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We perform micromagnetic simulations to study the switching barriers in square artificial spin ice systems
consisting of elongated single domain magnetic islands arranged on a square lattice. By considering a double
vertex composed of one central island and six nearest neighbor islands, we calculate the energy barriers
between two types of double vertices by applying the simplified and improved string method. We investigate
by means of micromagnetic simulations the consequences of the neighboring islands, the inhomogeneities in
the magnetization of the islands and the reversal mechanisms on the energy barrier by comparing three different
approaches with increasing complexity. The micromagnetic models, where the string method is applied, are
compared to a method commonly in use, the mean barrier approximation. Our investigations indicate that a
proper micromagnetic modeling of the switching process leads to significantly lower energy barriers, by up to
35% compared to the mean-barrier approximation, so decreasing the expected average life time up to seven
orders of magnitude. Hereby, we investigate the influence of parallel switching channels and the conceptional
approach of using a mean-barrier to calculate the corresponding rates.
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I. INTRODUCTION

Artificial spin ice (ASI) systems are lithographically pat-
terned lattices of elongated single domain magnetic islands
[1–4]. In two-dimensional ASI systems, the magnetic islands
are arranged in vertices and build a frustrated lattice due to the
competing magnetostatic interactions among the islands [1,5–
8]. A possible ASI system, where four islands build a vertex
and are arranged on a square lattice, is called square artificial
spin ice (sASI) [1,2]. Such a lattice is illustrated in Fig. 1(a).
In the absence of external magnetic fields, the islands are
magnetized along their long axis due to shape anisotropy,
which limits the possible configurations in a vertex to 24 = 16
macroscopic configurations.

Figure 1(b) shows the four types of vertex configurations
in a sASI, where the energy of each vertex increases with its
assigned number.

The ground state is represented by Type I vertices, since in
a sASI lattice with alternating Type I vertices the stray fields
between four magnetic islands arranged in a square build
closed loops [9], minimizing the total energy of the system.
Even though both Type I and Type II vertices obey the ice
rule [2], where two magnetizations are pointing to the center
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and two away from it, the latter have an increased energy due
to unequal distance of the four elements forming a vertex.
Type III vertices show even higher energies, where three mag-
netizations are pointing towards the center and one away or
vice versa. This vertex configuration displays a net magnetic
charge Qm = ±2qm, where qm is the magnetic charge residing
at the end of each magnetized island [2,4]. Type IV vertices
contain magnetic islands with the magnetization pointing all
to the center or away from it. This type has the highest energy
level, and thus, is the most excited configuration, showing a
net magnetic charge Qm = ±4qm.

Both experiments [10] and simulations [11,12] have been
performed to analyze the thermal annealing and domain dy-
namics in these structures. Furthermore, it has been experi-
mentally observed that the ground state can be achieved after
thermal relaxation, where the lattice has been subject to tem-
peratures T satisfying TB < T < TCurie, where TB denotes the
blocking temperature above which the magnetizations of the
islands are fluctuating on the time scale of the measurement
[7,13–15], and TCurie denotes the Curie temperature. In this
case, the islands start to switch their overall magnetic orien-
tation along the long axis due to thermal activation, enabling
the system to evolve towards the energetically favored ground
state with Type I vertices. The temporal evolution of the
thermally activated relaxation can be described by standard
(Bortz-Kalos-Lebowitz algorithm [16]) kinetic Monte Carlo
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FIG. 1. Square artificial spin ice lattice. (a) Schematic illustration of a sASI lattice with a highlighted in color double vertex. (b) Vertex
configurations in a sASI. Possible arrangements of the magnetizations of the islands in a square vertex, where the black arrow of the large island
indicates the direction of the magnetization. All configurations that are assigned to the same vertex type have equal energies. (c) Schematic
illustration of the double vertex from (a) with the central island (dark), being the island of interest in the energy barrier calculations and the
neighboring islands enumerated with the island identification number j to calculate the configuration number, as given later by Eq. (2).

simulations [15,17,18] that require the energy barriers of the
various switching processes as an input. Thus the ability to
accurately determine the energy barriers to be overcome in
order to switch the magnetization of the magnetic islands are
of key importance.

By using the mean-barrier approximation to calculate the
switching barriers, the experimentally observed relaxation
mechanisms, and thus the dynamics and the ordering of
the system, can only be artificially reproduced [15,18–21].
Namely, in order to reproduce the relaxation timescale ob-
served experimentally, the energy barriers need to be artifi-
cially reduced. Such a reduction is usually ascribed to ex-
trinsic factors like fabrication defects, reduction of the Curie
temperature TCurie [22] or saturation magnetization Ms [7].

In this work, we study the dependence of the energy barri-
ers on collective excitations in a square lattice by performing
micromagnetic simulations.

We apply the simplified and improved string method
(SISM) [23] to investigate if the commonly reported barrier
reduction is ascribable, and to what extent, to intrinsic funda-
mental physics related to the thermally induced reversal rather
than a mere effect of extrinsic factors by comparing three
different models.

We find that these reductions can be ascribed to the prefer-
ential switching direction of the magnetizations in a magneto-
static environment, as well as nonuniform contributions to the
moment reversal.

This paper is organized as follows. The simplified and
improved string method is presented and the application on a
double vertex is described in Sec. II. The considered geome-
tries and sASI material parameters are introduced in Sec. III.
In the Secs. III A–III C we describe the three investigated
models. We discuss our findings and the results of our simula-
tions in Sec. IV, where we analyze in detail the differences in
the reversal mechanisms, rotation directions, energy barriers,
corresponding switching rates and different material parame-
ters. We summarize our conclusions in Sec. V.

II. SIMPLIFIED AND IMPROVED STRING METHOD

In order to analyze the dependence of collective excitations
on the energy barriers, we use the SISM [23] to calculate the
energy barrier between two magnetic states.

This method consists of three steps. In the first step, we
create an initial path for the switching event. For this purpose,

we choose a coherent rotation with the uniform magnetization
mini as our initial state. The final state of the initial path is
represented by mfin. This path is discretized by 21 distinct
magnetization configurations, which sample the continuous
transition path in an equidistant fashion with respect to an
appropriate norm [23]. In a second step, each of these 21
magnetization configurations is evolved a certain amount
towards its nearest energetic minimum, and in a final step,
the 21 magnetization states are rearranged along the path
in order to restore the equidistant discretization of the path.
The last two steps are repeated until we obtain the minimum
energy path (MEP). This final path represents the lowest
energy path and equally, the most probable and favorable way
to switch between initial and final magnetization states with
respect to the given initial path. Figure 2 is an exemplary
illustration for the evolution of the energy paths to obtain the
MEP. In agreement with transition-state theory [24,25] the
energy barrier to switch the magnetization from mini to mfin is
obtained by

�E = E saddle − E ini, (1)

FIG. 2. Evolution of the energy paths during the SISM. For the
configuration c = 63 illustrated in Fig. 1(c), the initial path (blue),
represented by a coherent rotation, evolves towards the MEP (red)
via the intermediate energy paths (gray). Inset figures represent the
magnetization states for State No. = 0 (left), State No. =10 (center)
and State No. = 20 (right) of the MEP.
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TABLE I. Summary of the considered models. The environment describes the magnetization of the NN islands and the central moment the
magnetization of the central island during the switching event.

MODEL MODEL 1 MODEL 2 MODEL 3

Description Mean-barrier Uniform environment Full micromagnetic model
Environment Uniform Uniform Dynamically relaxed
Central island Uniform Dynamically relaxed Dynamically relaxed
Reversal mechanism Coherent rotation Minimum energy path Minimum energy path

where E saddle is the energy corresponding to the saddle point
of the MEP and E ini is the energy of the initial state of the
MEP.

The considered energy contributions for the micromagnetic
modeling are described in Appendix A.

III. MODELING

In this paper, we study the energy barriers between differ-
ent vertex types of sASI. In particular, we show the influence
of the nearest neighbor (NN) islands on the energy barrier by
computing the MEPs with different approaches. The consid-
ered models are summarized in Table I. To obtain a direct
comparison between the models, we use magnum.fe [26], a
finite element method based micromagnetic simulation code,
to calculate the minimum energy path by applying the SISM.
We generate all finite element meshes using Gmsh [27].

We consider magnetic islands similar to those used to
perform kinetic Monte Carlo simulations in literature, for
which the energy barriers needed to be reduced with respect to
those arising using the geometrical and physical properties of
the nanoelements to reproduce the experimentally observed
relaxation. Our islands have a length L = 150 nm, a width
W = 100 nm, an edge-to-edge gap g = 90 nm, and a thick-
ness t = 3 nm.

Furthermore, we use material parameters similar to bulk
permalloy at T = 300 K, with saturation magnetization Ms =
790 kA/m, exchange stiffness constant A = 13 pJ/m and
vanishing uniaxial anisotropy constant K = 0.

In the following, we study the energy barrier for the
switching event of the magnetization of the central island in
a double vertex. Figure 1(c) illustrates such a double vertex
with the central island as the island of interest.

In order to effectively label the 64 possible magnetization
configurations of the NN islands, we introduce the integer
parameter c defined by

c =
5∑

j=0

b j2
j . (2)

The factor b j is obtained by

b j =
{

0, if mk = −1
1, if mk = +1 , (3)

where mk is positive, if the magnetic moment points to
the right (up) for horizontal (vertical) islands, as shown in
Fig. 1(c). The index j denotes the NN island identification
number as illustrated in Fig. 1(c). The arrows in Fig. 1(c)
show the magnetization of the neighboring islands in the
configuration c = 63.

A. Model 1. Mean-barrier approximation

For the first model, we consider the mean-barrier ap-
proximation when the NN islands are present and uniformly
magnetized. Motivated by the symmetry properties of the
strayfield interaction and Zeeman energies, the mean barrier
[15,18–21] of the switching is described by

�Emean = �E isol + 1
2 (Efin − E ini ), (4)

where �E isol is the energy barrier to switch the magnetization
of one isolated nanostructure, Efin the energy of the final
state corresponding to the switched double vertex and E ini the
initial energy of the double vertex. A derivation of Eq. (4) is
given in Appendix B. The magnetizations of the neighbors
as well as of the central island are kept uniform during the
switching event.

Since only the initial and final state are involved in Eq. (4),
we do not need to apply the SISM in this model. In order
to keep each island uniformly magnetized and the reversal
mechanism a coherent rotation, we consider the energy barrier
for one single nanostructure �E isol, which is obtained from
a coherent rotation of the magnetization. Thus, this yields
�E isol = 1.37 eV.

B. Model 2. Uniform environment

As a step further, we apply the SISM in this model in
such a fashion that the magnetic region �m covers only the
central island, where �m denotes the magnetic region, where
the SISM iteratively minimizes the energy to find the MEP,
taking into account all energy contributions of the system. We
continue keeping the NN islands uniformly magnetized.

Under these assumptions, the total energy of the system
also includes the strayfield interactions between the central
island and the NN islands, as in the previous model. The
interaction energies among the NN islands are constant during
the switching process due to their uniform nature. Therefore,
the difference in their saddle point energy and initial energy
vanishes. Note that the reversal mechanism is not a perfect
coherent rotation anymore. The deviation from the rotation
of a perfect uniformly magnetized configuration is associated
with the application of the SISM, which allows the relax-
ation of the magnetization, i.e., deviation from the perfectly
uniform configuration, for each step of the MEP taking into
account both the shape of the island (shape anisotropy) and
the interactions fields originating from the NN islands.

C. Model 3. Full micromagnetic model

For the last approach, we include all the seven islands in the
magnetic region �m, where the string method is applied. Thus
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FIG. 3. Rotation directions for the switching event on the central
island. We refer to a switching event with mini = (−1, 0, 0), msaddle

CCW =
(0, −1, 0), and mfin = (1, 0, 0) as a left to right counterclockwise
rotation (LR CCW). If the saddle point configuration is changed to
msaddle

CW = (0, 1, 0), this becomes a left to right clockwise (LR CW)
rotation. Likewise, one can define a right to left counterclockwise
rotation (RL CCW) and a right to left clockwise rotation (RL CW).

both the NN islands and the central island are dynamically
relaxed. The interactions among the NN islands change at
each state of the minimum energy path, so they cannot be
neglected in the barrier calculation.

We include indirectly the effect of temperature in our sys-
tem via reduced Ms and A [28–30], allowing for fluctuations
to arise from the decreased coupling energy between the
spins, which could even form magnetic domains. In Model 3,
magnetization inhomogeneities are accounted for not only in
the central island but also in the NN islands. Note that Model
2 also takes into account the fluctuations, however only in the
magnetization of the central island, since the NN islands are
kept uniform.

IV. RESULTS AND DISCUSSION

A. Parallel switching channels

One of the main consequences introduced by Model 2
and Model 3 and that is not predicted by Model 1, is the
dependence of the energy barrier on the direction of the
rotation of the central island’s magnetization. For the sake of
simplicity, we give to each rotation direction an acronym, as
illustrated in Fig. 3.

Thereby, the switching of the central island’s magnetiza-
tion can occur via two parallel channels, clockwise (CW)
and counterclockwise (CCW), which might have a different
switching rate depending on the NN configuration. The result-
ing rate of switching from the Arrhenius law [25,31] is then
defined as

f = 1

τ
= 1

τ0
· (

e− �ECW
kBT + e− �ECCW

kBT
)
, (5)

with τ being the estimated lifetime of the state, τ0 the attempt
period, kB = 8.62 × 10−5eV/K the Boltzmann constant and
T is the temperature. Note that τ0 might be different for each
switching channel. Here, we assume that both channels have
the same attempt frequency.

When a mean barrier approximation is used, the switching
rate is given as

f mean = 2

τ0
· e− �Emean

kBT , (6)

where �Emean is the mean barrier given by Eq. (4), which
is the average barrier between the CW and CCW barriers.
However, in the cases where the rates via the CW and
CCW channels are very different, only the fastest channel
will dominate. Thereby, the mean-barrier approximation leads
to significantly deviating rates underestimating the actual
switching rate. A detailed discussion for these deviations is
given in Appendix B. Under these assumptions, Eq. (5) can be
simplified including only the exponential term corresponding
to the faster channel. Hence, the estimated lifetime for a single
channel is defined by

τ = τ0 · e
�E
kBT . (7)

To better visualize the physical origin of this splitting, con-
sider the large arrows in Fig. 4 (Model 2) in the snapshots
for the saddle point configurations for both CW and CCW
directions. For the former, one can see that approaching the
saddle point configuration, the magnetization vectors of the
central island and vertical NN islands are showing on average
in the same direction, leading to an overall poles-attraction
configuration. In contrast, during a CCW switching process,
the saddle point configuration of the central island points to
the opposite direction. Hereby the conflicting magnetic fields
give rise to pole repulsion, which yields in an additional
energetic level that has to be overcome.

B. Energy barriers

In order to quantify the effect of parallel switching chan-
nels, we first consider a single configuration c = 63, as illus-
trated in Fig. 1(c), and analyze the energy barriers for different
rotation directions. In this case, a left to right (LR) switching
of the magnetization of the central island changes the state
of the double vertex from a Type III–Type III double vertex to
an energetically favorable Type II–Type II. Figure 5 illustrates
the MEPs for both CW and CCW rotations, where the initial
energies have been shifted to zero (see Table II). The results
indicate that the energy barriers for a CW rotation are lower
than for a CCW rotation. As the name suggests, Model 1 is
an approximation of the mean barrier (the detailed derivation
is given in Appendix B) for the CW and CCW rotations, and
thus, the energy path from Fig. 5 is obtained as the average
energy path for these directions using uniformly magnetized
NN islands and a coherent rotation. Figure 4 illustrates the
initial, saddle point and final magnetization configurations for
all models. According to Eq. (4), the energy barrier for Model
1 (orange) depends only on energies of the initial and final
states and does not distinguish between the rotation directions.
Models 2 and 3 (blue and red), however, include the spatial
distribution and symmetry of the neighboring islands in the
minimization process during the string method, thus breaking
this degeneracy.

Namely, when considering the demagnetization field in-
teractions from the neighboring islands, the CW rotation
is energetically favorable over the CCW rotation since its
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FIG. 4. Snapshots of the magnetization states during the reversal process for configuration c = 63. Illustration of the x component of the
magnetizations using Model 1 (orange), Model 2 (blue) and Model 3 (red) for the initial state L, saddle point states for both CW and CCW
rotation directions and final state R. The arrows added in the snapshots (Model 2) indicate average magnetization where the colorbar my

indicates the average y component of the magnetization providing a visual support to understand the magnetostatic interaction between the
central island and its NNs.

intermediate magnetization configurations point in positive y
direction which aligns with the nonzero y component of the
stray field in the configuration c = 63. Table II shows the
values for the energy barriers of the configuration c = 63 and
of the isolated island.

In the following, we focus on the CW rotations for the
configuration c = 63. All models show a significant reduction
of the energy barrier compared to the isolated nanostructure
mainly due to the introduction of the stray-field interaction
with the NN islands.

In contrast to Model 1, Model 2 introduces non-
uniformities in the magnetization of the central island. The
reversal mechanism obtained with the SISM, which is not a
perfect coherent rotation anymore, is associated to a further
reduction of the energy barrier. This discrepancy can be best
seen in Fig. 4. Comparing the snapshots at the saddle point
configurations, one can see that the Model 2 and Model 3
show deviations from the uniform configuration at the saddle
point depicted exemplary in Model 1 and a nonvanishing x

component of the magnetization develops at the saddle point
(in Model 3 also in the vertical NN islands), at variance with
the coherent rotation assumption made in Model 1.

Compared to the widely used mean-barrier approximation
(Model 1), Model 2 reduces the lowest energy barrier (LR
CW) about 28%.

The highest energy barrier reduction is observed for Model
3, which is the full micromagnetic model. In addition to
Model 2, the neighbors are included in the magnetic region
of the SISM, where the energy is minimized. Thus their
magnetizations are dynamically relaxed and may change for
each intermediate state in the transition path.

In this case, the stray-field interactions among the neigh-
boring islands are not constant and the difference of their
saddle point and initial states energies does not vanish. The
lowest energy barrier for this model is reduced by 33%
compared to Model 1 for the configuration c = 63.

Furthermore, only for Model 3 the magnetic system is in
a true energetic equilibrium, since all islands are added in the

TABLE II. Energy barriers and estimated switching times obtained by applying the Models 1–3. The numerical results of the switching
barriers �E and average lifetimes τ to switch the central island’s magnetization from left to right (LR) for both CW and CCW rotation
directions, as visualized in Fig. 3. The estimated switching times were calculated with Eq. (7) using τ0 = 10−10 s and T = 300 K.

Configuration c = 63

Direction Isolated CCW/CW LR CCW LR CW

MODEL No. – 1 2 3 2 3

�E (eV) 1.37 1.16 1.51 1.37 0.83 0.77
τ (s) 9.8 × 1012 2.4 × 109 2.9 × 1015 1.2 × 1013 7.2 × 103 8.4 × 102
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FIG. 5. Minimum energy paths for the switching of the magne-
tization of the central island. The MEPs for c = 63 considering both
CCW (squares) and CW (circles) rotations, where the initial energies
are shifted to zero. Here, the initial double vertex contains two Type
III vertices and one obtains two Type II vertices after switching
the magnetization of the central island from mini = (−1, 0, 0) to
mfin = (1, 0, 0), represented by State No. = 0 and State No. = 20,
respectively.

magnetic region of the string method and their energies have
been minimized.

Animations of the switching process for the configuration
c = 63 using Models 2 and 3 can be found in the Supplemen-
tal Material [32].

Although the differences between the Models 2 and 3 may
seem rather small, they have a major impact on the average
lifetime given by Eq. (7). Since the fastest channel dominates
the switching, we compare the estimated switching times for
LR CW rotation directions for the configuration c = 63.

Here we use the attempt period τ0 = 10−10 s and T =
300 K.

The value of the attempt period is only exemplary to
show the role of the energy barrier reduction regarding the
switching times. The values for τ are given in Table II.

One can see that the estimated lifetime (LR CW) calculated
using Model 2 is approximately up to six orders of magnitudes
lower compared to Model 1, and one order of magnitude
higher with respect to Model 3.

The full micromagnetic model yields a reduction of the
average lifetime by about seven orders of magnitude with
respect to the average barrier Model 1, often used in ASIs
literature.

To show that Model 3 predicts (in nearly all cases) the
lowest energy barriers, we calculate the switching barriers
for all possible configurations c in a double vertex given by
Eq. (2).

Figure 6 shows a direct comparison between the models for
both LR CCW and LR CW rotations.

To obtain the barriers with respect to the final state (RL)
one has to rotate the islands 180◦ around both the vertical
and horizontal axis, since the rotation direction also changes.
In principle, there exists an equivalent CCW barrier for each
CW barrier, but with a different configuration number. If we

FIG. 6. Direct comparison between the Models. Energy barriers
for the switching of the magnetization of the central island using
all possible configurations of the NN islands in a double vertex
illustrated in Fig. 1(c) via LR CCW (a) and LR CW (b) rotation
directions.

consider c = 63 as an example, c = 0 LR CCW has the same
barrier as c = 63 RL CCW.

Figure 6 shows that for all configurations at least one of the
possible energy barriers is the lowest for Model 3.

Since Model 3 describes the evolution of the system
through a saddle point configuration, where each NN island is
dynamically relaxed to its energetic equilibrium, it yields the
most realistic barrier, whereby the initial and final states are
true energy minima. Note that Model 1, as well as Model 2,
can result, in some cases, in lower energy barriers compared to
Model 3. As it can be seen in Fig. 4, the magnetization of the
NN islands are kept uniform for the first two models. Hereby,
the energies of the initial and final states are not properly
minimized, and thus the systems have not reached their true
energetic equilibrium. This points out further limitations of
these models. Consider that nonuniformities in the central
island’s magnetization modeled by Model 2 reduces the initial
and final state energies E ini and Efin, respectively as the sys-
tem approaches its energetic equilibrium by a certain amount
�i,2 with respect to the uniform states utilized in Model 1. The
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FIG. 7. Switching rates for Models 1–3. Log-log plot of the
switching rates given by Eq. (5) for each model. The x axis shows
the switching rates for the possible 64 configurations using Model
3, whereas the y axis shows the switching rates for the Models 1
(orange, crosses) and 2 (blue, triangles). The mean error 〈σ 〉Modeli ,
where i = 1 or i = 2, given by Eq. (8), is shown in the legend. The
values of Model 3 are plotted as a reference line.

saddle point energy E saddle is assumed to be reduced by �s,2.
If �s,2 > �i,2 the switching barrier calculated with Model
2 is lower (for a given rotation direction). However, only
considering Model 3 the micromagnetic simulations can be
performed to their full extent to reach the overall equilibrium
states. As a consequence, the reduction of the initial and
final state energies, �i,3 for the full micromagnetic model is
always greater than �i,2. Hence, an equal reduction of the
saddle point energies for both Models 2 and 3, and thus,
�s,2 = �s,3 can lead to a lower energy barrier for Model 2,
since �i,3 > �i,2.

C. Switching rates

Using our results from Sec. III B, the corresponding
switching rates are calculated with Eqs. (5) and (6), where
the correlation between the models is illustrated in Fig. 7.

The mean error

〈σ 〉Modeli = 1

64

∑
c

fModel3,c

fModeli,c
, (8)

where the value
∑

c
fModel3 ,c

fModeli ,c
sums over the relative deviation

factors for all configurations c, and gives an estimate of the
average deviation from the full micromagnetic model. The
higher the deviation from. 〈σ 〉 = 1, the more inaccurate are
the calculated energy barriers compared to the full micromag-
netic model, Model 3.

Even though Model 1 might be a mathematically valid
approximation of the mean-barrier based on the derivation
given in Appendix B, the concept of an average barrier does
not necessarily imply a physically justifiable input for the
kinetic Monte Carlo simulations, as the mean-barrier approx-
imation approaches its limitations, for significantly different
energy barriers for CCW and CW channels. As shown by the
mean error 〈σ 〉Model1 = 5.64 × 104, the mean switching rate is

FIG. 8. Dependence of energy barriers on sASI material param-
eters for configuration c = 63. Calculated switching barriers as a
function of the saturation magnetization Ms using Model 1 (orange,
crosses), Model 2 (blue), and Model 3 (red) for both LR CCW
(squares) and LR CW (circles) rotation directions.

underestimated by over four orders of magnitudes compared
to the full micromagnetic model. With the introduction of
parallel switching channels and the nonuniformities in the
central island’s magnetization in Model 2, the mean switching
rate already improves significantly compared to Model 1, and
the mean error 〈σ 〉Model2 = 15.4 decreases three orders of
magnitude. Nevertheless, compared to the full micromagnetic
model, the switching rates are underestimated in general
and even overestimated for the cases this model reaches its
limitations, as explained in Sec. IV B.

Considering once more the configuration c = 63, we
calculate the exact average barrier using the values ob-
tained from Model 3, hence, the average barrier is �E avg =
1/2(0.77 + 1.37) eV = 1.07 eV. For the switching rates of
the configuration c = 63 calculated with Eqs. (5) and (6) we
obtain fModel3 = 1.2 × 10−3 s−1 and f avg = 2.2 × 10−8 s−1.
Compared to f mean obtained with the mean-barrier from
Model 1, which is fModel1 = 6.6 × 10−10 s−1, we see that the
proper micromagnetic modeling fModel1 → f avg leads to an
increase of the switching rate up to two orders of magnitudes,
whereas differentiation between parallel switching channels
f avg → fModel3 improves the switching rate by additional five
orders of magnitude.

D. Material parameters

In order to further validate our findings, we vary the
saturation magnetization Ms and calculate the energy barriers
for a LR switching using the configuration c = 63. Here the
exchange stiffness constant is scaled [29,30,33] according
to A(Ms) = A0 · (Ms/M0)1.7, where A0 = 18 pJ/m and M0 =
950 kA/m are the exchange stiffness and saturation magneti-
zation at T = 0 K.

As depicted in Fig. 8, independently from the choice
of the material parameters, the full micromagnetic model
gives always the lowest energy barriers, and thus, the highest
switching rates. Furthermore, the differences between the CW
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and CCW switching channels increase with Ms, yet the CW
channel yields always the lower barrier. Note that a decrease
in Ms is equivalent to an increase of the temperature at which
the simulations are performed. Hence, as Ms decreases the
temperature of the system approaches TCurie and the overall
barriers are decreasing, so significantly diminishing the abso-
lute differences between the models. That being said, in order
to effectively calculate energy barriers and reproduce experi-
ments, it is of crucial importance to accurately determine the
material laws for A and Ms as a function of temperature. The
scaling method can be seen as a limitation of the proposed full
micromagnetic model, where the effect of thermal fluctuations
is introduced only indirectly via the above mentioned micro-
magnetic parameters, rather than making use of stochastic
methods like Langevin dynamics [34,35], Landau-Lifshitz-
Bloch equation [36–38] or constrained Monte Carlo [39].

In summary, our results indicate that the values obtained
with Model 1 deviate significantly from the values of Model
3. The mean barrier approximation falsely overestimates the
energy barriers when an interaction field with a nonvanishing
y component acts on the central island, and thus, the CW and
CCW barriers are different. As a consequence, the switching
rates are underestimated. Although Model 2 recovers the most
important shortcomings of Model 1 by using micromagnetics
and differentiating between CW and CCW channels, it is
Model 3 that gives the lowest and more realistic energy
barriers. Thereby, independently from the chosen material
parameters, Model 3 provides the best approximation of the
energy barriers and transition rates that should be utilized
to model dynamical processes in sASI lattices, since the
probability of switching the magnetization of an island is
directly proportional to these rates.

V. CONCLUSIONS

In this paper, we use the SISM to calculate all energy
barriers to switch the magnetization of the central island of
a double vertex in square artificial spin ice.

We investigate the influence of the nearest-neighbor islands
on the energy barrier in a square artificial spin ice lattice by
calculating the energy barrier with three different approaches.

In the first model we consider the widely used mean-barrier
approximation. Besides the nonuniformities in the magnetiza-
tion of the island of interest already considered in Model 2,
the last model, Model 3, is a full micromagnetic model where
each magnetization is dynamically relaxed depending on each
other.

As a first relevant result, Model 2 yields different minimum
energy paths for CCW and CW rotation directions for particu-
lar configurations, where the most probable switching occurs
via the channel with the lowest energy barrier. This distinction
between CW and CCW reversal is completely neglected by
the average model, Model 1, often utilized in ASIs literature.

To conclude our results, the energy barrier for switching
the magnetization of an island in an artificial spin ice lattice
can be reduced significantly applying a full micromagnetic
model on a double vertex (Model 3) compared to the energy
barrier obtained with the mean-barrier approximation.

The interactions originating from the demagnetization
fields from the neighboring islands and the consequent energy

difference between CW and CCW reversal paths are the first
key reason for this reduction. The inhomogeneities in the mag-
netizations of both the central islands and of the dynamically
relaxed neighbors, that arise during the reversal, introduce an
additional contribution to the reduction of the energy barriers.
Both effects are neglected in the mean-barrier approximation.

In most drastic cases the mean-barrier approximation can
result in energy barriers 35% higher as Model 3.

While the ad hoc reduction of the barriers often applied
in mean-barrier model can fix particular barriers, it can over-
or underestimate the barriers leading to different dynamics
when simulating artificial spin ice systems. The main reason
resides in the fact that an average barrier reaches its limitations
and has no physical significance regarding the switching rates
utilized in the kinetic Monte Carlo simulations.

The presented full micromagnetic model is general and can
also be applied for other artificial spin ice lattice types and
magnetic materials, if both the number and spatial arrange-
ment of the nearest neighbors are adapted.
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APPENDIX A: MICROMAGNETIC ENERGIES

According to the SISM, we minimize the total energy of
a chosen magnetic region �m. For our purposes, we consider
the total energy by means of micromagnetics [40] as

E tot = Edem + E ex, (A1)

where Edem denotes the demagnetization energy and E ex

represents the ferromagnetic exchange energy. We do not
consider any externally applied magnetic fields. The demag-
netization energy Edem is described as

Edem = −μ0Ms

2

∫
�m

m · Hdemdx, (A2)

where μ0 is the vacuum permeability, �m defines the magnetic
region, and m represents the normalized magnetization vector.

The demagnetizing field Hdem is given by

Hdem(x) = −Ms

4π

∫
�m

∇∇′ 1

|x − x′|m(x′)dx′. (A3)
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Moreover, the ferromagnetic exchange energy favoring a par-
allel alignment of the spins is defined as

E ex =
∫

�m

A(∇m)2dx, (A4)

where A is the exchange stiffness constant.

APPENDIX B: MEAN-BARRIER APPROXIMATION

Especially for kinetic Monte Carlo simulations of artificial
spin ice, the mean switching barrier is often expressed solely
depending on the energies of the initial and final energy state.
The initial and final state energies can be easily calculated
using the point-dipole model or regular micromagnetic simu-
lation codes, where each island is uniformly magnetized, with
a single-island switching barrier E isol added as an independent
parameter.

The reason that the energies of the intermediate states
do not need to be considered in this simple approximation
is based on the symmetry properties of the stray field and
Zeeman interactions, whose energies are antisymmetric under
rotations of π , i.e., E (φ + π ) = −E (φ). Under the assump-
tions of a Stoner-Wohlfarth particle as central island and
constantly magnetized neighboring islands, the total energy of
the central island is given by an anisotropy and Zeeman term
in the form

E (m, H ) = E ani(m) + E zee(m, H ), (B1)

with

E ani(m) = −KV (m · (1, 0, 0))2, (B2)

E zee(m, H ) = −μ0μsm · H, (B3)

where KV = keff · V denotes the product of the effective
anisotropy constant keff (basically due to the shape anisotropy)
and the volume of the isolated nanostructure V , and μs =
Ms · V is the total magnetic moment. Furthermore, we assume
that this field is sufficiently weak, so that both the initial
and final states can be approximated by mini = (−1, 0, 0) and
mfin = (1, 0, 0). In general, the value of the activation barrier
is given by the difference between the saddle point energy
E saddle as given by Eq. (1), i.e., central moment pointing up,
E saddle

CW with msaddle
CW = (0, 1, 0), or down, E saddle

CCW with msaddle
CCW =

(0,−1, 0) in a configuration c, and the initial energy of the
configuration E ini. Note, that the magnetization state with the

maximum energy involved in the energy barrier calculation
can significantly deviate from msaddle

CW/CCW for high interaction
fields. We assume that this deviation is also negligible. In this
context we obtain

E ini(H ) = E (mini, H ) = −KV + μ0μsHx, (B4)

Efin(H ) = E (mfin, H ) = −KV − μ0μsHx, (B5)

E saddle
CW (H ) = E

(
msaddle

CW , H
) = −μ0μsHy, (B6)

E saddle
CCW (H ) = E

(
msaddle

CCW , H
) = +μ0μsHy. (B7)

We get for the energy barrier of an isolated nanostructure

�E isol = E saddle
CW (H = (0, 0, 0)) − E ini(H = (0, 0, 0)) = KV .

With this result, we are finally able to express the mean-
energy barrier of the CW and CCW channels by �E isol, Efin,
and Efin as in Eq. (4):

�Emean = 1/2
(
�E saddle

CW + �E saddle
CCW

)
= 1/2

(
E saddle

CW − E ini + E saddle
CCW − E ini

)
= KV − μ0μsHx

= �E isol + 1/2
(
Efin − E ini

)
.

Based on the aforementioned assumptions, Eq. (4) is an
approximation of an average barrier between the two energy
barriers for the corresponding parallel switching channels.
Even when the initial and final states are involved in this
equation, it might neglect the interaction fields originating
from the neighboring islands. In a case, where E ini = Efin,
the mean-barrier coincides with the energy barrier of one
isolated nanostructure, e.g., configuration c = 31. But in
reality there is still an effective field acting on the central
island. According to the Stoner-Wohlfarth Model, the energy
barrier of switching the magnetization of a single domain
particle under the influence of an external field H = (0, Hy, 0)

is �E = �E isol(1 − Hy

Hk
)
2
, where Hk is the strength of the

anisotropy field and Hy the strength of the field acting on the
single-domained particle [41]. With Eq. (4) one would obtain
that �Emean = �E isol. This deviation points out once more,
that the mean-barrier approximation method needs further
corrections, to be used as input for kinetic Monte Carlo
simulations.
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