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The response of an electron system to electromagnetic fields with sharp spatial variations is
strongly dependent on quantum electronic properties, even in ambient conditions, but difficult
to access experimentally. We use propagating graphene plasmons, together with an engineered
dielectric–metallic environment, to probe the graphene electron liquid and unveil its detailed elec-
tronic response at short wavelengths. The near-field imaging experiments reveal a parameter-free
match with the full theoretical quantum description of the massless Dirac electron gas, in which
we identify three types of quantum effects as keys to understanding the experimental response of
graphene to short-ranged terahertz electric fields. The first type is of single-particle nature and is
related to shape deformations of the Fermi surface during a plasmon oscillation. The second and
third types are a many-body effect controlled by the inertia and compressibility of the interacting
electron liquid in graphene. We demonstrate how, in principle, our experimental approach can
determine the full spatiotemporal response of an electron system.

The quantum physics of electron systems involves com-
plex short-distance interactions and motions that depend
sensitively on electron correlations and Fermi surface
deformations.1,2 These are often considered irrelevant in
optical and transport measurements, which probe the re-
sponse to electrical fields with long length scales. When
free electron systems are driven by electric fields varying
rapidly in both time and space, however, the response
pattern in dynamical current reveals these complex short-
range effects. This aspect of electron response, known as
non-locality or spatial dispersion in conductivity, arises
due to the internal spreading of energy via the moving
electrons. Even in ambient conditions (as Fermi liquid
parameters depend on temperature weakly1,2), the spa-
tial dispersion in an electron system retains a detailed
connection to Fermi-surface and electron-electron corre-
lation effects, and hence it provides a unique window into
quantum theories of electron systems without requiring
extremes of low temperature or high magnetic field. Un-
fortunately, these quantum regimes cannot be accessed
by standard optical and transport probes.

Plasmons—electric waves resulting from an inertial
electron conductivity combined with electric restoring
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forces—can act as a carrier of the spatiotemporal elec-
tric fields necessary to probe non-locality. All systems ex-
hibit non-local effects for plasmon wavelengths approach-
ing the electronic Fermi wavelength λF, which has been
confirmed in experimental studies of metals and semicon-
ductor two-dimensional (2D) electron gases.3–5 Such ex-
periments have however led to challenges in quantitative
interpretation, due to strong interactions that go beyond
standard (e.g. random phase approximation) theoretical
treatments,3,4 and possible complications by edge effects
and tunneling.5–9
In graphene, it is possible to access a different, velocity-

based, type of non-locality due to the ability to tune
its plasmon phase velocity to low values, close to its
Fermi velocity of vF ≈ c/300, where c is the speed of
light in vacuum. Here, we exploit heterostructures of
high-quality graphene, hexagonal Boron Nitride (h-BN),
and nearby metal10 to confine the plasmons vertically
down to 5 nm (see insets of Fig. 1A), and as a conse-
quence slow down the propagation velocity, as illustrated
in Fig. 1A. In addition, by tuning to relatively low carrier
density, as accessible in high-quality graphene, we can
further slow plasmons down to about c/250, approach-
ing the Fermi velocity, such that non-local effects become
very significant. We probe propagating plasmons by ex-
ploiting the near-field optical scattering scanning probe
technique11,12 for frequencies as low as a few THz10 to
avoid interband plasmon losses. Importantly, our tech-
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nique allows a very accurate determination of the plas-
mon wavelength, independent of edge effects, which en-
ables us to experimentally determine the non-local dy-
namical conductivity of graphene, σ(ω, q), a function of
angular frequency ω and wavevector q.
To illustrate the tunability of the non-local effects, we

consider the effect of the environment on the graphene
plasmon properties. In general, graphene plasmons occur
for ω, q values that satisfy the self-oscillation condition
(see Methods)

σ(ω, q)− iω

q2C(ω, q) = 0, (1)

where C(ω, q) is the dynamical capacitance of the envi-
ronment around the graphene.

For graphene–dielectric plasmons, the small capaci-
tance values (C = 2εq, for permittivity ε) mean that
non-local regimes are only accessible for short plasmon
wavelengths on the order of the Fermi wavelength.13–16
In such experiments the high observed phase velocities,
typically more than twice vF, have given negligible non-
local effects.17 The addition of a metal film at distance d
from the graphene increases capacitance up to C ≈ ε/d.
As a consequence of Eq. (1) and as shown in Fig. 1B this
drives the plasmon to larger values of q, and thus smaller
velocity. As this capacitive effect also morphs the plas-
mon from the graphene–dielectric unscreened dispersion
ω ∝ √q to a linear dispersion ω ∝ q, we take the plasmon
phase velocity vp = ω/q as the key parameter character-
izing plasmons in this system.10,18.

The graphene–metal system has two tuning parame-
ters: the separation d fixed at fabrication, which con-
trols capacitance C, and the graphene sheet carrier den-
sity ns, which gives in-situ control of conductivity σ. A
birds-eye view of this combined tunability is shown in
Fig. 1C, which shows that the combination of the two
tuning parameters ns and d allows the plasmon velocity
vp to be lowered to small values near the Fermi velocity
vF ≈ 1.0× 106 m/s. Figure 1C also shows how the local
approximation begins to break down in this regime (with
> 10% error for vp/vF < 2) as non-local effects become
significant, due to reasons that will be elaborated below.

Our experimental realization of this concept is depicted
in Fig. 2. We encapsulated graphene in the h-BN di-
electric, a combination which has shown the highest-
quality graphene plasmons to date,17 and placed it on
top of an AuPd metal layer. Three devices of this form
were created, with distinct graphene–metal separation
d controlled by the chosen thickness of the bottom h-
BN layer (further fabrication details in Methods), and
contacted with Au electrodes.19 In order to visualize
plasmons and characterize their propagation, we used
a scattering-type near-field optical microscope in pho-
tocurrent mode.10,20,21 We operated the microscope in
the Terahertz (THz) frequency range (we chose a laser
frequency of ω

2π = 3.11 THz), as this allowed us to probe
down to the lowest plasmon velocities while respect-
ing the minimum-wavelength limitations of the near-field

probe.22 In order to detect the photocurrent, we left a
narrow split in the AuPd metal layer (Fig. 2A, inset)
so that a graphene p-n junction could be formed by ap-
plying distinct gate voltages VL and VR. As a second
purpose, this sharp split also served as a launching edge
for graphene plasmons.
Plasmons appear experimentally as characteristic in-

terference fringes in the dependence of photocurrent on
tip position (Fig. 2B), due to tip–plasmon interference
that modulates the absorbed power.10,21 Besides the
edge-reflection fringes examined in earlier works, we also
observed fringes associated with plasmons launching from
the split in the AuPd gate, particularly in the thinner-d
devices. In either case, the fringes allowed a determi-
nation of the plasmon wavelength λ = 2π

q , by fitting to
the photocurrent with an appropriately subtracted back-
ground (Fig. 2B; see Methods for fitting details). This,
in combination with the known excitation frequency di-
rectly yields the plasmon phase velocity vp.
The main results are shown in Fig. 3. In each of the

three devices, we extracted the plasmon phase velocity
from many scanning photocurrent maps, each taken with
a different gate voltage. The data have been collated into
a common form by converting gate voltage to carrier den-
sity ns (see Methods), allowing a direct comparison with
theory. Qualitatively and consistent with the map in
Fig. 1C, the smallest plasmon velocities are seen for the
smallest ns and d. In Fig. 3 we compare the experimental
vp values to two theories: the local approximation theory
(dashed curve) shows a significant discrepancy with the
data, whereas the full non-local theory (shaded curve)
shows excellent agreement without any fitting parame-
ters. Note that the local approximation predicts plas-
mon velocities falling below vF for the 5.5 nm device, in
contrast to the full theory which is forbidden from this
region (for reasons explained below). We now proceed to
describe this full non-local theory.
Figure 4A schematically depicts the three layers of our

non-local theory, based on dominant effects known from
electron liquid theory.1,2 Including all non-local correc-
tions, the conductivity takes the following convenient
form (for frequency and wavevector below Fermi values,
as in this experiment)

σ(ω, q) =
e2vF

√
|ns|√

π~
i

ω
f

(
vFq

ω

)
, (2)

where f(z) is a dimensionless function that describes the
non-local response,

f(z) = 2
z2

( 1
(1− z2)−1/2 − 1

+ δ
)−1

. (3)

Using this functional form we can gradually introduce
the different layers of non-local response, which are plot-
ted in Fig. 4B. Note that the local approximation con-
sists of ignoring the q-dependence (which amounts to set-
ting f(z) = 1), yielding a Drude response σ ∝ i/ω from
Eq. (2).
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The first layer of non-local response is to consider the
response of non-interacting electrons13–16,18 (via random
phase approximation—RPA), which is the case of Eq. (3)
with δ = 0. In the RPA, conductivity σ increases with
q, due to the change in Fermi surface deformations. This
is closely related to Landau–Bohm–Gross dispersion23,24
in classical plasma physics: some of the electrons, those
travelling with a velocity that nearly matches vp, can
interact longer with each passing wavefront and thereby
provide enhanced reponse (Fig. 4A). Classically, this non-
local dispersion would come along with Landau damp-
ing due to fast thermal electrons that fully match the
plasma velocity and dissipate energy; this does not occur
in a quantum degenerate system due to the narrowly-
distributed electron velocity (the Fermi velocity), which
instead yields a divergent intraband contribution to the
conductivity as q → ω/vF (i.e., z → 1), and no Landau
damping before this point. This divergence results in the
non-local plasmon velocity never falling below the Fermi
velocity (as can be seen in Fig. 3), in striking contrast to
the prediction of a local approximation.

The second and third layers of our non-local theory
involve microscopic electron-electron interactions (many-
body effects). We have calculated these many-body cor-
rections fully consistently, including the realistic screen-
ing by capacitance C(ω, q) (see Methods). The major
many-body effect is renormalization of band structure,
which in graphene amounts to an increase in Fermi veloc-
ity (Fig. 4B). While the value vF = 1.0× 106 m/s is nom-
inally assumed in graphene plasmon studies, the Fermi
velocity actually varies logarithmically with carrier den-
sity, from its bare value of 0.85× 106 m/s up to as much
as 3.0× 106 m/s for very low carrier densities.25–29 Since
our experiments enter a regime of relatively low densi-
ties, it is crucial to include this ns-dependent velocity
renormalization. The secondary many-body effect has
to do with electron liquid correlations, which produce
a Pauli-Coulomb hole1,2 around each reference electron
(Fig. 4C). We capture this by including a local field factor
G(ω, q), via σ−1 = σ−1

RPA + q2G/(iωC), that forces con-
sistency between the dynamic response and the isother-
mal compressibility.2 As described in the Methods, in our
experimental regime this ultimately introduces a factor
δ = 1− κ0

κ into Eq. (3), where κ0 is the RPA compressibil-
ity, and κ is the proper isothermal compressibility15,27,30.
Figure 4B shows how we can isolate the graphene con-

ductivity function σ(ω, q) to directly observe the non-
locality. This is possible due to Eq. (1), which implies
that a determination of the plasmon wavevector, qp =
qp(ω), produces a measurement of the dynamical conduc-
tivity at that wavevector: Im σ(qp, ω) = (ω/q2

p)C(qp, ω).
We are able to exactly calculate C(ω, q) from Maxwell
equations (see Methods), and hence this approach of in-
troducing variable d (causing variable C and variable qp)
allows us to map out Im σ(qp) as shown in Fig. 4. Each
device (differing in d) thus provides a distinct probe of the
functional dependence of the conductivity on wavevector
q under otherwise-identical parameters (ω, ns). It can be

seen in Fig. 4B that our data are only matched by theory
after taking into account all three layers of quantum cor-
rections, and that the measured conductivity of graphene
shows significant departures from the local theory (a hor-
izontal line).
The recipe set forth in this work can be transferred to

probe other electron systems with exotic physical prop-
erties. Not only does this technique reveal the collec-
tive excitation (plasmon), but we have also shown how
one may isolate the electronic response from its envi-
ronment, quantitatively mapping out the underlying re-
sponse function (non-local conductivity) as a function
of wavelength. This kind of spatial spectroscopy forms
a valuable counterpart to the traditional temporal (fre-
quency) spectroscopy, and the marriage of these two ap-
proaches into a precision spatiotemporal spectroscopy—a
full determination of σ(ω, q)—would provide an unprece-
dented window into electron physics. This may allow
a greatly enriched understanding of electron correlation
physics such as those underlying fractional quantum hall
effects (e.g., magneto-rotons31–33) and the binding mech-
anism in superconductors,34 as well as probing the non-
locality of Fermi-surface deformations in unusual band
structures (e.g., Weyl fermions35–39).
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FIG. 1. Concept. (A) Effect on graphene plasmon veloc-
ity from changing separation d in the graphene–metal system.
Insets show plasmon electric fields for large or small separa-
tion d. (B) Frequency–wavenumber dispersion of plasmon at
various d; the solid lines are all computed with equal car-
rier density ns = 1012 cm−2, whereas the dashed line shows
the smallest-d case with a factor 10 lower carrier density
ns = 1011 cm−2. Horizonal dashed gray line indicates fre-
quency for which the experiment has been performed. (C)
Plasmon velocity dependence on d and carrier density ns.
Contours indicate discrepancy between local and non-local
plasmon models.
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in h-BN and placed on a split metallic film. Terahertz laser light illuminates the entire device, launching plasmons (orange
arrows) at the tip and split. Gate voltages VL and VR control the electron density and the junction photocurrent sensitivity.
(B) Photocurrent traces in three different devices, each at ns = 1 × 1012 cm−2, showing interference fringes used to extract the
plasmon wavelength λ (and hence velocity vp = λ ω

2π ) via the indicated fits.
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