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electron gas and jellium surface energy
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We introduce and test a nonlocal energy-optimized model kernel (NEO) within the adiabatic connection
fluctuation-dissipation (ACFD) density-functional theory for the jellium surface and uniform electron gas, as
benchmarks for simple metallic systems. Our model kernel is short ranged for the uniform electron gas paradigm
system and one-electron self-correlation free. One-electron self-interaction freedom is provided by an iso-orbital
indicator. We show how several versions of the NEO kernel perform for the uniform electron gas and jellium
surface energies, and in addition we explain the underlying physics of self-interaction-free exchange-only kernels
for exponentially decaying surface densities.
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I. INTRODUCTION

Nonempirical density-functional theory (DFT) relies on
the knowledge of paradigms [1]. One of these paradigms is
the uniform electron gas [2–4], which plays a key role in the
construction of many density-functional approximations [1].
The uniform electron gas provides relevant information about
correlation in materials and serves as a model for metallic
systems [5]. The surface of a bounded electron gas, which is
different from the bulk, delivers additional information about
the ground-state correlation.

As the uniform electron gas has done in the past, the jellium
surface can also guide the construction of density functionals.
In the jellium model of a simple metal surface, the ions are
replaced by a semi-infinite uniform positive background of
density n, which is neutralized by a valence electron density
n(z) allowed to leak out into the vacuum side of the surface.

The accuracy of [6–8] local and semilocal density func-
tionals is limited by the approximating form of the exchange-
correlation (xc) energy or its corresponding potential [9].
Density-functional approximations are usually benchmarked
against correlated wave-function-based methods [10–15].
Approximations that rely on the concept of the slowly
varying limit of the perturbed uniform electron gas deliver
accurate lattice properties [16]. The simplest approximation,
the local density approximation (LDA) [3], is reasonably
accurate for periodic solids [17]. Generalized gradient ap-
proximations (GGAs) utilize information about slowly varying
densities [18–22]. These GGAs have proven accurate for both
bulk solids and surfaces. Meta-GGAs beyond the GGA level
add the positive kinetic-energy density as a new ingredient
to the existing electron density and density gradient in
GGAs [23–29]. With all these ingredients, the meta-GGA
density functionals are the potentially most accurate semilocal
approximations, with the flexibility to describe bulk solids,
surfaces, and molecules at the same time [29,30]. Adiabatic-
connection fluctuation-dissipation (ACFD) approximations
[the random-phase approximation (RPA) in particular] stand
on the fifth and highest rung of a ladder [31] of density-

functional approximations, employing the unoccupied as well
as the occupied Kohn-Sham (KS) orbitals in a fully nonlocal
way that can potentially solve problems such as capturing weak
van-der-Waals interactions [32] and static correlation for the
H2 molecule in a spin-restricted formalism [33].

Jellium surface energies were thoroughly investigated
within an ACFD approach [34–37], and these results were
compared to Fermi-hypernetted chain (FHNC) [13] and
diffusion-Monte-Carlo (DMC) surface energies [14,15]. Later,
Yan et al. made an assessment of several density-functional
approximations to the jellium surface energy [38]. Many
refinements of DFT (including ACFD), as summarized in
Ref. [39], produced jellium surface energies close to those
obtained in the LDA and thus much lower than those of FHNC
and early DMC [14]. A more recent DMC calculation [40]
agrees well with the DFT values.

By combining an adiabatic-connection (AC) formula with
the fluctuation-dissipation (FD) theorem, one obtains an exact
expression for the xc energy of an arbitrary many-electron
system (unless stated otherwise, atomic units are used through-
out) [41]:

Exc = 1

2

∫ 1

0
dλ

∫
dr

∫
dr′v(r,r′)

{[
− 1

π

∫ ∞

0
dω

× χλ(r,r′,iω)

]
− n(r)δ(r − r′)

}
, (1)

where v = 1/|r − r′| is the bare Coulomb interaction and
χλ represents the interacting density-response function of
a fictitious many-electron system with the electron-electron
interaction strength λe2. In the framework of time-dependent
DFT (TDDFT), the interacting density-response function χλ

obeys a Dyson-like integral equation [42]:

χλ = [
1 − χ0

(
λ v + f λ

xc

)]−1
χ0, (2)

where χ0 is the density-response function of noninteracting
KS electrons. The RPA sets the xc kernel f λ

xc(r,r′,ω) to zero.
In much of this work, we will need only the exchange-only
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(linear in λ) kernel, but we will leave λ general in the notation.
In the RPA, Eqs. (1) and (2) are combined, bootstrapping a
crude approximation for χλ to a more sophisticated one for
Exc [43]. For the uniform electron gas, it was shown [44] that
an adiabatic (static) local kernel overshoots the correlation
energy by about as much (∼0.5 eV) as the RPA undershoots
it; a static nonlocal kernel [45,46] was found to reduce the error
to ∼0.1 eV, and a dynamic nonlocal kernel [47] was found to
reduce the error down to ∼0.02 eV.

There are other routes to correct for the missing short-range
correlation. The quantum chemistry community often uses the
second-order screened exchange (SOSEX) contribution (com-
ing from the wave-function antisymmetry) [48]. The SOSEX
correction was found to perform somewhat controversially in
quantum chemistry.

The first implementation of the ACFD scheme for a
nonuniform system was reported in Ref. [34] for the jellium
surface. Although RPA delivers too deep correlation energy
for the short range, jellium surface energies are surprisingly
accurate. The better performance of RPA for the jellium
surface energy was explained by the relevance of the long-
range correlation for surfaces. Even if RPA does not provide
an accurate short-range correlation, the error tends to cancel
out of the surface energy. Therefore exchange-correlation
kernels, which can correct the deep RPA correlation for
short range in bulks or inhomogeneous systems, do not give
much contribution for the jellium surface energy. The same
conclusion can be drawn when the correction to the RPA
called RPA+ is applied to the jellium surface. For energy
differences in processes that conserve the electron number,
it was argued [38] that the correction from RPA+, although
large for the total energy (about +0.5 eV per electron), tends
to cancel out almost completely. Beyond the jellium model,
recent calculations showed a remarkably accuracy of the RPA
for various properties (including the surface energy) of real
materials [49–55].

To account for this missing short-range part of the RPA
correlation energy in the uniform electron gas and inhomoge-
neous systems, we rely on (for the jellium surface) a nonlocal
energy-optimized (NEO) model kernel [56,57] which has been
introduced and tested recently [58]. This kernel is designed to
satisfy exact constraints utilizing the iso-orbital Z indicator, a
meta-GGA ingredient. The original construction of NEO was
designed to produce a correctly long-ranged (∼1/u) exchange
kernel for one- and two-electron systems, where Z = 1. A
problem arises in that it also produces a long-ranged exchange
kernel in the tail of the density of a jellium surface, since
Z → 1 and kF → 0 there. (Here kF = (3π2n)1/3 is the Fermi
wave vector.) In this paper we present the NEO kernel and test
it for the jellium surface. Along with the original NEO kernel,
we also introduce a modification of the original expression
to restore the correct decay of the density tail for the jellium
surface. With this construction the NEO-kernel-corrected RPA
should be correct at long range, as pointed out by Ref. [34].

II. COMPUTATIONAL FRAMEWORK

Consider a many-electron system that is neutralized by a
uniform positive background (jellium) of density n̄ cut off
sharply at a planar surface (at z = z0). The xc surface energy

is obtained as follows [35]

σxc = N

A

{
εxc[n] − εunif

xc (n̄)
}
, (3)

where εxc[n] and εunif
xc (n̄) represent, respectively, the xc energy

per particle of the actual semi-infinite many-electron system
[of density n(z)] and a uniform electron gas (of density n̄)
cut off sharply at z = z0; here, n̄ = k3

F /(3π2),kF being the
magnitude of the bulk Fermi wave vector. Using Eq. (1), one
finds:

εxc[n] =
∫ ∞

0
d(q/kF ) εxc,q [n], (4)

where

εxc,q [n] = kF

4π

∫
dz

∫
dz′n(z) vq(|z − z′|)

[
− 1

πn(z)

×
∫ 1

0
dλ

∫ ∞

0
dωχλ(z,z′; q,iω) − δ(z − z′)

]
.

(5)

Here, q represents the magnitude of a two-dimensional (2D)
wave vector parallel to the surface, vq(|z − z′|) is the 2D
Fourier transform of the bare Coulomb interaction v, and
χλ(z,z′; q,iω) is the 2D Fourier transform of the interacting
density-response function χλ of Eq. (2). If the interacting
density-response function χλ is replaced for all λ by the
noninteracting density response function χ0, then Eq. (5)
reduces to the exact exchange energy per particle εx,q [n]. We
define the correlation energy per particle εc,q[n] = εxc,q [n] −
εx,q [n].

For εunif
xc (n̄), one simply needs to replace (i) the interacting

density-response function χλ(z,z′; q,iω) entering Eq. (5) by
that of a uniform electron gas and (ii) the electron density n(z)
[also entering Eq. (5)] by the step function n̄ θ (z0 − z). This
yields a 2D wave-vector analysis [Eq. (4)] of the uniform-gas
xc energy per particle εunif

xc (n̄), which will be needed below
for a 2D wave-vector analysis of the xc surface energy.
Alternatively, one can use Eq. (1) to reach the following
three-dimensional (3D) wave-vector analysis:

εunif
xc (n̄) =

∫ ∞

0
d(Q/kF ) εunif

xc,Q(n̄), (6)

where

εunif
xc,Q(n̄) = kF

4π2
vQ

[
− 1

πn̄

∫ 1

0
dλ

∫ ∞

0
dωχλ(Q,iω) − 1

]
.

(7)
Here, Q represents the magnitude of a 3D wave vector, vQ is
the 3D Fourier transform of the bare Coulomb interaction v,
and χλ(Q,iω) is the 3D Fourier transform of the interacting
density-response function χλ [see Eq. (2)] of a uniform
electron gas of density n̄.

For the numerical calculations reported here, we start with
a jellium slab of finite width along the z direction, and we
then take the limit of large thickness. In this paper we used the
code described in Refs. [34,35,59] that computes numerically
Eqs. (3)–(5) using accurate (occupied and unoccupied) LDA
orbitals [35]. Instead of considering the double-cosine Fourier
representation of the density-response function (as done in
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Ref. [35]), we worked directly in the z space. This approach
simplifies considerably the computational implementation of
the kernels, but needs a large number of grid points in the z

direction, in order to obtain converged results (up to 1100 z

points on a Gaussian grid).

III. METHODOLOGY

A. The NEO-I kernel

Here we invoke NEO: a nonlocal energy-optimized model
kernel [56,57] which has been introduced and tested recently
for the uniform electron gas [58]. This kernel (which can
be applied to an arbitrary nonuniform system) is based on
exact constraints and on the concept of the uniform electron
gas [44]; the most widely-applicable approximations of DFT
and TDDFT are well known to rely on this paradigm. The
NEO kernel, as introduced in Ref. [58] (NEO-I), is:

f λ,NEO
xc ([n],r,r′) = −λv(r,r′)

∑
σ

(nσ

n

)2

× erfc(aNEO−I |r − r′|), (8)

where

aNEO−I =
√

c̃
(
1 − Z2

σ

)
kFσ , (9)

Zσ = τW
σ /τσ being a meta-GGA ingredient [24,25], τσ being

the KS kinetic-energy density

τσ = 1

2

occup∑
α

|∇φασ |2, (10)

and τW
σ = |∇nσ |2/(8nσ ) being the von Weizsäcker kinetic-

energy density [60] (which equals τσ for one- and two-
electron ground states). The decaying function erfc is the
complementary error function, nσ and n are the σ spin and
the total electron density, respectively, and kFσ = (6π2nσ )1/3.
These quantities are all evaluated at (r + r′)/2.

For one-electron densities, one finds the expected result
f λ,NEO

xc = −λv. For two electrons in a spin singlet, one finds
the exact-exchange form f λ,NEO

xc = −λv/2, which is exact
in the high-density limit. In the short-range limit, the NEO-I
kernel becomes −λv

∑
σ (nσ /n)2 as does the PGG kernel [61];

in the spin-polarized case, this further simplifies to −λv,
while in the spin-unpolarized case it becomes −λv/2. In the
long-range limit, f λ,NEO

xc vanishes rapidly, except in the one-
and two-electron regions. The exact xc kernel of the uniform
electron gas is known to be nonlocal but short ranged, and the
NEO-I kernel has these features.

The c̃ parameter entering Eq. (9) is taken to fit the
exact second-order exchange contribution to the uniform-gas
correlation energy, which can be evaluated from explicit
expressions given by Langreth and Perdew [41] and by von
Barth and Hedin [62]; one finds c̃ = 0.264, which makes a
large improvement over the RPA (c̃ → ∞).

B. NEO-II kernel

The NEO-I kernel of Eqs. (8) and (9) is simply the bare
Coulomb interaction λv multiplied by a decaying function
of the variable aNEO−I|r − r′|. This is designed in order to

0

 0.05
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 0.15

 0.2

 0.25

 0.3

-0.4 -0.2 0  0.2  0.4

z/λF

aNEO-I

aNEO-II

FIG. 1. The coefficients aNEO−I and aNEO−II defining the ker-
nels NEO-I and NEO-II, for a jellium surface with the electron-
density parameter rs = 6. The surface is at z = 0, the bulk is at
z < 0, and the vacuum is at z > 0.

(i) produce a correctly long-ranged exchange kernel for one-
and two-electron systems, where Zσ = 1, and (ii) produce
no second-order gradient correction to the RPA correlation
energy in a slowly-varying high electron density, where Zσ →
0 + O(∇2). The problem is that this kernel (as introduced in
Ref. [58]) produces an unwanted long-ranged exchange kernel
in the tail of the electron density of a jellium surface (Zσ → 1
and kFσ → 0) where the RPA should be recovered as discussed
in Ref. [35]. Hence, here we replace Eq. (9) by

aNEO−II =
√

c̃
(
3ασ − 3α2

σ + α3
σ

)
kFσ , (11)

where ασ = (τσ − τW
σ )/τ unif

σ ,τ unif
σ being the Thomas-Fermi

kinetic-energy density [63,64]:

τ unif
σ = (1/2)(3/10)(3π2)2/3(2nσ )5/3. (12)

This new approach (NEO-II) represents a clear improve-
ment, as it leaves unchanged the correct behavior of the NEO-I
kernel for one- and two-electron densities (at ασ = 0) and also
for slowly-varying densities [at ασ = 1 + O(∇2)] and kills, at
the same time, the unwanted kernel in the tail of the electron
density far away from the surface (at ασ → ∞). As one moves
from NEO-I to NEO-II, the parameter c̃ does not need to be
refitted.

By construction, for α values that are close to 1 (slowly-
varying densities) the coefficient 3ασ − 3α2

σ + α3
σ entering

Eq. (11) deviates little from unity, so the range of our NEO-II
kernel is of the order of k−1

F . Hence, over this range of α values
the kernel correction to RPA is nearly local, as in the semilocal
correction to RPA of Yan, Kurth, and Perdew [38].

In Fig. 1, we show a comparison between the coefficients
aNEO−I and aNEO−II defining the kernels NEO-I and NEO-II,
for a jellium surface with the electron-density parameter
rs = 6. By construction, these functions agree well in the bulk
and even at the surface, while in the vacuum side far from
the surface one finds: aNEO−I → 0 and aNEO−II → ∞, as
expected. The quantity α we are introducing here represents
a kinetic-energy dependent ingredient that plays a key role
in the construction of meta-GGA functionals [27,28,65–68]
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TABLE I. Correlation energy of the uniform electron gas (in
mHa), as obtained from Eq. (1) with the use of the NEO-I and NEO-III
kernels, for various values of the electron-density parameter rs . For
the uniform electron gas, the kernels NEO-I and NEO-II coincide. The
PW92 correlation energy [73] is given for comparison. The values
in parenthesis are relative deviations from the exact (PW92) values.
The last line reports the root mean square (RMS).

rs NEO-I NEO-III exact (PW92)

1 −65.12 (−0.0895) −60.29 (−0.0087) −59.77
2 −50.56 (−0.1296) −44.08 (0.0152) −44.76
3 −42.92 (−0.1619) −36.34 (0.0162) −36.94
4 −37.93 (−0.1901) −31.76 (0.0035) −31.87
5 −34.33 (−0.2165) −28.65 (−0.0152) −28.22
6 −31.55 (−0.2407) −26.37 (−0.0369) −25.43
10 −24.60 (−0.3247) −20.90 (−0.1255) −18.57
100 −6.50 (−1.0376) −6.12 (−0.9185) −3.19
1000 −1.31 (−2.3590) −1.29 (−2.3077) −0.39
RMS 5.351 1.374

and is also relevant for a correct asymptotic description
of the electron density [69,70]. Note, for example, that
1/[1 + α(r)2] is the electron-localization function often used
in the characterization of chemical bonds [71,72].

C. NEO-III kernel

One of the ingredients of the NEO-I kernel [the parameter
c̃ entering Eq. (9)] is constructed to fit the exact second-
order exchange contribution to the uniform-gas correlation
energy. Now we construct NEO-III by replacing the coefficient
aNEO−I by the new coefficient

aNEO-III =
√

c̃

1 + brc
s

(
1 − Z2

σ

)
kFσ , (13)

where the energy-optimization coefficient c̃ entering Eq. (9)
has been replaced by the new electron-density dependent
coefficient c̃/(1 + brc

s ), with the parameters b = 1.1 and
c = 1.35 taken to fit the PW92 [73] correlation energy for
electron densities down to rs = 1000.

We have not tried to construct the analog of Eq. (13) using
α instead of Z. Z and α in NEO-I and NEO-II present different
physics in the density tail, while the replacement of c̃ by√

c̃
1+brc

s
in NEO-III was designed to test the applicability of

the kernel for density regions which are different from high
densities.

In Table I, the uniform-gas correlation energy is given for
various values of rs , as obtained with the use of the NEO-I
(or NEO-II) and NEO-III kernels. NEO-III correlation energy
shows reduced deviations for each rs compared to NEO-I.
This fact indicates that NEO-III is performing better for the
integrated correlation energies of individual rs values. This is
not surprising since the parameters in NEO-III were obtained
by fitting to the uniform electron gas over a wide range of
densities. Notice that the better correlation energies in NEO-III
show up in the wave-vector analysis of Fig. 2 only in the
correlation energy, as an integrated area under the curve.
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FIG. 2. 3D wave-vector analysis of the correlation energy per
particle εunif

c,Q(n̄) of a uniform electron gas with rs = 2 and rs = 5,
as obtained from Eq. (7) in the RPA and with the use of the
NEO-I and NEO-III kernels. The same quantity, as obtained from the
Perdew-Wang parametrization of the uniform-gas correlation-hole
density [74] (exact) is given for comparison. For the uniform electron
gas, the kernels NEO-I and NEO-II coincide.

IV. RESULTS AND DISCUSSION

Figure 2 exhibits the Q-dependent correlation energy
per particle εunif

c,Q(n̄) (3D wave-vector analysis) of a uniform
electron gas with rs = 2 and rs = 5, as obtained from Eq. (7).
In the long-wavelength (Q → 0) limit, where the RPA is
exact, all calculations converge, as expected. At moderate
values of Q, NEO-I agrees very well with the Perdew-Wang
parametrization [74] in a region where RPA starts to deviate
significantly. At the shortest wavelengths, all kernel-corrected
calculations improve considerably over the RPA, although they
give Q-dependent correlation energies that are still below the
exact calculation.

Since both NEO-I and NEO-II kernels were fitted against
the second-order exchange energy, they both have the same
physics built in for the high-density limit. In Ref. [58] one of
the authors has shown that for rs between 1 and 20, the fitted
parameter produces a distribution of errors compared to PW92
between approximately 3 and 5 mHa. Small displacement
below and above this fitted parameter delivers a balance of
small absolute errors and small distribution of error over
a large range of densities. Therefore this particular fitting
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FIG. 3. 2D wave-vector analysis of the correlation energy per
particle εc,q [n] of a jellium slab of width a = 2.23λF and rs = 2.07,
as obtained from Eq. (5) in the RPA and with the use of the NEO-I,
NEO-II, and NEO-III kernels. ISTLS calculations (see Ref. [39]) are
given for comparison.

provides some flexibility for the kernel to be accurate in both
high-density and lower density regions as well. The balance
of good absolute errors and error distribution transfers to
the wave-vector analysis by tuning the agreement for small
to intermediate Q without changing c̃. NEO-III is worse
than NEO-I for intermediate wave vectors, but its integrated
correlation energies are better.

Figure 3 shows the q-dependent correlation energy per
particle εc,q [n] (2D wave-vector analysis) of a jellium slab
of width a = 2.23λF (λF = 2π/kF is the Fermi wavelength)
and rs = 2.07 (the electron-density parameter corresponding
to valence electrons in Al), as obtained from Eq. (5). Here
we compare our RPA and beyond-RPA calculations to the
inhomogeneous Singwi-Tosi-Land-Sjölander (ISTLS) calcu-
lations reported in Ref. [39]. As in the case of the uniform
electron gas, all calculations converge, as expected, in the
long-wavelength (q → 0) limit. At moderate values of q, both
NEO-I and NEO-II agree well with our reference calculation
(ISTLS) in a region where RPA starts to deviate significantly.
At the shortest wavelengths, all kernel-corrected calculations
are slightly below our reference calculation (ISTLS), as occurs
in the case of the uniform electron gas. The best results here
(compared to the ISTLS reference) are obtained by using the
NEO-I and NEO-II kernels.

In Fig. 4, we show (for rs = 2.07) our wave-vector analysis
of the jellium surface correlation energy

γc,q = (N/A)
{
εc,q[n] − εunif

c,q (n̄)
}
, (14)

where N is the total number of electrons and A represents a
normalization area. The area under each curve represents the
correlation surface energy σc, which we give in Table II. All
NEO kernels yield accurate jellium surface energies, which
are (i) close to the ISTLS calculation and (ii) within the error
bar of DMC calculations.

Figure 4 shows that in the long-wavelength (q → 0) limit
all calculations coincide with the RPA calculation, which is
exact in this limit. In the large-q limit, where the RPA fails
badly, all kernel-corrected calculations agree with each other
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FIG. 4. 2D wave-vector analysis γc,q of the correlation surface
energy of a jellium slab of width a = 2.23λF and rs = 2.07. The area
under each curve represents the corresponding correlation surface en-
ergy σc. Units are erg/cm2 (1 hartee/bohr2 = 1.557 × 106 erg/cm2).

and with our reference calculation (ISTLS); this is an expected
result, since all calculations yielding accurate uniform-gas
correlation energies are expected to also yield an accurate
γq in this region [36]. Differences among our kernel-corrected
calculations and between these calculations and our reference
calculation (ISTLS) arise at intermediate values of q. The
NEO-II kernel yields correlation energies γq that are very
close to our reference calculation (ISTLS) for wave vectors up
to q ≈ 0.4. This is an expected result, since this is the only
kernel that is free from an unrealistic long-ranged behavior
in the tail of the electron density into the vacuum side of
the surface. At larger values of q the NEO-II kernel yields
correlation energies that are slightly below the ISTLS result,
thus leading to a total NEO-II surface energy that is slightly
smaller than the ISTLS surface energy.

We close this paper by looking at the position-dependent
xc energy per particle εxc([n],z), which for a many-electron
system that is invariant in two directions we define as
follows [59]

Exc = A

∫
dz n(z) εxc([n],z), (15)

Exc being the xc energy of Eq. (1). Equation (15) itself does
not define εxc([n],z) uniquely [75–77], but here we use the
choice made in Eq. (1).

Figure 5 exhibits the correlation energy per particle
εc([n],z). Only the NEO-II kernel is found to capture both
the correct εc([n],z) in the bulk (which in the case of the RPA

TABLE II. NEO-I, NEO-II, and NEO-III correlation surface ener-
gies σc of a jellium surface with rs = 2.07. LDA, PBEsol, ISTLS [39],
and DMC [40] correlation energies are given for comparison. NEO
and ISTLS calculations represent the surface energy of a semi-infinite
jellium, which has been obtained from finite-slab calculations by
following the extrapolation procedure described in Ref. [35]. Units
are erg/cm2 (1 hartee/bohr2 = 1.557 × 106 erg/cm2).

rs LDA PBEsol NEO-I NEO-II NEO-III ISTLS DMC

2.07 287 645 702 692 714 730 697± 45
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FIG. 5. Correlation energy per particle (εc versus z, for a jellium
slab of width a = 2.23λF and rs = 2.07). The surface is at z = 0, the
bulk is at z < 0, and the vacuum is at z > 0.

is too negative) and the correct imagelike εc([n],z) far away
from the surface (where the RPA is exact [59] and NEO-I and
NEO-III are all wrong). This is an expected result, since the
NEO-I and NEO-III kernels produce an unwanted long-ranged
behavior in the tail of the electron density due to the inability
of the Z ingredient entering Eq. (9) to distinguish between the
surface tail and one- or two-electron regions. The relevance
of the α parameter versus Z was mentioned in the context of
orbital overlap in closed-shell species [27,29,78].

V. CONCLUSIONS

We have constructed a nonlocal energy-optimized model
kernel [56,57] with various inhomogeneity parameters, which
we have tested for the jellium-surface problem. Our work
reveals the role and significance of α, a dimensionless
deviation from the single orbital shape, as an ingredient for
exponentially decaying surface densities.

A kernel-corrected RPA calculation of the xc jellium
surface energy was reported in Ref. [36]. In Ref. [36], the
xc kernel f λ

xc(r,r′,ω) was taken to be (by assuming that the
electron density variation is small within the short range of
the kernel) equal to the xc kernel of a uniform electron
gas of density [n(r) + n(r′)]/2. Krotscheck and Kohn [13],
however, had argued that this local-density approximation for
the particle-hole interaction might be inadequate to calculate
the surface energy of simple metals. The present work brings
us to the conclusion that the use of an appropriate kernel (like
NEO-II), which does not only depend on the electron density
at (r + r′)/2 but also on its gradient as well as the kinetic
energy density, does not change the jellium surface energy
significantly compared to the RPA value and leaves it close to
our reference ISTLS and DMC calculations.
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