2
t;ii ¼ hfH2gi � fHg

2
i i is the overall

broadening due to thermal fluctuations and it is an irreduci-

ble thermodynamic effect which exists independently of

Dð~piÞ, i.e., also in the uniform case. On the other hand, the

ðrin
S Þ

2 ¼ hH2
S;ii � hHS;ii2, although also thermally dependent,

appears only in the presence of Dð~piÞ and vanishes in the

uniform case. The fact that these two contributions are sepa-

rable is a direct consequence of the statistically uncorrelated

nature of the distribution Dð~piÞ and thermal fluctuations that

aid the reversal process over the activation barriers of grains.

To evaluate these contributions to the SFD, we first seek

an approximate solution of Eqs. (1) for that field HM;i inside

the transition region, which corresponds to a particular mag-

netization value M. Setting MiðHM;iÞ ¼ M in Eqs. (1) and

substituting in the integral h0 ¼ H0=ðHK;i/iÞ gives after

arranging Rlnð2=ð1 � MÞÞ � ðf0HK;i/iÞ�1 ¼ Iið�1; hM;iÞ,
where hM;i ¼ HM;i=ðHK;i/iÞ. In the integral Ii, for practical

reasons, we also replaced the lower boundary �Hsat ! �1
which, given the location of the transition region around

HM;i � 0 and its finite width, has no effect on the solution.

Next, the requirement of a sufficiently narrow transition

width implies the approximation that only a small neighbor-

hood hM;i � h� < hM;i < hM;i þ h� contributes to the mag-

netization switching. Given the smooth and monotonic

variation of the integrand in the integral Iið�1; hM;iÞ in the

entire integration range, this in turn means that only a small

interval ðhM;i � h�; hM;iÞ within the integration range con-

tributes to the solution for MiðHM;iÞ ¼ M. Thus, substituting

h0 ¼ hM;i � h� and expanding to the first order in the small

variable h� gives

R lnð2=ð1�MÞÞ
f0HK;i/i

¼
ð1

0

exp
�
�biðxi þ h�Þai

�
dh�;

�
ð1

0

expð�bix
ai
i � baih

�xai�1
i Þdh�;

¼ expð�bix
ai
i Þ=ðbiaix

ai�1
i Þ;

where we put xi ¼ 1� hM;i ¼ 1� HM;i=ðHK;i/iÞ. Returning

the substitutions for xi and hM;i and rearranging gives

HM;i ¼ HK;i/i � HK;i/iðlnsi=biÞ1=ai ; (3a)

si ¼
f0R�1

lnð2=ð1�MÞÞ
HK;i

bi

/i

ai
1� HM;i

HK;i/i

� �1�ai

; (3b)

which is the sought solution describing the rate-dependence

of HM;i corresponding to M inside the transition region.

Equations (3) will now be used to derive expressions for rin
S

and rt
S entering in Eq. (2).

(a) Broadening due to distributions of intrinsic proper-

ties: rin
S . The variance ðrin

S Þ
2

can be calculated by employing

the standard error-propagation approach.24 In this approach,

the rate-dependent relation for the switching threshold

HS;iðRÞ, obtained after setting M¼ 0 in Eqs. (3)25 is viewed

FIG. 1. (a) Mi vs H dependence calculated according to Eqs. (1) for bi ¼ 30

and 90. (b) Normalized probability density DiðHÞ defining the thermal

broadening width rt;i. (c) Contour plot of the relative thermal broadening

rt;i=HS;i for variable bi and R. (a)–(c) assume rw ¼ 3�. (d) Thermal broaden-

ing contribution in Eq. (2) computed as an ensemble average hr2
t;ii (sym-

bols), using an equivalent-particle approximation r2
t ðh~piiÞ assuming 100

grains in the averaging (solid lines), and Eq. (7) (dashed lines), with b ¼
80; rK=HK ¼ 0:05; rV=V ¼ 0:3 and rw ¼ 0�; 3�. Other parameters used

in (a)–(d): HK ¼ 40 kOe and V 	 400 nm3.
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as a transformation law between the random variable HS;i

and the HK;i; Vi, and ai, and the goal is to evaluate the var-

iance ðrin
S Þ

2
knowing the r2

K; r2
V , and r2

a. Assuming that the

random variables HK;i; Vi, and ai are uncorrelated, the error-

propagation formula reads

ðrin
S Þ

2 ¼ @HS

@HK

����
����
2

r2
K þ

@HS

@V

����
����
2

r2
V þ

@HS

@a

����
����
2

r2
a; (4)

where the derivatives are calculated from the mean value

equation for HS consistent with Eqs. (3) with M¼ 0

HS ¼ HK/� HK/ðlns=bÞ1=a; (5a)

s ¼ f0

R ln 2

HK

b
/
a

1� HS

HK/

� �1�a

: (5b)

The variables HS; HK ; b ¼ KV=kBT; /, and a are mean val-

ues of their respective probability distributions, with /; a
tabulated in Table I. Equations (5) is the solution describing

the rate-dependence of the mean switching threshold HS for

the swept field experiment,26 and resembles the well-known

Sharrock equation for the magnetization relaxation experi-

ment.27 It simplifies for slower rates when in Eq. (5b) the

term HS=HK/ < 1 and can be neglected. Thus, an implicit

differentiation of general Eqs. (5) with respect to HK , V, and

a gives straightforwardly

HK

HS

@HS

@HK
¼ 1þ bx1þa

ð1� xÞðaX� 1Þ ; (6a)

V

HS

@HS

@V
¼ xX
ð1� xÞðaX� 1Þ ; (6b)

a
HS

@HS

@a
¼ a� þ x

1� a� þ aXlnx

ð1� xÞðaX� 1Þ ; (6c)

where x ¼ 1� HS=ðHK/Þ ¼ ðlns=bÞ1=a following Eq. (5a),

and we introduced X ¼ 1þ bxa and also a� ¼ a/�1d/=da.

The values of all a-related quantities are given in Table I.

Equations (6) define the derivatives in Eq. (4) and rely on the

solution of Eqs. (5). We note that the present standard

assumption of uncorrelated HK;i; Vi, and ai is in fact not nec-

essary. The error-propagation equation (4) can be extended

to include the relevant correlation coefficients once they

have been quantified experimentally or by independent

theories.24,28

b) Broadening due to thermal fluctuations: rt
S. It turns

out that rt
S > 0 even in the uniform case when ~pi ¼ ~p for all

i. The importance of this contribution for a single grain is

shown in Fig. 1(c) as contour plot of the ratio rt;i=HS;i for

different bi and sweep rates R. It suggests that the broaden-

ing effect due to thermal fluctuations contributes signifi-

cantly at fast rates R, which is consistent with the recent

work.16 According to Eq. (2), ðrt
SÞ

2
needs to be evaluated as

an ensemble average hr2
t;ii. However, due to the uncorrelated

nature of thermal contributions from individual particles and

for sufficiently narrow Dð~piÞ, it is possible to relate

hr2
t;ii � r2

t ðh~piiÞ, where r2
t ðh~piiÞ is the thermal broadening

for an equivalent particle with properties set to an ensemble

average h~pii. This suggests that to compute the ðrt
SÞ

2
, it is

sufficient to evaluate r2
t from DiðHÞ based on Eqs. (1) only

once assuming h~pii, and explicit averaging requiring compu-

tations of r2
t;i for individual particles is not necessary. Fig.

1(d) confirms the equivalence between hr2
t;ii and r2

t ðh~piiÞ for

typical PMR media.

Given the validity of the equivalent particle picture, we can

obtain the rate-dependence of rt
S by first dividing two mean

value Eqs. (3), similar to Eqs. (5) but one for MðHS þ d1HK/Þ
¼ M1 and the other for MðHS � d2HK/Þ ¼ M2, which after

arranging reads

�
1þ ða� 1Þx�1d

�
expðbaxa�1dÞ ¼ C; (7)

where d ¼ d1 þ d2 and the constant C ¼ lnð2=ð1�M1ÞÞ=
lnð2=ð1�M2ÞÞ. We neglected all higher but first order terms

in d and as before we put x ¼ 1� HS=ðHK/Þ ¼ ðlns=bÞ1=a.

Then the rt
S is obtained as rt

S � dHK/, and arguments using

Gaussian approximation allow finding optimum behavior for

M1;2 ¼ 6ð1� e�1=2Þ, which gives C � 3:3. For slower rates,

the pre-exponential term can be neglected, simplifying

Eq. (7) to d � x1�a ln C=ðabÞ.
To validate formula (2) with Eqs. (4)–(7), we computed

rate-dependent room-temperature hysteresis loops by employ-

ing kinetic Monte-Carlo Stoner-Wohlfarth modeling

developed earlier.29 We considered sweep rates R in the inter-

val 10�2 � 1012 Oe=s and all combinations of values rK=HK

¼ 0:0; 0:05; 0:1; 0:2; rV=V ¼ 0:0; 0:1; 0:2; 0:3 (Lognormal

distribution), and rw ¼ 0�; 3� (Gaussian distribution), which

includes the range relevant for PMR. The distribution of

switching thresholds DðHS;iÞ was obtained by histogramming

the fractions of particles switched at every field step along the

hysteresis loop, which then allowed a direct evaluation of

the mean switching field HS and variance r2
S. Fig. 2 shows the

dependences of HSðRÞ and rSðRÞ, respectively, demonstrating

excellent agreement between the analytical calculations and

the modeling. Generally, we found that for all input parameter

choices the relative error remains below 8%.

Fig. 2(a) shows that increasing rw reduces HSðRÞ, which

is a result of the reduction of energy barriers. The behavior

of rSðRÞ shown in Fig. 2(b) is more subtle indicating a cross-

ing point at a certain R. It is furthermore demonstrated that

including rt
S in analytical calculations is essential. Fig. 3

shows typical behaviors of rSðRÞ and ðrS=HSÞðRÞ, and shows

a change from an increasing trend for rK � rV towards a

decreasing trend for rK 
 rV , proceeding through a plateau

observed for certain optimal rK < rV . This behavior can be

confirmed by exploring the limit rV ; rw ! 0, when for suffi-

ciently slow sweep rates, such that bx2 � 1, Eqs. (4) and

TABLE I. Statistical properties of a-related quantities evaluated by generat-

ing histograms following Gaussian distribution of wi with standard deviation

rw. The /; a; ra, and a� are defined in the text.

rw / a ra /=a a�

0� 1 2 0 1/2 1.754

1� 0.9257 1.9153 0.0430 0.4831 1.8159

2� 0.8874 1.8716 0.0629 0.4737 1.8531

3� 0.8579 1.8380 0.0771 0.4660 1.8845

5� 0.8128 1.7866 0.0968 0.4537 1.9380

10
�

0.7381 1.7014 0.1231 0.4315 2.0437

182405-3 Hovorka et al. Appl. Phys. Lett. 101, 182405 (2012)
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(6a) reduce to an approximate form rin
S =rK � 1� x=2,

recovering the previous result.30 Similarly, for rK; rw ! 0,

Eqs. (4) and (6b) give rin
S =rV � ðHK=VÞx=2, indeed showing

an opposite trend as a function of R and confirming the com-

peting tendencies of the distributions of DðHK;iÞ and DðViÞ
during the thermally activated reversal.

In summary, the present work develops a unifying

framework, successfully validated by the kinetic Monte-

Carlo modeling, which links the major contributions to the

SFD of a PMR medium. The expansion technique leading to

Eqs. (3) is essential and it can be extended beyond the

assumption of constant f0, which becomes relevant at high

R.16 Such analysis is more extensive and is not presented

here due to the lack of space. The analytical model allows a

self-consistent separation of the overall variance r2
S of the

SFD into two thermally dependent contributions. The first,

ðrt
SÞ

2
, is solely due to thermal fluctuations and the second,

ðrin
S Þ

2
, results from intrinsic distributions of HK;i; Vi, and wi.

The ðrin
S Þ

2
vanishes in the uniform case and, consequently,

ðrt
SÞ

2
represents the minimum SFD achievable for a given re-

cording medium, becoming increasingly important for high

sweep rates such as of the recording process. Thus, the pres-

ent analytical approach demonstrates how to rescale the SFD

determined from quasi-static measurements to obtain realis-

tic values relevant during the recording process.
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