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In the framework of time-dependent density functional theory (TDDFT), the exact exchange-correlation (xc)
kernel fxc(n, q, ω) determines the ground-state energy, excited-state energies, lifetimes, and the time-dependent
linear density response of any many-electron system. The recently developed MCP07 xc kernel fxc(n, q, ω) of
Ruzsinszky et al. [Phys. Rev. B 101, 245135 (2020)] yields excellent uniform electron gas (UEG) ground-state
energies and plausible plasmon lifetimes. As MCP07 is constructed to describe fxc of the UEG, it cannot
capture optical properties of real materials. To verify this claim, we follow Nazarov et al. [Phys. Rev. Lett.
102, 113001 (2009)] to construct the long-range, dynamic xc kernel, limq→0 fxc(n, q, ω) = −α(ω)e2/q2, of a
weakly inhomogeneous electron gas, using MCP07 and other common xc kernels. The strong wave-vector
and frequency dependence of the “ultranonlocality” coefficient α(ω) is demonstrated for a variety of simple
metals and semiconductors. We examine how imposing exact constraints on an approximate kernel shapes α(ω).
Comparisons to kernels derived from correlated-wave-function calculations are drawn.

DOI: 10.1103/PhysRevB.104.125112

I. INTRODUCTION

By virtue of the Runge-Gross theorem [1], time-dependent
density functional theory (TDDFT) is an extension of ground-
state density functional theory (DFT) [2–5]. TDDFT is a
more computationally feasible approach to compute excita-
tion energies, compared to approaches based on many-body
techniques [6,7].

The response of a many-electron system to a dynamic,
external potential is characterized by a change in its charge
density. If the amplitude of the external potential is small, then
it exerts only a weak perturbation, and the density response
can be taken to be linear. Through the linear density-density
response function, linear response TDDFT (LR-TDDFT) [8]
can predict the transition frequencies to electronic excited
states, among other properties.

The central equation of LR-TDDFT is a Dyson-like equa-
tion linking the true interacting density-response function of
an arbitrary many-electron system χ (r, r′; ω) to its noninter-
acting Kohn-Sham (KS) counterpart χ0(r, r′; ω):

χ (r, r′; ω) = χ0(r, r′; ω) +
∫

d3r′′
∫

d3r′′′χ0(r, r′′; ω)

× [v(r′′, r′′′) + fxc(r′′, r′′′; ω)]χ (r′′′, r′; ω), (1)

where v(r, r′) represents the Coulomb interaction, and
fxc(r, r′; ω) is the exchange-correlation (xc) kernel. The
TDDFT excitation energies are found as poles of χ (r, r′; ω).

*Corresponding author: tuf27796@temple.edu

With fxc = 0, χ reduces to the random-phase approximation
(RPA) [9].

Even if TDDFT is computationally more efficient than
wave-function theories, its accuracy is restricted by the limita-
tions of commonly used xc kernels [10–13]. The most widely
used adiabatic local-density approximation (ALDA), for ex-
ample, misses excitonic effects completely [14]. Recently
developed model xc kernels describe the optical absorp-
tion spectra of small and medium band-gap semiconductors
well [10,13]. Nonempirical xc kernels, which are not fit-
ted to experimental or correlated-wave-function data, are
typically insufficient to describe excited-state properties of
semiconductors and insulators, especially large-gap materials.
However, some modern kernels predict accurate properties of
excitons in real materials [15–18]. In order to achieve this
goal, the wave-vector and frequency dependence of the xc
kernel fxc needs to be investigated further [19–21].

Recently, we proposed a parametrized fxc for a uniform
electron gas (UEG) based upon satisfaction of exact con-
straints [22]. This model, called MCP07, depends upon both
the wave-vector q and frequency ω. In the static (ω = 0) limit,
we modified the model of Constantin and Pitarke [12] as
follows:

f MCP07
xc (q, 0) = 4π

q2
B[e−kq2

(1 + Eq4) − 1]

− 4π

k2
F

C

1 + (kq2)−2
. (2)

For definitions of the rs-dependent functions k, B, C, and
E , refer to Ref. [22]. rs = (4πn/3)−1/3 is the radius of a
sphere containing, on average, one electron in a UEG of
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density n. kF = (3π2n)1/3 is the Fermi wave-vector. In the
long-wavelength (q → 0) limit, Eq. (2) yields the ALDA ker-
nel, for which we use the Perdew-Zunger parametrization of
the UEG correlation energy [23].

At finite frequencies, we use the long-wavelength model
fxc(0, ω) of Gross, Kohn, and Iwamoto (GKI) [2,24] (analyt-
ically continued to complex frequencies when needed). This
expression for fxc(0, ω) is then combined with the static limit
of Eq. (2) to obtain [22]

f MCP07
xc (q, ω) =

{
1 + e−kq2

[
fxc(0, ω)

fxc(0, 0)
− 1

]}
f MCP07
xc (q, 0).

(3)
In MCP07, one takes k = k, where k is the same function
appearing in Eq. (2). Here we also discuss the effect of set-
ting k = 0. At long wavelengths (q → 0), Eq. (3) yields the
local GKI fxc(0, ω). At ω = 0, Eq. (3) yields the nonlocal
f MCP07
xc (q, 0) of Eq. (2).

The full MCP07 kernel of Eq. (3) provides a highly ac-
curate description of ground-state correlation energies (up
to rs = 10, see Figs. 6 and 7) and quasiparticle properties
of the UEG. In particular, MCP07 predicts a finite plasmon
lifetime that first decreases from infinity, and then increases as
q grows from 0 towards the electron-hole continuum. MCP07
also yields a static charge-density wave at rs � 69 that can
be associated with a softening of the plasmon mode [25,26].
The exchange-only version of the static MCP07 xc kernel of
Eq. (2) confirms Overhauser’s prediction [27] that correlation
is essential for the creation of a charge-density wave.

As MCP07 approximates fxc of the UEG, it cannot de-
scribe the 1/q2 long-wavelength behavior of the exact fxc

for nonuniform many-electron systems, called “ultranonlocal-
ity” [20]. Indeed, in reciprocal space, the kernel is a matrix
characterized by reciprocal wave-vectors, whose spatial de-
cay manifests in possible leading q-independent terms, called
crystal local-field effects. The head and wings of adiabatic
kernels, derived from semilocal density functional approx-
imations, are independent of q, and thus are incorrectly
nondivergent for q → 0, as in the case of the UEG. The so-
called “bootstrap” idea represents a very unique and effective
route to account for ultranonlocality [28].

This work builds upon that of Nazarov et al. [29] by
constructing, in the optical limit, the dynamic xc kernel of
a weakly inhomogeneous electron gas using the MCP07 xc
kernel (among other UEG-based kernels) as input. As MCP07
simultaneously describes the wave-vector and frequency de-
pendence of the xc kernel, our approach serves as a basis for
further investigations of the optical absorption of nonuniform
systems and the real wave-vector and frequency dependence
of xc kernels.

II. WHAT IS KNOWN ABOUT THE OPTICAL LIMIT
OF THE XC KERNEL?

Giuliani and Vignale [30] provided a detailed discussion of
exchange and correlation in uniform and nonuniform many-
electron systems. They discussed, in particular, the important
difference between the short-range kernel of the uniform elec-
tron gas, where fxc(q, ω) tends to a finite constant as q → 0,

and the ultranonlocal kernel of nonuniform systems, where fxc

is known to diverge in the long-wavelength limit as 1/q2.
Concurrent works have generalized kernel development

from density to current-density functionals [31]. Nazarov
et al. [32] derived a general method for constructing a scalar
TDDFT xc kernel using the tensorial kernel and KS current-
density response function of time-dependent current-density
functional theory (TDCDFT) [31,33]. This method proved
to be particularly useful, as a local approximation to the xc
kernel of TDCDFT results in a nonlocal approximation to
the xc kernel of TDDFT. The resultant approximation is free
of the contradictions that plague the standard local density
approximation to TDDFT. This method also allowed the con-
struction of the frequency-dependent xc kernel of a weakly
inhomogeneous electron gas in the optical limit [29]:

lim
q→0

fxc(q, q, ω) = −e2α(ω)

q2
, (4)

where

α(ω) = − 1

e2n2
0

∑
G �=0

(G · q̂)2
[

f HL
xc (G, ω) − f HL

xc (G, 0)
]|n(G)|2.

(5)
Here q̂ = q/|q|, n(G) is the Fourier transform of the elec-
tron density evaluated at the reciprocal lattice vector G, and
n0 = n(G = 0) is the average density. f HL

xc represents the lon-
gitudinal component of the tensor xc kernel of a uniform
(homogeneous) electron gas, which coincides with its scalar
counterpart; this uniform-gas xc kernel is evaluated at the
average electron density n0. By averaging over all q̂ directions,
(G · q̂)2 is replaced by G2/3. In the uniform limit, α(ω) → 0.
A negative sign is introduced in Eq. (4), as in Refs. [20,34],
in such a way that a positive α(ω) could cancel the divergent
Coulomb interaction 4π/q2 as q → 0.

In Ref. [29], the xc kernel f HL
xc (q, ω) entering Eq. (5)

was approximated as f HL
xc (q, ω) ≈ f HL

xc (0, ω), taking the lat-
ter from Ref. [35]. Here we go a step further by using the
nonlocal MCP07, which represents a reliable wave-vector-
and frequency-dependent uniform-gas xc kernel. From this
dependence on the wave-vector G, we expect that fxc(q, q, ω)
can cover new spectral features that are simply absent when
f HL
xc (0, ω) is used in Eq. (5). At large wave-vectors q2 � 1/k,

the frequency dependence of the MCP07 xc kernel is damped
out significantly. In the limit q → ∞, the MCP07 kernel
approaches its static limit, therefore we expect a significant
contribution to Eq. (5) for small values of G only. More
details of the frequency dependence can be found in Ref. [22].
On the other hand, our calculations indicate that the wave-
vector dependence of the uniform-gas xc kernel—neglected
in Ref. [29]—can largely affect ultranonlocality.

Our calculation of the frequency-dependent coefficient
α(ω) of Eq. (5) hinges upon the evaluation of: (i) the Fourier
coefficients n(G) and (ii) the MCP07 xc kernel of Eq. (3),
which is based on exact constraints.

Consider a UEG of density n0 = k3
F/(3π2) perturbed by a

weak periodic external pseudopotential

W (r) =
∑

G

W (G)eiG·r (6)

125112-2



PROGRESS TOWARDS UNDERSTANDING … PHYSICAL REVIEW B 104, 125112 (2021)

FIG. 1. α(ω) as a measure of ultranonlocality in fcc Al crys-
tal. The upper (lower) figure shows the real (imaginary) part of
the complex α(ω) for the GKI dynamic LDA (green, dot-dashed),
MCP07 with k = 0 (orange, dashed), the full MCP07 [22] (blue,
solid), frequency-dependent Qian and Vignale [35] (QV, red solid),
QV-MCP07-TD (purple, dashed), and 2p2h [21] (black, dot-dashed)
xc kernels. We are using f HL

xc (q, ω), as shown in the calculation of α.
The labels of the curves indicate which f HL

xc (q, ω) was used as input
to Eq. (5).

representing the actual crystal lattice. For W (G) =
(n0/z)w(G) we apply the evanescent core pseudopotential w

of an ion of valence z described by Eq. (2.11) of Ref. [36].
The pseudopotential is designed to have a finite value at
r = 0, with vanishing first and third derivatives. This analytic
behavior leads to a quick convergence of its Fourier transform
in the limit G → ∞.

Linear response tells us how to find n(G):

n(G) = χ (G)W (G) = χ0(G)

ε(G)
W (G), (7)

with χ0(G) = −kF/π
2 F (y), where y = G/(2kF). F is the

static response function of the noninteracting UEG, known as
the Lindhard function [37]:

F (y) = 1

2
+ 1 − y2

4y
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣. (8)

The screening in the UEG is represented by the dielectric
function:

ε(G) = 1 −
[

4π

G2 + fxc(G)

]
χ0(G), |G| > 0, (9)

where fxc(G) is the static xc kernel of the UEG.
The xc kernels f HL

xc (G, 0) and f HL
xc (G, ω) entering Eq. (5)

are taken from Eqs. (2) and (3), respectively.

III. RESULTS AT THE OPTICAL LIMIT FROM LOCAL
(LDA) AND NONLOCAL (MCP07) DYNAMIC KERNELS

Figure 1 displays the coefficient α(ω) of face-centered
cubic (fcc) aluminum determined from either (i) Eq. (5) with

FIG. 2. α(ω) as a measure of ultranonlocality in bcc Na crys-
tal. The upper (lower) figure shows the real (imaginary) part of
the complex α(ω) for the GKI dynamic LDA (green dot-dashed),
MCP07 with k = 0 (orange dashed), the full MCP07 (blue solid)
[22], frequency-dependent Qian and Vignale [35] (QV, red solid),
QV-MCP07-TD (purple, dashed), and 2p2h [21] (black, dot-dashed)
xc kernels.

the fully nonlocal MCP07 fxc of Eq. (3) as input, or (ii) the
local density approximation (LDA) version of Eq. (5):

αDLDA(ω) = − 1

3e2n2
0

∑
G �=0

G2
[

f HL
xc (0, ω) − f HL

xc (0, 0)
]|n(G)|2.

(10)

f HL
xc (0, ω) is taken to be either the GKI dynamic LDA xc

kernel [the long-wavelength limit of Eq. (3)] or the Qian-
Vignale (QV) dynamic LDA xc kernel of Ref. [35]. Note
that the GKI and QV dynamic LDAs tend to distinct static
limits; this is discussed further in Appendix B. Hereafter, we
will use “the dynamic LDA” to refer to the GKI expressions.
When using the fully nonlocal MCP07 xc kernel of Eq. (3),
the parameter k is taken to be either equal to k, or equal to
zero. We also introduce a hybrid kernel, which replaces the
GKI frequency dependence in MCP07 with the QV model. As
seen in Appendix B, ensuring that fxc(0, 0) yields the ALDA
yields more realistic correlation energies in the metallic range.
This new kernel is called QV-MCP07-TD. All sums over G
used a sufficiently large cutoff of G2

c/2 < 800 eV. We also
present results for a correlated-wave-function-derived kernel,
as discussed after Eq. (12).

Our calculations clearly indicate that the coefficient α(ω)
is particularly sensitive to the wave-vector dependence of the
xc kernel, as seen by comparing MCP07 to its counterpart
with the damping factor k of Eq. (3) set to zero. Physically,
setting k = 0 strengthens the frequency dependence of α(ω)
significantly over MCP07 (where k = k). Indeed, |α(ω)| is
reduced by more than 85% when k is increased from zero to
its full MCP07 strength, k = k. These are consistent behaviors
within the visible range of frequencies around 3 eV.

The same physics is reported in Fig. 2 for body-centered
cubic (bcc) Na. The coefficient α(ω) is again particularly
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FIG. 3. α(ω) as a measure of ultranonlocality in cds Si crystal,
calculated with the GKI dynamic LDA (green dot-dashed), MCP07
k = 0 (orange dashed), MCP07 (blue solid), long-wavelength Qian
and Vignale [35] (QV, red solid), QV-MCP07-TD (purple, dashed),
and 2p2h [21] (black, dot-dashed) xc kernels. The horizontal gray
dashed line is the static limit of the LRC ultranonlocality coefficient,
α = 0.13 [34]. The QV kernel comes closest, at low frequencies, to
approximating this value.

sensitive to whether the wave-vector dependence of the xc
kernel is considered. Note that our values shown in Figs. 1
and 2 for Re α(ω) at optical frequencies differ considerably
from the metallic limit (α = −0.213) of Eq. (4) of Ref. [20],
which was fitted to semiconductor data.

Figures 3, 4, and 5 present our calculations of α(ω) for
cubic diamond structure (cds) Si and C. In this case we obtain
reliable ground-state valence electron densities using a plane-
wave basis set. These calculations employed r2SCAN [38],
a computationally efficient and highly accurate ground-state
density functional, within the Vienna ab initio simulation
package [39]. Refer to Appendix A for definitions of the
quantities n0 and n(G) entering Eq. (5). To ensure that a large
number of wave-vectors were used in the Hamiltonian, the
calculation was performed on a �-centered k mesh of spacing
0.08 Å−1, with an energy cutoff of 800 eV. The tetrahedron
integration method was used to obtain reliable total energies
converged within 10−7 eV. The equilibrium volume was deter-
mined by fitting to the stabilized jellium equation of state [40];
r2SCAN predicts an equilibrium cubic lattice parameter of
5.440 Å for Si and 3.562 Å for C. The real-space density was
then Fourier transformed to yield n(G) for reciprocal lattice
vectors in the range |G|2/2 < 3200 eV.

Our results for α(ω) in semiconductors are presented in
Figs. 3 and 4 for cds Si, and Fig. 5 for cds C. At optical
frequencies in the range 3–5 eV, the coefficient α(ω) is posi-
tive, as expected, only when the frequency dependence of the
xc kernel is taken to be that of Qian and Vignale. However,
even the QV kernel considerably underestimates the expected
values α = 0.2 [20] or 0.28 [34]. Note that the QV xc kernel
uses the xc shear modulus μxc, which was tabulated only for
rs = 1, 2, 3, 4, 5 in Ref. [35]. To interpolate and extrapolate

FIG. 4. α(ω) as a measure of ultranonlocality in cds Si crystal for
the small omega regime only, calculated with the GKI dynamic LDA
(green dot-dashed), MCP07 k = 0 (orange dashed), MCP07 (blue
solid), long-wavelength Qian and Vignale [35] (QV, red solid), QV-
MCP07-TD (purple, dashed), and 2p2h [21] (black, dot-dashed) xc
kernels. The horizontal gray dashed line is the static limit of the LRC
ultranonlocality coefficient, α = 0.13 [34]. The inset shows the range
0 < ω < 10 eV. We emphasize that Ref. [29] used a different sign
convention for α(ω), fxc = e2α/q2. Therefore, Fig. 2 of Ref. [29],
which plots α(ω) for Si, appears to have the sign of α(ω) reversed.

these values, we used the physically motivated [41] form

μxc(rs)

n
= a

rs
+ (b − a)

rs

r2
s + c

, (11)

with a = 0.031152, b = 0.011985, and c = 2.267455 fitted to
the values reported in Ref. [35] (in atomic units). The Perdew-
Wang (PW92) [42] parametrization of the UEG correlation
energy per electron εc was used as input to the static com-
pressibility of the QV and QV-MCP07-TD kernels. For the
GKI dynamic LDA and MCP07 with k = 0 or k, we employed
the Perdew-Zunger [23] parametrization of εc, consistent with
Ref. [22].

For Si and C we also present (when possible) the static
limit of the ultranonlocality coefficient determined by the em-
pirical long-range contribution (LRC) xc kernel of Ref. [34]:

f LRC
xc (q, ω) = −α + βω2

q2
. (12)

Here α and β are material-dependent parameters that are fitted
to spectroscopic data. For Si, α = 0.13, β = 0.00635 eV−2;
for C, α = 0.28, β = 0.00135 eV−2. This gives a benchmark
for the kernels presented here, and helps determine the validity
of Eq. (5) for insulators.

As an alternative to the LRC benchmark, we also con-
sider the 2p2h kernel [21]. This kernel is determined directly
from Fermi hypernetted chain calculations of the UEG, in-
cluding two-particle, two-hole (2p2h) interactions. As these
excitonic interactions are relevant for the optical regime, the
2p2h kernel may be the best point of reference for our work.
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FIG. 5. α(ω) as a measure of ultranonlocality in cds C crystal,
calculated with the GKI dynamic LDA (green dot-dashed), MCP07
k = 0 (orange dashed), MCP07 (blue solid), long-wavelength Qian
and Vignale [35] (QV, red solid), QV-MCP07-TD (purple, dashed),
and 2p2h [21] (black, dot-dashed) xc kernels. The static limit of the
LRC ultranonlocality coefficient α = 0.28 [34] is beyond the scale
of the vertical axis. As cds C has a much larger band gap than cds Si,
we begin to see the limited validity of applying Eq. (5) to insulators.

See Appendix C for a discussion of the 2p2h kernel and its
limitations.

The real part of the coefficient α(ω), as defined in Eq. (4),
is expected to vanish at ω = 0 for metals and to be posi-
tive at ω = 0 for semiconductors and insulators (e.g., +0.2
as in Ref. [20] for cds Si). Equation (5), which is formally
exact in the limit of weak inhomogeneity and is, therefore,
suitable for metals, always yields α(ω = 0) = 0, as expected
for metals. For ω in the visible range, we expect Re α(ω)
to be positive (and small for metals). The computed sign of
Re α(ω) turns out, however, to be positive in the visible range
only when the QV or 2p2h frequency dependence is used.
The MCP07 xc kernel of Eq. (3) represents an extension,
for finite wave-vectors, of the GKI dynamic xc kernel, which
differs considerably at small ω from its QV counterpart: they
satisfy distinct ω → 0 limits, and thus have different Taylor
expansions near ω = 0. These important differences should
be at the origin of the different behavior of α(ω), particularly
at small ω, depending on whether the QV dynamic LDA xc
kernel is used.

While Re α(ω) is predicted to be negative (and not positive
as expected) at small frequencies for the three GKI-based
kernels under study, it does become (plausibly for metals)
smaller in magnitude as we make the wave-vector dependence
of this kernel increasingly sophisticated (from dynamic LDA
to MCP07 k = 0 to MCP07 k = k). Our work reveals the
remarkable sensitivity of Eq. (5) to the wave-vector and fre-
quency dependence of the UEG xc kernel.

The long-range part of the xc kernel is expected to be
highly nonmonotonic in its frequency dependence [43]. This
was demonstrated in Ref. [43] for cds Si and cds C using
the response function computed from both the Bethe-Salpeter

FIG. 6. The correlation energy per electron of the UEG as a
function of the density parameter rs. Besides the PW92 ground-state
LDA (black solid), the figure displays the ALDA (purple dotted),
RPA (dark blue dashed), MCP07 (light blue solid), MCP07 k = 0
(orange dashed), the GKI dynamic LDA (dark green dash-dotted),
and the QV dynamic LDA (red solid) xc kernels. See Fig. 7 and
Table I in Appendix B for a discussion of the relative errors made
by these and other kernels.

equation and ground-state LDA eigenstates. While all kernels
presented here show a nontrivial frequency dependence, none
of them demonstrate the anticipated oscillatory behavior of
α(ω).

We do not advocate using MCP07 in its current form for
general optical applications; however we recommend further
testing of the QV-MCP07-TD kernel for the study of optical
properties. This novel kernel demonstrates that introducing
new constraints beyond the GKI-based frequency dependence
could improve MCP07’s predictions of optical properties. Our
aim here is to highlight the relevance of a proper description
of both the frequency and wave-vector dependence of fxc in
the optical limit. Future work could study the application of
the QV-MCP07-TD kernel to describe the optical properties
of a broader range of semiconductors.

To complete the analysis of the coefficient α(ω), we have
performed a calculation of the ground-state correlation energy
of the UEG for electron-density parameters in the range from
rs = 1 to rs = 10. The PW92 approximation [42] (black solid
line in Fig. 6) is regarded as exact. In Fig. 6 we plot the full
MCP07 correlation energy (blue solid line in Fig. 6) together
with the result of using various approximations to fxc: the fully
nonlocal dynamic MCP07 with k = 0, the GKI dynamic LDA,
the QV dynamic LDA, the ALDA, and the RPA. The method
for obtaining correlation energies through the fluctuation dis-
sipation theorem [44], using the Cauchy integral formula for
the frequency integral, is described in Ref. [22]. Here we see
that while the ALDA is known to overestimate the correlation
energy significantly for all values of rs, introducing frequency
dependence (still within the LDA, q = 0 in fxc) improves
the correlation energy considerably. The fully nonlocal and
dynamic MCP07 xc kernel yields excellent correlation en-
ergies, particularly with increasing rs. When the frequency
dependence of the MCP07 xc kernel is undamped by taking
k = 0, the correlation energy is clearly worsened, but not to
the same extent as in the case of α(ω).
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Note, however, the role of the wave-vector in determin-
ing accurate correlation energies. Both the QV kernel and
dynamic LDA, which are wave-vector independent, tend to
overcorrect the RPA. However, the MCP07 k = 0 kernel,
which adds a naive wave-vector dependence to the dynamic
LDA, gives less reliable estimates of the UEG correlation
energy. Using nonzero k and correctly interpolating between
known limits, as in MCP07, improves upon the dynamic LDA.
It is easy to show that the analytic continuation of fxc(ω) to
imaginary frequency iu (with ω and u purely real), which is
needed for the calculation of correlation energies, is

Re fxc(iu) = f∞ + 1

2π

∫ ∞

−∞
[ω′2 + u2]−1{[Re fxc(ω′) − f∞]u

+ Im fxc(ω′)ω′}dω′, (13)

Im fxc(iu) = 1

2π

∫ ∞

−∞
[ω′2 + u2]−1{−[Re fxc(ω′) − f∞]ω′

+ Im fxc(ω′)u}dω′, (14)

with f∞ ≡ limω→∞ fxc(ω). The GKI and QV dynamic LDAs
make Im fxc(ω) a purely odd function of real-valued fre-
quency ω, and thus their corresponding Re fxc(ω) are even
functions of ω. From Eq. (14) we see that the integrand of
Im fxc(iu) is odd in ω′, and thus fxc(iu) is purely real.

IV. CONCLUSIONS

We have used the dynamic MCP07 kernel to study the roles
of the wave-vector and frequency dependence of fxc in the
optical limit. Both ingredients have a significant impact in the
visible region of light.

The strong wave-vector dependence of α(ω) corroborates
the presence of local-field effects that have been discussed ear-
lier. Less is known about the role of the frequency dependence
in the optical limit.

To describe local-field effects, a kernel with the correct
ultranonlocal limit is needed. Although there are a few efforts
listed in the literature, no nonempirical xc kernels within
TDDFT yield universal applicability for the optical absorp-
tion spectra of semiconductors and insulators. The TDCDFT
framework allows the construction of, in the optical limit, a
frequency-dependent xc kernel of a weakly inhomogeneous
electron gas that exhibits ultranonlocality, as anticipated in
Ref. [29]. In this work we rely on this formalism to evaluate
the coefficient α(ω) as a measure of ultranonlocality in the
optical limit.

We have included three types of xc kernels in our analysis.
As potentially better references, we have also included the
dynamic LDA of Qian and Vignale [35] and the so-called
2p2h kernel [21]. Although there is no reference about what
the correct ultranonlocality coefficient in the optical limit is,
the completely local dynamic LDA sets a negative extreme
with the GKI frequency model. Our work demonstrates the
relevance of exact constraints. An approximate kernel can
improve beyond the ALDA [which makes α(ω) = 0] by en-
forcing known limiting behaviors of the exact fxc(q, ω), as
the GKI, QV, and MCP07 kernels are constructed to do.
The MCP07 kernel is an interpolation between the static
and frequency-only limits. The impact of wave-vector and

frequency have been independently investigated using the
MCP07 model. Turning off the wave-vector and frequency
dependence reduces all UEG-based xc kernels to the ALDA.
Turning off the damping factor k in MCP07 results in a
less-controlled frequency dependence, but the resultant kernel
retains the correct wave-vector dependence of MCP07 in the
static limit. The resulting α(ω) is significantly reduced com-
pared to that of the ALDA, indicating a reduced degree of
ultranonlocality. The full MCP07 kernel damps the frequency
dependence of the GKI dynamic LDA, and reduces α(ω)
further.

We have tested all these kernels for fcc Al, bcc Na,
cds Si, and cds C. These are metallic and semiconducting
systems with small ultranonlocality for metals, and larger
ultranonlocality for semiconductors. For the metallic sys-
tems, perturbation theory applies. We have obtained novel and
informative results as an estimation of the ultranonlocality
for metals. Our analysis confirms that even metals can have
ultranonlocality, although to a much lesser extent than semi-
conductors.

Neither the dynamic LDA nor MCP07 exhibit the esti-
mated level and sign of ultranonlocality for Si and especially
for diamond C. Our results are qualitative and indicate a
strong sensitivity of α(ω) in the optical limit to the frequency
and wave-vector dependence of the uniform gas kernel. This
sensitivity was out of the reach in Ref. [29], as only the QV
dynamic LDA kernel was used, in contrast with the various
nonlocal kernels we have considered here. Furthermore, the
nonlocal MCP07 and QV-MCP07-TD kernels considered here
appear to be a reasonable basis for further improvements,
especially when compared with the dynamic LDA. Our work
clearly indicates the limitations of the GKI frequency model.
Instead, the hybrid QV-MCP07-TD kernel introduced here
unifies both wave-vector and frequency constraints, and shows
a good promise within the limitations of the perturbation
theory applied throughout this work.

Our current work could (i) guide further modifica-
tions in the frequency-dependent MCP07 kernel for optical
spectroscopy to build in more exact constraints on the fre-
quency dependence and (ii) guide more efforts to extend
the TDCDFT scheme to obtain α(ω) and the corresponding
limq→0 fxc(q, q; ω) for nonuniform systems.

The Python code used to generate Figs. 1–5 from VASP

outputs is made freely available (without access restrictions)
at [45] under the “code” directory. The raw data from VASP

is also included there, under the “Si” and “C” directories. The
processed data is located in the “code/data_files” subdirectory.
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APPENDIX A: DEFINITIONS OF DENSITY VARIABLES

Consider a density n(r) that varies weakly about an aver-
age uniform density n0. As is done in all standard electronic
structure codes, we sample the (self-consistent) density in real
space at Nr points R. To obtain the Fourier components n(G),
we take the discrete Fourier transform

n(G) = 1

NR

∑
R

n(R)e−iG·R, (A1)

leveraging the fast Fourier transform for a suitable choice
of R,

R = n1

N1
a1 + n2

N2
a2 + n3

N3
a3, (A2)

G = m1b1 + m2b2 + m3b3, (A3)

G · R = 2π

(
n1m1

N1
+ n2m2

N2
+ n3m3

N3

)
, (A4)

where ni, mi = 0, 1, 2, . . . , Ni − 1, such that N1N2N3 = NR.
ai are the direct lattice vectors, and b j are the reciprocal
lattice vectors such that ai · b j = 2πδi j . This convention is
adopted by VASP; however, any standard plane-wave code will
make similar choices for the discrete Fourier transform phase
and normalization conventions, and will make similar choices
for R.

Real solids are typically not weakly varying; however, the
valence densities of Si, and less so C, are approximately
weakly varying about their average density, which we define
as

n0 ≡ n(G = 0). (A5)

In pseudopotential codes like VASP, only valence electrons are
considered, and the core electrons are replaced by a nonlocal
effective potential inside a core radius. Therefore, the vari-
ables n(R) and n(G) represent the valence electron density
and the Fourier transform of the valence electron density,
respectively.

Virtually all xc kernels based on the UEG paradigm require
a real-density input; therefore, in Eq. (5) we evaluate

fxc(q, ω) ≡ fxc(n0, q, ω). (A6)

Let rs
3 = 3/(4πn0). In our self-consistent calculations we

found rs ≈ 2.009 bohr for cds Si (which is within a reasonable
metallic range, 2 � rs � 5 bohrs), and rs ≈ 1.315 bohrs for
cds C (which is outside the normal metallic range).

APPENDIX B: A MORE DETAILED DISCUSSION
OF THE CORRELATION ENERGIES

In this Appendix we compare a variety of xc kernels in
predicting jellium correlation energies (per electron) for the
physically relevant range of electron densities 1 � rs � 10.
We take PW92 [42] to be essentially exact.

The correlation energy per electron εc can be computed
from the adiabatic-connection fluctuation-dissipation theorem

[46]:

εc = 1

2

∫
d3q

(2π )3

∫ 1

0

dλ

λ

∫ ∞

0
dω

4πλ

q2
[Sλ(q, ω) − S0(q, ω)],

(B1)
where fxc,λ(q, ω, rs ) = λ−1 fxc(λ−1q, λ−2ω, λrs) [47] and the
spectral function Sλ at coupling constant λ is given by

χλ(q, ω) = χ0(q, ω)

1 − [4πλ/q2 + fxc,λ(q, ω, rs )]χ0(q, ω)
, (B2)

Sλ(q, ω) = − 1

πn
Im χλ(q, ω). (B3)

In the random phase approximation (RPA), fxc is taken to be
zero. In this approximation, correlation energies are found to
be too negative [47]. The use of appropriate approximations
for fxc should build upon the RPA and improve its prediction
of correlation energies.

This section also presents a few new kernels. In addition to
those presented previously, we also consider the static limit
of the MCP07 kernel, and the dynamic kernel formed by
replacing, within MCP07, the GKI dynamic LDA with the
QV dynamic LDA. This combination can be done in two
ways, as the TDDFT and TDCDFT static and q → 0 limits
are incompatible [41]:

lim
q→0

[
lim
ω→0

f HL
xc (q, ω)

] = f GKI
xc (0) = f ALDA

xc , TDDFT, (B4)

lim
ω→0

[
lim
q→0

f HL
xc (q, ω)

]= f QV
xc (0)= f ALDA

xc + μxc, TDCDFT,

(B5)

where f HL
xc (q, ω) is the longitudinal xc kernel of a homo-

geneous electron gas within TDCDFT and μxc is the xc
shear modulus [see Eq. (11)]. For consistency, the two new
QV-MCP07 kernels use the PW92 parametrization of the cor-
relation energy, and have the form

fxc(q, ω) =
{

1 + e−kq2

[
f QV
xc (ω)

fxc(0, 0)
− 1

]}
f MCP07
xc (q, 0). (B6)

To obtain the QV-MCP07-TD kernel, we take fxc(0, 0) =
f ALDA
xc in the MCP07 static kernel and the QV kernel,

by setting μxc = 0. To obtain the QV-MCP07-TDC kernel,
we take fxc(0, 0) = f ALDA

xc + μxc(rs), which modifies k and
f MCP07
xc (q, 0), consistent with the construction principles of

Ref. [22].

FIG. 7. Comparison of the relative errors ε
approx.
c − εPW92

c for a
variety of functionals. Error statistics are given in Table I.
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TABLE I. Comparison of approximate exchange-correlation kernels in predicting jellium correlation energies (per electron), for 91 values
of rs in the range 1 � rs � 10. PW92 [42] is taken to be the reference energy.

Mean error Mean absolute error Standard deviation
Kernel ×10−2 hartree ×10−2 hartree ×10−3 hartree

RPA −1.4387 1.4387 1.8092
ALDA 1.2750 1.2750 1.3251
Dynamic LDA 0.1082 0.1289 1.1242
MCP07 static 0.0836 0.1277 1.1603
MCP07, k = 0 −0.4592 0.4592 1.2591
MCP07 −0.0496 0.1077 1.3382
QV 0.1455 0.1705 1.3580
QV-MCP07, TD −0.0047 0.1074 1.3104
QV-MCP07, TDC −0.1251 0.1491 1.7068

Figure 7 plots the relative errors in the correlation energies
per electron as a function of 1 � rs � 10. Table I presents
the average errors and standard deviations in the UEG cor-
relation energy for the same range of rs. It can be seen that
the most accurate kernels in this range are the MCP07 and
QV-MCP07-TD kernels, whose mean absolute errors are com-
parable, differing only by about 4×10−6 hartree.

APPENDIX C: TECHNICAL ASPECTS OF THE 2P2H
KERNEL CALCULATION

The 2p2h kernel, while capturing a broad range of many-
electron physics, is tabulated only for a limited range of
rs, q, and ω. Furthermore, no analytic expression has been
determined to interpolate it. Thus, we are forced to make two
approximations to use the 2p2h kernel in a practical computa-
tion.

To interpolate the kernel, we use a multivariate linear inter-
polation. For a one-dimensional function F (x), this amounts
to

F (x) ≈ F (xi )
xi+1 − x

xi+1 − xi
+ F (xi+1)

x − xi

xi+1 − xi
, (C1)

xi � x < xi+1, (C2)

and the tabulated values of xi are sorted by increasing val-
ues. In three dimensions we perform a simple composition
of one-dimensional linear interpolations. More sophisticated
multidimensional interpolation schemes, like tricubic spline,
assume the function to be interpolated is smooth in some

sense: e.g., a cubic spline assumes continuity up to the sec-
ond derivatives. We cannot make such an assumption about
fxc(rs, q, ω).

Second, the 2p2h kernel is tabulated only up to q = 8kF

and ω = 3.98ωp(0), where ωp(0) = (3/r3
s )1/2 is the semiclas-

sical plasmon frequency. These values are too small for the
2p2h kernel to attain its zero separation and infinite frequency
limits. While the limiting values fxc(q = 0, ω → ∞) [24] and
fxc(q → ∞, ω = 0) [48] are known, we cannot, in general,
extrapolate to q → ∞ with ω > 0, or vice versa. Thus, we
are forced to cut off the G sum of Eq. (5) for |G| > 8kF, and
restrict α(ω) to ω � 3.98ωp(0). The numeric values of the
cutoffs are given in Table II. Note that, for all solids consid-
ered here, the shortest reciprocal lattice vector is longer than
the smallest wave-vector (0.1kF) for which the 2p2h kernel is
tabulated.

TABLE II. Summary of cutoff energies used in the computation
of α(ω) for the 2p2h kernel only. For all other kernels, a cutoff
of |G|2/2 < 800 eV was used. Note that qcut = 8kF and ωcut =
3.98ωp(0).

Solid (structure) rs (bohr) q2
cut/2 (eV) ωcut (eV)

C (cds) 1.32 231.68 124.33
Al (fcc) 2.07 93.56 62.99
Si (cds) 2.01 99.35 65.89
Na (bcc) 3.93 25.96 24.08
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