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A recent experimental study of the energy losses of various ions in titanium nitride, in the low-energy range
[M. A. Sortica et al., Sci. Rep. 9, 176 (2019)], showed a striking departure of the measured values from those
predicted by density functional theory. They suggested electron promotion in atomic collisions between dressed
atoms as an explanation. In this Rapid Communication, we investigate the process of energy loss of slow ions in
TiN using theoretical formulations that are based, on one side, on self-consistent models of nonlinear screening
and quantum scattering theory, and on the other, on ab initio computations of the electron-density profile of
titanium nitride. Two theoretical approaches are considered to determine the average energy transfer: One is
based on the local-density approximation for the inhomogeneous electron gas corresponding to the calculated
density of TiN, and the other is based on the Penn model for the convolution of the inhomogeneous electron-gas
response based on a measured electron-loss function. Both approaches produce very similar results and are in
remarkable agreement with the experimental data, indicating that the observed enhancement in the energy-loss
values is due to the contribution of a range of electron densities in the TiN compound.

DOI: 10.1103/PhysRevA.100.030701

Recent studies on the interaction of ions with solids in
the very-low-energy range have produced new and relevant
insights in various aspects of the interaction process, including
nonlinear screening and band-structure effects [1–6]. In a
recent work using light and heavy ions on a TiN target, Sortica
et al. [7] observed a striking discrepancy in the values of
the electronic stopping cross section when compared with the
standard predictions of the density functional theory (DFT)
[8,9]. The reported effect consists in a strong enhancement of
the experimental values with respect to the DFT predictions
[7]. They suggested electron promotion in atomic collisions
between dressed atoms as an explanation, but so far no cal-
culation or estimation have been done. The purpose of this
Rapid Communication is to advance a direct explanation of
the effect.

In fact, we provide here two complementary explanations.
The first one is based on a self-consistent model for a
nonhomogeneous electron gas which is described as a local
degenerate Fermi gas [10]. In this approach we use the actual
electron-density profile of TiN to obtain quantitative values
of the average energy loss of slow ions in this compound.
As shown by Calera et al. [10], the representation by a
nonhomogeneous electron distribution provides a convenient
method to account for the contribution of intermediate and
inner shells to the average energy loss of slow ions in
solids.

For the second explanation, we use recent results by Vos
and Grande [11]. They proposed a scheme based on an
extension of the dielectric function model to describe the
energy loss of ions in solids. In their method, the energy
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loss is calculated using the Penn model [12] combined with
the transport cross-section (TCS) model, which provides a
nonlinear representation of the energy loss. In this method,
the target is decomposed as the convolution of electron gases
with different local densities.

As we will show here, both methods provide consistent
results and explain in quantitative terms the enhancement of
the energy-loss values with respect to the DFT predictions,
and the attenuation of the oscillatory dependence with Z1,
in very good agreement with the experimental values. If not
indicated otherwise, atomic units (h̄ = me = e = 1) are used
throughout this Rapid Communication.

The present approach is based on a previous model pro-
posed by Calera et al. [10], which consists in the use of a local-
density approximation (LDA) to integrate, for a nonhomoge-
neous distribution, the results of nonlinear calculations of the
energy loss of ions in a homogeneous electron gas. The target
is described by its local-density n(r) or equivalently local rs(r)
value, related by (4π/3)r3

s = 1/n(r). The model makes use
of the TCS, which is obtained from a set of self-consistent
calculations of scattering phase shifts, by assuming a model
potential for the interaction, and subject to the restrictions of
the Friedel sum rule [13], namely,

Z1 = 2

π

�max∑
�=0

(2� + 1)δ�(vF ). (1)

In order to apply this model, previous knowledge of the
electronic density of the TiN target is necessary. Hence, our
first step was to calculate the internuclear distance and the
electronic density of the TiN dimer. As described in the work
of Sortica et al. [7], they used polycrystalline TiN thin films
on silicon, which has a NaCl-like (B1) cubic structure. In this
structure, the lattice parameter of a = 8 a.u. corresponds to the
N-Ti-N distance, whose value was calculated from the density
ρ = 5.43 g/cm3. In the unit cell, the separation between the
Ti and N atoms is given by d = a/2 = 4 a.u.

We calculated the electron density of the TiN by means of
DFT including explicitly all electrons. The DFT calculation is
done using the Python-based simulations of chemistry frame-
work (PYSCF) [14,15] using a Gaussian-type orbital basis set
6-31G [16]. LDA is used to represent the exchange-correlation
functional. The calculation is done for the triplet state of the
TiN. Moreover, we consider that in the solid (TiN) there are
six neighbors that surround each atom, and hence the density
is close to the spherically symmetric one. Figure 1 shows the
two-dimensional (2D) electron density of the TiN molecule
with the internuclear distance d = 4 a.u. The Ti atom locates
at the origin of the coordinate system (z = 0). As can be
observed, the density exhibits an approximate spherical sym-
metry. This fact allows us to get the radial density as a function
of the cylindrical coordinate z without deterioration of the
electronic properties of TiN, as explained in the following.
Figure 2 presents the 1D electron density for the Ti and N
atoms as a function of z. As it may be observed in Fig. 2, the
value rcut = 2 a.u. (vertical green line) is the interstitial point
where the density reaches a minimum, and coincides with
half the internuclear distance d . For the sake of reliability,
we analyzed the normalization of the electron density to the

FIG. 1. From the DFT results, we plot the 2D electron density
(cut of the density for x = 0) for the TiN dimer. The calculates
were performed using the Python-based simulations of chemistry
framework (PYSCF) code [14,15].

number of electrons in each atom, calculated as

Ne = 4π

∫ rcut

0
n(r)r2dr. (2)

This calculation is performed for the density of the N and Ti
atoms shown in Fig. 3, assuming a atomic Wigner-Seitz (WS)
sphere around each atom. First, we note that the WS sphere
with a cut at rcut = 2 gives a total number of electrons smaller
than 29 (the total number of electrons in the TiN dimer). The
reason for this is that the WS sphere defined with a radius
2 a.u. has a smaller volume than the cube with sides 2rcut

within this cube. Hence, in order to get the correct number
of electrons we increase the radius of the WS sphere. We find
that rcell = 2.38 gives the correct total number of electrons for
the TiN system. It is important to notice that the electronic
density is kept constant for values greater than r = 2 in both
atoms, as can be seen in Fig. 4. This corresponds to a constant
electronic density in the interstitial space. By integrating the
electron density on each WS cell we obtain 20.50 electrons
for the Ti atom and 8.51 electrons for the N atom, with a total
number of 29.01 electrons for the TiN system. This means
that there is charge transfer from Ti to N, which is reasonable

FIG. 2. 1D electron density for the TiN is plotted as a function
of the cylindrical coordinate z. The figure was generated assuming
x = y = 0. rcut = 2 is the cutoff value used to make the spherical
mean of the electron density for each of the atoms.
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FIG. 3. Plot of the electron density in the WS sphere of each of
the atoms. The radial distance rcell = 2.38 is the atomic cell radius.

since the N atom is more electronegative. Recently, Magnuson
et al. [17] found, based on DFT calculations, trends in charge
transfer from the 3d and 4s orbitals of the Ti atom, depending
on the electronegativity of the constituent elements of the
binary compound. As indicated there, 3d orbitals are the main
charge reservoir of the Ti-element system, while a smaller
amount originates from the 4s orbitals. From the distribution
of the electronic density in titanium nitride (see Fig. 9, from
Ref. [17]), it appears that the mixing of the Ti 3d orbitals and
the N 2p states gives origin to a strong directional covalent
bond, giving an indication of the source of the charge received
by the N atom. As a general tendency, it was observed that the
transition-metal atoms always lose electronic charge, while
the electronegative elements as N tend to gain charge. As can
be seen in Table 6 from Ref. [17], their calculation yields a
charge transfer of 1.41 to the N atom. In comparison, our
approach yields a value of 1.5. According to Hug et al., the
charge-transfer values depend on the calculation method em-
ployed [18]. Therefore, our estimation of the charge-transfer

FIG. 4. Plot of the electron-gas parameter rs as a function of the
radial distance r from the nuclei of Ti (black solid line) and N (dashed
red line).

FIG. 5. Values of the low-velocity stopping coefficient S/v as
a function of the electron-gas parameter rs. The blue lines are the
results of the TCS-Friedel sum-rule method calculated with Eqs. (3)
and (4); the dashed red lines show the results of the dielectric
formulation [19,20].

value is in fairly good agreement with the result obtained from
the more sophisticated computations of Ref. [17].

Now we first consider the interaction of a projectile with a
homogeneous electron gas with density rs. The calculation of
the TCS was made using the method described in Ref. [13]. A
model potential, containing only one parameter α, was used.
Using this potential, the scattering phase shifts δ�(vF ) were
determined, for a large number of � values, by numerical
integrations of the radial Schrödinger equation. The δ� values
so obtained depend on the density parameter rs (related to
the Fermi velocity by rs = 1.919/vF ) and on the potential
parameter α. To determine the value of α (for each ion and
for each rs) we require that the δ�’s satisfy the Friedel sum
rule.

To comply with this condition a number of iterations
are required until a self-consistent solution is obtained. This
provides the final values of phase shifts for each combination
of Z1, rs, and v. This procedure was repeated for rs values
in the range 0.1–1.5, which cover the range of interest for
the present study. Then, using the δ� values so obtained we
calculated the TCS, σtr(Z1, rs), given by

σtr(Z1, rs) = 4π

v2
F

�max∑
�=0

(� + 1) sin2[δ�(vF ) − δ�+1(vF )], (3)

and the stopping coefficient

Q(Z1, rs) = S(Z1, rs)/v = n(r)vF σtr(Z1, rs), (4)

for all those cases.
As an example, we show in Fig. 5 the results for the

stopping coefficient, for various Z1, as a function of rs. For
small rs values, the results of the full quantum mechanical
formulation (TCS results) approach those of the linear (dielec-
tric) formulation, but show a strong nonlinear behavior with
increasing rs. The final step in this approach is to integrate
the stopping coefficient over the WS cells corresponding to
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the Ti and N atoms, using the expression

QTi,N(Z1) = Na

∫ rcell

0
d3rQ(Z1, rs(r)), (5)

where rcell is the atomic cell radius, and Na the number of
Ti,N atoms per unit volume. The values of rs(r) are found in
Fig. 4. This form of spherical average was first proposed by
Bonderup [21] (in the context of a statistical atomic model)
and was further used by others (see, for instance, Ref. [22]
for further references), considering linear models for the local
energy loss. In the present context, our approach is based
on previous work by Calera et al. [10], who proposed a
similar cell average using nonlinear TCS calculations based
on the Friedel sum rule. Finally, in order to compare with
the experiments, we calculate the so-called “stopping effective
charge” using Brandt’s definition [23–25], which in this case
may be written as

Z∗
1 =

√
Qs(Z1)

Qs(Z1 = 1)
, (6)

where Qs(Z1) = QTi(Z1) + QN(Z1). This definition of Z∗
1 was

suggested for high-energy ions because of the Z2
1 dependence

of the TCS. Here, for low-energy ions, Z∗
1 cannot be used as

an ion charge in any stopping formula.
Another nonlinear approach to describe the stopping power

of heavy ions in matter has been proposed recently [11]. In
this model the effects of nonfree-electron distributions are
incorporated in the TCS model by taking into account the
superposition of electron-gas responses with different densi-
ties as described for the Penn method [12]. For this sake each
electron-gas density is weighted according to the energy-loss
function (ELF) of the material in the optical limit as

g(ωp) = 2

πωp
ELF(ωp), (7)

where each electron-gas contribution is described by the plas-
mon frequency ωp obtained from rs as ωp = √

3r−3/2
s . The

stopping power is then given by

STCS-Penn =
∫ ∞

0
dωpg(ωp)STCS(Z1, rs), (8)

with the stopping STCS(Z1, rs) given in terms of the transport
cross section according to Eq. (3).

In order to provide a best comparison with the experimental
data we measured an electron energy-loss spectrum of TiN
for the same samples used in the original experiments [5].
For 5 keV incoming electron energy the energy-loss spectrum
was dominated by the top TiN layer (thickness 17.5 nm), but
the energy was still high enough so that the contribution of
surface plasmons is small and could be neglected. Using the
PM3 program [26] the energy-loss spectrum was calculated.
This Monte Carlo program simulates the electron trajectories,
including the elastic deflection of nuclei and inelastic exci-
tations of the target electrons based on the dielectric function.
The dielectric function, expressed as a sum of Mermin oscilla-
tors, was varied so a reasonable description of the experiment
is obtained (see Fig. 6) and the Bethe sum corresponds to
17 electrons per unit cell (the appropriate number of valence
electrons, without the N 1s and Ti 1s, 2s, and 2p electrons
which contribute to the ELF at larger energy losses). The

TABLE I. The amplitude (Ai) width (	i), and energy (ωi) of the
Mermin oscillators used here to describe the dielectric function of
TiN.

i Ai 	i ωi

1 0.13 1 2.3
2 0.023 5 7
3 0.05 4 12.1
4 0.12 5 16.3
5 0.009 2 19.5
6 0.38 8 25.3
7 0.005 3 38.5
8 0.071 10 44
9 0.16 10 51
10 0.033 140 100

corresponding ELF (energy-loss function at q = 0) is given
in Table I and shown in Fig. 6 as well, where it is compared
with previous estimates of the same quantity.

Following the prescriptions of the TCS-LDA model,
Eqs. (5) and (6) were calculated for ions in the range of atomic
numbers Z1 = 1–20 for the electron densities corresponding
to the Ti and N atoms, as described before. The results are
shown in Figs. 7 and 8.

In Fig. 7 we show the results of the stopping cross section
for the six elements measured in Ref. [7]. In the cases of
H and He our calculations are in excellent agreement with
the experimental values. The results for Al are also in good

FIG. 6. Top: The assumed ELF compared to previous estimates
of Fuentes (1999) [27], Fuentes (2002) [28], Pflüger [29], and Henke
[30]. Bottom: The simulated electron energy-loss spectra at 5 keV
compared to the experimentally obtained one.
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FIG. 7. The theoretical results of the TCS-LDA approach for the
stopping cross section of H, He, B, N, Ne, and Al ions in TiN (lines).
For comparison, the experimental data from Sortica et al. [7] (solid
symbols), and the semiempirical results of SRIM are plotted as well.

agreement, while for Ne our values are lower (by about 10% at
the lowest energies), but are still better than the stopping and
range of ions in matter (SRIM) values through the measured
energy range. (We must notice that the theoretical results
for Al and Ne are almost coincident so that the two curves
merge in this graph.) Similar deviations are observed for N; in
this case our results are about 10%–15% larger at the lowest
energies while the SRIM values are lower by about the same
percentage. The largest deviations are observed for B ions
where our calculations are 26% larger at lowest energies;
this is the only case where the semiempirical results of SRIM

compare better with the experiment.
Figure 8 shows the results of the effective charge obtained

from Eq. (6) as a function of the ion atomic number Z1. We

FIG. 8. Calculated values of the effective charge Z∗
1 using the

TCS-LDA and TCS-Penn methods (red and green lines), together
with the experimental results from Ref. [7]. The lower black curve
shows the results of the standard DFT calculations [9] for a constant
rs value equal to 1.61.

also show in this figure the results obtained from the TCS-
Penn model, as well as the experimental results from Ref. [7]
and previous theoretical predictions from DFT [9] assuming
an rs value of 1.61, appropriate for the valence electrons of
TiN.

We find here a remarkable agreement between all the re-
sults (except for the DFT value with fixed rs). On one side, we
find very close agreement between the TCS-LDA (dashed red
curve) and TCS-Penn (dashed-dotted green curve) models; on
the other side, both models show excellent agreement with
the experimental data (blue symbols) of Sortica et al. [7],
reproducing both the shape and the absolute values of the ex-
periment. We notice that the nonhomogeneity of the electron
gas is an essential factor for the more accurate description of
the average energy loss in this material. For this reason, the
attempt to represent the electronic structure of the titanium
nitride by an effective rs parameter shows strong disagreement
with the experiment.

Stimulated by recent experimental results of the energy
loss of various ions in TiN, we have made a detailed the-
oretical investigation of the energy-loss process. Our study
is based on nonlinear models for the energy-transfer and
ab initio calculations of the electronic density of TiN. We
find a remarkable agreement between the experimental and
our theoretical results. On one side, we find a very close
agreement between both model calculations (TCS-LDA and
TCS-Penn models), which have, as the only common ingredi-
ent, numerical calculations based on nonlinear screening and
quantum scattering theory. The basic theoretical model is a
self-consistent approach where the scattering phase shifts are
obtained from numerical solutions of the radial Schrödinger
equation using the exact Friedel sum rule as the only fitting
criterion. The additional theoretical assumption is the LDA
which permits one to integrate the average energy loss using
the real electron density of the TiN sample obtained from
ab initio calculations. The most remarkable feature of both
theoretical approaches is the very close agreement with the
experimental data.

In summary, the present calculations provide a quantitative
theoretical explanation of the enhancement of the experimen-
tal energy-loss values with increasing Z1 and the attenuation
of the oscillatory dependence on Z1. Our calculations show
that this behavior is produced by the effects of intermediate
densities in the electronic structure of TiN, corresponding
mainly to rs values in the range 0.5–1.5. This range (actually
0.7–1.0) corresponds to the second peak in the ELF function
displayed in the top panel of Fig. 6.

Finally, this explains the previously observed discrepancy
with the more restricted DFT calculations that assumed a
constant rs value appropriate only for the valence electrons of
TiN. A comparison with ab initio calculations such as time-
dependent DFT (TDDFT) [6] will be useful to demonstrate
the strength of present theoretical formalisms.
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