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Abstract: Spin-orbit coupling in graphene can be enhanced by chemical functionalization, adatom 

decoration or proximity with a van der Waals material. As it is expected that such enhancement gives 

rise to a sizeable spin Hall effect, a spin-to-charge current conversion phenomenon of technological 

relevance, it has sparked wide research interest. However, it has only been measured in 

graphene/transition metal dichalcogenide van der Waals heterostructures with limited scalability. 

Here, we experimentally demonstrate spin Hall effect up to room temperature in bilayer graphene 

combined with a nonmagnetic insulator, an evaporated bismuth oxide layer. The measured spin Hall 

effect raises most likely from an extrinsic mechanism. With a large spin-to-charge conversion 

efficiency, scalability, and ease of integration to electronic devices, we show a promising material 

heterostructure suitable for spin-based device applications. 
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 Spin-orbit coupling (SOC) is a basic ingredient in condensed matter that leads to many different 

phenomena in magnetism and spintronics1–3. Some of the most studied SOC-induced phenomena are 

the (inverse) spin Hall effect [(I)SHE]4 and the (inverse) Rashba-Edelstein effect [(I)REE)]5 due to 

their technological applicability. These effects enable the generation and detection of spin currents, 

which are being used to develop non-volatile memories6–8 and spin-based logic devices9,10. Whereas 

materials with heavy atoms possess strong SOC, graphene, a two-dimensional material with 

extraordinary properties, is made of light carbon atoms and possesses a weak intrinsic SOC11. 

Therefore, it was considered as an unfavorable candidate to build active spintronic devices. However, 

several studies suggest that a significant SOC can be induced in graphene via chemical 

functionalization12,13,  heavy metal adatom decoration14–18 or due to a proximity effect from a 

neighboring van der Waals material19–22. The latter case has been proven to be very efficient, especially 

by combining graphene with a transition metal dichalcogenide (TMD), a two-dimensional material 

family with strong SOC23. The creation of such van der Waals heterostructures induces an 

enhancement of SOC in the order of few meV19–22, which has been demonstrated to lead to weak 

antilocalization24–26 and spin lifetime anisotropy27–29. Furthermore, the gate tunability of spin 

absorption by the TMD in such systems paves the way for active control of spin currents in 

graphene/TMD heterostructures30,31.  

 

Steaming from this enhancement of SOC, theoretical studies have shown that SHE in graphene 

can be realized due to a modification of the band structure via proximity effect or when graphene is 

decorated with adatoms, molecules, or nanoparticles. The former case is predicted to occur in 

graphene/TMD heterostructures, where the SHE is dominated by a uniform valley-Zeeman SOC which 

arises due to the breaking of the sublattice symmetry (intrinsic mechanism)22,32,33. In the latter case, 

some parts of the graphene sample remain intact, but large clusters of impurities generate spatially 

fluctuating spin-orbit fields which are an extrinsic source for SHE14–17. Experimentally, the proximity-
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induced SHE has been the only one demonstrated in graphene, showing large spin-charge 

interconversion efficiencies34–36. 

 

Along with the understanding of the mechanisms behind the SHE in graphene, it is also 

important to explore graphene-based spin-to-charge conversion systems suitable for device 

applications. In this respect, graphene/TMD van der Waals heterostructures have two inherent 

problems. Firstly, although the fabrication process of using mechanical exfoliation followed by 

deterministic transfer techniques is very successful in a research environment,34–41  it has limited 

scaling capabilities. Therefore, obtaining SHE in graphene combined with heavy metal-based materials 

that can be grown using standard deposition tools would be more suitable for scalable device 

fabrication. Secondly, in all reported experiments, graphene has been combined with metallic or 

semiconducting materials that usually shunt the spin and charge currents. This reduces the accumulated 

charge or spin density in graphene, which is detrimental to device applications in which large spin or 

charge current densities are required. This issue might be solved by finding a non-magnetic insulator 

that induces spin-to-charge current conversion (SCC) in graphene. 

 

A potential candidate sorting both previous issues is Bi2O3, which has been used to obtain SCC 

in combination with Cu via IREE42, as well as to modify the anomalous Hall effect in Co by inducing 

interfacial skew scattering43. In this work, using Hanle spin precession measurements, we show an 

unprecedented experimental demonstration of efficient SHE up to room temperature in graphene 

combined with Bi2O3. We observe a spin Hall angle 𝜃𝑔𝑟/𝐵𝑖2𝑂3 up to 0.6% over a long spin diffusion 

length 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3 up to 560 nm. This leads to a SCC efficiency length (𝜆𝑠

𝑔𝑟/𝐵𝑖2𝑂3 × 𝜃𝑔𝑟/𝐵𝑖2𝑂3) up to 3.5 

nm, larger than some of the best SCC materials such as topological insulators44. Our findings 

demonstrate a scalable graphene-based material system with efficient SCC, which is promising for 

building active spintronic devices. 
 

Our device is a bilayer graphene Hall bar with Bi2O3 deposited in the central section of the 

cross, as shown in Figure 1a,b. Since the spin or charge current cannot be injected into or from the 

bulk of Bi2O3 layer since it is an insulator, bulk (I)SHE in Bi2O3 is not expected to occur in our device. 

Therefore, the (I)SHE and (I)REE take place only in graphene and are expected to generate (or detect) 

spin currents with different spin polarizations. A charge current applied along the 𝑦-axis of the 

graphene channel into the graphene/Bi2O3 region will generate the spin current propagating along the 

𝑥-direction with out-of-plane spin polarization for the SHE34,35 (Figure 1a) and in-plane spin 

polarization for the REE34–39
  (Figure 1b). This difference in the symmetry of the spin-charge 

interconversion allows us to distinguish the contribution from the two effects. The device used for our 

measurements is shown in Figure 1c. It consists of exfoliated bilayer graphene (see Note S1 for Raman 

characterization) shaped into three Hall bars and connected with Ti (5 nm)/Au (40 nm) contacts. In the 

center of the first and third Hall bar, a thin layer of Bi2O3 (5 nm) was deposited. On top of the main 

graphene channel, five TiOx barriers and ferromagnetic (FM) Co electrodes with different widths were 

fabricated, forming four different lateral spin valves (LSV). See Methods (See Note S9) for the 

fabrication details. In the main text, we discuss the measurements on the right side of the device 

(highlighted with a dotted black box in Figure 1c).  



  

Figure 1. (a,b) Sketch of two possible spin-charge interconversion scenarios in graphene induced by Bi2O3 on 

top. A charge current applied to the graphene/Bi2O3 arm (along 𝑦) results in (a) a spin current with out-of-plane 

spin polarization (along 𝑧) for the SHE scenario and/or (b) a spin accumulation with in-plane spin polarization 

(along 𝑥) for the REE scenario. In both cases, a spin current diffuses in the graphene channel (along 𝑥). (c) 

False-colored scanning electron microscope image of our device. Graphene (blue) was shaped into three Hall 

bars with Ti/Au contacts (yellow) at the end. Bi2O3 (green) was deposited on two of the graphene Hall bars after 

etching the graphene flake. Co/TiOx electrodes (red) were placed on the graphene channel. The measurements 

explained in the main text were performed using the electrodes inside the black dotted box. 

 

Prior to SCC measurements, we quantify the spin transport properties of our graphene. For this 

purpose, we studied the pristine graphene region using a reference LSV (between Co electrodes 2 and 

3). An electrical current (𝐼 = 10 𝜇𝐴) is applied between the FM injector (Co electrode 3) and graphene 

(Ti/Au contact B). This creates a spin accumulation at the Co/graphene interface, which then diffuses 

in the graphene channel to both sides of the Co electrode. On the left side, a pure spin current diffuses 

towards the FM detector, creating a nonlocal voltage (𝑉𝑁𝐿) measured between the FM (Co electrode 

2) and graphene (Ti/Au contact A), which changes sign with the relative magnetization orientation of 

the FM electrodes (parallel, P, or antiparallel, AP). From this, the nonlocal resistance (𝑅𝑁𝐿 = 𝑉𝑁𝐿/𝐼 ) 



is calculated. Due to differences in the shape anisotropies, the coercive fields of the FM injector and 

detector are different, whereas the easy axis for both electrodes lies along the 𝑦-axis. By applying a 

magnetic field along this axis (𝐵𝑦), the two FM can be set P or AP to each other. Figure 2a shows the 

𝑅𝑁𝐿  vs. 𝐵𝑦 measurement (black circles) at room temperature, where a difference of 3.8 Ω between the 

two states (𝑅𝑁𝐿
𝑃 − 𝑅𝑁𝐿

𝐴𝑃) is obtained. In order to quantify the spin transport properties of the pristine 

graphene and the spin injection and detection efficiencies of the FM electrodes, we performed standard 

Hanle precession measurements, as shown in the schematic diagram in Figure 2b. First, we set the 

magnetization of the Co electrodes P to each other along the easy axis, and then sweep a magnetic 

field along the in-plane hard axis (±𝐵𝑥) while measuring 𝑅𝑁𝐿. 𝐵𝑥 modifies the spin polarization of the 

spin current reaching the detector in two ways: 1) At low fields, spins in the graphene channel precess 

along the 𝑦 − 𝑧 plane; 2) At larger fields, the magnetizations of the Co electrodes start to rotate towards 

the field direction, varying the spin polarization of the injected spins from the  𝑦 − to the 𝑥 −direction. 

Above the saturation field, since the spin polarization of the injected spins and the magnetic field are 

parallel, no spin precession occurs in the graphene channel, resulting in the saturation of 𝑅𝑁𝐿. We 

repeat the same measurement after setting the Co electrodes AP to each other. Figure 2c shows these 

𝑅𝑁𝐿  vs. 𝐵𝑥 symmetric Hanle curves for initial P (red) and AP (blue) configurations at room 

temperature. As the contribution to 𝑅𝑁𝐿 due to the variation of the Co magnetization along 𝑥-direction 

is the same for both cases, subtracting the two curves removes this contribution. The average of the 

difference between the two curves (∆𝑅𝑁𝐿 = (𝑅𝑁𝐿
𝑃 − 𝑅𝑁𝐿

𝐴𝑃)/2 ) corresponds to the pure spin precession 

signal and its variation with 𝐵𝑥 is shown in Figure 2d (black circles). By fitting this curve using the 

solution of the Bloch equation (see Note S7.1), the spin lifetime of the pristine graphene, 𝜏𝑠
𝑔𝑟

 = 217±16 

ps, the spin diffusion constant of the pristine graphene, 𝐷𝑠
𝑔𝑟

= (9.03±0.26) × 10−3 m2/s (yielding a spin 

diffusion length, 𝜆𝑠
𝑔𝑟

= √𝐷𝑠
𝑔𝑟

𝜏𝑠
𝑔𝑟

= 1.4±0.1 𝜇m), and the spin polarization of the Co/graphene interface, 

𝑃= 6.0±0.1%, are obtained for room temperature. From the same measurements, the rotation of the Co 

magnetization with 𝐵𝑥 can also be extracted (Note S7.1.1). We found that the Co magnetization 

saturates along the 𝑥 −axis at 𝐵𝑥 ≥ 0.3 T. We also determine the carrier density in graphene at room 

temperature (𝑛 = +3.26 × 1012 cm-2) from Hall measurements (Note S6). 

 

 To quantify the spin transport properties of the graphene/Bi2O3 region, we perform the same 

measurements using the LSV between Co electrodes 1 and 2. Figure 2a,d (green circles) show the 𝑅𝑁𝐿 

vs. 𝐵𝑦 and Δ𝑅𝑁𝐿vs. 𝐵𝑥  measurements at room temperature, respectively, which are compared to the 

measurements in the reference LSV (black circles). It is worth stressing that Δ𝑅𝑁𝐿  is ~5 times smaller 

in the LSV with graphene/Bi2O3 region. This may indicate that the spin relaxation in the 

graphene/Bi2O3 region is stronger compared to the pristine graphene region. In graphene with 

proximity induced SOC, spin lifetime anisotropy is possible27 causing modifications in Hanle spin 

precession measurement curves28,29. However, we did not observe any such modification (see also 

Note S3). We fitted the Δ𝑅𝑁𝐿  vs. 𝐵𝑥 curve to the solution of the Bloch equation. For an accurate fitting, 

the spin transport channel was divided into 5 regions (details are described in Note S7.2). The spin 

lifetime and spin diffusion constant in the pristine graphene regions and the spin polarization of the 

Co/graphene interface are assumed to be the ones obtained from the measurements of the reference 

LSV. To simplify the analysis, the spin diffusion constant is assumed to be the same for both pristine 

graphene and graphene/Bi2O3 regions. With these considerations, we obtained the spin lifetime 

𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3= 21±9 ps for graphene/Bi2O3 at room temperature, which corresponds to a spin diffusion 

length 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3= 435±186 nm. 

 



 
 
Figure 2. Spin transport characterization. (a) Nonlocal resistance as a function of the magnetic field applied 

along the easy axis of the FM electrodes (𝐵𝑦) measured at 300 K. The black and green circles correspond to the 

reference LSV (between Co electrodes 2 and 3) and the LSV with Bi2O3 on top (between Co electrodes 1 and 

2), respectively. The arrows represent the relative magnetizations of the two FMs. (b) Sketch of the nonlocal 

Hanle spin precession measurement in the reference LSV. The magnetic field is applied along the in-plane hard 

axis (𝐵𝑥), causing the spin precession along the 𝑦 − 𝑧 plane. (c) Nonlocal symmetric Hanle curves measured at 

300 K at the reference LSV by applying 𝐵𝑥 for the initial parallel (red) and antiparallel (blue) configuration of 

the FM electrodes. (d) Net spin precession signal Δ𝑅𝑁𝐿 =  (𝑅𝑁𝐿
𝑃 − 𝑅𝑁𝐿

𝐴𝑃)/2 calculated using the data in panel 

c for the reference LSV (black circles) and for the LSV with Bi2O3 on top (green circles), with the corresponding 

fit to the solution of the Bloch equations (blue solid line). 

  

 Once we confirmed that the spin current relaxes faster in the graphene/Bi2O3 region than in the 

pristine graphene, we performed the spin-to-charge conversion experiments. The electrical current (𝐼= 

10 𝜇𝐴) is applied between Co electrode 1 and Ti/Au contact A. The pure spin current that reaches the 

graphene/Bi2O3 region is expected to be converted into a charge current creating a nonlocal voltage, 

𝑉𝑁𝐿, measured across the perpendicular graphene/Bi2O3 arm (between Ti/Au contacts C and D) as 

shown schematically in Figure 3a. We normalize this voltage to the injected current, 𝑅𝑁𝐿 = 𝑉𝑁𝐿/𝐼. As 

explained in Figure 1a,b, it is possible in our device to obtain SCCs with in-plane spin polarization due 

to IREE or out-of-plane spin polarization due to ISHE in graphene. To identify which mechanism 

contributes to the SCC, we performed 𝑅𝑁𝐿  vs. 𝐵𝑥  measurements. As explained above, 𝐵𝑥 causes a 

variation of the spin polarization along the 𝑥 −direction via the rotation of the magnetization of the Co 

injector and along the 𝑦 − 𝑧 plane via the spin precession. Therefore, the shape of 𝑅𝑁𝐿  vs. 𝐵𝑥 is 



expected to be proportional to the variation of the Co magnetization if it arises from IREE, whereas it 

is expected to follow the spin precession if it comes from ISHE. For the former case, a linearly varying 

curve that saturates at a maxima or minima above the ±𝐵𝑥 saturation fields independently of the initial 

Co injector magnetization is expected34–41 For the latter case, a Hanle spin precession curve with 𝑅𝑁𝐿  

exhibiting either a maximum or minimum at certain value of ±𝐵𝑥 at which the spins reaching the 

graphene/Bi2O3 region point out-of-plane (𝑧) and diminishing to zero above ±𝐵𝑥  saturation field is 

expected. This plot should be antisymmetric with 𝐵𝑥 and opposite for the two opposite initial 

magnetization of the Co injector as the spin precession will be along opposite 𝑧-directions for the two 

cases34,35. The measurements were performed in four steps: For the first two steps, 𝑅𝑁𝐿  was measured 

by applying 𝐵𝑥  from 0 to 1 T and 0 to -1 T by setting the initial magnetization of the Co injector along 

the +𝑦 −axis (𝑅𝑁𝐿
↑ ). Subsequently, the same measurements were repeated for an initial Co 

magnetization set along the −𝑦 −axis (𝑅𝑁𝐿
↓ ). The 𝑅𝑁𝐿  vs. 𝐵𝑥  measurements at 300 K is shown in Figure 

3b, where we clearly observe antisymmetric Hanle curves. Also, the two plots for opposite initial 

magnetizations (𝑅𝑁𝐿
↑  and 𝑅𝑁𝐿

↓ ) show opposite trends at low fields. Therefore, we unambiguously 

confirm SCC with out-of-plane spins in our device due to ISHE in the graphene/Bi2O3 region. In 

contrast, we did not observe any SCC signal due to IREE in our experiment, evidencing that Rashba 

SOC is not dominant in our system. By interchanging the voltage and current terminals, the spin current 

is now injected from the graphene/Bi2O3 region and detected by the FM electrode (Figure 3d), 

confirming the direct SHE, which fulfills the Onsager reciprocity condition. We also performed 

experiments in the second graphene/Bi2O3 region on the left side of the device shown in Figure 1c and 

obtained similar results (Note S5), confirming the reproducibility of our measurements. This also 

proves the ability to fabricate multiple graphene-based spin Hall devices in the same chip under the 

same fabrication conditions. By averaging the difference between the 𝑅𝑁𝐿
↑  and 𝑅𝑁𝐿

↓  curves (𝑅𝑆𝐶𝐶 =

(𝑅𝑁𝐿
↑ − 𝑅𝑁𝐿

↓ )/2), the net antisymmetric spin precession signal can be extracted. The resulting 𝑅𝑆𝐶𝐶  vs. 

𝐵𝑥 curves at 300 K is shown in Figure 3c. We fitted this curve to the solution of the Bloch equation 

(details of the model used for the fitting are discussed in Note S9). Here, the net SCC signal depends 

on 𝑃, 𝜏𝑠
𝑔𝑟

, 𝐷𝑠
𝑔𝑟

, and 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3. By using the values of these parameters calculated from the LSV 

measurements (Figure 2d), the spin Hall angle of the graphene/Bi2O3 region (𝜃𝑔𝑟/𝐵𝑖2𝑂3) can be 

extracted. At room temperature, we obtained 𝜃𝑔𝑟/𝐵𝑖2𝑂3~0.10±0.05%, corresponding to a SCC 

efficiency length (𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3 × 𝜃𝑔𝑟/𝐵𝑖2𝑂3) of 0.4±0.2 nm. 

 

To understand the variation of the SHE with temperature, we performed 𝑅𝑆𝐶𝐶  vs. 𝐵𝑥 

measurements at different temperatures between 10 K and 300 K. As shown in Figure 4a (see also 

Note S4), the amplitude of the SCC signal increases with decreasing temperature. Since the SCC 

conversion voltage depends not only on the spin Hall efficiency but also on the channel resistance and 

the spin transport properties of graphene, we need to probe the temperature dependences of the latter 

two to understand the actual temperature dependence of the SHE. The sheet resistances of the pristine 

graphene channel and the graphene channel with Bi2O3 region, calculated from the 4-point electrical 

measurement, increase with decreasing temperature. Interestingly, they were almost the same at each 

temperature (inset in Figure 4b), confirming that insulating Bi2O3 has no effect on the electrical 

conductivity of graphene.To obtain the spin transport properties at each temperature, the Hanle spin 

precession measurements across the reference LSV (Note S2) and the LSV with Bi2O3 -covered 

graphene (Note S3) were measured and analyzed. Using these parameters, 𝜃𝑔𝑟/𝐵𝑖2𝑂3, 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3 ×

𝜃𝑔𝑟/𝐵𝑖2𝑂3 and the spin Hall conductivity (𝜎𝑆𝐻
𝑔𝑟/𝐵𝑖2𝑂3 =  𝜃𝑔𝑟/𝐵𝑖2𝑂3 × 𝑅𝑠𝑞

𝑔𝑟
) at different temperatures 

were calculated and are plotted in Figure 4b-d. We observe that all three parameters increase with 

decreasing temperature. We obtained a maximum 𝜃𝑔𝑟/𝐵𝑖2𝑂3 = 0.6±0.1% and 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3 × 𝜃𝑔𝑟/𝐵𝑖2𝑂3 

=3.5±3.0 nm at 10 K. Note that the large error bar in the latter value is associated to the uncertainty in 

the 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 value at low temperatures, which is extracted with a complex five-region model that takes 



our device geometry into account (See Note S.7.2). The mean value of the SCC efficiency length is 

similar to the best SCC systems44 such as graphene/TMD van der Waals heterostructures35 or 2D 

electron gases at the surface of topological insulators45 and LAO/STO interfaces46. 

 

 
Figure 3. Spin-to-charge conversion measurements. (a) Sketch of the SCC measurement configuration. (b) 

Nonlocal spin-to-charge conversion curves at room temperature obtained by applying a charge current between 

Co electrode 1 and Ti/Au contact A electrode and measuring the voltage between Ti/Au contacts C and D.  The 

magnetic field is applied along the in-plane hard axis direction (𝐵𝑥) for the Co magnetizations initially set along 

positive (𝑅𝑁𝐿
↑ , blue circles) and negative (𝑅𝑁𝐿

↓ , red circles) directions along the easy axis. (c) Net antisymmetric 

Hanle curve (black circles) obtained by averaging the difference between the two curves (𝑅𝑆𝐶𝐶 = (𝑅𝑁𝐿
↑ −

𝑅𝑁𝐿
↓ )/2) from panel b, which was fitted to the solution of the Bloch equation (blue curve). (d) The net 

antisymmetric Hanle curve,  𝑅𝑆𝐶𝐶 vs. 𝐵𝑥, measured by swapping the current and voltage contacts at room 

temperature and thus corresponding to charge-to-spin conversion (violet circles). For comparison, the reciprocal 

spin-to-charge conversion curve in panel c is plotted again (black circles).  

 

To date, the only unambiguous experimental observations of SHE in graphene were in 

proximity with TMDs34–36. For such heterostructure, the strong SOC and the breaking of the in-plane 

inversion symmetry in the honeycomb structure of the TMD leads to a large valley-Zeeman coupling, 

which is imprinted into graphene by proximity effect. This leads to an alteration of the spin texture of 

graphene states which display out-of-plane polarization, at the origin of a large SHE19,22,32,33. Here, we 

observe SHE in graphene using a completely different system. Due to the expected polycrystallinity 

of Bi2O3 on graphene, it is difficult to argue from the experiment whether the measured SHE is either 



of intrinsic or extrinsic nature since both options seem possible. The first possibility would correspond 

to an atomic arrangement of the Bi2O3 atoms breaking the sublattice symmetry and giving rise to a 

SOC term similar to the valley-Zeeman in TMD/graphene. Such symmetry breaking could also be 

induced by adatoms or very small impurities that may locally alter the band features of graphene. 

However, the most likely scenario seems to be the extrinsic one: inhomogeneities at the interface that 

give rise to long-range potentials induce the SHE without global alteration of the graphene band 

structure. Distinguishing between the intrinsic and the extrinsic mechanisms of the SHE in graphene 

is a challenging problem, as the changes made to the band structure are in the range of meV, which is 

in the range of disorder in typical graphene devices25. Theoretical studies predict that SHE in graphene 

due to both proximity effect32 and adatoms14,17 increases while decreasing the temperature, making it 

hard to experimentally distinguish between the two mechanisms using the temperature-dependent 

results shown in Figure 4. For this reason, the analysis used in metals43,47,48 to quantify the contribution 

of the different mechanisms cannot be safely applied in graphene. The recent results of Benitez et al.35, 

showing the coexistence of SHE, REE and spin lifetime anisotropy in a graphene/TMD system, appear 

contradictory with the theoretical predictions limited to intrinsic effects22,32,33 and rather suggest the 

presence of additional extrinsic sources at the origin of SHE. While the extrinsic mechanism is the 

most probable scenario in our experiment, further theoretical studies are required to understand it in 

detail. 

 
Figure 4. Temperature dependence of the spin-to-charge conversion. (a) Antisymmetric Hanle curves measured 

at different temperatures. (b) Temperature dependence of the spin Hall angle of the graphene/Bi2O3 region 

(𝜃𝑔𝑟/𝐵𝑖2𝑂3). Inset: Sheet resistances (𝑅𝑠𝑞
𝑔𝑟

) of the pristine graphene channel (black) and the graphene channel 

with Bi2O3 region (red) as a function of temperature. (c) SCC efficiency length (𝜃𝑔𝑟/𝐵𝑖2𝑂3 × 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3) as a 

function of temperature. (d) Spin Hall conductivity of the graphene/Bi2O3 region (𝜎𝑆𝐻
𝑔𝑟/𝐵𝑖2𝑂3) as a function of 

temperature.  



In conclusion, using spin precession measurements, we unambiguously demonstrate the SHE 

in graphene combined with insulating Bi2O3, showing large SCC efficiency. While the SHE has been 

experimentally reported so far only in graphene/TMD van der Waals heterostructures due to an 

intrinsic valley-Zeeman mechanism, we show that SHE can be also obtained by combining graphene 

with a polycrystalline insulator. Future studies of the dependence of SHE on the carrier density, the 

number of graphene layers and the growth of the SOC material on top of graphene will be steps forward 

to understand the origin of the SHE. Our finding opens the door to explore, both theoretically and 

experimentally, different spin-orbit-related effects in graphene combined with a variety of SOC 

materials. For device applications, a graphene/oxide heterostructure holds multiple advantages. Unlike 

the fabrication of van der Waals heterostructures, Bi2O3 can be deposited on top of graphene using 

scalable deposition techniques. This would allow large-scale fabrication of devices on a single chip. 

As an insulator, Bi2O3 can be easily integrated to electronic circuits without short-circuiting the charge 

transport. Moreover, the SCC is localized in graphene since it cannot occur in the bulk of Bi2O3. All 

these features will be more suitable for future spintronic device applications such as graphene-based 

spin-orbit torque memories or spin-logic devices, where large charge or spin current densities in 

graphene, respectively, will be required. 
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S1. Methods: Sample fabrication and characterization 
 

S1.1 Device fabrication and physical characterization 

 

First, we exfoliated graphene from bulk graphite crystals (supplied by NGS Naturgraphit 

GmbH) using a Nitto tape (Nitto SPV 224P) onto Si substrates with 300 nm SiO2. Graphene flakes are 

identified by optical contrast under an optical microscope and characterized by Raman spectroscopy 

(Figure S1a). Graphene Hall bars were fabricated using electron-beam lithography and reactive ion 

etching, followed by annealing of the device at 400ºC for 1 hour in ultra-high vacuum (10-9 torr). 

Graphene is then connected with Ti (5 nm)/Au (40 nm) contacts fabricated using electron-beam 

lithography followed by thermal deposition in ultrahigh vacuum and lift-off. Using a similar procedure, 

a Bi2O3 thin film (5 nm) is deposited. The oxide layer was deposited from stoichiometric Bi2O3, 

although the deposited layer might be different, i.e., BiOx. Using electrical measurements on a thin 

film of Bi2O3 on another substrate fabricated during the same deposition, we confirmed that Bi2O3 is 

insulating. Finally, TiOx tunnel barriers, grown by depositing 3 Å of Ti followed by oxidation in air, 

and Co electrodes (35 nm) were fabricated on top of the graphene channel. The widths of the Co 

electrodes vary between 250 nm to 400 nm. The interface resistances of 2.5 kΩ, 22 kΩ, and 3.6 kΩ 

were obtained for Co electrodes 1, 2 and 3 respectively, all of them larger than the sheet resistance of 

graphene at different temperatures from 300 K to 10 K. From atomic force microscopy images (Figure 

S1b), we confirmed the actual thickness of the Bi2O3 layer to be ~ 6.2 nm, much larger than its 

roughness ~ 1.5 nm, ensuring the full coverage of graphene by Bi2O3 (see Note S1).  After the 

measurements, the exact dimensions of the devices were extracted by scanning electron microscopy 

images. 

 
Figure S1. a) Raman spectroscopy of the graphene flake prior to the etching process to determine the thickness 

of the flake. By fitting the 2D peak into four Lorentzians1, each with a full width half maximum (FWHM) of 

~24 cm-1, we can determine the flake to be bilayer graphene. b) The atomic force microscopy image of our 

sample. From this, the actual thickness of Bi2O3 at the center of the graphene Hall bar was measured to be ~ 6.2 

nm, much larger than its r.m.s. roughness (~ 1.5 nm), which confirms the graphene is fully covered by Bi2O3.  

 

S1.2. Electrical measurements 

 

The transport measurements were performed in a Physical Property Measurement System by 

Quantum Design, with a Keithley 2182 nanovoltmeter and a 6221 current source in a dc reversal mode 

at temperatures ranging from 10 K to 300 K. We applied out-of-plane and in-plane magnetic fields 

with a superconducting solenoid magnet and a rotatable sample stage. 



S2. Spin transport in the reference LSV at different temperatures 

 
  

Figure S2. Nonlocal Hanle spin precession measurements in the reference LSV, using 𝑉2,A𝐼3,B terminal 

configuration shown in Figure 1c of the main text (also in Figure S5a), performed by applying 𝐵𝑥 for initial 

parallel (P, red curve) and antiparallel (AP, blue curve) states of the Co electrodes, at temperature (a) 250 K, (b) 

200 K, (c) 150 K, (d) 100 K, (e) 50 K, and (f) 10 K. 



S3. Spin transport in the LSV with graphene/Bi2O3 region at different temperatures  

 
 

Figure S3. Nonlocal Hanle spin precession measurements in the LSV with Bi2O3 on top, using 𝑉2,B𝐼1,A terminal 

configuration shown in Figure 1c of the main text (also, in Figure S5a), performed by applying 𝐵𝑥 for initial 

parallel (P, red curve) and antiparallel (AP, blue curve) states of the Co electrodes, at temperature (a) 250 K, (b) 

200 K, (c) 150 K, (d) 100 K, (e) 50 K, and (f) 10 K. 

 

 



S4. Spin-to-charge conversion measurements at different temperatures 

 
Figure S4. Nonlocal spin-to-charge conversion signal (𝑅𝑁𝐿), using 𝑉C,D𝐼1,A terminal configuration  shown in 

Figure 1c of the main text (also in Figure S4a) as a function of the magnetic field applied along the in-plane 

hard axis direction (𝐵𝑥), for initial magnetization of the Co electrode saturated along positive (𝑅𝑁𝐿
↑ , blue circles) 

and negative (𝑅𝑁𝐿
↓ , red circles) easy axis (𝑦-direction) at temperature (a) 250 K, (b) 200 K, (c) 150 K, (d) 100 

K, (e) 50 K, and (f) 10 K. A parabolic background signal was also observed in most of the measurements most 

likely due to the magnetoresistance in graphene. 



S5. Reproducibility 
 

 
Figure S5. SEM image of the measured device also shown in Figure 1c of the main text with different contacts 

used for reproducibility experiments (performed using the electrodes inside the black dotted box). 

 

 
 

Figure S6. (a) Net antisymmetric Hanle curve (𝑅𝑆𝐶𝐶) measured using 𝑉G,H𝐼4,A terminal configuration shown in 

figure S5. The signal decreases with increasing temperature, similar to the results obtained in the first device 

(Figure 4a in the main text), confirming the reproducibility of our results. (b) Temperature dependence of the 

spin Hall angle of the graphene/Bi2O3 region (𝜃𝑔𝑟/𝐵𝑖2𝑂3 (c) SCC efficiency length (𝜃𝑔𝑟/𝐵𝑖2𝑂3 × 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3) as a 

function of temperature. (d) Spin Hall conductivity of the graphene/Bi2O3 region (𝜎𝑆𝐻
𝑔𝑟/𝐵𝑖2𝑂3) as a function of 

temperature.  



S6. Hall measurements to determine the carrier density of graphene 
 

 
Figure S7. Hall resistance measured at different temperatures (using 𝑉E,F𝐼A,B terminal configuration with out-

of-plane magnetic field). The slope of the plot gives the Hall coefficient = −
1

𝑛𝑒
, where 𝑛 is the carrier density. 

Inset: The variation of carrier density as a function of the temperature calculated from the Hall measurements. 

 

S7. Determination of the spin lifetime in the different graphene regions 
 

S7.1. Pristine graphene region 
 

 To analyze quantitatively the results described in this work, we have assumed that our device 

has two different and homogeneous regions: The pristine graphene and the Bi2O3-covered graphene. 

To determine the spin lifetime 𝜏𝑠
𝑔𝑟

 and diffusion coefficient 𝐷𝑠
𝑔𝑟

 of the pristine region, as well as the 

contact polarization of the Co electrodes 𝑃, we have performed Hanle spin precession measurements 

in this part of the device by applying a magnetic field along 𝑥 (𝐵𝑥) while gauging the nonlocal 

resistance 𝑅𝑁𝐿. The application of 𝐵𝑥, which is perpendicular to the easy axis of our Co electrodes has 

two effects: At low fields, it induces precession of the injected spins and, as the field increases, it also 

leads to the pulling of the contact magnetization towards the 𝑥-direction. 

 

 The spin precession component 𝑅𝑆(𝐵𝑥) has been obtained from the Bloch equation and 

accounts for the spin absorption at the contacts as described in Ref 2-4  Below this point we refer to 

𝑅𝑆(𝐵𝑥) as the “one-region model”. 

 

S7.1.1. Contact pulling: The Stoner-Wohlfarth model 

 For the contact pulling, we assume that the magnetizations follow the Stoner-Wohlfarth model5 

which in our case, because 𝐵𝑥 is perpendicular to the easy axis, implies that the 𝑥-component of the 

electrode magnetization 𝑀𝑥 is proportional to 𝐵𝑥/𝐵𝑥
𝑠𝑎𝑡, where 𝐵𝑥

𝑠𝑎𝑡 is the field at which the 

magnetization saturates along 𝑥. As a consequence, we can determine the magnetization angle 𝜃𝑀 with 

respect to the easy axis 𝑦: 𝜃𝑀 = arcsin (𝐵𝑥/𝐵𝑥
𝑠𝑎𝑡)  for  |𝐵𝑥| < 𝐵𝑥

𝑠𝑎𝑡 and 𝜃𝑀 = ±𝜋/2 for |𝐵𝑥| > 𝐵𝑥
𝑠𝑎𝑡 

where the ± distinguishes positive and negative 𝐵𝑥, respectively. 



 Because the electrodes are defined with different widths, different contacts have different 

coercivities. Consequently, the magnetizations can be addressed individually, and it is possible to 

prepare them in both parallel and antiparallel configurations. This gives rise to different nonlocal spin 

signals 𝑅𝑁𝐿
𝑃(𝐴𝑃)

 for the parallel (antiparallel) configuration. 

 

Considering the contact pulling, the nonlocal spin signal can be written as: 

 

𝑅𝑁𝐿
𝑃(𝐴𝑃)

= ±𝑅𝑆(𝐵𝑥)𝑐𝑜𝑠2(𝜃𝑀) + 𝑅∥𝑠𝑖𝑛2(𝜃𝑀) 

 

where 𝑅∥ is the spin signal at 𝐵𝑥 = 0. Subtraction of both curves leads to: 

 

Δ𝑅𝑁𝐿 =
𝑅𝑁𝐿

𝑃 −𝑅𝑁𝐿
𝐴𝑃

2
= 𝑅𝑆(𝐵𝑥)𝑐𝑜𝑠2(𝜃𝑀)                                    (S1) 

 

which is commonly fit to determine the spin transport properties of graphene4. 

Addition of both curves leads to: 

 

𝑅𝑎𝑣𝑔 =
𝑅𝑁𝐿

𝑃 + 𝑅𝑁𝐿
𝐴𝑃

2
= 𝑅∥𝑠𝑖𝑛2(𝜃𝑀) 

 

from here, since 𝑅∥ is a constant, we can normalize 𝑅𝑎𝑣𝑔 to obtain 𝜃𝑀 as a function of the magnetic 

field. 

 

 
 

Figure S8. (a) sin (𝜃𝑀), where 𝜃𝑀 is the angle between Co magnetization rotated along 𝑥 with respect to the 

easy axis (𝑦), as a function of 𝐵𝑥 obtained from the Hanle measurements across the reference LSV at 300 K 

(Figure 2c in main text)by using Equation S2. Inset: Sketch that defines the angle 𝜃𝑀. (b) sin (𝜃𝑀) as a function 

of 𝐵𝑥 using the Stoner-Wohlfarth model. 

 

In Figure S8a we plot  

𝑠𝑖𝑛(𝜃𝑀) = 𝑠𝑖𝑔𝑛(𝐵𝑥)√
𝑅𝑎𝑣𝑔−𝑅𝑎𝑣𝑔

𝑚𝑖𝑛

𝑅𝑎𝑣𝑔
𝑚𝑎𝑥−𝑅𝑎𝑣𝑔

𝑚𝑖𝑛                                           (S2) 

 

as a function of 𝐵𝑥 where 𝑅𝑎𝑣𝑔
𝑚𝑎𝑥 and 𝑅𝑎𝑣𝑔

𝑚𝑖𝑛 are the maximum and minimum values of 𝑅𝑎𝑣𝑔 and 𝑠𝑖𝑔𝑛(𝐵𝑥) 

is the sign of the applied magnetic field. Because for some reference Hanle precession curves the signal 



keeps increasing for fields higher than 𝐵𝑠𝑎𝑡, for our analysis we have used the contact pulling from the 

Stoner-Wohlfarth model (Figure S8b). 

 

S7.1.2. Fitting of the spin precession data 

 The  spin precession signal (Δ𝑅𝑁𝐿) obtained from the Hanle measurements in the reference 

LSV at 300 K is shown in Figure S9a together with the fit to Equation S1. The parameters 𝜏𝑠
𝑔𝑟

, 𝐷𝑠
𝑔𝑟

, 

and 𝑃 extracted from this analysis at different temperatures are plotted in Figure S9b,c. 

 

 
Figure S9. Spin transport in the pristine graphene region. (a) Δ𝑅𝑁𝐿 at 300 K together with its fit to the solution 

of the Bloch equations and the extracted parameters. (b) Spin lifetime, spin diffusion constant, and (c) spin 

polarization obtained from the analysis shown in panel a at different temperatures.   

 

S.7.2. Bi2O3-covered region 

 

S.7.2.1. One-region model 

 In order to determine the spin lifetime of the Bi2O3-covered region, we have followed the 

approach introduced in Ref 6 The first step is to fit Δ𝑅𝑁𝐿 obtained across the Bi2O3-covered region to 

obtain the effective spin transport parameters of this part of the sample. The Hanle precession curve 

obtained in the LSV with the Bi2O3-covered region at 300 K is shown in Figure S10a together with the 

fit to Equation S1. The effective parameters 𝜏𝑠
𝑒𝑓𝑓

, 𝐷𝑠
𝑒𝑓𝑓

, and 𝑃𝑒𝑓𝑓 extracted from this analysis at 

different temperatures are plotted in Figure S10b,c. 

 

 
 

Figure S10. Spin transport in the Bi2O3-covered graphene region. (a) Δ𝑅𝑁𝐿at 300 K together with its fit to the 

solution of the Bloch equations using the one-region model and the extracted effective parameters. (b) Effective 

spin lifetime, spin diffusion constant, and (c) spin polarization obtained from the analysis shown in panel a at 

different temperatures. 



S.7.2.2. Five-region model for spin precession 

 The next step is to simulate the actual device geometry using the Bloch equations in the 

appropriate geometry and determine the spin lifetime of region 𝐼𝐼𝐼 (𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3). In our case, the 

geometry is shown in Fig. S10a and includes 5 different regions.  

 

The analytical expression for spin precession in this geometry that takes into account the spin 

absorption by the contacts has been obtained following Refs. 3,4,7 Firstly, the solution of the Bloch 

equations for the spin accumulation 𝜇𝑦(𝑧) in the 𝑦(𝑧) direction is written as: 

 

𝜇𝑦 = 𝐴exp(𝑥𝑎𝑝
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) + 𝐵exp(𝑥𝑎𝑚
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) + 𝐶exp(−𝑥𝑎𝑝
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

)

+ 𝐷exp(𝑥𝑎𝑚
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) 

𝜇𝑧 = 𝑖𝐴exp(𝑥𝑎𝑝
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) − 𝑖𝐵exp(𝑥𝑎𝑚
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) + 𝑖𝐶exp(−𝑥𝑎𝑝
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

)

− 𝑖𝐷exp(𝑥𝑎𝑚
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

) 

 

where 𝑎𝑝(𝑚)
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

=
√1+(−)𝑖𝜔𝜏𝑠

𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

𝜆𝑠
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)  and 𝜆𝑠

𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)
= √𝐷𝑠

𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)
𝜏𝑠

𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)
 with 

𝜔 =
𝑔𝜇𝐵𝐵𝑥

ℏ
 the Larmor frequency, 𝑔 = 2 the Landé factor, 𝜇𝐵 the Bohr magneton, and ℏ the reduced 

Plank constant. 𝐴 − 𝐷 are parameters to be determined from the device geometry. 

 

The relevant boundary conditions used to determine the parameters in the five different regions are: 

 

1. The spin accumulations 𝜇𝑦 and 𝜇𝑧 are continuous through the entire sample. 

2. The spin currents, defined as 𝐼𝑠
𝑦(𝑧)

=
𝑊

𝑒𝑅𝑠𝑞

𝑑𝜇𝑦(𝑧)

𝑑𝑥
 , are continuous everywhere apart from 𝑥 = 0 

and 𝑥𝑑𝑒𝑡 where the spin injector and detector are placed.  

3. At 𝑥 = 0, the spin current has a discontinuity Δ𝐼𝑠
𝑦

= 𝑃𝑖𝐼 −
𝜇𝑦(0)

𝑒𝑅𝑐1
 and Δ𝐼𝑠

𝑧 = −
𝜇𝑧(0)

𝑒𝑅𝑐1
 where 𝑅𝑐1, 

𝑃𝑖 and 𝐼 are the contact resistance, spin polarization and charge current applied through the 

spin injector.  

4. At 𝑥 = 𝑥𝑑𝑒𝑡, Δ𝐼𝑠
𝑦

= −
𝜇𝑦(𝑥𝑑𝑒𝑡)

𝑒𝑅𝑐2
 and Δ𝐼𝑠

𝑧 = −
𝜇𝑧(𝑥𝑑𝑒𝑡)

𝑒𝑅𝑐2
, where 𝑅𝑐2 is the contact resistance of the 

spin detector 

5. Finally, we take into account that 𝜇𝑦(𝑧)(𝑥 → ∞) → 0, which, for region 𝐼 implies that 𝐶 = 𝐷 =

0 and, for region 𝑉, 𝐴 = 𝐵 = 0. 

 

From these boundary conditions we obtain the spin accumulation at 𝑥 = 𝑥𝑑𝑒𝑡 as a function of 𝐵𝑥. We 

convert this spin accumulation in a nonlocal voltage: 𝑉𝑆 = 𝑃𝑑𝜇𝑦(𝑥𝑑𝑒𝑡)/𝑒 where 𝑃𝑑 is the detector spin 

polarization. 𝑉𝑆 is converted in a nonlocal resistance using 

 

𝑅𝑆 = 𝑉𝑆/𝐼      (S3) 

 

This way we obtain the nonlocal resistance detected across the Bi2O3-covered region.  

 

S.7.2.3. Determination of 𝝉𝒔
𝒈𝒓/𝑩𝒊𝟐𝑶𝟑 using the five-region model 

 To determine 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 we use the five-region model. As described above, this model depends 

on a long list of parameters: 𝐷𝑠
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

, 𝜏𝑠
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

, 𝑅𝑠𝑞
𝑔𝑟(𝑔𝑟/𝐵𝑖2𝑂3)

, and 𝑃𝑖(𝑑). The spin transport 



parameters of the pristine graphene region (𝐷𝑠
𝑔𝑟

, 𝜏𝑠
𝑔𝑟

) are shown in Figure S10b. The spin polarization 

of the injector and detector is assumed to be identical (𝑃 = 𝑃𝑖 = 𝑃𝑑) and it is shown in Figure S10c. 

The sheet resistance of pristine graphene and Bi2O3-covered graphene, assumed to be identical (𝑅𝑠𝑞
𝑔𝑟

=

𝑅𝑠𝑞
𝑔𝑟/𝐵𝑖2𝑂3), is shown in the inset of Fig. 4a in the main text. We also assume that 𝐷𝑠

𝑔𝑟
= 𝐷𝑠

𝑔𝑟/𝐵𝑖2𝑂3. 

The relevant output parameter from our model is 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3,which is assumed to be isotropic because 

we did not observe any anisotropic feature in the spin precession data (see Figure S3). Note that here 

we do not determine 𝐷𝑠
𝑔𝑟/𝐵𝑖2𝑂3 accurately. This is because this parameter determines the shape of the 

shoulders of the Hanle precession curve and, in our case, these are shaped by the pulling of the contact 

magnetizations preventing a more accurate analysis. In contrast, 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 determines the width of the 

central peak and can be obtained in a more reliable manner. 

 

 
 

Figure S11. (a) Model geometry for the spin precession across the Bi2O3-covered region and spin-to-charge 

conversion. The dark yellow contacts are spin polarized, regions 𝐼, 𝐼𝐼, 𝐼𝑉, and 𝑉 are pristine graphene, region 

𝐼𝐼𝐼 is covered by Bi2O3. Regions 𝐼 and 𝑉 are semi-infinite. (b) Simulated Hanle spin precession data using the 

5-region model for two cases with 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 = 7 and 50 ps. The red lines correspond to the fits to the one-

region model. (c) 𝜏𝑠
𝑚𝑜𝑑 as a function of 𝜏𝑠

𝑔𝑟/𝐵𝑖2𝑂3 (black line). The grey area is the error associated with the 

one-region model fit. The horizontal red line corresponds to the value of 𝜏𝑠
𝑒𝑓𝑓

 obtained from the homogeneous 

fit (see Figure S10a) and has its corresponding error range. (d) 𝜏𝑠
𝑚𝑜𝑑 and 𝑃𝑚𝑜𝑑/𝑃𝑖𝑛, where 𝑃𝑖𝑛 = √𝑃𝑖𝑃𝑑, that 

are the input spin polarizations, as a function of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3. 

 



The analysis is realized as follows: first, the Hanle precession data is simulated using Eq S3 for 

different values of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3(see Figure 11b), then the extracted curve is fit to the one-region model to 

obtain the effective parameters 𝜏𝑠
𝑚𝑜𝑑, 𝐷𝑠

𝑚𝑜𝑑 and 𝑃𝑚𝑜𝑑. The value of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 is obtained by plotting 

𝜏𝑠
𝑚𝑜𝑑 vs 𝜏𝑠

𝑔𝑟/𝐵𝑖2𝑂3 and finding the value of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 that gives 𝜏𝑠

𝑚𝑜𝑑 = 𝜏𝑠
𝑒𝑓𝑓

. This process is illustrated 

in Figure S11c for the 300 K data. We include the one-region model to determine the uncertainty range 

graphically taking into account the fit error of 𝜏𝑠
𝑔𝑟

. 

 

 In Figure S11c one can see how 𝜏𝑠
𝑚𝑜𝑑 increases with 𝜏𝑠

𝑔𝑟/𝐵𝑖2𝑂3. This is expected as the spin 

lifetimes of the different regions contribute to the average lifetime of the system. In Figure S11d, a 

less straightforward behavior is observed for 𝐷𝑠
𝑚𝑜𝑑. In particular, for 𝜏𝑠

𝑔𝑟/𝐵𝑖2𝑂3 < 𝜏𝑠
𝑔𝑟

, 𝐷𝑠
𝑚𝑜𝑑 >

𝐷𝑠
𝑔𝑟/𝐵𝑖2𝑂3. This is caused by the fact that the reduced 𝜏𝑠

𝑔𝑟/𝐵𝑖𝑂𝑥 gives rise to a decrease of the average 

transport times at the Bi2O3-covered region, leading to less spin precession for that region. 

Consequently, this region behaves like a spacer and mimics the effect of an increased diffusivity that 

would also get the spins faster to the detector. The result from 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 = 1 ps is caused by a bad fit 

at high field that underestimates 𝐷𝑠
𝑚𝑜𝑑. Finally, the spin polarizations decrease as 𝜏𝑠

𝑔𝑟/𝐵𝑖2𝑂3 decreases. 

This is expected from the fact that the Bi2O3-covered region behaves as a spin sink when 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 <

𝜏𝑠
𝑔𝑟

. This leads to reduced signals that result in a decrease of 𝑃𝑚𝑜𝑑/𝑃𝑖𝑛. 

 

 The above mentioned analysis has been performed at all the measured temperatures, leading to 

the extraction of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 with its corresponding uncertainty range that is shown in Fig. S11.  

 

 
 

Figure S12. Temperature dependence of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 obtained following the analysis shown in Figure S11. 

 

S8. Determination of the spin Hall angle in the graphene/Bi2O3 region 
 

 From the analysis described in Section S7, we have obtained the relevant spin transport 

parameters in the channel and spin polarization of the Co contacts. The next step is to determine the 

spin Hall angle from 𝑅𝑆𝐶𝐶 . 



For this purpose, we need the spin accumulation 𝜇𝑧 in region 𝐼𝐼𝐼 of the five-region model 

described in section S.7.2.3., which allows us to determine the spin-to-charge conversion signal 𝑅𝑆𝐶𝐶 . 

In particular, the transverse charge current generated by the inverse spin Hall effect is proportional to 

the average 𝐼𝑠
𝑧 across region 𝐼𝐼𝐼, which we obtain using the following expression: 

 

𝐼𝑠
�̅� =

1

𝑊𝑐𝑟
∫ 𝐼𝑠

𝑧(𝑥)𝑑𝑥
𝐿+𝑊𝑐𝑟

𝐿

 

 

and the spin-to-charge conversion signal is given by: 

 

𝑅𝑆𝐶𝐶
𝑝𝑟𝑒𝑐 = 𝜃𝑔𝑟/𝐵𝑖2𝑂3  𝑅𝑠𝑞

𝑔𝑟/𝐵𝑖2𝑂3𝐼𝑠
�̅�
 

 

with 𝜃𝑔𝑟/𝐵𝑖2𝑂3 the spin Hall angle and 𝑅𝑠𝑞
𝑔𝑟/𝐵𝑖2𝑂3 the square resistance of the Bi2O3-covered region. 

 

As described in section (contact pulling), the application of 𝐵𝑥 also leads to the pulling of the 

contact magnetization. Hence the measured data in the parallel and antiparallel configurations are 

given by  

 

𝑅𝑁𝐿
↑(↓)

= +(−)𝑅𝑆𝐶𝐶
𝑝𝑟𝑒𝑐

cos(𝜃𝑀) + 𝑅𝑆𝐶𝐶
∥ sin(𝜃𝑀) 

 

where 𝑅𝑆𝐶𝐶
∥  is the spin-to-charge conversion efficiency along 𝑥. To extract only the spin Hall signal 

we subtract both measurements and obtain  

 

𝑅𝑆𝐶𝐶 =
𝑅𝑁𝐿

↑ −𝑅𝑁𝐿
↓

2
= 𝑅𝑆𝐶𝐶

𝑝𝑟𝑒𝑐
𝑐𝑜𝑠(𝜃𝑀).               (S4) 

 

 
Figure S13. (a) Fits to the antisymmetric Hanle curve (𝑅𝑆𝐶𝐶 vs 𝐵𝑥) at 300 K and 10 K. (b) Extracted spin Hall 

angle as a function of temperature.  

 

We perform this operation by fitting equation S4 to 𝑅𝑆𝐶𝐶  obtained experimentally with 

𝜃𝑔𝑟/𝐵𝑖2𝑂3 as the only fitting parameter and the contact pulling obtained from the Stoner-Wohlfarth 



model (Figure S8). The results from that operation are shown in Figure S13 with the corresponding 

error ranges determined by the uncertainties in 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 and in the fit to the antisymmetric Hanle data 

assuming that both uncertainties are not correlated. The relative error ranges are significantly smaller 

than those of 𝜏𝑠
𝑔𝑟/𝐵𝑖2𝑂3 even though these have been considered. We attribute it to the fact that the 

spin-to-charge conversion occurs at the whole width of the Bi2O3-covered region and, hence, the spin 

current entering the left edge dominates the spin-to-charge conversion, decreasing the role of 𝜆𝑠
𝑔𝑟/𝐵𝑖2𝑂3 

on this uncertainty. 
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