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Tuning the charge flow between Marcus regimes
in an organic thin-film device
A. Atxabal1,5, T. Arnold2, S. Parui1,6,7, S. Hutsch2, E. Zuccatti1, R. Llopis1, M. Cinchetti 3, F. Casanova 1,4,

F. Ortmann 2 & L.E. Hueso 1,4

Marcus’s theory of electron transfer, initially formulated six decades ago for redox reactions

in solution, is now of great importance for very diverse scientific communities. The molecular

scale tunability of electronic properties renders organic semiconductor materials in principle

an ideal platform to test this theory. However, the demonstration of charge transfer in

different Marcus regions requires a precise control over the driving force acting on the charge

carriers. Here, we make use of a three-terminal hot-electron molecular transistor, which lets

us access unconventional transport regimes. Thanks to the control of the injection energy of

hot carriers in the molecular thin film we induce an effective negative differential resistance

state that is a direct consequence of the Marcus Inverted Region.

https://doi.org/10.1038/s41467-019-10114-2 OPEN

1 CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain. 2 Center for Advancing Electronics Dresden and Dresden Center for Computational
Materials Science, Technische Universität Dresden, 01062 Dresden, Germany. 3 Experimentelle Physik VI, Technische Universität Dortmund, Dortmund
44221, Germany. 4 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain. 5Present address: Simbeyond B. V., 5612 AE
Eindhoven, The Netherlands. 6Present address: IMEC, Kapeldreef 75, 3001 Leuven, Belgium. 7Present address: K. U. Leuven, Arenbergpark 10, 3001 Leuven,
Belgium. Correspondence and requests for materials should be addressed to F.O. (email: frank.ortmann@tu-dresden.de)
or to L.E.H. (email: l.hueso@nanogune.eu)

NATURE COMMUNICATIONS |         (2019) 10:2089 | https://doi.org/10.1038/s41467-019-10114-2 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0735-8921
http://orcid.org/0000-0003-0735-8921
http://orcid.org/0000-0003-0735-8921
http://orcid.org/0000-0003-0735-8921
http://orcid.org/0000-0003-0735-8921
http://orcid.org/0000-0003-0316-2163
http://orcid.org/0000-0003-0316-2163
http://orcid.org/0000-0003-0316-2163
http://orcid.org/0000-0003-0316-2163
http://orcid.org/0000-0003-0316-2163
http://orcid.org/0000-0002-5884-5749
http://orcid.org/0000-0002-5884-5749
http://orcid.org/0000-0002-5884-5749
http://orcid.org/0000-0002-5884-5749
http://orcid.org/0000-0002-5884-5749
http://orcid.org/0000-0002-7918-8047
http://orcid.org/0000-0002-7918-8047
http://orcid.org/0000-0002-7918-8047
http://orcid.org/0000-0002-7918-8047
http://orcid.org/0000-0002-7918-8047
mailto:frank.ortmann@tu-dresden.de
mailto:l.hueso@nanogune.eu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


E lectronic transport in molecular solids is commonly
described by a hopping mechanism, in which the carriers
are capable of moving from one molecular site to another

thanks to both the thermal energy that leads to their activation
and the driving electric field1–10. This behaviour contrasts with
the transport mechanism observed in other solids, such as metals
or some inorganic semiconductors with relatively wide transport
bands in which the electronic carriers can flow freely between
scattering events11,12. In spite of the hopping transport being a
sequence of cumbersome individual electron transfer events,
electronic conduction in molecular materials enables a wide range
of electronic and opto-electronic applications and it is crucial in
devices such as organic field-effect transistors13,14, organic light-
emitting diodes15,16 and organic photo-voltaic cells17,18.

Marcus presented several decades ago a pioneering theoretical
proposal regarding the incoherent electron transfer events
between redox partners such as molecules, which would be
applicable in the first instance to chemical species dissolved in a
solution19,20. In a series of papers, he described the influence of
molecular and environmental conformations and the energetic
driving force for the electron transfer rates. The theory culmi-
nated in the prediction of an unconventional transport regime
termed Marcus Inverted Region (MIR), in which an increase in
the driving force leads to a reduction in the transfer rate19–22.
Although Marcus’s theory in its later quantum formulation is of
very general applicability and great popularity, it has been diffi-
cult to verify it experimentally in molecular solids. Moving
toward that target, Yuan et al.23 have recently discussed MIR in a
molecular junction based on a self-assembled monolayer and
intramolecular orbital gating which relies on the charging of the
molecules. In general terms, to be able to address this uncon-
ventional transport regime requires an active control over the
driving force for the charge carriers, which, for instance, could be
provided by differences in their electronic energies. As a result of
tuning the involved energies, the crossover point between the
MIR and the normal region should exhibit a minimum in the
activation energy for transport (see below). Here, we propose an
alternative path to that of Yuan et al. who realized a model of
Migliore et al.10,24 predicting a maximum in the activation
energy. This allows us to demonstrate experimentally and com-
putationally a MIR in organic thin films that are similar to those
employed in various opto-electronic applications.

More specifically, by making use of the injection of hot-
electrons in a solid-state device, we can explore the Marcus
transport regimes in fullerene-based thin film devices. Our
experimental data show a tuneable effective negative differential
resistance (NDR)25–28 arising from the Marcus inversion phe-
nomenon19. Our theoretical considerations and comprehensive
simulations that take into account the complex transport
phenomena in the full device are able to reproduce and ratio-
nalize these data in detail. Building on this fundamental
achievement, the observation and control of the effective NDR in
a three-terminal transistor opens the way to the engineering
of molecular electronic amplifiers and effectively lossless
oscillators27,29.

Results
Experimental device. Our experiments are performed in a three-
terminal vertical device, which is composed of an aluminium/
aluminium oxide emitter (E), a metallic base (B) and a semi-
conductor collector with an aluminium top contact (C) (see
Fig. 1)30,31. In this work, as a proof of principle, gold (Au) as base
and both n-type C60 and C70 fullerene as collector have been used
(see Fig. 1a). Details on the device fabrication and thin film
characterization can be found in the Methods section [atomic
force microscopy and x-ray diffraction measurements are shown
in Supplementary Figs. 1, 2, respectively]. Figure 1b shows the
working principles of the hot-electron transistor. When a negative
bias VEB is applied, a current IE is injected from the emitter into
the base by tunnelling through the Al2O3 barrier. These electrons
are “hot” in the base as their energy is well above (�kBT) the
Fermi level of the metal, and a small fraction of them crosses the
thin metallic base ballistically without any significant energy
attenuation30–32. For the case in which the applied bias −eVEB ≥
Δ (Δ is the metal-semiconductor energy barrier), some of the
injected hot electrons enter into the C60 LUMO states, while the
remaining ones flow back into the base. At higher energies,
electrons can also enter higher energy conductive states of C60,
such as LUMO+ 1. Since C60 is an n-type semiconductor and is
sandwiched between two metallic contacts with different work
functions, the existing intrinsic built-in potential enables the
detection of the electron current, IC, without any applied
collector-base bias, VCB or with a positive VCB

33,34.
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Fig. 1 Device schematics. a Schematic cross section of the device. b Hot-electron transistor operation. Electrons are injected by applying a negative emitter-base
bias, VEB < 0V, and detected in the molecular semiconductor. These electrons are out of equilibrium with the thermal electrons in the base which cannot be
described by a larger temperature. The measurements can be performed either without any externally applied collector-base bias, VCB, or by VCB ≥ 0V
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Temperature dependence of C60 and C70 in-device molecular
spectroscopy (i-MOS). Figure 2a shows the temperature depen-
dence of IC with VEB < 0 V and VCB= 0 V from 300 K to 120 K in
a C60-based device [see Supplementary Fig. 3 for individual plots
in linear scale]. The peaks at VEB=−0.8 ± 0.1 V and VEB=−1.7
± 0.1 V correspond to LUMO and LUMO+ 1, respectively. The
increase of IC between LUMO and LUMO+ 1 at high tempera-
tures is observed to converge into a plateau at temperatures
around 240 K. At lower temperatures, below 180 K, an effective
NDR is observed between LUMO and LUMO+ 1. This is a truly
unconventional behaviour: in a simple picture when more elec-
trons are provided, the current should always increase with the
driving voltage since we are collecting all the hot electrons
injected into the molecular material. The same behaviour has
been observed for C70-based hot-electron devices (Fig. 2c), with
the NDR observable below 220 K. In the case of C70, the peak at
VEB=−0.7 ± 0.1 V corresponds to the LUMO and the one at
VEB=−1.6 ± 0.1 V to LUMO+ 1. The measurements of C70

devices [see Supplementary Fig. 4 for individual plots in linear
scale] are performed until 200 K due to the lower IC current
compared to C60, which is a consequence of the lower intrinsic
mobility of the former molecular material.

Marcus Inverted Region. In order to rationalise this intriguing
regime, a comprehensive simulation framework was employed
which allows us to understand the device transport in detail
(Fig. 2b, d). It is based on simulations under the same conditions
as in the experiments (for details see Supplementary Note 1).
Charge transport across the interface and throughout the
film is modelled with a Fermi’s golden rule expression for the

transfer rate. Such an approach is justified for the weak
electronic coupling between the involved states (e.g., delocalized
metal states and localized molecular orbitals, see Supplementary
Note 1 and Supplementary Fig. 5 for further theoretical
considerations).

Taking into account conformational changes of the molecules
in the electron transport yields an expression known as Marcus
hopping rate22

k / exp � ΔG� Λð Þ2
4kBTΛ

� �
ð1Þ

where Λ is the reduced reorganization energy35 of the charge-
transfer event, ΔG the difference in the energies of initial and final
states and kBT the thermal energy.

A key point in the Marcus theory is the thermal activation of
charge transfer, which is reflected in Eq. (1) by the temperature
dependence of the negative exponent. It can be further described
by an activation energy EA, which is defined as the difference
between the energy of the initial state EI, and the energy of
the transition state ET (energies are indicated in Fig. 3a). In our
hot-electron transistors, due to its unique working principle,
we can choose the former by tuning the hot electron energy
by VEB, which shifts the initial state parabola relative to the final
state parabola and manipulates directly EI. In other words, VEB

acts as gating in our transistor configuration. This setup is
different from the situation considered by other models in
which a conventional gate voltage is applied to the molecules24.
In our case, Fig. 1b illustrates how this knob allows increasing
the driving force for electron transport by tuning VEB around
the LUMO position. In this way, at low EI (�VEB <V0), the
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Fig. 2 Temperature dependence of the hot-electron current. a Temperature dependence of the direct hot-electron current IC of a Au/C60 based in-device
molecular spectroscopy (i-MOS) device for negative emitter-base bias VEB < 0 V, and without any applied collector-base bias, VCB= 0 V. b Simulated
temperature dependence of IC for the Au/C60 device at VCB= 0 V. c Temperature dependence of IC of a Au/C70 based device for negative emitter-base
bias VEB < 0 V, and without any external bias VCB= 0 V. d Simulated temperature dependence of IC for the Au/C70 device at VCB= 0V
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voltage increase results in a lower activation energy and leads to
an increased current (illustrated in blue in Fig. 3a). This
behaviour is known as the Marcus Normal Region. However,
the non-monotonous dependence of the activation energy on VEB

establishes another regime, which is the so-called MIR. This
regime is characterised by the reduction of the current despite a
continuous increase in the driving force (larger EI). At the voltage
−VEB= V0 (at which EI= ET), the activation energy takes a
minimum and a crossover between the normal and inverted
Marcus regions occurs. The two regimes can be observed both in
the experimental data and in the corresponding simulations
shown in Fig. 2.

We note that Migloire, Schiff and Nitzan24 presented
previously a model for transport in metal-molecule-metal
junctions in which electrons from the leads are thermal in the
sense that they are described by Fermi distributions and chemical
potentials and do not consider hot electrons. While the model
potentially includes electrons in the MIR, in their considered
transport geometry the resulting current through the biased
junction would be dominated by electrons injected from below
the Fermi level (non-MIR electrons), because of the higher
transfer rate of those non-activated electrons from the leads.
As opposed to that situation, in our system the hot electrons
are the responsible for the current in the different Marcus

regions and the thermal current is negligible, thus the
previous model is not directly applicable. In Supplementary
Fig. 6, we present additional simulations without the hot-
electron distribution from the tunnel barrier in our device (akin
to metal-molecular layer-metal junctions) in which we confirm
the absence of the NDR, thus confirming the relevance of hot
electrons.

The VEB dependence of the activation energy, EA, coming from
an Arrhenius analysis of the temperature dependence of the
transport of C60 and C70 are shown in Fig. 3b, c, respectively. A
reduction in EA is observed with the minimum at VEB = −0.9 V
for the case of C60 and at VEB = −0.85 V for the case of C70,
which corresponds to the V0 level in the Fig. 3a. In these figures
one can observe how the EA is progressively reduced until a
minimum point after which it progressively increases. The region
in which EA decreases corresponds to the Normal Marcus region,
while the one where EA increases corresponds to the MIR
(see Supplementary Fig. 7 and Supplementary Table 1). Besides
this direct evidence at low temperatures, our simulations can
also explain the reduction of the NDR in the hot-electron
current measurements at high temperatures (Fig. 2a, c) taking
into account the increase of the inelastic scattering in the
base with temperature (see Fig. 2b, d, Supplementary Table 2 and
Supplementary Note 1)36. In addition, Supplementary Fig. 5
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provides further insights into how a monotonous standard
hopping rate fails to reproduce our results, while Supplementary
Fig. 8 shows that the observation of NDR does not depend on the
thickness of the molecular layer in our thin film regime.

The observation of this captivating energy crossover in the
context of analysing redox reactions in solution chemistry
marked the breakthrough of Marcus theory21. While in the
original context this required a number of experiments with a
series of redox partners37, interestingly in the present case, we
demonstrate it for each of the compounds individually, i.e., they
remain unchanged during the whole measurements. Here we are
able to directly access this transport regime electrically in a
molecular solid-state device, thus opening new fields of applica-
tion to this general theoretical concept. Our observation of the
MIR was possible for a number of underlying physical reasons. In
the first place, we must recall that we inject electrons with high
energies, which allow us to explore a transport regime beyond the
one mapped with devices operating close to the Fermi level, such
as conventional organic field-effect transistors. In the second
place, our model system Au/fullerene represents a weakly
interacting interface with relatively low interfacial disorder, which
leads to the appropriate energy resolution required to observe the
effective NDR. Moreover, LUMO and LUMO+ 1 conductive
levels are sufficiently separated and the electron-vibration
coupling, which may lead to significant level broadening35, is
not too large.

Manipulation of the NDR. The effective NDR arising from the
MIR can be further manipulated by other external stimuli such as

a collector-base voltage and light irradiation (see Fig. 4). In the
first case, a positive voltage bias VCB > 0 V can enhance the built-
in potential inside the organic semiconductor, which in turn
facilitates electron transport through this material. This extra
potential leads to a larger current density, which progressively
drives the system out of the MIR (see Fig. 4a, c) [see Supple-
mentary Figs. 9–13 for data at other temperatures]. In the sec-
ond case, the additional energy from the incident white-
light spectrum (with power density of 7.5 mW cm−2) provides
access to several high-energy transport levels such as LUMO+ 1.
This generated photocurrent in the C60 and C70 serves as an
alternative parallel channel that overrides the effective NDR
(see Fig. 4b, d) [the data at different temperatures with light
irradiation is shown in Supplementary Figs. 14, 15b]. The
manipulation of the NDR coming from the MIR is possible
for both sets of fullerene samples.

Discussion
In conclusion, by making use of the hot-electron injection tech-
nique in a three terminal solid-state device, we are able to actively
access the MIR for electronic transport through an organic
semiconductor thin-film. This regime, notoriously complex to
demonstrate unambiguously in organic thin films, opens the
possibility to both novel charge injection physics in molecular
semiconductors as well as functionality in electronic circuiting
such as NDR. Moreover, we are not only able to observe the MIR,
but our three-terminal device allows us to manipulate and tune it
by temperature, electric field, and light.
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Methods
Device fabrication. All the devices described in this work were fabricated in situ
in an ultra high vacuum (UHV) multi chamber evaporator (base pressure < 10−9

mbar) with a shadow mask system. The emitter is a 12 nm-thick aluminium
contact, 99.95% purity (Lesker), which was thermally evaporated in an effusion cell
with a rate of 0.6 Å s−1. A crucible of pyrolytic boron nitride (PBN) was used. The
Al2O3 tunnel junction was made by plasma oxidizing the aluminium contact, first
for two minutes at low power (1200 V and 10mA at 0.1 mbar) and then for three
minutes at high power (1200 V and 50 mA at 0.1 mbar). A 10 nm-thick gold base
(99.95% purity, Lesker) was e-beam evaporated from a vitreous-coated graphite-
based crucible, and used as base contact. The evaporation rate was 1.0 Å s−1. C60

(and C70) triple-sublimed quality (99.9%, Sigma Aldrich), was thermally evapo-
rated in a quartz-based crucible with a rate of 0.1 Å s−1. 200 nm and 100 nm thick
C60 and C70 films were used, respectively. Finally, a 12 nm-thick aluminium top
electrode was again thermally evaporated. A two-step deposition (2 nm at 0.1 Å s−1

and 10 nm at 0.6 Å s−1) was followed in order to minimize the damage to the
organic film.

The sample size is 10 × 10 mm2, and six devices were produced in every sample.
The measurements were reproducible between devices in the same evaporation.

Electrical characterization. Electrical characterization was performed under high
vacuum (base pressure 5 × 10−5 mbar) in a variable-temperature probe-station
(Lakeshore). A Keithley 4200 semiconductor analyser system was used to record
I-V curves.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability
The code employed during the current study is available from the corresponding author
on reasonable request.
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