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General existence and determination of conjugate fields in dynamically ordered magnetic systems

M. Quintana * and A. Berger
CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastian, Spain

(Received 13 July 2021; accepted 4 October 2021; published 21 October 2021)

We investigate experimentally as well as theoretically the dynamic magnetic phase diagram and its associated
order parameter Q upon the application of a non-antisymmetric magnetic field sequence composed of a fun-
damental harmonic component H0, a constant bias field Hb, and a second-harmonic component H2. The broken
time antisymmetry introduced by the second-harmonic field component H2 leads to an effective bias effect that is
superimposed onto the influence of the static bias Hb. Despite this interference, we can demonstrate the existence
of a generalized conjugate field H∗ for the dynamic order parameter Q, to which both the static bias field and
the second-harmonic Fourier amplitude of the field sequence contribute. Hereby, we observed that especially
the conventional paramagnetic dynamic phase is very susceptible to the impact of the second-harmonic field
component H2, whereas this additional field component leads to only very minor phase-space modifications
in the ferromagnetic and anomalous paramagnetic regions. In contrast to prior studies, we also observe that
the critical point of the phase transition is shifted upon introducing a second-harmonic field component H2,
illustrating that the overall dynamic behavior of such magnetic systems is being driven by the total effective
amplitude of the field sequence.
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I. INTRODUCTION

Collective behaviors in systems with many degrees of free-
dom can lead to out-of-equilibrium pattern formations [1].
Such dynamically ordered states can be found in chemistry
[2], biology [3], or physics [4–6]. Illustrative examples in-
clude brain activity [7], the formation of sand dunes [8,9], or
information traffic flow [10]. One specific type of dynamic
ordering known to happen in ferromagnetic spin systems was
demonstrated to lead to a dynamic phase transition (DPT)
[11], which has attracted a very significant amount of attention
in recent years and has become a widely investigated phe-
nomenon in the context of nonequilibrium physics [12–15].
The understanding of the DPT has provided very relevant
insights about dynamically ordered systems and opened the
door of using powerful scientific methods that had been de-
veloped originally for the study of thermodynamic phase
transitions in equilibrium.

DPTs are known to be observable in ferromagnetic ma-
terials below the Curie temperature Tc [11]. Upon applying
a sufficiently slow sinusoidal magnetic field H(t) of period
P and amplitude H0 to such materials, the time response of
the system’s magnetization M(t) will follow the magnetic
field oscillations, as shown schematically by the red line in
Fig. 1(a). Hereby, one typically observes a slight delay of
M(t) with respect to the field H(t) due to the coercivity of
the ferromagnet. However, if P becomes comparable to the
system’s relaxation time constant τ , there is a point at which
the magnetization is not able to follow the magnetic field
oscillations and does not reverse during the magnetic field
cycle, but instead will exhibit only small oscillations around
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one of two equivalent nonzero magnetization values, as shown
by the red lines in Fig. 1(b). The green-dashed lines in
Figs. 1(a) and 1(b) identify the period-averaged magnetization
Q, defined as

Q = 1

P

∫ t+P

t
M(t ′) dt ′. (1)

Thus, one observes here a fundamental change in the dy-
namic behavior of the magnetization trajectory as P is varied.
In the slower dynamic regime, i.e., Fig. 1(a), the magnetiza-
tion oscillates around a net zero magnetization value, resulting
in Q = 0. This is known as the dynamic paramagnetic (PM)
phase. In contrast, in the faster dynamics regime, displayed in
Fig. 1(b), the magnetization oscillates around a Q � 0 average
value, which is known as the dynamic ferromagnetic (FM)
phase.

Hereby, Q represents the order parameter associated with
the dynamic state, whose transition from the PM to the FM
phase happens at a unique critical period Pc by means of
a second-order phase transition [16]. This behavior is simi-
lar to that of the thermodynamic equilibrium case, in which
M undergoes a temperature T dependent second-order phase
transition at its Curie temperature Tc. Both the existence of the
dynamic phase transition overall and scaling relations close
to the critical point were verified by means of Monte Carlo
simulations [16–18] and mean-field approximation (MFA)
calculations [19,20]. These studies also confirmed the exis-
tence of critical exponents, which were furthermore found
to be of the same universality class as the thermodynamic
equilibrium case.

Upon adding an external time-independent bias field Hb to
the sinusoidal magnetic field sequence, it was shown that Hb

takes on the role of the conjugate field H∗ of the dynamic
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FIG. 1. (a), (b) Schematic examples of H (black) and the corre-
sponding M (red) time sequences for two different P in the dynamic
PM and FM regimes, respectively. The green-dashed lines represent
the period-averaged magnetization Q. (c), (d) Color-coded maps of
Q as a function of P/Pc (H0/H0

crit) and Hb in the vicinity of the
DPT. The red (magenta) dot and the black-dashed line represent the
second- and first-order phase transitions, respectively. The color bar,
shown on the right-hand side, is valid for both (c) and (d). (e), (f)
Schematic examples of H (black) and the corresponding M (red) time
sequences in the dynamic PM and FM regimes with an additional
H component of period P/2 being applied. The green-dashed lines
represent the period-averaged magnetization Q.

order parameter Q [21], in the same way, in which an external
magnetic field H is the conjugate field of magnetization M
in the equilibrium phase diagram. This relevant discovery
allowed for a far broader exploration of the DPT phenomenon,
given that it enabled the characterization of a two-dimensional
phase-space behavior for Q(P, H∗). The identity of Hb being
the conjugate field of Q was later verified in Ref. [20] when
an analytical equation of state of the DPT was derived in
the MFA model for the specific case of a sinusoidal driving
field. In this context, experimental studies have played a most
relevant role in the investigation of the existence of H∗ and its
impact on the dynamic state [22–25].

In Fig. 1(c) we show an illustrative example of this specific
two-dimensional phase-space behavior of Q(P, H∗ = Hb) as
a color-coded map and in the neighborhood of the critical
point of the phase transition. In this map, one can distin-
guish a critical point at P = Pc, identified by means of a red

dot, dividing the FM and the PM phases. In the FM phase,
two well-defined regions can be distinguished, which are the
yellow and blue regions of the map. Here, upon increasing
or decreasing Hb, Q undergoes a discontinuous first-order
nonequilibrium phase transition at Hb = 0, labeled here as a
black-dashed line. For P > Pc, in the PM phase, the change of
Q as a function of Hb happens in a continuous fashion, and the
changes in the blue-to-green and green-to-yellow regions are
not abrupt, even if they can be rather steep due to the so-called
metamagnetic anomalies of the paramagnetic dynamic state
[23,26]. These metamagnetic anomalies divide a conventional
PM region with Q ∼ 0 for small enough values of |Hb| (i.e., the
predominantly green region in the map) from the anomalous
PM region with large values of |Q|.

In absence of magnetostatic interactions, the dynamic
magnetization behavior associated with the DPT is overall
reflective of a spin-reversal mechanism that is triggered by an
applied-field assisted nucleation process of inverted spin clus-
ters, followed by the corresponding domain-wall propagation
[16,17,27–29]. One direct consequence of this mechanism is
that Pc is strongly dependent on the field amplitude H0 used
for the observation of the DPT, which follows a predominant
Pc ∼ exp(const./H0) behavior [16,17]. Correspondingly, one
can explore the relevant phase space near the DPT including
its critical behavior in two different ways. The behavior of Q
close to the critical point can be explored in the (P, Hb) phase
space leaving H0 constant [i.e., Fig. 1(c)] or in the (H0, Hb)
space leaving P constant. Figure 1(d) shows a representative
phase space of Q(H0, Hb). Here, one finds a qualitatively
identical map to the Q(P, Hb) case in Fig. 1(c), with the main
difference being the shape of the conventional PM region
for small values of |Hb|. The critical field amplitude H0

crit ,
represented as a magenta dot in Fig. 1(d), is the field amplitude
at which P = Pc. Experimental phase-space investigations in
the (H0, Hb) approach allow for a broader exploration of the
complete phase space, as we have previously demonstrated
experimentally [24,25], so that we will follow this approach
here as well.

In most works that study the DPT, the oscillating
components of the time-dependent H(t) sequences that are
applied to the magnetic system exhibit the so-called half-wave
antisymmetry (HWA), meaning that H (t ) = −H (t + P/2).
This antisymmetry condition in H(t) holds for both sinusoidal
magnetic fields, mainly used in MFA works [19,20,30] and
experiments [22–25], and for squarelike magnetic fields,
commonly used in Monte Carlo simulations [14–18,31,32].
In the dynamic PM phase, the HWA of the magnetic field
also implies that M(t ) = −M(t + P/2) [33], which naturally
leads to Q = 0 for the order parameter. However, if one
now considers an oscillatory field sequence that breaks the
HWA, the magnetization trajectory will not be antisymmetric
either in between the two half periods, which can lead to
a nonzero value of Q even in the absence of Hb. As an
illustration of this phenomenon, we show in Fig. 1(e) the
magnetization response for a H(t) sequence composed by
two in-phase Fourier components of period P and P/2 with
Hb = 0, such that the HWA of H(t) is broken. We observe that
the M(t) antisymmetry is lost as well, leading to an average
magnetization Q � 0, even if the magnetization goes through
a full reversal cycle. It is therefore clear that H∗ cannot be
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simply identical to Hb here because the absence of Hb does not
lead to a vanishing order parameter in this dynamic PM state.

Indeed, the role of higher-order frequencies was first in-
vestigated in Ref. [34], where the effects of different Fourier
components were independently studied. Interestingly, it was
found that any even Fourier field component can contribute
to H∗, while odd components do not contribute here given
that these components do not break the HWA. Furthermore,
each even component was observed to follow independently
the same scaling behavior at Pc. However, the impact of even
components in conjunction with a static bias field onto the
dynamic phase and the occurrence of the DPT has not been
investigated yet, and thus the issue of H∗ existence and defi-
nition for any general H(t) sequence has not been addressed.

We emphasize that our qualitative discussion above is lim-
ited to the dynamic PM phase for simplicity. In the dynamic
FM phase, illustrated in Fig. 1(f), a difference in between the
two existent M(t) trajectories (and the subsequent values of
Q) for Hb = 0 is still existent, but it is much smaller than
in the PM phase and visually hard to detect in contrast to
the obvious modifications visible in Fig. 1(e). However, from
our discussion it is evident that there is a need to develop a
generally applicable definition of the conjugate field H∗ in the
context of an arbitrary H(t) sequence. If it exists, such a gen-
eralized conjugate field should fulfill specific requirements.
Particularly, H∗ has to guarantee that dynamically stable states
fulfill time-reversal symmetry, i.e.,

Q(H∗) = −Q(−H∗), (2)

for all values of P (and H0), analogous to the usual thermody-
namic response of ferromagnets in equilibrium phase space,
where M(H ) = −M(−H ) for all temperature and field values
(see for example Ref. [35]). For the case of simple sinusoidal
magnetic driving field [i.e., Figs. 1(c) and 1(d)], it is clear
that Hb fulfills this condition and thus justifies the identity
Hb = H∗.

The general identification of H∗ is crucially relevant in the
context of the DPT, because proper knowledge of what H∗ is
exactly, is needed to actually explore the dynamic phase space
and conduct meaningful studies. This condition does not only
apply to two-dimensional (H0, H∗) phase-space explorations,
but also to the more traditional one-dimensional phase-space
explorations along the H0- or P-axes, because for them to be
insightful, they have to be conducted under the condition that
H∗ = 0, which requires an actual quantitative knowledge of
H∗. To date, no general formulation and analysis of H∗ for
general H(t) sequences has been developed. Therefore, we
explore in the present work the proper definition and determi-
nation of the conjugate field H∗ for general H(t) sequences,
both analytically and experimentally, by utilizing asymmetric
time-dependent magnetic field sequences in conjunction with
static bias fields throughout the complete phase space near the
DPT. Hereby, we will explore the general existence of H∗ and
we will establish a generally applicable procedure to obtain
H∗. We will also explore the specific impact that even-order
Fourier components of magnetic field sequences have onto the
critical point itself.

In the second section of this work, we present the theoreti-
cal and experimental methods employed in our study. First, we
present the MFA model used to simulate the dynamic mag-

netization trajectories throughout the dynamic phase space.
Then, we present the most relevant experimental aspects re-
garding our sample design and fabrication, and we discuss
some key aspects of the transverse magneto-optical Kerr effect
(T-MOKE) setup that we used to measure individual M(t)
trajectories and determine associated Q values. In the third
section, we discuss our main findings resulting from our MFA
model calculations and in the fourth section, we compare them
to the experimentally obtained results. Finally, in the fifth and
last section we draw general conclusions, put the results into
perspective of prior studies, and give an outlook beyond our
present work.

II. METHODS

We have computed the dynamic behavior of magnetization
trajectories for an Ising spin system. The most commonly used
model in the context of DPTs is the kinetic Ising model with
spin s = 1/2. In such system, each spin si interacts with the
nearest neighbors via an exchange-coupling constant J and
with the external magnetic field H(t) through a Zeeman energy
term, leading to the Hamiltonian

H = − J
∑
{i, j}

si s j − H (t )
∑

i

si, (3)

where the brackets stand for the sum over nearest neighbors
only.

In this work, we focus on a time-dependent magnetic field
signal with three different Fourier components. The first two
components are the most commonly utilized terms, namely
the bias field Hb and the fundamental of period P and ampli-
tude H0. The third component is an in-phase second-harmonic
contribution of period P/2 and amplitude H2. Thus, the com-
plete field sequence is described as

H (t ) = Hb + H0 cos

(
2πt

P

)
+ H2 cos

(
4πt

P

)
. (4)

Assuming that the system evolves under standard Glauber
stochastic dynamics [36], the MFA equation of motion of M(t)
can be expressed as [11]

τ
dM(t )

dt
= −M(t ) + tanh

(
1

T

[
M(t ) + H (t )

J

])
, (5)

with T being the temperature normalized to Tc. We evaluate
Eq. (5) to obtain a steady-state periodic solution of M(t).
Details regarding the self-consistent evaluation of (5) can be
found in the Appendix. All simulations in this work are done
at the reduced temperature T = 0.8, for which only second-
order dynamic phase transitions occur, even within MFA [19].
This avoids possible complications due to the appearance of
a first-order phase transitions upon changing P, which are
an associated artifact of the mean-field approach at lower
temperatures [37,38].

In the kinetic Ising model described by Eq. (3), magneto-
static interactions are not considered because demagnetizing
fields suppress the bistable behavior and the correspond-
ingly sharp onset of the dynamic order parameter at the
dynamic phase transition, similar to the behavior of equilib-
rium phase transitions, where magnetostatic effects lead to a
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self-demagnetization of bulklike ferromagnets in the thermo-
dynamic ferromagnetic phase. This approach of neglecting
magnetostatic effects has been used in all theoretical treat-
ments of the DPT so far, given that it reduces the complexity
of dynamic ferromagnetic systems. In order to mimic the
dynamic behavior of such an Ising model without demagne-
tizing fields experimentally, thin film samples with in-plane
magnetization geometry have been specifically designed and
employed in the past, because in this configuration, demag-
netizing fields are strongly suppressed and clear observations
of the DPT are possible [19,24,25]. Furthermore, these works
employed thin films with uniaxial magnetic anisotropy with
the easy axis (EA) of magnetization in the plane of the film,
such that only two stable states are existent at zero field, and
all core aspects of the Ising model can be reproduced.

Following prior work, we utilize here a 20-nm-thick Co
(1010) thin-film structure prepared by a DC-magnetron sput-
ter deposition in an ultrahigh vacuum (UHV) deposition
system (ATC series, AJA International, Inc.) with a base
pressure better than 10–7 mTorr. In order to promote the epi-
taxial growth of such a Co film, a single-crystal substrate
and a specific layer sequence is required [39,40], which is
shown schematically as an inset in Fig. 2(a). As substrates,
we use hydrofluoric-acid-etched Si wafers with (110) surface
orientation. On top of each Si (110) surface, a 40-nm-thick
Ag (110) film and a 10-nm Cr (211) film are deposited to
produce a suitable template layer, which promotes the desired
epitaxial growth of the 20-nm Co (1010) film. On top of the
Co layer, a 10-nm-thick SiO2 film is deposited by rf sputtering
in the same UHV chamber, which prevents the oxidation of
our samples. X-ray diffraction (XRD) measurements were
carried out in order to verify the intended epitaxial structure
of our samples. Figure 2(a) shows θ -2θ scan data with the
diffraction peaks corresponding to the crystallographic planes
of Co (1010), Si (220), Ag (220), Cr (211), and Co (2020).
The SiO2 film grows amorphous and does not show any peak.
The observation of the second-order Co (2020) peak and the
absence of diffraction peaks corresponding to other crystallo-
graphic planes verify the intended epitaxial structure of our
samples and their excellent crystallographic quality.

Vibrating sample magnetometry measurements where car-
ried out in order to test the in-plane uniaxial magnetic
anisotropy that it expected for the above-mentioned crystal-
lographic structure of our samples. Specifically, we measured
the magnetization component parallel to the direction of the
field, which is applied in the plane of the film for different
azimuthal orientations of the sample. Figure 2(b) shows the
remanent magnetization Mr normalized to saturation Ms, as
a function of the in-plane angle ϕ in between the EA and
the direction of the field. The values are obtained at zero
field after previously applying a field that is strong enough
to saturate the magnetization along any given direction. The
sample exhibits the expected sinusoidal angular dependence
with a 180 ° periodicity. Furthermore, Mr/Ms = 1 for ϕ = 0◦,
180 ° and its value reduces in textbook fashion as the sample
is rotated towards the hard axis, i.e., ϕ = 90◦, 270◦. The solid
black line shows the expected ideal behavior [41], which is
in excellent agreement with the experimental data. Thus, by
means of our structural and static magnetic characterization
measurements, we confirmed that our samples exhibit the

FIG. 2. (a) θ -2θ XRD scan showing the diffraction intensity
peaks of an epitaxial Co (1010) film. The epitaxial growth sequence
is shown as a schematic inset in the figure. (b) Normalized remanent
magnetization Mr/Ms vs the field orientation angle ϕ after satura-
tion, showing the expected uniaxial anisotropy. The solid black line
represents the perfect textbook behavior of uniaxial samples.

intended in-plane uniaxial magnetic anisotropy required for
the study of dynamic magnetic behavior in the presence of
non-antisymmetric magnetic field sequences and their impact
onto the conjugate dynamic field H∗ of order parameter Q.

In order to precisely measure the magnetization vs time
behavior of our samples, we employ a transverse magneto-
optical Kerr effect setup, which is particularly suitable for
our thin-film samples due to its excellent surface sensitivity
[24,25,42,43]. A schematic of the tool is shown in Fig. 3(a).
Here, we employ an ultralow-noise laser with λ = 635 nm
and an output power of 5 mW. Our specific setup measures
the magneto-optically induced ellipticity changes in the re-
flected light intensity, which are proportional to the transversal
magnetization component only [42,43]. The setup utilizes an
angle of incidence of 60 ° with respect to the surface nor-
mal. The first polarizer P1 is oriented in such a way that
the incident beam is linearly polarized at 45 ° with respect
to the plane of incidence, and thus is a linear combination
of s- and p-polarized light components of equal intensity. In
the reflected beam arm of our setup, the quarter-wave plate
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FIG. 3. (a) Experimental T-MOKE setup scheme consisting of
a coherent light source with λ = 635 nm, an initial polarizer P1, a
quarter-wave plate QWP, a second polarizer P2, and a photodetector.
The U-shaped electromagnet is located above the sample and pro-
duces a magnetic field H parallel to the sample surface and normal to
the optical plane of incidence at the point of the laser light spot. (b)
Exemplary experimental H vs t sequence representing two different
field amplitudes. (c) Synchronously measured M vs t data using the
T-MOKE system. The dashed line illustrates the period-averaged
magnetization 〈Q〉.

(QWP) is aligned to remove the purely optical ellipticity that
occurs after light reflection from the sample and the second
polarizer P2 is aligned in a nearly crossed position to the
polarization state emerging from the QWP. This particular
optical configuration leads to very large relative light-intensity
changes upon magnetization reversal and achieves an excel-
lent signal-to-noise ratio, so that real-time M(t) sequences
can be measured and analyzed. Further details of our specific
setup and its underlying detection scheme can be found in
Refs. [42,43].

In Figs. 3(b) and 3(c), we show exemplary experimental
H(t) and M(t) curves, respectively. Figure 3(b) shows ten
periods of H(t) representing two different field amplitudes.
Figure 3(c) shows the simultaneously measured light-intensity
signal that is measured with the sample’s EA being aligned
along the direction of the field. The first five field periods,
measured while applying a magnetic field amplitude of 582.2
± 0.1 Oe, show an almost perfect square pattern with only
two stable magnetic states, as expected in our uniaxial sample
for fields that are sufficiently large to trigger a magnetization
reversal. Figure 3(c) also demonstrates the excellent signal-
to-noise ratio as well as the very large relative light-intensity
change upon magnetization reversal, which is larger than 10%
of the average intensity value. The first five periods of the
signal are used here as reference data to calibrate the com-
plete signal sequence to the saturated magnetization states
Ms = ±1. In this regime, the magnetization undergoes full
hysteresis loops, leading to a Q = 0 value, represented by
the green-dashed line, which is the expected behavior in the
dynamic PM phase. In contrast, the subsequent five field os-

cillations with a field amplitude of 262.2 ± 0.1 Oe result in a
magnetization vs time sequence that remains at all times very
close to one of the two saturated states, and whose value is
determined by the last half period of the preceding stronger
field amplitude. In this case, Q ≈ 1, as one can see from
the green-dashed lines, which is the expected behavior in the
dynamic FM phase far away from the critical point. Thus,
Fig. 3 demonstrates that we can access both the dynamic FM
and PM phases by properly tuning H0 and at the same time
achieve an extremely high magnetization sensitivity in our
T-MOKE tool.

In order to properly characterize the phase space of the
DPT experimentally, we measure 300 periods for fixed field
conditions and subsequently evaluate the time-averaged order
parameter 〈Q〉 from the magnetization vs time sequences.
Then, we decrease or increase Hb stepwise while keeping the
rest of the parameters constant, so that we can effectively
access the dynamically stable state in the entire phase space,
including regions close to the first-order phase transition line
in the FM phase, where Q vs Hb hysteresis phenomena have
to be considered [19]. Reference signals are measured before
and after each measurement sequence, so that our intensity
signal traces are always properly normalized and possible
light-intensity drifts can be compensated. These drift com-
pensations were extremely small for all measurements in this
study due to the excellent sensitivity and stability of our
T-MOKE system [25].

III. SIMULATION RESULTS

In this section, we will theoretically analyze the effects of a
nonzero H2 component onto the overall phase-space behavior
of Q close to the critical point, as well as address the question
of the general existence of a conjugate H∗ field in the presence
of both Hb and H2. If it exists, a general formulation of H∗
needs to be consistent with time-reversal symmetry, as ex-
plained in Sec. I. Such a generalized H∗ should be in principle
compatible with an expansion around H∗ = Hb, at least for
sufficiently small H2 values, because H∗ = Hb is valid in the
absence of dynamic field components that break the HWA
of H(t).

In order to characterize the viability of such an expansion
and following the methodology explained in Sec. II, we study
first the impact of a H2 term onto the PM phase for fixed
P/τ and H0/J values, because in this region of the phase
space, deviations from the H∗ = Hb case seem to be very
substantial, according to Figs. 1(e) and 1(f). In Fig. 4(a), we
present examples of dynamic behavior by showing the Q vs
Hb dependence in the PM phase for several values of H2/J
with P/τ = 50 and H0/J = 0.1. For the H2 = 0 case [i.e.,
the blue line in Fig. 4(a)], Q describes the expected behavior
of the dynamic PM phase. Here, Q increases monotonously
with Hb in an antisymmetric fashion, as expected according
to Eq. (2), and we verify that Q(Hb = 0) = 0. We can clearly
distinguish here the conventional PM region, with an almost
linear increase of Q for small enough values of |Hb|, and an
anomalous PM region for large |Hb| > 0.02 J values, in which
Q is nearly saturated. Both the conventional and anomalous
PM regions are separated by the metamagnetic onset regions
[23], which are characterized by steep increases of Q with Hb.
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FIG. 4. (a) MFA simulation results of Q vs Hb for several H2

amplitudes in the PM phase with P/τ = 50 and H0/J = 0.11. (b)
Corresponding deviations �H vs Hb required to recover the expected
time-reversal symmetry for the same values of H2 shown in (a). (c)
Q vs H∗ computed by using Eqs. (6) and (7) for the datasets shown
in (a) and (b).

For nonzero values of H2, the anomalous PM regions differ
only minimally from the H2 = 0 case in the way Q approaches
its near-saturation value as a function of Hb. However, the
behavior in the conventional PM phase differs substantially.
Here, with increasing H2, Q shows an offset “quasiplateau” of
increasing magnitude. For opposite values of H2, Q displays
the same behavior but with negative quasiplateau values for
Q, as demonstrated by the dashed lines in Fig. 4(a). The
deviations from the H2 = 0 case come from the fact that
the driving force of the dynamics is asymmetric and thus, the
resulting magnetization dynamics is asymmetric too, leading
to an effective bias effect. The nonzero H2 component also
affects the shape of the metamagnetic regions of the map.
Here, we observe a shift of the metamagnetic onset regions
as well as a broadening in the change of Q with Hb in only

one of the two metamagnetic transition regions. Overall, we
find that these results are fully consistent with the data shown
in Fig. 1(e), in which Q was found to be nonzero for Hb = 0.

The fact that the antisymmetry of the Q vs Hb curve is not
preserved in the PM region implies that H∗ 	= Hb upon the
application of additional harmonic components in the driv-
ing magnetic field sequence. In order to verify the possible
existence of a generalized expression of the conjugate field
H∗(Hb, H2), we first define the deviation �H (Hb, H2) of H∗
from the pure bias field value Hb, such that

H∗ = Hb + �H (Hb, H2). (6)

This deviation �H is the change in field required to recover
Eq. (2), which can be obtained as the net bias shift in-between
two opposite values of Q, namely

�H = 1
2 [Hb(Q) + Hb(−Q)], (7)

where Q is implicitly dependent on Hb and H2. In Fig. 4(b),
�H is shown as a function of Hb for the cases displayed in
Fig. 4(a). We see that �H describes an asymmetric nearly
triangular shape as a function of Hb whose magnitude has the
same sign as H2, and furthermore vanishes for H2 = 0. Also,
we see that �H approaches zero in the regions corresponding
to the anomalous PM region, which implies that the nearly
saturated Q state is not substantially affected by H2, at least in
this segment of the phase space.

Figure 4(c) shows the same set of Q data now as a function
of H∗, calculated by means of Eqs. (6) and (7). Here, we see
that the antisymmetry is completely restored for all selected
H2 amplitudes. The values of Q with opposite H2 collapse
onto the same curve if plotted against the H∗ axis. These
results indeed verify that a generalized conjugate field H∗ can
be computed by means of Eqs. (6) and (7), at least in the PM
phase, so that time-reversal symmetry is restored [44].

In order to provide a complete description of the effects
of H2 close to the critical point of the DPT, we present in
Figs. 5(a)–5(e) Q as a function of H0/J and Hb/J for several
values of H2/J . For the H2 = 0 case in Fig. 5(c), we find
the previously described conventional phase-space behavior,
as already described in Sec. I in conjunction with Fig. 1(d).
Below the critical field amplitude H0

crit/J = 0.101, i.e., in the
dynamic FM phase, there are two well-defined regions with
opposite values of Q � 0 upon reversal of Hb. In the PM
phase for H0 > H0

crit , we observe that Q = 0 for Hb = 0 and
changes continuously as a function of Hb. In summary, the
time-reversal symmetry is strictly preserved in the complete
phase space with Hb being identical to the conjugate field H∗.

For nonzero values of H2, the FM phase remains almost un-
changed in agreement with the behavior observed in Fig. 1(f),
with the exceptions being the exact location of the critical
point and the precise placement of the phase line that separates
the dynamically stable states, which we will discuss later.
In the FM phase, Q shows very similar values in all cases
upon increasing |H2|, as seen from the yellow and blue areas
in the maps. In the anomalous PM regions of the maps, the
values of Q are also not substantially affected by a nonzero H2

component. However, in the conventional PM phase Q shows
a clear offset behavior that increases in size with H2, which
can be identified by the gradual color change in between
Figs. 5(a)–5(e) in the conventional PM regions of the phase
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FIG. 5. (a)–(e) Color-coded maps of Q in the analyzed phase space around the DPT as a function of H0 and Hb for several values of H2.
(f)–(j) Color-coded maps of �H for the corresponding phase spaces in (a)–(e) as a function of H0 and Hb. The color bars, shown on the
right-hand side of (e) and (j), are valid for the entirety of each respective row.

space. This change of Q in the conventional PM phase agrees
with the results in Fig. 4(a), in which this offset behavior was
displayed for one specific H0/J value. As already mentioned,
there is a shift of the critical point for increasing |H2|. For the
|H2|/J = 0.03 case, for instance, H0

crit is about 4% smaller
than in the H2/J = 0 case. This shift is due to the fact that
the maximum field due to the superposition of the H0 and
H2 components is larger, and thus only a smaller H0 value is
required to drive the system into the PM phase. These findings
demonstrate that the addition of secondary harmonic field
components to the usual magnetic field sequence affects both
H∗ and the critical point of the overall phase space, contrary
to what was previously reported [34]. Further details regarding
the critical point evolution upon changing H2 will be discussed
in Sec. IV in conjunction with the corresponding experimental
results.

Given that Hb does not properly represent the conjugate
field in the phase space now, the phase line dividing the stable
states of Q in Figs. 5(a)–5(e) is ill defined in the Hb domain
[22]. So, for simplicity we utilize the shift of the critical
point in the (H0, Hb) domain, which can be easily identi-
fied, to decide where the transition of all dynamically stable
states occurs along the Hb axis for all H0 < H0

crit values.
Correspondingly, this shift of the critical point away from the
Hb = 0 point for nonvanishing H2 values leads to a shifting of
the line dividing the positive and negative states of Q in the
entire FM phase. This shift is, however, very modest in size
and can only be spotted upon very close inspection of Fig. 5.
It is also noticeable that, as in Fig. 4(a), there is an asymmetry
in the metamagnetic onset upon introducing nonvanishing H2

values, which persists for all values of H0.
Figures 5(f)–5(j) show the corresponding deviations �H ,

according to Eq. (7), required to transform Hb into H∗ for
each H0/J , Hb/J point in the phase space. As expected, the
deviations are zero within the numerical precision of our com-
putations in the complete phase space for H2 = 0, as seen in
Fig. 5(h). As H2 increases, the deviations become increasingly
large in the conventional PM phase only and exhibit the same
sign as H2 itself. These results are a generalization of the

corresponding results in Fig. 4(b). The values of �H in both
the anomalous PM region and the FM phase are at least two
orders of magnitude smaller (but still nonzero) in comparison
with the central portion of the PM region. These results agree
with the fact that the phase space in the FM region remains
basically unaltered, with the only exception being the phase
line dividing the stable states.

We therefore conclude that the addition of secondary
Fourier components to the magnetic field signal plays a sub-
stantial role only in the conventional PM phase, as well as
for the exact location of the critical point. We observe that
the secondary harmonic field acts as an effective additional
bias field that works in sync or against Hb. We verify that
a H∗ field exhibiting the properties of the conjugate field
can be constructed even in the presence of H2. We have also
shown how to construct such a H∗ field and have analyzed the
characteristic of the needed correction to Hb in the entirety of
the relevant phase space.

IV. EXPERIMENT RESULTS

To verify the relevance of our theoretical observations, we
will now analyze the experimental phase-space behavior of
〈Q〉 in our Co (1010) sample and compare these results with
the simulations of Sec. III. The measurements were carried
out in our T-MOKE setup at room temperature with the fun-
damental period of the field oscillations being P = 10 ms. In
Figs. 6(a)–6(e), we show the experimental phase-space behav-
ior of 〈Q〉 as a function of both H0 and Hb for several values
of H2. In all the cases, the order parameter shows a qualitative
identical behavior to the simulations in Figs. 5(a)–5(e). For
the H2 = 0 Oe case in Fig. 6(c), the phase-space behavior of
〈Q〉 is characterized by a critical point at H0

crit = 314.9 Oe
dividing both the FM and the PM phases. In the FM phase,
for H0 < H0

crit , we observe two well-defined opposite regions
separated by the Hb = 0 phase line. In the dynamic PM phase,
〈Q〉 = 0 within the experimental precision for Hb = 0 and
reaches near saturation for sufficiently large values of Hb in
the anomalous PM phase. Also, in our experiments here, the
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FIG. 6. (a)–(e) Color-coded maps of 〈Q〉 in the analyzed phase space around the DPT as a function of H0 and Hb for several values of H2.
(f)–(j) Color-coded maps of experimental �H for the corresponding phase spaces in (a)–(e) as a function of H0 and Hb. The color bars, shown
on the right-hand side of (e) and (j), are valid for the entirety of each respective row.

metamagnetic anomalies happen in a rather narrow range of
Hb field values that are of the order of our experimental resolu-
tion along the Hb axis in our large area measurements, as seen
by the seemingly abrupt yellow-to-green and green-to-blue
transition regions.

For different H2 values in Figs. 6(a)–6(e), the phase transi-
tion and the phase-space behavior of 〈Q〉 is not fundamentally
changed. In all the cases, there is a FM and a PM phase clearly
divided by a critical field amplitude H0

crit . However, one can
most evidently observe here that the values of 〈Q〉 in the con-
ventional PM regime increase monotonously with H2, in good
agreement with the simulations shown in Figs. 5(a)–5(e). Fur-
thermore, the critical field amplitude decreases substantially
with |H2|, leading to H0

crit = 255.4 Oe for H2 = ±104.7 Oe,
which is fundamentally consistent with the results in Sec. III,
even if it represents a yet more substantial decrease than what
occurs in our simulations. In the FM phase, any deviation
from the H2 = 0 case is smaller than the Hb resolution grid
that we were able to employ experimentally. Correspondingly,
possible shifts of the phase line dividing the stable states in
the FM phase are below our Hb resolution. Nonetheless, it
is clearly observed that all core characteristics of the phase-
space behavior of 〈Q〉 are in very good qualitative agreement
with the simulations in Sec. III. As in the simulations, we
observe also here that the secondary field component affects
mainly the conventional PM phase, as well as the critical field
amplitude whose relative difference is found to be larger than
in our simulations.

Figures 6(f)–6(j) show as color-coded maps the corre-
sponding experimental �H (H0, Hb) values, determined by
using Eq. (7) in the entirety of the measured phase space and
for the same H2 amplitudes used for Figs. 6(a)–6(e). For the
H2 = 0 Oe case in Fig. 6(h), �H is effectively zero in the
entire analyzed phase space, except for the region with very
large metamagnetic fluctuations, which is simply a conse-
quence of the experimental resolution limit along the Hb axis
and thus leads to an enhanced noise level for the determined

�H values. As H2 is varied, �H shows a qualitative identical
phase-space behavior to the one found in the simulations, as
can be seen in Figs. 6(f)–6(j). Also, here we observe that
the higher-order induced bias �H is only relevant in the
conventional PM phase. We identify an asymmetric shape as
a function of Hb whose magnitude increases monotonously
with H2, also in good agreement with the results in Figs. 5(f)–
5(j). The �H values in the FM phase are smaller than the
fluctuation level of our measurements, and thus are equal to
zero within our experimental precision.

In Fig. 7(a), we show 〈Q〉 along a cut of the phase space
in the PM state, in which H0 is kept constant at 1.08 H0

crit

while Hb is varied for three different values of H2. Here, we
clearly see that the change of 〈Q〉 due to the presence of H2

is significant in the conventional PM region only, which is
in excellent qualitative agreement with our MFA simulations
shown in Fig. 4(a). We also observe that the Hb range of the
conventional PM regime is similar in these cases, which is as-
sociated with the fact that we chose a fixed H0/H0

crit ratio. We
observe a substantial impact of H2 onto the general occurrence
of the metamagnetic anomalies only in creating an asymmetry
in the 〈Q〉 change that is associated with them, which is
essentially the same behavior as seen in the calculations. In
contrast to the calculations, however, we do not observe an
asymmetric broadening of only one of the metamagnetic onset
regions, which might be associated with the limited resolution
in Hb that we can achieve experimentally.

To analyze the observed effective bias effect of H2 in the
conventional PM phase in a more quantitative manner, we
computed as a function of H2 the average value of 〈Q〉 at
Hb = 0 for the same H0/H0

crit ratio, a quantity we call Q0 and
display in Fig. 7(b). For small H2 amplitudes, Q0 increases
linearly but, as H2 becomes increasingly large, the slope de-
creases, and the behavior becomes sublinear. This analysis is
fully consistent with the results of our simulations shown in
the inset of Fig. 7(b) that displays a very similar qualitative
behavior.
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FIG. 7. (a) Experimental 〈Q〉 vs Hb for several H2 and H0 =
1.08 H0

crit . (b) Experimental value of 〈Q〉 at Hb = 0 for H0 =
1.08 H0

crit as a function of H2. The inset figure shows as a comparison
the corresponding simulated results for the same H0/H0

crit ratio. (c)
Experimental H0

crit as a function of H2. The inset figure shows as a
comparison the simulated H0

crit as a function of H2. The red lines
correspond in both cases to a least-square fit to a parabolic function
centered at H2 = 0.

Another aspect that we have analyzed in detail is the H2

dependence of the critical point. Figure 7(c) shows the ex-
perimental H0

crit values as a function of H2. The inset of the
figure shows comparatively the simulated results for H0

crit/J .
In both cases we identify a quadratic decrease of the critical
field amplitude as a function of H2. The red lines represent
a least-squares fit to a parabolic function centered around
H2 = 0, providing in both cases a very large coefficient of de-
termination R2 > 0.995. This behavior is explained by the fact
that as |H2| increases while keeping H0 constant, the total field
amplitude also increases. Correspondingly, the total amplitude
of H(t) can become larger than H0

crit for the H2-free case,

and the system will transition into the dynamic PM phase,
even if H0 alone is smaller than the critical field amplitude.
Thus, by increasing H2, while keeping H0 constant, H0

crit will
decrease. We observed here that the H0

crit vs H2 dependence
is quadratic, at least for a substantial range of H2. We are also
mindful of the fact that there is a one-to-one correspondence
in between H0

crit and Pc determining the location of the critical
point, as explained in Sec. I. Thus, one can deduce that for
increasing H2, Pc should decrease in a similar fashion as
H0

crit , which is differing from what was previously reported
in Ref. [34], where H2 and higher even Fourier amplitudes
of the field sequence were only associated with producing a
bias effect. To our understanding, this difference seems to be
related to the fact that the authors of Ref. [34] investigated
very small values of the higher Fourier amplitudes only, i.e.,
H2 
 H0, because their focus was on the scaling behavior of
Q in a region of the phase space very close to the critical
point. Correspondingly, the values of H2 amplitudes used in
this previous study were probably too small in comparison
to the fundamental amplitude to detect any noticeable change
in Pc.

However, we also recognize that the relative change of
H0

crit with H2 differs substantially in between simulations and
experiments. While the relative change of H0

crit is on the order
of 4% in the simulations with respect to the maximum H2/J
value used in our study, the experimental results indicate a
relative change of 30%. At the same time, the slope of Q0

with H2, shown in Fig. 7(b), also seems to differ in between
simulations and experiments by about 30% in units of field
normalized to H0

crit . In relation to these quantitative differ-
ences, we emphasize that experiments and simulations are
done in very different P/τ parameter ranges and thus both
systems show very different relaxation timescales. Also, our
simulations here correspond to a MFA model in which spin
fluctuations are neglected. These details might contribute to
the observed quantitative mismatch of the impact that H2 has
on the dynamic state of a ferromagnetic system, but whose
qualitative behavior is nonetheless in very good agreement in
between simulations and experiments.

To complete our in-depth analysis and provide an over-
all perspective of the presented results, it is worthwhile to
consider the following general aspects of our observations re-
garding �H for both experiments and simulations. Figure 8(a)
shows �H/H0

crit as a function of the normalized bias field
Hb/H0

crit for several H2 values and for a fixed H0 = 1.08H0
crit .

Here, we observe that the three curves show very promi-
nent triangular shapes whose width is nearly identical in all
three cases. The range of significant �H values fully coin-
cides with the conventional PM regime. Figure 8(b) shows
as a comparison the �H/H0

crit vs Hb/H0
crit for the same

H0/H0
crit = 1.08 ratio. In this case, we also observe an asym-

metric near-triangular shape in all the cases, with magnitudes
being similar to those in Fig. 8(a). Here, the behavior close
to the maximum is far smoother than for the experimental
data given the substantially higher Hb resolution that can be
achieved in the theoretical study. The vertical black-dashed
lines stand for the local maxima of the metamagnetic sus-
ceptibility, which clearly confine the region of very large �H
values. The relative width is different in between simulations
and experiments, due to the fact that different effective P/τ
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FIG. 8. (a) Experimental �H/H0
crit data as a function of

Hb/H0
crit for several H2 values and H0/H0

crit = 1.08. (b) Simulated
�H/H0

crit data as a function of Hb/H0
crit for several H2/J with the

same H0/H0
crit ratio and P/τ = 50. The thick black-dashed line rep-

resents the deviations �H = c2H2 + cb2HbH2 for the H2/J = 0.03
case, which are shown to be valid only for small values of |Hb|. (c)
Normalized maximum amplitude of �H . Black points represent sim-
ulation results whereas the colored squares represent experimental
data.

values are being used, which lead to different opening angles
of the conventional PM region in the normalized dynamic
phase space [12].

Figures 8(a) and 8(b) show that the width of the deviations
�H in the renormalized space is identical in all the cases.
Thus, the widening of �H with H2 in the PM phase space that
was observed in Fig. 4(b) is simply due to the H0

crit vs H2 de-
pendence rather than a genuine widening of the conventional
PM region itself. In other words, H2 affects the critical point,
but the shape of the conventional PM region remains basically
unaltered in the properly renormalized H0/H0

crit scale.
Figure 8(c) shows the observed maximum of �H/H0

crit as
a function H2/H0

crit . The simulated points, shown as black
dots, show an almost linear increase with H2, in agreement
with the almost linear increase of Q0 with H2 observed
in Fig. 7(b). The colored points represent the experimental

max(�H )/H0
crit values, and both experiments and simula-

tions agree well in the magnitude of �H/H0
crit . For larger

H2/H0
crit values, the experimental max(�H )/H0

crit seem to
saturate relevantly, which is not observed in the simulation
behavior. This difference might be associated with the fact
that the experimental �H/H0

crit vs Hb/H0
crit curves appear

somewhat truncated and thus, their actual measured maximum
might be slightly reduced in comparison to the respective
theoretical curves for large H2 values.

Finally, it is worthwhile to make some general remarks
regarding the nontrivial shape and nonlinear behavior of the
deviations �H , and analyze their origin. In Ref. [34], it was
observed that each even Fourier component produces the same
scaling behavior independently that one would expect from
a conjugate field, which led to the proper conclusion that
each such component contributes to the conjugate field. This
finding can be utilized to make the initial assumption that
the generalized conjugate field could be estimated by a sim-
ple superposition of the even Fourier components, such that
H∗ = Hb + c2H2 + c4H4 + etc. If this were correct, then the
deviation �H would be �H = c2H2 + c4H4 + etc., which is
equivalent to a simple linear shift of the Q(Hb) curves. How-
ever, Fig. 4(a) already reveals that the modifications to the
actual Q(Hb) curves are far more substantial than that and we
observe instead a far more severe nonsymmetric appearance,
especially in the metamagnetic regions, which are affected in
a very asymmetric manner. This behavior indicates that the
contributions of the even components onto the conjugate field
are not simply additive but contain very significant correlation
effect.

In order to visualize this correlation in its simplest form,
we have considered bilinear corrections, such that H∗ =
Hb + c2H2 + cb2HbH2, where the prefactor cb2 describes the
strength of this correlation if both Hb and H2 are present. As
an example, we show in Fig. 8(b) how the deviation �H =
c2H2 + cb2HbH2 appears for the H2 = 0.03J case within this
bilinear approximation. The bilinear correction fits our full
solution for small enough values of |Hb|, while at the same
time demonstrating that the correlated bilinear term is rele-
vant for all Hb values, even the smallest ones. Thus, a mere
superposition of the conjugate field contributions for each H2 j

is inherently unsuitable due to the strong correlated effect that
the different field components have on the dynamic behavior
and the order parameter. Even if allowing for the bilinear
inclusion of correlated effects, Fig. 8(b) shows that the cor-
rection is not applicable in the complete phase space along
the Hb direction. Furthermore, we find that the set of coeffi-
cients (c2, cb2) are H0 dependent and thus, they do not lead
to meaningful or broadly applicable results in this direction
of the phase space either, which is emblematic for the strong
correlated effect of all the different field amplitudes onto the
dynamic system, including H0. Correspondingly, we find a
series expansion approach of H∗ not very meaningful, if one
attempts to cover a very significant part of the dynamic phase
space, which was our intent here. For smaller subsections of
the phase space, such an approach might be useful, though,
even if in all likelihood a large number of expansion terms will
have to be considered to accurately describe such a nonlinear
magnetic system, whose precise dynamic state depends on the
correlated net effect of all external field components.
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In this regard, we emphasize that our approach is in-
herently valid in the complete parameter space and is not
restricted to small values of Hb or H2. Both the simulations
and experiments point at very specific symmetry conditions
in �H (Hb, H2), as well as the phase-space behavior of Q in
the presence of a general H(t) sequence. In the absence of H2,
the inversion of Hb → −Hb in the magnetic field signal leads
to exactly Q → −Q. At the same time, in the absence of Hb,
we observed that the inversion of H2 → −H2 also leads to
Q → −Q, as one can see for example in Figs. 4(a) and 4(b).
However, if both Hb and H2 are nonzero, the Q → −Q state is
accessed with Hb → −Hb and H2 → −H2. This antisymmet-
ric feature is necessarily preserved in the deviations so that
�H (Hb, H2) = −�H (−Hb,−H2), which is what we observe
in the entirety of our investigation. Correspondingly, it is easy
to show that H∗(Hb, H2) = −H∗(−Hb,−H2), which in and
by itself is not a trivial observation.

V. CONCLUSIONS

In this work, we studied the overall phase-space behavior
of a dynamic magnetic system, for which a second-harmonic
field contribution is superimposed to a conventional field
sequence used in the context of the DPT, which normally con-
tains only a fundamental sinusoidal and a constant bias field
contribution. We observed that the fundamental characteris-
tics of the phase-space behavior are preserved with the dy-
namic order parameter Q defining clearly identifiable FM and
PM phases, separated by a critical point, and the character-
istic occurrence of metamagnetic anomalies in the PM state.
However, we also observe that such a second-harmonic field
component plays a substantial role in modifying several rele-
vant aspects of the phase-space behavior. Most fundamentally,
the conjugate field of the order parameter needs to be rede-
fined and the position of the critical point is relevantly shifted.

Firstly, we observed that the second-harmonic field contri-
bution acts as an additional bias field whose effects are most
visible in the conventional PM phase. Nonetheless, we have
demonstrated that a proper conjugate field can be constructed
as a function of the field amplitudes of the even Fourier
components and time-reversal symmetry can be restored in
the complete phase space if an adequately corrected conjugate
field is considered. We obtained a generalized procedure to
calculate this conjugate field considering an expansion around
the conventional bias field. We also demonstrate the viability
of this approach for experimental and simulated data for vary-
ing amplitudes of the second-harmonic field contribution.

Overall, the results of our work are in excellent agreement
with those in Ref. [34], with the only difference being that no
shift of the critical point as a function of the second-harmonic
field amplitude H2 was reported in this previous work. We
believe that this difference is related to the very small higher-
order field amplitudes that were utilized in Ref. [34] in
conjunction with the quadratic dependence of the critical point
shift with H2 that we observed. Our results imply that the
critical point of the phase transition is being determined by
the total amplitude of the field oscillations, which is indeed
composed by all Fourier components except for the bias field.

It should be noted that, in this work, we have focused
our attention onto the influence of a secondary in-phase har-
monic field component of period P′ = P/2 only. However, it

is reasonable to expect that higher-order even Fourier com-
ponents should contribute similarly to the overall dynamic
system behavior in the phase space near the DPT, possibly
with an order-dependent decreasing relevance given that the
corresponding periods are increasingly further away from the
periods close to the critical region. Higher-order odd Fourier
components might also alter the dynamic behavior and the ex-
act location of the critical point, but they should not play any
role in the conjugate field given that these field components do
not break the HWA of the field sequence, which is consistent
with numerous Monte Carlo studies, that typically apply a
rectangular field sequence to trigger the dynamic behavior.

Thus, we have addressed the issue of a generalized con-
jugate field in a comprehensive manner and observed that
the conjugate field of the dynamic order parameter is not
solely composed of the bias field in the most general scenario.
Instead, this generalized conjugate field can be determined
from sufficiently complete phase-space data. It should be in-
teresting to verify whether the critical behavior close to the
critical point conserves the values of its critical exponent with
respect to the newly constructed conjugate field, an aspect that
is beyond the scope of this work.
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APPENDIX

In order to obtain the steady-state periodic solutions of
M(t) following Eq. (5), we evaluate the corresponding finite
difference equation,

M(k) = F [M(k)]

= 1

1 + τK/P

[
tanh

(
1

T

[
M(k) + H (k)

J

])

+ τK

P
M(k − 1)

]
, (A1)

with K = 300 being the number of discrete time points k in a
period for our simulations. In order to solve Eq. (A1), we con-
sider an initial condition Mi=1(k) = ±0.15 + 0.4 sin(2πk/K )
and self-consistently evaluate Mi(k) as

Mi(k) = Mi−1(k) + s[F [Mi−1(k)] − Mi−1(k)], (A2)

where s = 0.5 represents the fraction of F [Mi−1(k)] added
to the next iteration in order to keep the iteration procedure
stable. The cutoff for the convergence of M(k) is set at

max(F [Mi(k)] − Mi(k)) < 10−10, (A3)

which is sufficient to provide reliable solutions in the entirety
of the explored phase space. Afterwards, following Eq. (1),
the order parameter is numerically obtained for each M(k) as

Q = 1

K

K∑
k = 1

M(k). (A4)
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