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Ab initio calculations are performed to study consecutive reconstruction of a zigzag graphene edge.
According to the obtained energy profile along the reaction pathway, the first reconstruction step,
formation of the first pentagon-heptagon pair, is the slowest one, while the growth of an already
nucleated reconstructed edge domain should occur steadily at a much higher rate. Domains merge
into one only in 1/4 of cases when they get in contact, while in the rest of the cases, residual defects
are left. Structure, energy and magnetic properties of these defects are studied. It is found that
spontaneous formation of pairs of residual defects (i.e. spontaneous domain nucleation) in the fully
reconstructed edge is unlikely at temperatures below 1000 K. Using a kinetic model, we show that
the average domain length is of several µm at room temperature and it decreases exponentially upon
increasing the temperature at which the reconstruction takes place.

The success of nanoelectronic devices based on
graphene nanostructures,1 such as graphene nanorib-
bons (GNRs),2,3 is conditioned by the capacity to
control precisely the atomistic structure.4–6 The
edges are much more reactive and prone to de-
fect formation compared to the graphene bulk.6 At
the same time, they have a drastic effect on the
electronic,3,7–18 magnetic,8,9,19–23 mechanical20,24,25

and chemical15,20,21,26 properties of graphene nanos-
tructures. Therefore, significant efforts have been
made to study structure,8,12,13,15,17,18,20,22,25–35

transformations14,15,19,23,24,28,30,32,36–38 and
defects6,8,14,23,39 at graphene edges.

One of the most famous examples of
graphene edge transformations is zigzag edge
reconstruction.8,15,20,25,26,33–35,37,38 In this process,
pairs of hexagons at pristine zigzag edges are trans-
formed into pentagon-heptagon (57) pairs (Figure
1). The reconstruction leads to formation of triple
bonds similar the ones at the armchair edge and thus
reduces the number of dangling bonds and the energy of
zigzag edges.8,15,20,25,26,33–35,37,38 Formation of 57 pairs
suppresses magnetization of zigzag edges8,19,23,24 and
results in a decrease of the conductance.14

In spite of being more stable thermodynamically
than other pristine graphene edges, reconstructed
zigzag edges are not the most abundant ones in the
experiments.24,27–31 The reasons can be large barriers
for the reconstruction,24,37 edge contamination32 and
the effect of electron irradiation on edge stability.27,29

In the present Letter we consider pristine edges, which
can be obtained by annealing at 600 ◦C24,32 or irradia-
tion by electrons with the kinetic energy insufficient to
cause carbon bond rearrangements.40 This is the case for
typical transmission electron microscopy studies of the
reconstruction.24,27–31 Previous calculations14,19,23,24,36

for pristine graphene edges gave a significant barrier for

FIG. 1. One simulation cell of the 6-ZGNR after the second
and third steps of the zigzag edge reconstruction. Spin maps
are shown (isosurfaces 0.01 e/Å3).

the first reconstruction step, formation of the first 57
pair. However, the overall kinetics of the edge reconstruc-
tion depends also on consecutive generation of 57 pairs.
In particular, the activation barrier, Ea , i.e. the en-
ergy difference between the transition and initial states,
and reaction energy, ∆E, i.e. the energy difference be-
tween the final and initial states, (Figure 1) estimated
from the experimental observations of propagation of a
reconstructed edge domain (Ea ∼ 1.3 eV and ∆E ∼ −1.2
eV from Ref. 30) differ strongly from the calculation re-
sults for the first reconstruction step (e.g., Ea ∼ 1.6 eV
and ∆E ∼ −0.2 eV from Ref. 23). Although there were
already attempts to consider energetics of several recon-
struction steps from the first principles,19,34,36 the mod-
els employed were clearly too small to obtain accurate
results and to judge about how the whole process occurs.
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Last stages of reconstruction at which reconstructed edge
domains get in contact, structure and density of residual
defects have not been considered at all.

Here we carry out ab initio calculations of consecutive
generation of 57 pairs at the zigzag graphene edge using
an atomistic model that is sufficiently large to describe
adequately all stages of the reconstruction process. Us-
ing a simple kinetic model with the parameters extracted
from the ab initio calculations performed, we obtain the
distribution of domains of the reconstructed zigzag edge
in length and its dependence on the temperature at which
the reconstruction takes place. We also consider residual
defects that can be left between reconstructed edge do-
mains and study their energetics and magnetic proper-
ties.

In our recent study,23 we showed that accurate ab ini-
tio calculations of the reaction energy and activation bar-
rier (Figure 1) for formation of the first 57 pair at the
graphene edge require the following minimal nanorib-
bon model: the nanoribbon should consist of at least
6 zigzag rows and the distance between periodic images
of pentagon-heptagon pairs along the nanoribbon axis
should be at least 6 hexagons. Here we perform the cal-
culations for the 6-ZGNR (zigzag graphene nanoribbon
consisting of 6 zigzag rows) in the simulation cell includ-
ing 12 hexagons along the ZGNR axis (Figure 1). This
allows us to properly model nucleation, growth and merg-
ing of reconstructed edge domains.

Spin-polarized density functional theory calculations
have been performed using the VASP code41 with
the Perdew-Burke-Ernzerhof functional.42 The projector-
augmented wave method (PAW)43 is applied to describe
the interaction of valence and core electrons. The cutoff
kinetic energy of the plane-wave basis set is 500 eV. The
tolerance achieved in self-consistent iterations is 10−8

and the Gaussian smearing of width 0.05 eV is applied.
Since the aim of the study is to model edge reconstruc-
tion for graphene, the elementary unit cell of the pristine
ZGNR is taken equal to the lattice constant of graphene,
a0 = 2.466 Å according to our calculations. The vac-
uum gap of 10 Å across the ZGNR and perpendicular to
ZGNR plane is introduced to minimize the interaction
between periodic images of the ZGNR. To stimulate con-
vergence to the antiferromagnetic state, initial spins with
anti-parallel ordering at the opposite ZGNR edges, re-
spectively, are set at the edge atoms. The Brillouin-zone
integration is performed using the 3 × 1 × 1 Monkhorst-
Pack grid.44 The residual atomic forces in geometry op-
timization do not exceed 0.003 eV/Å.

The pathway for consecutive generation of 57 pairs
is investigated using the nudged elastic band (NEB)
method45,46 with 6 images between the initial and final
states at each step. To reduce the computational effort,
the NEB calculations are performed for the maximal ki-
netic energy of the plane wave basis set of 400 eV, the
tolerance 10−4 and smearing width of 0.2 eV. Damped
molecular dynamics with the maximal residual force of
0.03 eV/Å is used to optimize the geometry of images.

FIG. 2. Energy (in eV) along the reaction pathway for consec-
utive reconstruction of the zigzag edge in the simulation cell
including 12 hexagons along the edge. The energy is given
relative to the unreconstructed edge. Stages of the evolution
of reconstructed edge domains are denoted. The activation
and reaction energies, Ea and ∆E, respectively, for formation
of the third 57 pair are indicated.

After the optimization, the energy of the transition state
is computed with the same parameters as of the initial
and final state. The spin maps are extracted and plotted
using the VASPKIT47 and VESTA,48 respectively.

The computed energy profile for the zigzag edge recon-
struction is shown in Figure 2. It is seen from this figure
that consecutive formation of 57 pairs leads to the grad-
ual energy release and the highest barrier for the whole
reconstruction process corresponds to formation of the
first 57 pair.

The activation barriers and reaction energies for con-
secutive generation of 57 pairs are listed in Table I. Ac-
cording to these results, the activation barrier and reac-
tion energy are reduced by δE ∼ 0.4 eV and ∼ 0.9 eV,
respectively, when 57 pairs are formed close to the exist-
ing ones. Therefore, once the first 57 pair is formed, the
following 57 pairs should predominantly arise close to it,
that is a reconstructed edge domain starts to grow.

It should be emphasized that for steps 1–3 of the recon-
struction in our calculations, the periodic images of the
reconstructed edge domain are separated by more than
6 hexagons and can be considered as isolated.23 Steps 2
and 3 have virtually the same activation barriers (∼ 1.2
eV) and reaction energies (∼ −1 eV) indicating that they
correspond to a steady domain growth. Note that these
kinetic parameters are in good agreement with the es-
timates Ea ∼ 1.3 eV and ∆E ∼ −1.2 eV from the ex-
perimental frequencies of formation and destruction of
57 pairs.30 At steps 4–6 in our calculations, the peri-
odic images of the reconstructed edge domain get close.
Therefore, they describe the situation when two adjacent
domains approach each other. Still we find that steps 4
and 5 have the reaction energies and activation barri-
ers close to those for steps 2 and 3 and thus they also
should be attributed to the growth stage. Step 6 has
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TABLE I. Activation and reaction energies, Ea and ∆E,
respectively, computed for consecutive steps of zigzag edge
reconstruction in the simulation cell including 12 hexagons
along the edge (stages of evolution of reconstructed edge do-
mains are indicated).

stage 57 pair number Ea (eV) ∆E (eV)

nucleation 1 1.62 -0.13

growth 2 1.24 -1.06

3 1.25 -0.88

4 1.12 -1.06

5 1.22 -0.98

merging 6 1.06 -1.17

a noticeably smaller activation barrier and reaction en-
ergy compared to the previous steps and corresponds to
domain merging.

Based on the Arrhenius equation, the ratio of the ki-
netic constants for domain nucleation and growth is:

knucl
kgr

= exp

(
− δE

kBT

)
, (1)

i.e. nucleation is much slower than domain growth
(knucl/kgr ∼ 2 ·10−7 at room temperature). Analogously,
formation of the very last 57 pair leading to domain merg-
ing should occur faster than the steady domain growth.

It should be noted that merging of two reconstructed
edge domains into one is possible only if (1) the domains
have the same orientation, i.e. 57 pairs are oriented in
the same way, and (2) the number of hexagons separat-
ing domains is even. This corresponds only to 1/4 of
cases of domains getting in contact. In the opposite 3/4
of cases, domains are separated by residual defects that
play the role of domain boundaries. Spontaneous forma-
tion of such defects at the reconstructed edge (as well as
consideration of these defects under periodic boundary
conditions) is possible only in pairs like the ones shown
in Figure 3. During the edge reconstruction, boundaries
between growing domains are formed independently from
each other.

For 1/4 of domains getting in contact, the domains
are counter-aligned and the number of hexagons between
them is even. The shortest domain boundaries in this
case correspond to 55 and 77 defects (Figure 3a). How-
ever, the calculations show that the formation energy of
a pair of such residual defects, i.e. the relative energy
as compared to the fully reconstructed edge without do-
main boundaries, is very high because of the significant
deformation of carbon rings in the defects. In this case
it is actually energetically favourable to leave hexagons
between the domains: the energy is reduced by almost
2 eV if the domain boundaries consist of 5665 and 7667
defects instead of 55 and 77. A similar formation en-
ergy of defect pairs of ∼ 4 eV is found for 1/4 of cases
when the domains are counter-aligned and the number of
hexagons between them is odd. Then the most energet-
ically favourable pair of residual defects is 767 and 565

FIG. 3. One simulation cell of the 6-ZGNR with a fully re-
constructed edge and different boundaries (residual defects)
between reconstructed edge domains: (a) 55 and 77, (b) 767
and 565, and (c) a 765 pair. Relative energies and magnetic
moments of the structures are given with respect to the fully
reconstructed edge without residual defects. Spin maps are
shown (isosurfaces 0.01 e/Å3).

(Figure 3b). In 1/4 of cases when domains are co-aligned
and the number of hexagons between them is odd, the do-
main boundaries correspond to 765 defects (Figure 3c).
The formation energy of the 765 defect pair of 1.8 eV is
the smallest among the possible domain boundaries. Still
it is too high to be able to observe spontaneous formation
of such defects, i.e. spontaneous domain nucleation, in
the reconstructed edge at temperatures below 1000 K.

According to our calculations, all the structures with
domain boundaries are flat, the same as in their absence.
We also find that edge atoms at the boundaries carry sig-
nificant magnetic moments ∼ µB (Bohr magneton) par-
allel to those at the opposite nanoribbon edge (Figure 3).
Similar magnetic moments were obtained previously for
short regions of the unreconstructed zigzag edge.23

To model domain formation at different temperatures,
we use a simple kinetic model. A periodic array of N
hexagons at the unreconstructed zigzag edge is consid-
ered. The probability of nucleation of a new domain
of the reconstructed edge at each time step of duration
δt = k−1gr is p = knucl/kgr (see Eq. (1)) for each pair of ad-
jacent hexagons. At each time step, each reconstructed
edge domain grows by two hexagons at each end if there
is a place to grow. When 2 or 3 hexagons are left be-
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tween adjacent domains, it is selected randomly which
one of them grows. In this Letter we restrict ourselves to
consideration of formation of the initial domain structure
and the simulation finishes when there is no room left for
domains to grow or nucleate. Migration and annihila-
tion of residual defects are neglected. Migration events
should not normally be accompanied by a significant en-
ergy change and can occur with virtually equal proba-
bilities in both directions (contrary to motion of domain
boundaries during the domain growth). Thus, migration
that can finally result in annihilation of residual defects
should be slow compared to domain growth. Changes in
the domain structure after the full edge reconstruction
due to such processes will be studied elsewhere.

The calculations have been performed for edges of
length up to N = 3 · 106 hexagons. The distribution
of domain lengths has been obtained based on 10–1000
calculations for each temperature. Examples of such a
distribution at different temperatures are shown in Fig-
ure 4a. They are obtained based on the data for more
than 400000 domains at each temperature. The aver-
age length is about twice greater than the position of
the maximum at the same temperature. Upon increas-
ing temperature, the maximum and average points are
shifted to smaller lengths.

The dependence of the average domain length on the
temperature during the reconstruction is given in Figure
4b. At room temperature, the average domain length
exceeds 2 µm, while at 800 K it goes down to 10 nm.
The dependence can be approximated by an exponential
law:

L = (0.34 ± 0.03)[nm] exp

(
−0.229 ± 0.003[eV]

kBT

)
(2)

Note that the energy in the exponent here is almost twice
smaller than that in the ratio of the rates for domain nu-
cleation and growth (see Eq. (1)). The absence of a
simple relation between these two energy factors in the
exponent should be a consequence of the complexity of
the whole reconstruction process in which domains can be
nucleated at different time moments and also can merge
under the conditions discussed before. Analytic justifi-
cation of this approximation is beyond the scope of the
present Letter.

To summarize, our ab initio calculations show that
the zigzag edge reconstruction can be divided into three
stages: nucleation, steady growth and getting in contact
of reconstructed edge domains. The growth of already
nucleated domains occurs at a much faster rate than
nucleation. The difference in the barriers at these two

stages is ∼ 0.4 eV. Domains easily merge into one in 1/4
of cases when domains get in contact. In the rest 3/4 of
cases, residual defects are left. These defects carry mag-
netic moments ∼ µB and increase significantly the sys-
tem energy as compared to the reconstructed edge with-
out residual defects. The average length of reconstructed
edge domains is of several µm at room temperature and
decreases exponentially upon increasing the temperature

FIG. 4. (a) Distributions of lengths of reconstructed edge do-
mains (in nm) obtained using the kinetic model at different
temperatures during the reconstruction: (black circles) 400
K, (red squares) 500 K and (green triangles) 600 K. The av-
erage domain lengths are indicated by the vertical lines. (b)
Calculated average length of reconstructed edge domains (in
nm) as a function of temperature (in K). The exponential ap-
proximation according to Eq. (2) is shown by the solid line.

at which the reconstruction takes place.
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