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One of the key issues in the physics of topological insulators is whether the topologically non-
trivial properties survive at finite temperatures and, if so, whether they disappear only at the
temperature of topological gap closing. Here, we study this problem, using quantum fidelity as a
measure, by means of ab-initio methods supplemented by an effective dissipative theory built on
the top of the ab-initio electron and phonon band structures. In the case of SnTe, the prototypical
crystal topological insulator, we reveal the presence of a characteristic temperature, much lower
than the gap-closing one, that marks a loss of coherence of the topological state. The transition is
not present in a purely electronic system but it appears once we invoke coupling with a dissipative
bosonic bath. Features in the dependence with temperature of the fidelity susceptibility can be
related to changes in the band curvature, but signatures of a topological phase transition appear in
the fidelity only though the non-adiabatic coupling with soft phonons. Our argument is valid for
valley topological insulators, but in principle can be generalized to the broader class of topological
insulators which host any symmetry-breaking boson.

Introduction. The theoretical description [1] and sub-
sequent observation [2] of topological states in the early
2000s have dramatically changed the landscape of re-
search in condensed matter physics. Thousands of theo-
retical papers have been published on this subject, with
an overwhelming majority dedicated to the properties
of zero-temperature model systems [3]. The question of
finite-temperature effects is a very difficult one and has
been put in the spotlight only a few years ago [4, 5]. Nat-
urally, the issue of the theoretical treatment of thermal
effects in topological insulators is a pressing one since
all the experiments are carried out at finite temperature.
However, the standard Ginzburg-Landau theory of phase
transitions is inapplicable here – one cannot define a local
order parameter, instead one must work with invariants
defined along entire trajectories in the material’s param-
eter space [6]. There have been so far several theoretical
attempts to tackle this problem. From a single-particle
density functional theory (DFT) perspective, attempts to
assess the topological critical temperature are generally
based on the closing of the gap at some finite tempera-
ture [7–9]. The conjuncture made in these papers is that
topological invariants stay unaltered up to this point and
the entire physics is determined by the single-particle gap
inversion. Since the topological invariants result from
the collective behavior of the entire electronic liquid, this
assumption needs to be taken with care. The picture
provided by many-body methods is in fact strikingly dif-
ferent. First attempts used a concept of Uhlmann par-
allel transport which generalized a concept of a finite-
temperature Chern number and aimed to compute its
temperature dependence [4]. These studies were initially
limited to quantum one-dimensional (1D) systems [4, 10]

and later generalized to 2D [5]. This kind of analysis,
applied to model systems, revealed that the critical tem-
perature can be up to 70% lower than the mean-field
critical temperature [4]. There have also been attempts
to apply Hill’s thermodynamics (small quantum system
thermodynamics) to capture the influence of the thermo-
dynamic potential of the boundary terms [6, 11]. These
numerical studies confirmed the results of the Uhlmann
conjecture in model 2D systems and extended the obser-
vations to the 3D case. Recently, the use of fidelity was
proposed [12, 13] as a suitable tool to probe the quantum
phase transitions even in systems with non-local order pa-
rameters. An analysis based on this magnitude suggests
that in a topological model the fidelity only shows signs
of a phase transition at zero temperature [12, 13]. This
result would imply that topological states are a char-
acteristic of zero-temperature states and disappear in a
crossover manner as the temperature increases, revealing
a lack of protection against thermal fluctuations of the
topological state of matter. However, in Ref. [12] only
Hamiltonians with temperature-independent parameters
were considered.

Here, we address this issue by computing the fidelity
on a realistic system with a temperature-dependent elec-
tronic structure. We consider a topological insulator pro-
tected by the valley (mirror) symmetry of the underlying
crystal lattice [14] as we expect that in this case the con-
tributions from thermal fluctuations of the lattice will
manifest particularly strongly. We study SnTe, which is
perhaps the simplest compound of this kind [15]. Be-
ing material specific allows us to perform a joint study
that builds an extension of ab-initio results by an exact
analytic calculation of drag effects.
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Band structure as provided by DFT. Our starting point
is the density functional theory (DFT) band structure
computed using the PBE parametrization for the ex-
change and correlation functional Technical details of
the DFT simulations can be found in Appendix A. The
choice of the Perdew-Burke-Ernzerhof (PBE) functional
over higher-order methods, such as hybrid functionals or
GW , is justified by previous studies, which show that the
effect of additional electronic correlation and band shift
due to an electron-phonon interaction tend to partially
cancel each other [9, 16]. The explicit changes of the elec-
tronic structure due to thermal expansion are taken into
account by performing calculations at the temperature-
dependent lattice parameter, obtained from the linear
thermal expansion coefficient as calculated in Ref. [9].
The electronic dispersion curves near the band edges at
L are displayed in Fig. 1 as a function of temperature. At
low temperatures the bottom of the conduction is shifted
with respect to the L point, showing a “Mexican-hat”-
like feature that, in SnTe, reflects the topological char-
acter that results from the inversion of bands of oppo-
site parity close to the L point [17]. As the temperature
increases, and the material expands, the gap tends to
close. In the process, the “Mexican-hat”-like minimum
disappears and the dispersion becomes linear near the
crossover. Neglecting the effect of electron-phonon cou-
pling, according to the DFT simulations the closing of
the gap would occur at a temperature of around 1700 K
due to lattice expansion exclusively, a temperature larger
than the melting temperature of the material (1063 K).

FIG. 1. Detail of the band structure around the L point
showing the evolution of the band structure of SnTe with tem-
perature, as calculated with DFT (the band structure along a
full path across the Brillouin zone can be found in Appendix
A). The temperature, T varies from 100 to 1900 K in 200-K
steps. Inset: Group velocities of electrons in the conduction
band as a function of temperature.

Computing fidelity. We follow the method introduced
in Ref. [12] to track the topological phase transition and

use the fidelity, defined as

F(ρA, ρB) = Tr

[√√
ρAρB

√
ρA
]
, (1)

where ρI are the corresponding density matrices. The
fidelity is a generalization of the overlap for mixed states
and measures the similarity between two quantum states
[18]. At a phase transition the fidelity drops as a result
of the drastic changes in the quantum state of the system
[19]. Here we use the fidelity to measure the proximity
between states of the system at T and T + δT in order to
detect a hypothetical phase transition at finite tempera-
ture.

We first compute the single-particle fidelity as a func-
tion of temperature using the density matrices obtained
from DFT calculations. The single-particle density ma-
trix is readily available in many DFT codes, where it is
commonly expressed in the basis of the basis functions
used to expand the Kohn-Sham states. In this basis the
density matrix takes the form

ρ =
∑
ν,µ

ρν,µ|ν〉〈µ|, (2)

with

ρν,µ =
∑
nk

fnkcν,nkc
∗
µ,nk, (3)

where {|ν〉, |µ〉} are basis orbitals, nk denotes a Kohn-
Sham state, and fnk is the occupation function.

In the analysis of the topological character of the elec-
tronic structure based on zero-temperature topological
invariants, temperature effects are usually limited to lat-
tice expansion and band renormalization due to electron-
phonon effects [7–9]. Instead, the analysis based on
the quantum fidelity (density matrices) also accounts for
changes in the topological character due to the partial oc-
cupation of eigenvalues of opposite parity. Remarkably,
despite the notable changes in the band dispersion of the
material in this temperature range, the single-particle fi-
delity is not able to capture any sign of the transition,
even at the crossover temperature (∼ 1700 K).

Dissipative environment. In SnTe the crystal lattice
determines the mirror symmetry by which the topologi-
cal invariant is defined. At low temperature the material
undergoes a ferroelectric phase transition, and electron-
phonon coupling is expected to be substantial (as is the
case in similar materials [20]), so it is therefore necessary
to introduce the lattice dynamics explicitly into our con-
siderations. The motion of atoms associated with a soft
transverse optical (TO) mode at Γ violates the mirror
symmetry with respect to which the topological invari-
ant is defined. If dissipation is introduced by a dynamic
electron-phonon coupling, then part of the electronic den-
sity is brought into an incoherent fluctuating state and
the topological state is undefined. Here, we develop a
model for an electron gas with a realistic dispersion given
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by the DFT bands in Fig. 1 interacting nonadiabatically
with a phonon bath. Such dissipative systems are known
to host a phase transition [21, 22]. The Hamiltonian for
the electron plus phonon system is

H = HDFT [c†kck]+
∑
k,q

g(q)c†kck−q(a
†
q+a−q)+

∑
q

ωqa
†
qaq,

(4)
where ωq = cphq + ω0 is the TO phonon dispersion (a
linear dispersion is a valid approximation over a rela-
tively wide range of q around Γ for the TO mode in SnTe
[23]), and g(q) is the electron-phonon coupling. We take
g(q) ∼ qα, a generalization of a displacement potential.
In SnTe, for the TO phonon mode α < 1 as evidenced
by a DFT study [24]. The ladder vertex correction can
further renormalize the value of α [25].

A solution of Eq. (4) at a given temperature T0 would
be a specific state |ρtot〉 = |ρel, nph〉. Since the TO
phonons are coupled with other branches (which in turn
also interact with lattice dislocations, interfaces, etc.),
this is a dissipative system. We refrain from solving this
nontrivial problem [26], as we are interested only in the
change of the incoherent part of electronic density as the
temperature changes [13, 21]. The form of this Hamil-
tonian will hold as long as there is no structural phase
transition, which for SnTe above 100 K is justified.

The time derivative of a density matrix is [27]

dρ̂el
dt

= ı[Ĥ, ρ̂el] +R[ρ̂el], (5)

a general form that encapsulates the Lindbladian super-
operator [28] for a specific choice of a relaxation func-
tional R[ρ̂]. It has been shown [29] that, in general, for
any steady state the norm of the left-hand side (LHS) of
Eq. (5) (e.g. | . . . | = Trρ̂el) is minimized, which implies
that currents flowing in the steady state are minimized.
Even without detailed knowledge of ρ̂el, this condition
suffices to state that the variation around the steady
state, δρel, of the LHS must be equal to zero. By not-
ing that only the second term in the Hamiltonian in Eq.
(4) does not commute with ρ̂el and dividing the relax-
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FIG. 2. Fidelity as a function of temperature computed from
the single-particle DFT density matrix. Data for tempera-
tures above the melting point, and therefore not experimen-
tally accessible, are plotted as a dashed line.

ation into unitary adiabatic time evolution and dissipa-
tive non-adiabatic components we can write the follow-
ing phenomenological master equation for the variation
of the density with temperature:

〈δ(F̂abs − F̂emit)〉|k,q−
q (VF (k)− cph) δρinc(k, q;T )− 1qδρcoh(k, q;T ) = 0.

(6)

Here, we have assumed that the qth phonon has been
involved in the process, through absorption/emission op-

erators F̂abs,emit, VF is the Fermi velocity and ρcoh and
ρinc are the coherent and incoherent part of the den-
sity matrix. We have assumed a stationary condition
dρ/dt = 0 and the two terms in the second line of Eq.
(6) compensate the modified thermal “drag” force. This
equation can be interpreted as an action of the Lindbla-
dian superoperator on the density matrix L̂{δρ} = 0.
The first term in the Lindbladian is a scattering a term
F̂i ∼ [H, ρtot] and, according to Eq. (4), electron liquid
can constantly absorb and emit phonons [30]. We first
consider a case with a single phononic event when the
emission-absorption drag “force” F̂ is given by an analog
of the Fermi golden rule,

〈F̂abs−F̂emit〉|k,q = gel−ph(q)Nq(fk−q(1−fk)−fk(1−fk−q)),
(7)

where we took mean-field averages, i.e., Nq and fk are the
Bose-Einstein and Fermi-Dirac distribution functions, re-
spectively. Increasing the temperature by dT changes the
balance between absorption and emission by an amount
proportional to a derivative of the Bose-Einstein distri-
bution.

In the second term of the Lindbladian we have dis-
tinguished adiabatic (coherent δρcoh) and non-adiabatic
(incoherent δρinc) relaxation channels of fermionic den-
sity, with the nonadiabatic one depending on a difference
between electron and phonon velocities. We make the
conjecture that, since changes (due to the phonon en-
vironment) in the diagonal elements of the density ma-
trix (a trace of which is proportional to fidelity) are by
definition caused by dissipation, only the non-adiabatic
processes will cause δF(T ) 6= 0: If in Eq. (1) one takes
ρB = ρA + δρinc and then Taylor expand, one finds that
the fidelity susceptibility χF (T ) = d log[F(T )]/dT ∼
dρinc/dT .

Since, in Eq. (1), we are interested only in the elec-
tronic part of the density matrix, ρel, we integrate out Eq.
(7) over all possible q (all possible single-phonon emis-

sion/absorption events) i.e.
dρ

(1)
inc

dT =
∑
q
dρinc
dnq

dnq

dT which

can be performed analytically:
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dρ
(1)
inc(

~k, T ;EDFT(T ))

dT
=

vF (~k, T )

vF (~k, T )− cph(T )
ḡel−phf

(EDFT(~k, T )

kBT

){
Φ
(
exp{[−EDFT(~k, T )− ω0]/kBT}, α, 1− 2cph/vF (~k, T )

)
− Φ

(
exp{[−EDFT(~k, T ) + ω0]/kBT}, α, 1 + 2cph/vF (~k, T )

)}
. (8)

We require α > 0 as then the generalized Fermi integral
over q turns into an analytic expression involving the
Lerch transcendent function, Φ(, , ), which results from
integrating out (1− fk−q) times the Boltzmann distribu-
tion times the power law qα over a Hankel contour. This
formula generalizes past results for Fermi integrals that
were expressed as polylogarithms. The advantage of Eq.
(8) is that it does not constrain any of cph/V or gel−ph/V
to a small parameter range (nonadiabatic regime) nor
does it make any assumptions on thermal distributions
[hence it is valid in the intermediate temperature regime
where f(E) is certainly not a step function]. Further-
more, the accuracy of this semianalytic approach is not
critically dependent on a density of reciprocal space sam-
pling, as it would have been the case in a purely numerical
approach.

The above calculation gives a probability of electronic
density shifting into the incoherent part due to an inter-
action with a single phonon. Beyond the weak-coupling
regime [31] we are interested in a recursive process,
where the electronic density shifted by the nth interac-
tion is consecutively distorted by the (n + 1)th interac-
tion. We then need to solve such a recursion problem,
i.e., the stationary condition expressed in Eq. (6), cou-
ples the |nph〉 state with |nph ± 1〉 states, hence to find

the overall stationary state L̂{δρ(∞)} = 0 we need to
find the kernel of such a tridiagonal matrix. The so-
lution δρ∞inc(k, q;T ) is a continued fraction. The result

from Eq. (8), dρ
(1)
inc(

~k, T ;EDFT(T ))/dT , can be simply
incorporated into the continuous fraction solution for the
derivative

dρ
(n+1)
inc (~k, T ;EDFT(T ))

dT
=

n

K
m=1

ḡmel−ph
dρ

(1)
inc(

~k,T ;EDFT(T ))

dT

1 + ḡmel−ph
dρ

(1)
inc(

~k±~q0,T ;EDFT(~k±~q0)±mω0)

dT

, (9)

where Kn
m=1 is a Gauss continued fraction symbol. χF

is then calculated by entering the DFT electronic band
structure and phonon velocity in Eq. (8) and recursively
applying Eq. (9) until convergence is achieved. The fi-
delity susceptibility plotted in Fig. 3 peaks between 500
and 700 K, indicating a phase transition of the electron
gas, driven by a loss of coherence through the coupling
with the TO phonons. The reason for this is that in

χ
F

FIG. 3. An overall T dependence of quantum fidelity deriva-
tive (with a minus sign) obtained by truncating the interac-
tions at (n = 10)th order and integrating over the entire BZ

to find dρ
(n)
inc (T )/dT ∼ χF (T ). We see a peak indicating the

phase transition.

regions of the Brillouin zone (BZ) with extremely low
Fermi velocity the drag effect is the strongest and capa-
ble of nonadiabatically pulling some carriers away from a
coherent single-particle manifold into states strongly cou-
pled with phonons which no longer have a well-defined
symmetry property. This mechanism is confirmed by the
momentum-resolved χF (T ), shown in Fig. 4, where we
observe a close connection between χF (T ) and the shape
of the conduction band: The manifolds of largest drag
are either located close to the minimum (minima) or at
a large bone-shaped zone at the temperature for which
the band curvature changes.

Discussion and conclusions. Our results show, using
quantum fidelity as a measure, that a finite-temperature
thermal topological phase transition exists. This transi-
tion, due to loss of coherence of the topological state, is
predicted to occur at a temperature lower than the melt-
ing one and much lower than the gap-closing temperature
as calculated with DFT (∼ 1700 K).

The position of the peak in the fidelity susceptibility
is robust and remains unaffected by small to moderate
changes of all renormalizable parameters such as gel−ph,
cph, the exponent α, or gap ∆(T ), which implies that
it is a generic, stable feature of the system that exist
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FIG. 4. Momentum-resolved fidelity susceptibility χF (T )
shown in a region of the BZ around the L point. In the main
panel we show isosurfaces corresponding to χF (T ) = 0.02 for
T = 300 K (blue), 500 K (pink) and 900 K (green). In the first
two cases there are two minima and for 500 K the isosurface
is the largest. The inset shows three isosurfaces χF (T ) = 0.3,
χF (T ) = 0.03, χF (T ) = 0.01 for T = 500 K, showing that
the largest values of drag are indeed concentrated close to the
minima.

in the regime of intermediate electron-phonon coupling.
Considering band shifts due to additional correlation ef-
fects and electron-phonon coupling in the starting single-
particle electronic structure might slightly shift the value
of the transition temperature, but based on previous
works we do not expect this to qualitatively affect the re-
sults presented here [9]. More specifically, we can distin-
guish two additional effects. First, the imaginary part of
electron-phonon self-energy Σel−ph may relax strict kine-
matic conditions for electron-phonon scattering in Eq.
(8) and thus increase the drag. We note that in Ref. [9]
the maximum of Σel−ph(T ) falls at T ≈ 700 K, hence this
shall enhance the peak in Fig. 3. Second, there might
be an additional contribution to drag due to topological
states [32] present, e.g., on dislocations, an effect that is
sample dependent. We note that at the transition these
topological states disappear, and thus the additional con-
tributions disappear as well, therefore we expect the sig-
natures of the transition to be even more pronounced.

Our formalism can be generalized to any boson that
couples with electrons and violates the symmetry prop-
erty defining the topological class. This may be low-
energy interband plasmons for systems defined by par-
ity symmetry, or paramagnons for systems with strong

Rashba interactions. The only conditions that the boson
must fulfill are the gel−ph ∼ qα with α > 0 and its disper-
sive character ω(q) = cphq for a range of q. While these
are typical for acoustic phonons, they are also obeyed by
symmetry-breaking TO phonons in some incipient ferro-
electrics. While the position of the phase transition is de-
termined by the change of band curvature, the amplitude
of the associated peak is related to the TO phonon’s cph
and gel−ph. Overall, the topological thermal phase tran-
sition should apply to a much broader class of materials
than only the topological crystal insulators studied here.

PAP would like to acknowledge funding from the
Diputación Foral de Gipuzkoa through Grant No. 2020-
FELL-000005-01 and the Spanish Ministry for Science
and Innovation through Grant No. PID2019-107338RB-
C61. PC would like to acknowledge funding from the
MSCA No. 847639 and EPSRC EP/V02986X.

Appendix A: Technical details of the Density
Functional theory calculations

DFT calculation were carried out with the code
siesta [33] using the generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) [34]
parametrization of the exchange and correlation func-
tional. We have used fully nonlocal two-projector norm-
conserving pseudopotentials from the PseudoDojo data
base [35] generated with the ONCVPSP code [36]. For
the basis functions we utilized a set of numerical atomic
orbitals optimized following the prescriptions of Ref. [37],
with single-ζ semicore d states and double-ζ valence
states. The electronic density, Hartree, and exchange-
correlation potentials are computed in a uniform real
space grid, with an equivalent plane-wave cutoff of 800
Ry; and Brillouin zone sampling was carried out with
a 12 × 12 × 12 Monkhorst-Pack mesh [38] for the self-
consistent calculations.

One caveat about our analysis based on DFT den-
sity matrices is that in any DFT calculation a change
in the lattice parameter changes the basis set in which
the Kohn-Sham states are expanded, whether due to the
shift of the functions in real space in the case of atomic
orbitals, or due to the change in the reciprocal lattice vec-
tors in the case of plane waves. Here, we choose to neglect
the drift in the fidelity due to changes in the basis set un-
der the assumption that for sufficiently small changes in
the lattice parameter, the off-diagonal elements of the
transformation matrix become negligible. The negative
result in Fig. 2 in the main document seems to support
this assumption.

Estimating the effect of additional electron correlation
and band shifts due to electron-phonon interaction on
the topological phase transition studied here is beyond
the scope of this work. Nevertheless, the effect of these
contributions to the gap-closing temperature gives us an
idea of the magnitude of the sifts in temperature val-
ues that we may expect. Using the results presented in
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PBE G0W0 G0W0 + e-ph

T∆=0 (K) 1733 2020 1515

TABLE I. Temperatures at which the SnTe band gap closes,
as predicted with the PBE functional, G0W0 approxima-
tion and G0W0 including the band renormalization due to
electron-phonon coupling. Values obtained from the extrapo-
lation of data presented in [Phys. Rev B 101, 235206 (2020)].

Ref. [9] we can obtained the extrapolated values for the
gap-closing temperature shown in Tab. I. The estimated
gathered in Tab. I show that additional electronic corre-
lation and electron-phonon coupling have contribute to
shift the gap-closing temperature in opposite directions,
partially canceling each other. In any case, this value re-
mains significantly larger than the melting temperature
of SnTe. This test justifies the use of DFT and the PBE
exchange of correlation functional for this study.

Appendix B: Technical details of drag propensity
calculations

We aim to compute the propensity of the electronic
density to shift into incoherent part ∆ρinc as the tem-
perature increases. Our input are eigen-energies and
electronic dispersion ~v (momentum derivatives of eigen-
energies) at each point of 3D Brillouin zone. We first
consider a single event of phonon’s emission-absorption
for each electronic k-state, i.e. we apply Eq. (8) to each
k-state. We made only two physical assumption in our
reasoning. The first assumption for the solution of the
problem given by Eq. (4) is that we assume that for
bosons the change of level occupancy is given by Boltz-
mann thermal factor, this is valid provided thermaliza-
tion hypothesis of bosonic sub-system holds (any effective
temperature can be accommodated in our formalism);
while for fermions we assume that the process requires
participation of an entire fermion, so even if ρ̂el is e.g. one
for fractionalized Fermi liquid, the emission-absorption

process requires re-fermionization. We do not set any
other constrains for the nature of the ground state. The
second assumption is by invoking vertex correction (Fres-
nel wave diffraction) we assume a strong preference for

small angle electron-phonon scattering, ~k||~k+~q. Thus, in

Eq. (8) we take a projection of the velocity vscatt = ~v ·~k.
Since we take isotropic cph and gel−ph the rest of the
implementation is straightforward. Please note that en-
tire influence of higher order electron-phonon coupling, in
a ladder approximation, can be accommodated through
renormalization of ḡel−ph and α hence it can be in prin-
ciple accounted for in Eq. (9).

We then move to the problem of quantum trajecto-
ries with multiple phonon emission-absorption events.
To this end we extend the electronic density matrix by
adding another dimension that describes the number of
phonon associated with electron’s motion (these would
be an analogue of Floquet bands in the pumping prob-
lem). This is a pseudo-spin degree of freedom attached
to each fermion, with the parity of the pseudo spin that
determine the symmetry with respect to the crystal mir-
ror plane. The off-diagonal elements are described by
Eq. (8) (where we take an average absorption-emission

from neighboring k-states along the ~k ray). We need to
diagonalize this tridiagonal matrix, and then the lowest

eigenstate will give us the desired ∂T ρ
(n)
inc (~k;T ). The di-

agonalization of tridiagonal matrix, through a ratio of
continuant polynomials, leads to the continuous fraction
expression given in Eq. (9).

It should be emphasized that the origin of the ob-
served maximum is not due to any of the prefactors in
Eq. (8) but it is a generic property of the Lerch transcen-

dent function Φ in the vicinity of vF (~k, T ) → 2cph. The
inspection of the recursive re-summation is then neces-
sary only to check whether this maximum survives in the
higher order perturbation theory or decays. Our results
indicated that it is even enhanced. It should be how-
ever mentioned that in these higher order processes we
took an assumption of Fermi-Dirac distribution of parti-
cles in the polaronic bands, with unrenormalized VF and
gel−ph. Our formalism may account for these generaliza-
tion, which we postpone to further studies.
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E. Sjöqvist, Phil. Trans. R. Soc. A 374, 20150231 (2016).

[11] A. Quelle, E. Cobanera, and C. M. Smith, Phys. Rev. B
94, 075133 (2016).

[12] B. Mera, C. Vlachou, N. Paunković, and V. R. Vieira,
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[37] J. Junquera, Ó. Paz, D. Sánchez-Portal, and E. Artacho,
Phys. Rev. B 64, 235111 (2001).

[38] H. Monkhorst and J. Pack, Physical Review B 13, 5188
(1976).

http://dx.doi.org/10.1103/PhysRevB.98.245141
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1103/PhysRevResearch.2.043105
http://dx.doi.org/10.1103/PhysRevResearch.2.043105
http://dx.doi.org/ 10.1038/npjcompumats.2015.1
http://dx.doi.org/10.1145/3402127.3402131
http://dx.doi.org/10.1038/ncomms12291
http://dx.doi.org/10.1038/ncomms12291
http://dx.doi.org/ 10.1103/PhysRevResearch.3.023100
http://dx.doi.org/10.1103/PhysRevE.79.031101
http://dx.doi.org/10.1103/PhysRevE.79.031101
http://dx.doi.org/ 10.1103/PhysRevB.95.144101
http://dx.doi.org/ 10.1103/PhysRevB.95.144101
http://dx.doi.org/10.1103/PhysRevMaterials.3.055405
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysbps.2006.09.036
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysbps.2006.09.036
http://dx.doi.org/10.1103/PhysRevResearch.3.L012016
http://dx.doi.org/10.1103/PhysRevResearch.3.L012016
http://dx.doi.org/10.1209/0295-5075/83/30008
http://dx.doi.org/10.1063/1.5115323
http://dx.doi.org/10.1103/PhysRevLett.114.040402
http://dx.doi.org/10.1103/PhysRevB.95.214310
http://dx.doi.org/10.1103/PhysRevB.95.214310
http://dx.doi.org/10.1103/PhysRevLett.51.138
http://dx.doi.org/10.1103/PhysRevLett.51.138
http://dx.doi.org/10.1103/PhysRevB.88.075432
http://iopscience.iop.org/0953-8984/14/11/302
http://iopscience.iop.org/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1016/j.cpc.2018.01.012
http://dx.doi.org/10.1103/PhysRevB.88.085117
http://dx.doi.org/10.1103/PhysRevB.64.235111
http://www.if.pwr.wroc.pl/$\sim $scharoch/Abinitio/MonkhorstPack.pdf
http://www.if.pwr.wroc.pl/$\sim $scharoch/Abinitio/MonkhorstPack.pdf

	Thermal topological phase transition in SnTe from ab-initio calculations
	Abstract
	Technical details of the Density Functional theory calculations
	Technical details of drag propensity calculations
	References


