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Atomic-scale defects restricting structural superlubricity: Ab initio study
on the example of the twisted graphene bilayer
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The potential energy surface (PES) of interlayer interaction of twisted bilayer graphene with vacancies in one
of the layers is investigated via density functional theory (DFT) calculations with van der Waals corrections.
These calculations give a non-negligible magnitude of PES corrugation of 28 meV per vacancy and barriers for
relative sliding of the layers of 7–8 meV per vacancy for the moiré pattern with coprime indices (2,1) (twist
angle 21.8◦). At the same time, using the semiempirical potential fitted to the DFT results, we confirm that
twisted bilayer graphene without defects exhibits superlubricity for the same moiré pattern and the magnitude
of PES corrugation for the infinite bilayer is below the calculation accuracy. Our results imply that atomic-scale
defects restrict the superlubricity of two-dimensional layers and can determine static and dynamic tribological
properties of these layers in a superlubric state. We also analyze computationally cheap approaches that can be
used for modeling of tribological behavior of large-scale systems with defects. The adequacy of using state-of-
the-art semiempirical potentials for interlayer interaction and approximations based on the first spatial Fourier
harmonics for the description of interaction between graphene layers with defects is discussed.
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I. INTRODUCTION

Twisted graphene bilayer has recently attracted consider-
able attention due to its unique electronic properties such as
the possibility to observe superconductivity [1] and formation
of a network of domain walls [2] with topologically protected
helical states [3,4]. Relative rotation of graphene layers also
gives rise to promising tribological properties [5–9], namely,
structural superlubricity, i.e., the mode of relative motion of
the layers with vanishing or nearly vanishing friction [10,11].
This superlubric behavior can be used for elaboration of na-
noelectromechanical systems based on electronic properties
of graphene and relative sliding or rotation of graphene lay-
ers with respect to each other [12–16]. Rotation of graphene
layers to incommensurate superlubric orientations is respon-
sible for such phenomena as self-retraction of graphene layers
[8,9,17,18] and anomalous fast diffusion of a graphene flake
on a graphite surface [19,20]. It should be mentioned that the
phenomenon of structural superlubricity is observed not only
for graphene-based systems [5–9] but also for multiwalled
carbon nanotubes [21], graphene nanoribbons on gold sur-
faces [22], graphene/hexagonal boron nitride heterostructure
[23], etc. (see review [24] for more examples). For these
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two-dimensional (2D) and one-dimensional (1D) materials,
superlubricity is related with the incommensurate contact in-
terface which is formed upon relative rotation of the layers
of the same material to an incommensurate orientation or
because of the lattice constant mismatch for heterostructures
with layers of different materials. In addition to graphene,
a wide family of other 2D materials has been synthesized
lately including hexagonal boron nitride (see Ref. [25] for re-
view), graphane [26], various transition metal dichalcogenides
(see Ref. [27] for review), phosphorene [28], borophene [29],
germanene [30], etc. Heterostructures consisting of layers of
different 2D materials should also be mentioned (see Ref. [31]
for review). Therefore, superlubricity can be expected for a
wide set of incommensurate contact interfaces.

Originally superlubricity for relative motion of 2D lay-
ers was discovered for nanoscale contacts between graphene
flakes and graphite surface [6,32,33]. To explain these ex-
periments, a wide set of theoretical works and atomistic
simulations were performed to study superlubricity between
perfect rigid 2D layers and its loss via rotation of the
layers with the same lattice constant to the commensurate
ground state [6,10,32–38]. The calculations did not reveal any
significant effect of atomic-scale defects on the static fric-
tion in the case of incommensurate contacts between small
graphene flakes and graphene layers [35]. However, some
decrease in the diffusion coefficient of a small graphene
flake on a graphene layer was observed in simulations in the
presence of defects and could be attributed to the increase
in the dynamic friction force [20]. It was shown also that
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superlubricity of very small flakes is restricted by pinning
caused by distortions at the edges [39,40]. This effect becomes
negligible for large flakes [40]. Recently not only nanoscale
but also microscale and macroscale superlubricity between 2D
layers [7–9,23] was observed. Moreover, robust superlubricity
was achieved for systems with a lattice mismatch such as
heterostructures [23] or similar layers under different tension
applied [7,38]. Theoretical studies [41,42] and recent experi-
ments [22,43] suggest that the superlubric friction force per
unit area decreases with increasing the contact area. These
observations generate interest in possible reasons which can
restrict superlubricity of microscale and macroscale incom-
mensurate contact interfaces [8,24,40,44].

Up to now the following factors that restrict macroscopic
robust superlubricity between 2D layers have been consid-
ered: (1) contribution of incomplete unit cells of the moiré
pattern located at the rim area of the layer [44], (2) incomplete
force cancellation within complete unit cells of the moiré pat-
tern [44], and (3) motion of domain walls in superstructures
with large commensurate domains formed upon relaxation
of moiré patterns with spatial periods that are much greater
than the domain wall width [8,24,40]. Based on the studies
of self-retraction motion of macroscopic graphene layers, it
was suggested that the ultralow but nonzero friction for the
layers with an incommensurate relative orientation can be
induced by defects [8] and the possibility of restriction of
superlubricity by defects was discussed in the recent review
devoted to superlubricity of 2D materials [24]. The same
argument was used to explain the nonzero (although very
low) friction observed during macroscopic relative sliding
of nanotube walls [21]. Atomic-scale defects were shown to
increase the dynamic friction in gigahertz oscillators based on
relative sliding of nanotube walls [45,46] and to give the main
contribution into the static friction during superlubric relative
sliding and rotation of nanotube walls [47]. There is a lack of
similar explicit studies of the influence of atomic-scale defects
on friction in the case of macroscopic structural superlubricity
for 2D materials. Here we perform ab initio calculations to
investigate the effect of defects on 2D structural superlubricity
by the example of twisted graphene bilayer with vacancies in
one of the layers and discuss whether the defects can provide
a dominant contribution to friction in the case of macroscopic
superlubricity.

Registry-dependent semiempirical potentials [48–52] were
developed recently for description of interaction of graphene
layers. They make possible modeling of relative sliding and
rotation of the layers in large systems [18–20]. However, these
potentials were fitted to the results of ab initio calculations
in the absence of defects. In the present paper, we consider
the performance of one of these potentials, the Lebedeva po-
tential [50–52], for interaction between the perfect graphene
layer and the one with vacancies via comparison with the
density functional theory (DFT) results. Another approach for
modeling of tribological behavior of a graphene flake on a
graphene layer is based on approximation of the interaction
energy between a single atom and a 2D hexagonal lattice by
the first Fourier harmonics [6,32,33]. The adequacy of such
an approach in the case of the layers without defects was
demonstrated not only for bilayer and few-layer graphene
[50–54] but also for a variety of other 2D materials [55–59].

Here we investigate whether this approach could still work in
the presence of atomic-scale defects like vacancies.

The paper is organized in the following way. In Sec. II,
the model of the superlubric system and calculation methods
are described. Section III is devoted to our results on structure
and energetics of the vacancy, interlayer interaction for the
moiré pattern with the perfect complete cell, and influence
of vacancies on the static friction. The possibility to use a
simple approximation for the interaction between graphene
layers with atomic-scale defects is also considered in Sec. III.
The conclusions and discussion on tribological properties of
macroscopic twisted graphene layers with numerous atomic-
scale defects are presented in Sec. IV.

II. METHODOLOGY

A. Model of superlubric system

An important characteristic which determines tribological
properties of 2D materials is the potential energy surface
(PES), that is, the interlayer interaction energy as a function of
the coordinates describing the relative in-plane displacement
of the 2D layers. Particularly, the PES determines directly
the static friction force for relative motion of the layers. To
consider restriction of macroscopic superlubricity because of
the presence of atomic defects, it is necessary to choose a
model for atomistic calculations in which the contribution
of perfect layers into the PES is negligible. To make such a
choice here, we recall the results of atomistic modeling of
superlubricity in the simple 1D case of double-walled carbon
nanotubes. Namely, for double-walled nanotubes with com-
mensurate walls at least one of which is chiral, the PES of
interwall interaction is extremely flat and its corrugations are
smaller than the accuracy of calculations. This leads to the
negligible static friction in the case of infinite walls (calcu-
lations using periodic boundary conditions) or finite walls
with complete unit cells of the nanotube [47,48,60–62]. For
such nanotubes, due to only partial compatibility of helical
symmetries of the walls, only very high Fourier harmonics of
the interaction energy between an atom of one of the walls and
the whole second wall contribute to the PES, whereas the con-
tributions of other harmonics corresponding to different atoms
of the nanotube unit cell are completely compensated [60].
Thus, commensurate systems can exhibit superlubricity along
with completely incommensurate systems (i.e., double-walled
nanotubes with incommensurate walls). In the superlubric
commensurate systems based on carbon nanotubes, edges [63]
and atomic-scale defects [47] are known to provide the main
contribution into the static friction during relative sliding and
rotation of the nanotube walls.

Evidently infinite incommensurate systems without edges
cannot be considered in the framework of DFT calculations
with periodic boundary conditions. Incommensurate systems
with edges make it difficult to study the restriction of su-
perlubricity by defects since the contribution of edges to
friction should be dominant for system sizes accessible to
DFT calculations. Therefore, a superlubric commensurate
system is a preferred choice for our DFT study. The results for
double-walled nanotubes described above demonstrate that
it is possible to use commensurate systems as models of
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superlubric systems in atomistic simulations. Here we show
that it is also possible for 2D systems.

Whereas twisted graphene bilayer is an incommensurate
system in the general case, a set of commensurate orienta-
tions of the layers is observed for some special twist angles
determined by coprime indices (n, m) [37,64]. Only partial
compatibility of translational symmetries of the layers in
such commensurate moiré patterns is analogous to that for
helical symmetries of the walls in double-walled nanotubes
with commensurate walls at least one of which is chiral. In
Sec. III B below, we confirm that for the complete unit cell
of the commensurate moiré pattern in absence of defects,
contributions of individual atoms into the total PES are com-
pensated within the calculation accuracy. Thus, only defects
give rise to non-negligible PES corrugations and, correspond-
ingly, to static and dynamic friction during relative motion of
the layers.

Therefore, in the present paper, we investigate the influence
of defects on the static friction via the PES calculations for
the complete unit cell of the commensurate moiré pattern. As
an example, we consider graphene layers, one perfect layer
and another with vacancies, rotated with respect to each other
by 21.8◦ and forming the moiré pattern with coprime indices
(2,1) (the commensurate moiré pattern with the smallest unit
cell, Fig. 1). Note that up to now the static friction between
perfect twisted graphene layers has been studied only for
motion of a finite smaller layer relative to the larger one
for incommensurate relative orientations of the layers or the
smaller layer including incomplete unit cells of the moiré pat-
tern [6,10,32–40], that is, only for the cases where the nearly
total compensation of individual friction forces for atoms of
the smaller layer is not possible.

B. Computational details

The PES of twisted graphene bilayer was obtained through
DFT and classical calculations. The spin-polarized DFT cal-
culations were carried out with the VASP code [65]. The
exchange-correlation functional of Perdew, Burke, and Ernz-
erhof (PBE) [66] with the Grimme DFT-D2 dispersion
correction [67] was applied. The parameters of the DFT-D2
correction optimized for bilayer graphene and graphite were
used [68,69]. Interactions of valence and core electrons were
described using the projector augmented-wave method [70].
The Monkhorst-Pack [71] method was applied for integration
over the Brillouin zone. The maximum kinetic energy of
plane waves was at least 500 eV. The Gaussian smearing of
the width of 0.05 eV was used. The convergence threshold
for self-consistent iterations was 10−9 eV. The bond length
between carbon atoms in the perfect layer was taken equal to
l = 1.425 Å, which is the optimal one for the PBE functional.
Correspondingly, the trigonal unit cell of the moiré pattern
with coprime indices (2,1) including 14 atoms in each perfect
layer had equal sides of L0 = 6.528 Å (Fig. 1). The height of
the simulation cell was 25 Å. Periodic boundary conditions
were applied.

First, the structure of the reconstructed vacancy in 2 × 2
and 3 × 3 simulation cells (which correspond to four and
nine unit cells of the moiré pattern and contain 56 and 126
atoms per the perfect layer, respectively) was studied. For

FIG. 1. 2 × 2 simulation cell of graphene layers rotated with
respect to each other by 21.8◦ and forming the commensurate moiré
pattern with coprime indices (2,1) in the absence of defects (a) and
with a reconstructed vacancy (b). The upper and lower layers are
colored in dark and light gray, respectively. (a) The atom that is
removed to create the vacancy is marked in red. The unit cell of the
moiré pattern with sides L0 is shown by the dashed lines. The circle
of radius R around the atom removed within which the contributions
of atoms are taken into account in the approximation by the first
Fourier harmonics is depicted. (b) The new bond of length bv formed
upon the vacancy reconstruction is shown by the red solid line. The
atom with dangling bonds is colored in blue. The axes x and y
corresponding to Figs. 3 and 4 are included. The direction with small
barriers for relative sliding of the layers according to the Lebedeva
potential is indicated by the red double-headed arrow.

that one atom was removed from the perfect graphene layer
[Fig. 1(a)], two of three two-coordinated atoms were brought
closer to each other to form the bond giving rise to the 5/9
vacancy structure [Fig. 1(b)] and geometry optimization was
performed until the maximum residual force of 0.001 eV/Å.
The 10 × 10 × 1 k-point grid was used. The vacancy forma-
tion energy was calculated as εv = Ev − εgrNv, where Ev is the
total energy of the system with the vacancy, Nv is the number
of atoms in this system, and εgr is the energy per atom in the
perfect graphene layer.

To determine the optimal interlayer distance for the twisted
layers, one unit cell of the moiré pattern with coprime in-
dices (2,1) was considered. One of the layers was rigidly
shifted perpendicular to the plane and the energy of the system
was calculated as a function of the interlayer distance. The
14 × 14 × 1 k-point grid was used. The binding energy of
the twisted layers per atom of the upper layer was found as
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Eb = (Ebi − Eup − Elow)/Nup, where Ebi, Eup, and Elow are the
energies of the bilayer, upper and lower layers and Nup is the
number of atoms in the upper layer.

To compute the PES for the twisted layers, the 2 × 2 sim-
ulation cell of the moiré pattern was considered for the upper
layer with a single vacancy in the simulation cell and lower
layer without defects [Fig. 1(b)]. The previously optimized
structure of the layer with the reconstructed vacancy was used.
The calculations were performed on the 14 × 14 × 1 k-point
grid. The layers were placed at the optimal interlayer distance
for the layers without defects and then the upper layer was
rigidly shifted parallel to the plane with steps of 0.154 Å and
0.130 Å in the zigzag and armchair directions of the lower
defect-free layer, respectively.

The classical calculations were carried out using the
registry-dependent Lebedeva potential [50–52]. The parame-
ters of the potential were fitted to the DFT data on the PES of
coaligned graphene layers. The calculations were performed
with the parameters from Ref. [52], cutoff radius of Rc =
16.96 Å, and height of the simulation box of 40 Å. The struc-
tures of the layers were taken from the DFT calculations. The
optimal interlayer distance was obtained for the 6 × 6 simula-
tion cell of the moiré pattern of the twisted defect-free layers.
To study the PES in the presence of vacancies, the upper layer
with nine equidistant vacancies in the 6 × 6 simulation cell
(the 2 × 2 cell from the DFT calculations reproduced three
times along each side of the simulation cell) placed at the
optimal interlayer distance was rigidly shifted with respect to
the lower defect-free layer with steps of 0.019 and 0.016 Å in
the zigzag and armchair directions of the lower defect-free
layer, respectively. The PES for the defect-free layers was
calculated with the same steps in the 18 × 18 simulation cell
of height 100 Å for the cutoff radii Rc of the potential from 16
to 50 Å.

III. RESULTS

A. Structure and energetics of vacancy

As known from the previous studies [72–77], the en-
ergetically favorable structure of the vacancy in graphene
corresponds to the 5/9 structure in which two of three atoms
with dangling bonds form a new bond giving rise to nine- and
five-membered rings [Fig. 1(b)]. The comparison of the length
bv of the new bond and vacancy formation energy εv with the
data from literature is given in Table I. A more detailed review
of the previous results can be found in Ref. [73]. It is seen
from Table I that the bond lengths bv and vacancy formation
energies εv obtained here agree with the previously reported
values lying in the ranges of 1.8–2.0 Å and 7.4–7.8 eV, re-
spectively.

Some of the previous calculations [75] predicted that the
atom that is left with dangling bonds in the 5/9 structure
[shown in blue in Fig. 1(b)] exhibits significant deviation dv

perpendicular to the graphene plane, although the flat structure
was observed in other papers [72,76] (Table I). To clarify
this, we considered several initial structures with out-of-plane
deviation of the atom with dangling bonds of up to 0.4 Å.
However, we found that the final relaxed structure was always
flat in the spin-polarized calculations and the flat vacancy

TABLE I. Bond length bv of the new bond in the 5/9 vacancy
structure, vacancy formation energy εv, and out-of-plane deviation
dv of the atom with the dangling bonds in single-layer graphene
obtained by spin-polarized PBE-DFT calculations here and in the
previous papers for simulation cells with a different number of atoms
N (before vacancy formation).

Ref. N bv (Å) dv (Å) εv (eV)

This work 56 2.077 0 7.70
This work 126 1.977 0 7.64
[76] 288 1.80 0 7.36
[72] 128 2.02 0 7.64
[75] 72 1.95 0.184 7.67
[74] 56 7.72
[77] 128 7.73

structure was used in the further PES studies. It should be also
noted that in the non-spin-polarized calculations, on the con-
trary, the relaxed structures were characterized by significant
out-of-plane deviations. Clearly, account of spin polarization
related to the presence of an unpaired electron in the recon-
structed vacancy is crucial for adequate description of the
vacancy structure.

According to our calculations, the bond lengths bv of the
new bonds for the 2 × 2 and 3 × 3 simulation cells are differ-
ent by 0.1 Å and the vacancy formation energies εv by 0.06 eV.
These differences indicate that there is still some interaction
of periodic images of the vacancies. However, they are suffi-
ciently small to assume that the PES computed for the vacancy
in the 2 × 2 simulation cell is close to that for the isolated
vacancy. Note also that the differences in the bond lengths
and vacancy formation energies for the two simulation cells
considered are small compared to the scatter in the results of
DFT calculations reported in literature (Table I and Ref. [73]).

B. Interlayer interaction for defect-free moiré
pattern with complete unit cell

The optimal interlayer distances deq and binding energies
Eb for twisted graphene as well as their changes compared
to the AB stacking (δdeq and δEb, respectively) obtained here
and the corresponding data available in literature are listed in
Table II. Note that the PBE-D2 approach with the standard
parameters for the dispersion correction used in Ref. [74]
underestimates the optimal interlayer distance and overesti-
mates the binding energy of graphene layers [68]. Using the
parameters for the dispersion correction adjusted specifically
for graphene [68,69], we got more reasonable values of the
optimal interlayer distance and binding energy and slightly
smaller changes in the interlayer distance and binding energy
upon changing the twist angle from 0 to 21.8◦. Similar optimal
interlayer distance and its change were reported previously
in Ref. [64], although the variation in the binding energy
obtained in that paper is smaller. The Lebedeva potential gives
the changes in the interlayer distance and binding energy upon
twisting the graphene layers closer to those from Ref. [74]
since it was fitted to the data obtained by the same PBE-D2
approach.
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TABLE II. Calculated optimal interlayer distance deq (in Å) and
binding energy Eb (in meV/atom) per atom of the upper layer for
twisted bilayer graphene with the (2,1) moiré pattern and changes in
the optimal interlayer distance δdeq (in Å) and binding energy δEb

(in meV/atom) as compared to the AB stacking.

Ref. Method deq Eb δdeq δEb

This work DFT 3.40 −39.1 0.08a 3.6a

[64]b DFT 3.41 0.09 2.7
[74] DFT 3.30 −48.0 0.10 4.2
This work Lebedeva 3.46 −41.8 0.09c 4.7

potential

aSee calculations within the same approach in Ref. [68].
bThe results for graphite bulk.
cSee calculations within the same approach in Refs. [50,51].

To distinguish the effect of vacancies, we first computed
the PES for defect-free twisted graphene layers forming the
(2,1) moiré pattern using the Lebedeva potential [50–52]. It
can be appreciated from Fig. 2 that for a finite cutoff radius Rc

of the potential, the main contribution to this PES is provided
by high spatial harmonics. Upon increasing the cutoff radius
Rc, the PES preserves its symmetry but the PES shape changes
because of the cancellation of more and more harmonics. At
the same time, the magnitude Umax of corrugation, i.e., the dif-
ference between the global energy maxima and minima at the
same interlayer distance, decreases exponentially (Fig. 2(c)).
From the calculations with the cutoff radius of Rc = 50 Å, we
estimate that the magnitude Umax of PES corrugation in the
defect-free system does not exceed 6 × 10−6 meV per atom
of the upper layer.

Different from our results, a considerable area contribution
into the force necessary for in-plane relative displacement
of graphene layers (“area force” proportional to the number
of complete unit cells) was found in Ref. [44] for twisted
graphene bilayer with the same (2,1) moiré pattern as well
as other moiré patterns with greater unit cells using the
Kolmogorov-Crespi potential [49]. This discrepancy can be
attributed to the following reasons. First, the cutoff radius used
in Ref. [44] was only 16 Å, i.e., three times smaller than the
maximal cutoff radius used here. Thus, the area force found in

Ref. [44] can be an artifact of the insufficient cutoff radius [see
our Fig. 2(a) for the same cutoff]. Second, the shapes of the
PES for infinite commensurate graphene bilayer without twist
are different for the Lebedeva and Kolmogorov-Crespi poten-
tials. According to the DFT studies [50–54], the PES of the
commensurate graphene bilayer can be described well using
only the first spatial Fourier harmonics (see also Sec. III D).
The parameters of the Lebedeva potential were specifically
fitted to reproduce this property of the PES, whereas the shape
of the PES for the Kolmogorov-Crespi potential considerably
deviates from that for the first spatial Fourier harmonics [51].
This means that amplitudes of higher harmonics of the PES
for the interaction between an atom of one layer and the whole
perfect adjacent layer for the Kolmogorov-Crespi potential are
considerably greater than those for the Lebedeva potential.
This can in principle lead to an incomplete cancellation of
atomic contributions into the PES for moiré patterns with
small unit cells even for the complete cell. Detailed studies
of this problem are beyond the scope of the present paper.
Moreover, the accuracy of DFT calculations of PESs for 2D
materials and hence the accuracy of the calculations using
potentials fitted to such PESs may be insufficient to consider
effects related with high spatial Fourier harmonics.

C. Vacancy influence on static friction

When a vacancy is created in one of the layers, the mag-
nitude Umax of corrugation becomes tens of meV per vacancy,
i.e., it is no longer negligible. The PES obtained by the DFT
calculations for this system is shown in Fig. 3(a). The posi-
tions of minima and maxima on this PES are determined by
the vacancy position with respect to atoms of the underlying
layer. The maxima are displaced by 0.10 Å from the stackings
where the atom removed to create the vacancy [shown in red
in Fig. 1(a)] is located on top of centers of hexagons of the
lower layer. The positions of the minima are close to the
stackings where the atom removed to create the vacancy is
located on top of an atom of the lower layer. Only positions
on top of atoms of one sublattice (we denote it A) correspond
to the minima. The positions on top of atoms of the second
sublattice (B) are neither minima, nor maxima. The minima
are displaced from the on-top positions by 0.10 Å.

FIG. 2. Interaction energy U (in meV per atom of the upper layer) of defect-free twisted graphene bilayer forming the moiré pattern with
coprime indices (2,1) as a function of relative displacement of the layers in the zigzag (ux , in Å) and armchair (uy, in Å) directions of the lower
layer computed at the optimal interlayer distance of 3.46 Å using the Lebedeva potential for interlayer interaction with the cutoff radii Rc of
(a) 16 Å and (b) 50 Å. The energy is given relative to the minimum. (c) Calculated magnitude Umax of potential energy surface corrugation (in
meV per atom of the upper layer) as a function of the cutoff radius Rc of the potential (in Å).
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FIG. 3. Interaction energy U (in meV per vacancy) of twisted graphene bilayer forming the moiré pattern with coprime indices (2,1) and
one vacancy in the upper layer in the 2 × 2 simulation cell (see Fig. 1) computed (a) via the DFT calculations and (b) using the Lebedeva
potential for interlayer interaction as a function of relative displacement of the layers in the zigzag (ux , in Å) and armchair (uy, in Å) directions
of the defect-free layer at the interlayer distances of (a) d = 3.40 Å and (b) d = 3.46 Å. The energy is given relative to the minimum. White
circles correspond to relative positions of the layers where the atom of the upper layer removed to create the vacancy is on top of an atom of
the lower layer. The sublattice A or B which the atom belongs to is indicated. (c) Interaction energy U (in meV per vacancy) as a function of
displacement (u, in Å) along the straight paths between adjacent energy minima of the potential energy surface computed with the Lebedeva
potential, as depicted in panel (b). The results of the calculations with the potential are shown by lines and of the DFT calculations by symbols:
1, blue solid line and squares; 2, green dashed line and triangles; 3, magenta dash-dotted line and circles. The dotted curves obtained by
polynomial fitting of the DFT data are included to guide the eye.

The magnitude Umax of PES corrugation according to the
DFT calculations is 28.0 meV per vacancy [Fig. 3(a)]. It
can be compared to the value for the coaligned commensu-
rate bilayer (with zero twist angle), which is 15.6 meV per
atom of the upper (adsorbed) layer according to the calcula-
tions with the same functional [68]. The barriers for relative
sliding of the layers between adjacent energy minima corre-
sponding to the vacancy positions on top of atoms of the same
sublattice A are 7–8 meV [see also Fig. 3(c)]. In the coaligned
commensurate bilayer, the barrier is 1.7 meV per atom of the
upper layer [68]. For the twisted bilayer with the vacancy,
the saddle points are located about 0.8–1 Å away from the
minima. Therefore, we can estimate that the static friction
force of about 12–16 pN per vacancy should be applied to
make the layers slide with respect to each other. For the
coaligned commensurate bilayer, this force is about 6 pN per
atom of the upper layer [68,78]. It is clear that the magni-
tude of PES corrugation, barriers for relative sliding of the
layers, and static friction force in twisted bilayer are strongly
reduced compared to the coaligned commensurate bilayer. For
the simulation cell considered here that corresponds to the
relatively high density of vacancies, the ratios of magnitude
of PES corrugation, barriers for relative sliding of the layers,
and static friction force for the twisted and coaligned layers
are only 0.03, 0.07–0.09, and 0.04–0.05, respectively. The net
contribution of randomly distributed and orientated defects is
discussed in the Discussion and Conclusions.

The PES computed using the Lebedeva potential is shown
in Fig. 3(b). It has a number of similarities with the PES
from the DFT calculations but also some differences. The
maxima of the classical PES are located at exactly the same
points as those of the ab initio PES. There are shallow local
minima at the same positions as the global minima on the ab
initio PES with the vacancy almost on top of the atoms of
the A sublattice. However, new minima are also observed on
the classical PES 0.36 Å away from the positions where the
vacancy is close to the atoms of the B sublattice and these
minima are 1.6 meV lower in energy than the shallow ones.

The magnitude Umax of PES corrugation for the Lebedeva
potential is 30.2 meV [Fig. 3(b)], which is only 8% higher
than the DFT value. To estimate the barriers for relative slid-
ing of the layers between energy minima, we considered the
straight lines connecting the adjacent minima of the classical
PES and computed the energy variation along these lines
[Fig. 3(c)]. The estimated barrier for one of these lines (path
3) agrees reasonably well with the DFT value, 9.4 meV vs
about 8 meV per vacancy, respectively. However, the barriers
for sliding along the other lines are considerably smaller, 2.2
and 2.6 meV. It can be indeed appreciated from Fig. 3(b) that
according to the semiempirical potential, there is a preferred
direction for relative sliding of the layers in one of the zigzag
directions. This direction is indicated by the red double-
headed arrow in Fig. 1(b). This property is not observed in
the DFT calculations that give similar barriers for different
directions of motion [Figs. 3(a) and 3(c)]. Thus, the Lebedeva
potential is able to describe the principal features to the PES
of the twisted layers with a vacancy (symmetry, positions of
the maxima and half of the minima, magnitude of corrugation,
barriers across the preferred direction for sliding) but fails
to describe its fine details (energies for relative positions of
the layers with vacancies of top of atoms of the B sublattice,
barriers along the preferred direction for sliding).

To investigate how the interaction between vacancies af-
fects the PES, we also performed PES calculations for four
equidistant vacancies in the 6 × 6 simulation cell using the
Lebedeva potential. The structure of the layer with vacancies
was taken from the DFT calculations for one vacancy in the
3 × 3 cell. These calculations revealed only minor changes
in the PES as compared to the results for the 6 × 6 sim-
ulation cell with nine vacancies, i.e., one vacancy per the
2 × 2 cell, discussed above. The magnitude of corrugation
increased to 30.6 meV per vacancy, i.e., only by 2%. The
relative energy of shallow minima increased to 1.8 meV per
vacancy, i.e., by 14%. The barriers along paths 1, 2, and 3
in Fig. 3(c) became 2.1, 2.8, and 11.2 meV per vacancy, i.e.,
changed by −20%, +25%, and +20%, respectively. These
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relative changes are not large given the accuracy of DFT
calculations or calculations with the potential fitted to the
DFT results. For example, the DFT data on the barrier for
relative sliding of commensurate graphene layers reported in
literature vary in the wide range from 0.5 to 2.1 meV/atom
(see Refs. [49,50,53,54,68], and references therein). Note that
more consistent values of 1.55–1.62 meV/atom are obtained
when the interlayer distance is fixed at the experimental one
[68]. Still the experimental data on the width of domain walls
[79] and shear mode frequencies in bilayer and few-layer
graphene [52] suggest somewhat different barriers of 2.4 and
1.7 meV/atom, respectively. Therefore, the typical error of
calculations of barriers for relative sliding of van der Waals–
bound layers within the DFT and DFT-based approaches is
40%. Given this accuracy, the calculations for one vacancy in
the 2 × 2 cell look sufficient for qualitative and even quanti-
tative description of the PES.

D. Approximation by the first Fourier harmonics

Another approach that can be used to model interlayer
interaction in large-scale van der Waals systems is based
on the PES approximation by the first spatial Fourier har-
monics [50–55,57–59]. Such an approach is even cheaper
computationally than those based on semiempirical poten-
tials. The possibility to reproduce the PES obtained by the
DFT calculations in this way was demonstrated not only for
graphene bilayer [50–54], but also for hexagonal boron nitride
(h-BN) [55], hydrofluorinated graphene [56] bilayers, and
graphene/h-BN heterostructure [57–59]. The hypothesis that
the possibility of approximation of the PES by the first Fourier
harmonics is a universal property of diverse 2D materials was
proposed [56]. Let us discuss whether the approximation by
the first Fourier harmonics can still be used in the presence of
defects.

The interaction energy between a single atom and a 2D
hexagonal lattice is described by the first Fourier harmonics
as [32]

Uhex = 2U1[2 cos(kxux ) cos(kyuy) + cos(2kyuy)] + const,
(1)

where x and y axes are chosen in the zigzag and armchair
directions, respectively, kx = 2π/

√
3l , ky = 2π/3l (l is the

bond length), �u is the relative position of the atom with respect
to the lattice (�u = 0 corresponds to the case when the atom
is located on top of one of the lattice atoms), and parameter
U1 depends on the interlayer distance. The interaction of a
single atom with a 2D honeycomb lattice consisting of two
hexagonal sublattices can then be written as

Uhon = 2U1

[
2 cos (kxux ) cos

(
kyuy + π

3

)

− cos

(
2kyuy + 2π

3

)]
+ const. (2)

To investigate whether the PES of twisted graphene layers
with defects can be described by the first Fourier harmonics,
we summed up contributions corresponding to Eq. (2) for
all atoms for the upper layer with the vacancy. From the
classical calculations of the PES for coaligned graphene layers
at the interlayer distance of 3.463 Å optimal for the twisted

defect-free layers, we estimated U1 = 2.7 meV. The PES
computed for the 2 × 2 simulation cell of the moiré pattern
with coprime indices (2,1) with a vacancy based on Eq. (2) is
shown in Fig. 4(d). As seen from comparison with Fig. 3(b),
the shape and quantitative characteristics of the classical PES
are well reproduced. The root-mean-square deviation of the
approximation from the classical PES is only 0.05 meV per
vacancy, which is within 0.2% of the magnitude Umax of PES
corrugation. The maximal deviation of the approximation is
0.13 meV, which is 0.4% of Umax, and Umax itself is different
by only 0.2%.

For the twisted layers without defects forming an infinite
commensurate moiré pattern, the contributions from all the
atoms of one layer cancel each other [we checked this numer-
ically for the (2,1) moiré pattern]. Therefore, the PES can be
also computed as a sum of differences �Ui = Ui,vac − Ui,ideal

of contributions Ui,vac and Ui,ideal given by Eq. (2) for atoms
in the layer with the vacancy and the same layer before the
vacancy formation. For the atom i0 that is removed upon
the vacancy formation [shown in red in Fig. 1(a)], the first
of these two terms is zero: Ui0,vac = 0. It can be expected
that �Ui goes to zero for atoms far from the atom removed,
which have virtually the same position in the layers with and
without the vacancy. Therefore, one can think on counting
the contributions only from the atoms within some radius R
from the atom removed [Fig. 1(a)]. Our calculations show
that already for the radius of R = 1.6 Å, which corresponds
to the account of only the nearest neighbors of the atom
removed, the PES displays the preferred direction for sliding
[Fig. 4(a)]. This feature becomes much more prominent upon
inclusion of the second and further neighbors [Fig. 4(b)]. For
R = 5 Å, which is close to the maximal possible for the 2 × 2
simulation cell considered, the PES looks already similar to
the one computed using the Lebedeva potential [Fig. 3(b)]. For
this radius, the root-mean-square deviation is 1 meV, which
is about 4% of the magnitude Umax of PES corrugation. The
deviations of up to 2 meV, i.e., 7% of Umax, are observed. The
magnitude of corrugation itself is higher by 5%. This radius
can be considered as a characteristic radius of the vacancy for
the phenomena related to interlayer interaction.

The approximation by the Fourier harmonics can also be
used to get insight into the origin of differences in the results
of the classical and DFT calculations. In the classical calcu-
lations and approximation considered above, all the atoms of
the upper layer interact with the lower layer in the same way.
However, atoms in close vicinity of the vacancy carry different
charges and spins and should interact in distinct ways. This
can be taken into account by changing the parameter U1 for
different atoms. It can be expected that the contribution of the
atom with dangling bonds differs the most [shown in blue in
Fig. 1(b)]. Reducing for it the parameter U1 by 20%−50%,
the PES becomes qualitatively similar to the one obtained by
the DFT calculations [Fig. 3(a)]. The former global minimum
becomes unstable and the barriers for relative displacement
along and across the preferred direction for sliding become
similar in magnitude [Fig. 4(e)]. The root-mean-square devi-
ation from the ab initio PES is minimized when U1 for the
atom with dangling bonds is reduced by 37%. In this case, the
magnitude Umax of PES corrugation for this approximation
is only 0.4% greater than the DFT result. The barriers for
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FIG. 4. Interaction energy U (in meV per vacancy) of twisted graphene bilayer forming the moiré pattern with coprime indices (2,1) and
one vacancy in the upper layer per the 2 × 2 simulation cell (see Fig. 1) approximated by the first Fourier harmonics according to Eq. (2) as
a function of relative displacement of the layers in the zigzag (ux , in Å) and armchair (uy, in Å) directions of the defect-free layer. The radius
R of the circle around the atom that is removed to create the vacancy within which the contributions of atoms are taken into account [see
Fig. 1(a)] equals (a) 1.6 Å, (b) 3.0 Å, and (c) 5.0 Å. All atoms of the simulation cell are taken into account in panels (d) and (e). The parameter
of the approximation is U1 = 2.7 meV. In panel (e), the parameter U1 for the atom with dangling bonds in the structure with the vacancy [see
Fig. 1(b)] is reduced by 37%. The energy is given relative to the minimum.

sliding are about 8 meV per vacancy, very close to the DFT
estimate. The root-mean-square deviation from the ab initio
PES is 1.6 meV per vacancy, i.e., 6% of the magnitude of PES
corrugation. Probably this deviation can be further minimized
by introducing slightly different U1 for atoms forming the new
bond in the reconstructed vacancy [Fig. 1(b)].

To summarize, the approximation by the first Fourier
harmonics provides an extremely cheap alternative to DFT
calculations and even calculations with classical potentials.
Only the atoms in close vicinity of local defects, i.e., within
5 Å in the case of the vacancy, need to be taken into account
to get reasonable accuracy. Differentiation of the parameters
for atoms within the defect makes possible adequate approxi-
mation of DFT results even in the presence of spin-polarized
defects.

IV. DISCUSSION AND CONCLUSIONS

The density functional theory with van der Waals correc-
tion was applied in the present paper to study the restriction of
structural superlubricity coming from atomic-scale defects by
the example of twisted bilayer graphene with coprime indices
(2,1) of the commensurate moiré pattern and vacancies in one
of the layers. For the purpose of this study, the vacancy struc-
ture and the PES of interlayer interaction for perfect twisted
bilayer graphene were calculated. The structure of the isolated
reconstructed vacancy was found to be flat in accordance
with the majority of the previous studies [72,76] (see also
Ref. [73] for review). Corrugations of the PES for defect-free
twisted graphene layers forming the (2,1) moiré pattern were

computed using the Lebedeva potential fitted to the DFT data
and turned out to be less than the calculation accuracy. From
the calculations with the largest cutoff radius of the potential
considered, it can be concluded that the magnitude of PES
corrugation in this case is less than 10−5 meV per atom of
the upper layer. This contradicts the previous results [44]
obtained using the Kolmogorov-Crespi potential. However,
the discrepancy should be mostly attributed to the low value
of the cutoff radius of the potential used in that paper.

The DFT calculations for the twisted bilayer with va-
cancies in one of the layers gave the magnitude of PES
corrugation of 28 meV per vacancy and the barriers for rel-
ative sliding of the layers in different directions of 7–8 meV
per vacancy. Thus, the presence of atomic-scale defects leads
to non-negligible friction for twisted layers. For comparison,
in the coaligned commensurate bilayer, the magnitude of PES
corrugation and barrier for relative sliding of the layers are
16 and 1.7 meV per atom of the upper layer, respectively
[68]. Thus, the friction in the twisted bilayer with a rea-
sonable density of vacancies is still small compared to the
coaligned commensurate bilayer but large compared to defect-
free twisted bilayer. According to our DFT calculations, the
static friction force of about 12–16 pN per vacancy is required
to induce sliding of the layers with respect to each other.

Let us discuss applicability of the results obtained for
the twisted graphene bilayer with the commensurate (2,1)
moiré pattern to other 2D superlubric systems. As for the
extreme PES flatness, previously the total compensation
of atomic contributions into the PES (within the calcula-
tion accuracy) was demonstrated for complete unit cells of
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commensurate double-walled nanotubes with at least one chi-
ral wall [47,48,60–62]. For such nanotubes, the extremely
flat PESs were found both via DFT calculations [62] and
using various empirical potentials [47,48,60,61]. At the same
time, the PES corrugations obtained by different calculation
methods for the (5,5)@(10,10) nanotube with compatible
symmetries of the walls differ by two orders of magnitude
[47,61,62,80–83]. Thus, the extreme flatness of the PES does
not seem to be related with the nature of interlayer interaction
but rather with only partial compatibility of symmetries of the
layers. We believe, therefore, that the compensation of atomic
contributions to the PES in the considered case of twisted
bilayer graphene is also a result of only partial compatibility
of translational symmetries of the layers and similar cancel-
lation can be expected for (2,1) moiré patterns of other 2D
materials. For commensurate double-walled nanotubes with
at least one chiral layer, it was also shown that the smallest
Fourier harmonics that contribute into the PES of the complete
unit cell increase upon increasing the number of atoms in the
unit cell, while the amplitudes of these harmonics decrease
[60]. Hence the PES corrugations for commensurate moiré
patterns with greater coprime indices should be even smaller
than those for the considered moiré pattern with coprime
indices (2,1).

Furthermore, the extreme PES flatness for the complete
unit cell without defects means that only defects (e.g., va-
cancies) provide non-negligible contributions to the PES and
can be considered as particles moving relative to the per-
fect layer. In such an imaginary picture, a change of the
twist angle corresponds to the change in the orientation
of these particles relative to the perfect layer. Evidently
a small modification in the particle orientation leads to a
small change of the PES. Thus, a small change of the
twist angle from the commensurate moiré pattern to the in-
commensurate one should lead to a small change in the
contributions of defects to the total PES. Therefore, the model
that we considered in the present study gives the results that
are qualitatively valid also for incommensurate superlubric
systems.

The PES calculations for the case of several disordered
defects is beyond the scope of the present study. However,
we would like to discuss briefly the influence of disordered
defects on static and dynamic macroscopic friction in a su-
perlubric system. In the case of random distribution and
orientation of defects, their contributions into the static fric-
tion force cannot be summed up directly. The static friction
force F for a disordered contact scales as F ∼ A1/2 ∼ N1/2

a ,
where A is the contact area and Na is the number of atoms
in the contact [42,43]. Similar scaling of the friction force
is expected for the contribution of disordered defects Fd ∼
A1/2 ∼ N1/2

d , where Nd is the number of defects. The edge
friction force scales as Fe ∼ A1/2

r ∼ A1/4, where Ar is the
total rim area of incomplete cells of the moiré pattern [44].
The static friction force between perfect incommensurate lay-
ers does not depend on the contact area [41], that is, the
contribution of the perfect interface into the friction force
Fp ∼ A0. Thus, the contribution of defects into the total static
friction force F = Fp + Fe + Fd between incommensurate 2D
layers with disordered defects should become the dominant
one when the macroscopic contact area A is sufficiently large.

Dissipation of the kinetic energy on hills of the PES of in-
terlayer interaction is the reason for dynamic friction during
relative motion of 2D layers [18]. Therefore, a drastic in-
crease of the PES corrugations due to the presence of defects
should lead to the increase of dynamic friction in superlubric
systems.

In the model system studied in our calculations, defects
are present only in one layer. In the case of low densities
of defects, the interaction between defects in the neigh-
bor layers can be disregarded and defects from both layers
should contribute to the total static or dynamic friction in
the same manner. Upon increasing the defect density, the
interaction between defects in the neighbor layers (with
probable formation of chemical bonds between the lay-
ers) should lead to further restriction of superlubricity. The
presence of adjacent graphene layers or a substrate could
also affect the PES. Nevertheless, previous DFT calculations
[50,52,68] showed that differences in the PES corrugations
and barriers for relative sliding of coaligned commensu-
rate graphene layers in bilayer graphene and graphite are
normally within 20%, which is smaller than the scatter in
the values of these physical quantities obtained using dif-
ferent DFT approaches [49,50,53,54,68] and estimates of
these quantities from the experimental measurements [52,79].
Thus, we believe that the presence of additional 2D lay-
ers or a substrate for the superlubric system should not
lead to a drastic change of contributions of defects into the
PES of interlayer interaction in comparison with the bilayer
system.

Let us now discuss the approaches that can be used for
large-scale simulations of phenomena related to interlayer
interaction in twisted bilayers with defects. The magnitude of
PES corrugation obtained using the semiempirical Lebedeva
potential differs from the DFT result by only 8%. Since the
magnitude of PES corrugation determines dynamic friction
related with dissipation of the kinetic energy of relative mo-
tion of the layers on such corrugations, the Lebedeva potential
should be adequate for qualitative simulations of the influence
of atomic-scale defects on dynamic friction in systems with
structural superlubricity. On the other hand, the semiempiri-
cal potential fails to describe regions of the PES around the
minima and underestimates some of the barriers. Thus, it is
not appropriate for static friction studies. This failure can be
attributed to ignorance of spin-polarization effects.

An approximation based on the description of the interac-
tion energy between atoms of one layer and the whole second
layer via the first Fourier components provides an alternative
to calculations with classical potentials for large systems and
it is even cheaper computationally. Our calculations showed
that such an approximation can reproduce closely the classical
PES obtained using the semiempirical potential. Considering
changes in contributions of atoms as compared to the defect-
free bilayer, only the atoms in close vicinity of the defect
can be taken into account. According to our calculations, it
is sufficient to take into account atoms within 5 Å from the
vacancy to reproduce the classical PES with the error in the
magnitude of PES corrugation of 5% and root-mean-square
deviation equal to 7% of the magnitude of PES corrugation.
This can be considered as an effective radius of vacancy
defects for phenomena related with interlayer interaction. The
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approximation based on the first Fourier components can also
reproduce the PES obtained by the DFT calculations once
somewhat different parameters of the interaction are assumed
for the atoms within the defect and in the perfect layer. For
vacancy defects, the root-mean-square deviation of 6% of the
magnitude of PES corrugation is achieved when the amplitude
of Fourier harmonics for the atom with dangling bonds is
reduced by 37% compared to the other atoms of the layer with
vacancies.

The raw DFT data required to reproduce our findings are
available to download from Ref. [84].
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