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Summary 
  

The study of light and its interaction with materials started millennia ago in Egypt 

and Mesopotamia with the development of the first quartz lenses. Since then, our 

ever-increasing understanding of the optical phenomena has led to the classic and 

quantum electrodynamic theories, and to a variety of technological developments 

that have conceded us an unprecedented control of the flow of light. However, due 

the diffractive nature of light, squeezing and controlling light in dimensions 

smaller than the free-space wavelength is a fundamental challenge. Controlling 

light at the subwavelength scale could help to develop ultra-small and sensitive 

sensors, small footprint photonic circuits, and enable sub-diffraction-limited 

optical imaging. In the mid-infrared (mid-IR) spectral region –located at 

frequencies between 400 and 4000 cm-1– subwavelength optics research could lead 

to applications in molecular sensing since many biological molecules have distinct 

absorption spectra at these frequencies. Moreover, mid-IR subwavelength optics 

could allow a higher control of the thermal emission and absorption of materials, 

since warm objects (300-1000 K) emit radiation mostly in this spectral range.  

Polaritons provide a way of controlling light at the subwavelength scale. Polaritons 

are electromagnetic modes that arise from the interaction of light with dipolar 

excitations in a material (such as free carriers in metals, bound charges in polar 

materials, or electron-hole pairs in semiconductors). A particular type of polariton 

is a surface polariton, an electromagnetic mode that propagates at the interface 

between two materials (commonly one with positive and the other with negative 

permittivity), and which field strength decays exponentially away from the 

interface. Metals at visible and infrared frequencies have a negative permittivity 

arising from the coherent oscillations of free carriers (plasmons). Hence, surface 

plasmon polaritons (SPPs) are supported at metal/dielectric interfaces. Both the 

wavelength of a SPP and the extension of its evanescent field in the perpendicular 

direction are shorter than the free-space wavelength, allowing the control of light 

well below the free-space diffraction limit. Furthermore, a subwavelength-size 

metallic particle can sustain another type of polariton, a localized surface plasmon 

polariton (LSP). When resonantly excited, a LSP convert the incident 

electromagnetic radiation onto strongly enhanced and confined electromagnetic 

fields. SPPs and LSPs have been intensely studied in metals at visible and infrared 

frequencies for subwavelength optics applications. However, metals are hampered 

by the high damping rate of the free electrons, which limit its applicability to 

subwavelength optics at mid-IR frequencies. A pathway to achieve low-loss 
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subwavelength optics at mid-IR is the use polar crystals (such as silicon carbide). 

Polar crystals can exhibit negative permittivity in their Reststrahlen bands (spectral 

ranges where the reflectivity of a polar crystal is very high), located at mid-IR and 

THz frequencies, where light couples to lattice vibrations (phonons) forming 

phonon polaritons. The damping rate of phonons in polar crystals can be smaller 

than that of free electrons in a metal by up to one order of magnitude, suggesting 

that surface phonon polaritons can exhibit superior characteristics than surface 

plasmon polaritons in the mid-IR. Harnessing surface and localized phonon 

polaritons thus promises infrared radiation localization, routing and manipulation 

at subwavelength scales with small losses. 

The recent emergence of van der Waals (vdW) materials has greatly expanded the 

library of materials sustaining polaritons. Due to the variation of material types, 

different polaritonic modes in vdW materials have been discovered, such as 

plasmon polaritons in graphene (at mid-IR and THz frequencies), exciton 

polaritons in molybdenum diselenide (at visible and near-IR wavelengths), and 

phonon polaritons in hexagonal boron nitride (at mid-IR frequencies). van der 

Waals materials are characterized by an anisotropic crystalline structure, consisting 

of strong in-plane covalent bonds and weak out-of-plane van der Waals forces. As 

a consequence, vdW materials can be easily exfoliated into thin films, facilitating 

the fabrication of high-quality nanostructures. Moreover, the anisotropic bonding 

can cause an anisotropic polaritonic response, leading to elliptical, hyperbolic or 

biaxial polaritonic dispersion. 

Hexagonal boron nitride (h-BN) has recently emerged as a particularly interesting 

vdW material for mid-IR nanophotonics. h-BN is a polar crystal that sustains 

phonon polaritons in its two Reststrahlen bands in the mid-IR. In these bands, due 

to its anisotropic crystal structure, only one of the components of its uniaxial 

permittivity tensor has a negative sign. As a consequence, the propagation of light 

through h-BN is in the form of hyperbolic phonon polaritons. Its isofrequency 

surface, 𝒌(𝜔0),   forms a hyperboloid in reciprocal space, allowing short-

wavelength and highly-directional polariton propagation. Moreover, the 

hyperbolic phonon polaritons sustained by h-BN are long lived (with lifetimes up 

to more than one picosecond), higher than the typical lifetime of plasmon 

polaritons in metals. 

Hyperbolic phonon polaritons in h-BN thin films have been explored theoretically 

and experimentally. Also, LSP resonances in h-BN nanocones have been reported. 

However, many particularly interesting nanostructures made of h-BN have not 

been investigated. In this thesis we study two fundamental nanophotonic 
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structures made of h-BN, namely, nanorod antennas and polaritonic crystals. 

Nanorod antennas can be pictured as a truncated polaritonic waveguides that are 

resonant when the polaritonic mode fulfills the Fabry-Pèrot condition. We employ 

this picture in the analysis of h-BN nanorod antennas sustaining hyperbolic 

phonon polaritons. A polaritonic crystal, analogous to a photonic crystal, is a 

periodically patterned structure made of a material that support polaritons, where 

the period of the pattern is similar to the polariton wavelength. We study a two-

dimensional polaritonic crystal fabricated of a thin h-BN slab, in which the relevant 

polaritonic mode is a hyperbolic phonon polariton confined to the thin film.  

Chapter 1 provides an introduction aimed to contextualize the results presented 

later on in this thesis. First, we describe some of the materials commonly used for 

nanophotonics, noble metals and polar crystals, highlighting the characteristics of 

its surface polaritons in different frequency ranges, particularly in the mid-IR 

frequency range. We then introduce novel vdW materials (e.g. graphene and h-

BN), which sustain long-lived and short-wavelength polaritons in the mid-IR 

frequency range. The last part of the chapter introduces optical antennas and 

polaritonic crystals based on conventional –isotropic– materials, which sustain 

localized and surface polariton resonances, respectively. 

In Chapter 2 we examine the characteristics of hyperbolic polaritons in h-BN, 

which behave differently from polaritons in isotropic materials. In particular, we 

study Hyperbolic Volume Polaritons (HVPs) that propagate through bulk h-BN. 

We introduce Hyperbolic Surface Polaritons (HSPs), which are confined to h-

BN/dielectric interfaces, when the h-BN atomic layers are perpendicular to the 

interface. Furthermore, we discuss the characteristics of the polaritonic modes 

sustained by thin h-BN films as well as the modes confined to the edges of h-BN 

flakes, denominated Hyperbolic Volume Modes (HVMs) and Hyperbolic Surface 

Modes (HSMs), respectively.  

In Chapter 3 we study nanorod antennas made of h-BN. Nanorod antennas are one 

of the fundamental building blocks in nanophotonics, capable of concentrating 

light at very small volumes at certain resonant frequencies, these being controlled 

by the dimensions of the antenna. The h-BN antennas are experimentally studied 

via infrared nanospectroscopy and infrared nanoimaging. We unveil resonances 

with high quality factors (Q ~ 100) which we assign to Fabry-Pèrot resonances of a 

hybrid HSM by theoretical analysis. By nanoimaging, an unconventional 

transverse mode structure is revealed, caused by the hyperbolic character of this 

hybrid HSM. 
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Finally, in Chapter 4, we study a basic structure for nanophotonics, a polaritonic 

crystal. We design and fabricate a two-dimensional hole array made of h-BN, 

measure it by far-field spectroscopy and nanoimaging and investigate it by 

numerical and analytical methods. The studied h-BN polaritonic crystal is capable 

of concentrating light in volumes 10−5  times smaller than the free-space 

wavelength volume, thus being orders of magnitude smaller than conventional 

photonic crystals. The ultraconfined Bloch modes of the h-BN polaritonic crystal 

are observed by near-field imaging. The calculated band structure formed by these 

Bloch modes has a remarkably flat dispersion band. The flat dispersion leads to 

both angle- and polarization-independent sharp Bragg resonances, as verified by 

far-field spectroscopy and theoretical modelling. 

In conclusion we study nanostructures made of h-BN, exhibiting hyperbolic 

phonon polaritons with remarkable low losses in the mid-IR. The description and 

understanding of the properties of these fundamental structures will be of the 

utmost importance for the design of hyperbolic waveguides, extremely thin mid-IR 

omnidirectional absorbers and thermal emitters, and nanostructures for phonon-

enhanced infrared absorption spectroscopy.  
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Sumario 
 

El estudio de la luz y su interacción con la materia comenzó hace milenios, en 

Egipto y Mesopotamia, con la fabricación de las primeras lentes de cuarzo. Desde 

entonces, nuestra comprensión de los fenómenos ópticos ha llevado al desarrollo 

de las teorías electrodinámicas clásica y cuántica, así como a una amplia variedad 

de tecnologías que nos han concedido un control sin precedentes del flujo de la luz. 

Sin embargo, debido a la naturaleza difractiva de la luz, comprimir y controlar la 

luz en dimensiones más pequeñas que la longitud de la onda en el vacío (óptica 

subdifraccional) continúa siendo un complejo desafío. La óptica subdifraccional 

ayudaría al desarrollo de sensores ultrasensibles y pequeños, circuitos fotónicos 

miniaturizados, y permitiría realizar imágenes ópticas no limitadas por la 

difracción de la luz. En el rango del infrarrojo medio, localizado en las frecuencias 

entre 400 y 4000 cm-1, la investigación en óptica subdifraccional podría ser 

aplicada a sensores moleculares, dado que muchas biomoléculas tienen espectros 

de absorción distintivos en estas frecuencias. Además, la óptica subdifraccional en 

el infrarrojo medio permitiría un mayor control de la emisión térmica y la 

absorción de los materiales, dado que los objetos “calientes” (a temperaturas entre 

los 300 y los 1000 K) emiten radiación principalmente en este rango de frecuencias. 

Los polaritones proveen de una vía para el control subdifraccional de la luz. Los 

polaritones son modos electromagnéticos que surgen de la interacción de la luz con 

excitaciones dipolares en un material (como cargas libres en metales, cargas ligadas 

en materiales polares, o pares electrón-hueco en semiconductores). Un tipo 

particular de polaritón es un polaritón de superficie, un modo electromagnético 

que se propaga en la interfaz entre dos materiales (comúnmente uno con 

permitividad positiva y otro con permitividad negativa), y cuyo campo 

electromagnético decae exponencialmente en dirección perpendicular a la interfaz. 

En el rango visible e infrarrojo, los metales poseen permitividad negativa, 

originada por la oscilación coherente de las cargas libres en el metal (llamadas 

plasmones). Como consecuencia, los plasmón-polaritones de superficie (SPPs) se 

propagan en interfaces entre metales y dieléctricos. La longitud de onda de un SPP 

y la extensión de su campo electromagnético en la dirección perpendicular a la 

interfaz son menores que la longitud de onda en el vacío. Además, una partícula 

metálica de dimensiones menores que la longitud de onda exhibe otro tipo de 

polaritones, plasmón-polaritones localizados (LSPs). Cuando es excitado 

resonantemente, un LSP convierte la radiación electromagnética incidente en 

intensos campos electromagnéticos  confinados alrededor de la partícula. Los SPPs 
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y LSPs han sido intensamente estudiados en metales a frecuencias en el rango 

visible e infrarrojo, para aplicaciones en óptica subdifraccional. Sin embargo,  los 

metales están limitados por el gran coeficiente de amortiguación de los electrones 

libres, que restringe su aplicación en óptica subdifraccional en el infrarrojo medio. 

Una manera de lograr óptica subdifraccional en el infrarrojo medio es el uso de 

cristales polares (como el carburo de silicio). Los cristales polares pueden poseer 

permitividad negativa en sus bandas Reststrahlen (regiones del espectro 

electromagnético donde la reflectividad del material polar es muy alta), donde la 

luz puede acoplarse con vibraciones de la red cristalina (fonones) formando fonón-

polaritones. El coeficiente de amortiguación de los fonones en un cristal polar 

puede ser hasta dos órdenes de magnitud menor que el de electrones en metales, lo 

que sugiere que los fonón-polaritones de superficie pueden exhibir mejores 

características que los plasmón-polaritones de superficie en el infrarrojo medio. El 

uso fonón-polaritones (de superficie y localizados) es una prometedora vía para 

localizar, canalizar y manipular luz en el infrarrojo medio en escalas 

subdifracionales con pocas pérdidas. 

Recientemente, la aparición de los materiales de van der Waals (vdW) ha 

expandido enormemente la librería de materiales que exhiben polaritones. Debido 

a la gran variedad de materiales vdW descubiertos, distintos polaritones han sido 

descubiertos, plasmón-polaritones en grafeno (en frecuencias de terahercios y en el 

infrarrojo), excitón-polaritones en molibdeno de diselenio (en el visible e infrarrojo 

cercano) y fonón-polaritones en nitruro de boro hexagonal (en el infrarrojo medio). 

Los materiales vdW se caracterizan por su estructura cristalina anisótropa, 

consistente en fuertes enlaces covalentes en el plano, y débiles enlaces vdW en la 

dirección perpendicular a las capas atómicas. Como consecuencia, los materiales 

vdW pueden ser exfoliados en capas finas de manera sencilla, facilitando la 

fabricación de nanoestructuras de alta calidad. Además, dado que los enlaces entre 

átomos son anisótropos, puede aparecer una respuesta polaritónica anisótropa, 

llevando a dispersiones polaritónicas elípticas, hiperbólicas o biaxiales. 

El nitruro de boro hexagonal (h-BN) es un material especialmente interesante en 

óptica subdifracional en el infrarrojo medio. h-BN es un cristal polar que exhibe 

fonón-polaritones en sus dos bandas Reststrahlen en el infrarrojo medio. En estas 

bandas, debido a su estructura cristalina anisótropa, únicamente una de las 

componentes del tensor de permitividad (que es uniaxial) posee signo negativo. 

Como consecuencia, la propagación de luz a en nitruro de boro en forma de fonón-

polaritones hiperbólicos. Su superficie de isofrecuencia, 𝒌(𝜔0) , forma un 

hiperboloide en el espacio recíproco, permitiendo la propagación direccional de  
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Figura s.1: Fonón-polaritones hiperbólicos de volumen en h-BN. (a) Superficie de 

isofrecuencia de los fonón polaritones hiperbólicos en h-BN, frecuencia 𝜔 =  1470 𝑐𝑚−1. 

(b) Distribución de campo eléctrico inducida por una fuente puntual (dipolo eléctrico, 

punto verde en (b) y (c)) localizado en aire sobre un semiespacio de h-BN. El color en la 

imagen indica el valor absoluto del campo eléctrico vertical como función de x y z. (c) 

similar a (b), donde el color indica  𝑅𝑒(𝐸𝑧). 𝜃 = 57.4°. 

polaritones con pequeña longitud de onda. Además, los fonón-polaritones 

hiperbólicos en nitruro de boro presentan vidas medias muy altas (de más de un 

picosegundo), mayor que las de los plasmón-polaritones en metales. 

Los fonón-polaritones en capas finas de h-BN han sido explorados teóricamente y 

experimentalmente, así como las resonancias localizadas en nanoconos hechos de 

h-BN.  

Sin  embargo, varias nanoestructuras básicas basadas en h-BN no han sido 

estudiadas. En esta tesis estudiamos dos de las nanoestructuras más 

fundamentales en fotónica: nanoantenas lineales y cristales polaritónicos. Las 

nanoantenas lineales pueden ser analizadas como guías de onda polaritónicas 

truncadas, que son resonantes cuando el modo polaritónico cumple la condición 

de Fabry-Pèrot. Las nanoantennas de h-BN son analizadas usando esta 

interpretación. Un cristal polaritónico, de manera análoga a un cristal fotónico, es 

una nanoestructura periódica que soporta polaritones, en la que el periodo del  
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Figura s.2: Imagen infrarroja de campo cercano de antenas lineales de h-BN. Frecuencia 

de imagen, 𝜔 = 1,432 cm-1. La anchura y altura de las nanoantenas es 230 nm and 64 nm, 

respectivamente. La longitud de cada nanoantena es (a) L = 746 nm. (b) L = 1.327 nm. (c) L 

= 1.713 nm. (d) L = 2.210 nm. Barra de escala, 500 nm 

 

patrón es similar a la longitud de onda del polaritón. Estudiamos un cristal 

polaritónico bidimensional fabricado a partir de una capa fina de h-BN, cuyo modo 

polaritónico más relevante es un fonón-polariton hiperbólico confinado en la capa 

fina. 

El Capítulo 1 consiste en una introducción que contextualiza los resultados 

presentados en esta tesis. Primero, describimos los materiales usados comúnmente 

en nanofotónica, metales nobles y cristales polares, destacando las características 

de sus polaritones de superficie en distintos rangos de frecuencias, particularmente 

en el infrarrojo medio. Después introducimos varios novedosos materiales vdW 

(e.g. grafeno y nitruro de boro), que poseen polaritones en el infrarrojo medio con 

longitudes de onda pequeñas y largas vidas medias. En la última parte del capítulo 

introducimos antenas ópticas y cristales polaritónicos basados en materiales 

convencionales (isótropos), que exhiben, respectivamente, resonancias 

polaritónicas localizadas y de superficie. 

En el Capítulo 2 examinamos las características de los polaritones hiperbólicos en 

h-BN, cuyo comportamiento es muy diferente al de sus contrapartidas en 

materiales isótropos. En particular estudiamos polaritones hiperbólicos de 

volumen (HVPs) que se propagan a través de nitruro de boro (Figura s.1). 

Introducimos los polaritones hiperbólicos de superficie (HSPs), que están 

confinados a la interfaz entre h-BN y un material dieléctrico, cuando las capas  
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Figura s.3: Comparación del tamaño de celdas unidad. De izquierda a derecha: cubo cuyo 

lado corresponde a la longitud de onda de la luz en el vacío; tamaño típico de la celda 

unidad de un cristal fotónico de Silicio; dimensiones de la celda unidad del cristal 

polaritónico de h-BN estudiado en el Capítulo 4. 

 

atómicas de nitruro de boro son perpendiculares a la interfaz. Además, discutimos 

las características de los modos polaritónicos que se propagan a través de capas 

finas de h-BN, así como los modos confinados a los bordes de las láminas de 

nitruro de boro, denominados modos de volumen hiperbólicos (HVMs) y modos 

de superficie hiperbólicos (HSMs), respectivamente. 

En el Capítulo 3 estudiamos antenas lineales de nitruro de boro. Las antenas 

lineales son uno de los bloques fundamentales en nanofótonica, dado que pueden 

concentrar campos electromagnéticos en volúmenes muy pequeños en sus 

frecuencias de resonancia, las cuales están controladas por las dimensiones de las 

antenas. Las antenas de h-BN son estudiadas experimentalmente por medio de 

nanoespectrocopía y nanoimagen infrarroja (Figura s.2). Descubrimos resonancias 

con altos factores de calidad (Q ~ 100), que asignamos a resonancias de Fabry-Peròt 

de un modo HSM híbrido. 

Finalmente, en el Capítulo 4, estudiamos otra estructura básica en nanofotónica, un 

cristal polaritónico. Diseñamos y fabricamos una red bidimensional de agujeros en 

una capa fina de h-BN, que es medida a través de espectroscopía de campo lejano 

y microscopía de campo cercano, y la investigamos con métodos numéricos y 

analíticos. Los cristales polaritónicos estudiados permiten concentrar la luz en un 

volumen 10−5 veces más pequeño que el volumen de una longitud de onda en el 
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espacio libre,  varios órdenes de magnitud más pequeño que un cristal fotónico 

convencional (Figura s.3). Los modos Bloch ultraconfinados del cristal polaritónico 

son observados con microscopía del campo cercano. La estructura de bandas 

formada por estos modos Bloch posee una banda marcadamente plana. Esta 

dispersión plana causa resonancias Bragg espectralmente estrechas, y que son 

independientes del ángulo y de la polarización de la luz incidente, lo que es 

verificado por medio de espectroscopía de campo lejano y modelización teórica.  

En conclusión, en esta tesis estudiamos nanoestructuras fabricadas a partir de h-

BN, un material que exhibe fonón-polaritones hiperbólicos con pocas pérdidas en 

el infrarrojo medio. La descripción y el análisis de las propiedades de estas 

estructuras es de gran importancia para el diseño de guías de ondas hiperbólicas, 

emisores y captadores térmicos extremadamente miniaturizados, y de 

nanoestructuras para espectroscopia de absorción en el infrarrojo aumentada por 

fonones. 
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1. Introduction 
 

In this chapter we briefly introduce surface polaritons in metals, polar crystals and in the 

van der Waals materials graphene and hexagonal boron nitride, and describe how these 

materials can confine light at the nanoscale at mid-IR frequencies, thereby overcoming the 

limitations of traditional dielectric materials. We also introduce optical antennas, which are 

nanophotonic devices that are capable of localizing optical fields at dimensions below the 

diffraction limit. Further, 2D polaritonic crystals are introduced, which are periodic 

structures made of a material sustaining polaritons. Due to the periodicity, the polariton 

dispersion forms a band structure. 

 

1.1 Guided optical waves in planar structures 

 

2D dielectric waveguides at visible frequencies 

The ability to control and manage light at subwavelength scales is crucial for 

creating miniaturized optical circuits1, designing novel biosensors2,3, and to 

strongly enhance light-matter interactions4. However, conventional dielectric 

materials (typically having small permittivity values), widely used to guide light at 

visible frequencies, have limitations for localizing light at dimensions smaller than 

the wavelength of light in the material. In the following subsection we show this 

limitation in an exemplary system, a two dimensional (2D) slab waveguide.  

A 2D slab waveguide made of a dielectric material guides light in the form of 

waveguide modes. A prototypical dielectric material is silica (SiO2), commonly 

used in optical communication systems5. The permittivity of silica has a weak 

dependence on frequency, 𝜖SiO2
= 𝜖SiO2

(𝜔) , in the visible and near-infrared 

frequencies6. At visible frequencies it can be adequately approximated as 𝜖SiO2
=

2.28 (neglecting the very small losses of silica for simplicity). In Figure 1.1 we 

consider silica waveguides of different thicknesses, and a wavelength 𝜆0 = 500 nm, 

that corresponds to a greenish color. Light propagates along the waveguides in the 

form of waveguide modes7,8. These modes can be separated into transverse electric 

(TE) modes and transverse magnetic (TM) modes. In the case of the TE (TM) 

modes, their electric (magnetic) field is perpendicular to the propagation  
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Figure 1.1: TM0 mode of a 2D dielectric waveguide. (a) Normalized wavevector of the 

TM0 mode as a function of the waveguide thickness. The asymptote at large 𝑑, √𝜖𝑆𝑖𝑂2 ⋅ 𝑘0 , 

is marked by the dashed black line. (b) Transverse decay length of the TM0 mode as a 

function of the waveguide thickness, defined as the length at which the evanescent field 

strength outside the waveguide decays by a factor 1/𝑒. (c) Sketch of the silica waveguide 

surrounded by air. (d) Snapshot of the vertical component of the electric field, calculated 

for a waveguide of 1 μm thickness, marked by the solid red line in (a). (e) Same as (d), for a 

waveguide of 0.1 μm thickness, marked by the solid green line in (a). 𝜆0 = 500 nm. 

 

direction. Here we analyze the TM modes of the 2D slab waveguide; however, the 

conclusions are general and applicable to TE modes as well8,9. 

We analytically calculate10 the normalized wavevector of the TM0 mode, 
𝑘x

𝑘0
, as a 

function of the silica thickness, 𝑑, for a silica layer surrounded by air (Fig. 1.1). The 

free-space wavevector magnitude, 𝑘0, is defined as 𝑘0 =
2𝜋

𝜆0
 (with 𝜆0 the wavelength 

of light in free-space), and the wavevector of the TM0 mode in the propagation 

direction, 𝑘x, is defined as 𝑘x =
2𝜋

𝜆TM0
 (with 𝜆TM0 the wavelength of the TM0 mode). 

For very small thicknesses, the normalized wavevector is close to one, and it 

increases as the thickness of the silica layer increases. For thicknesses larger than 

the wavelength of light in free-space, the TM0 mode wavevector tends to √𝜖SiO2
⋅

𝑘0, which corresponds to the wavevector of light propagating through bulk silica. 

Thus, the minimum wavelength of the mode is given by the wavelength of light in 

the material. The transverse confinement of the TM0 mode (in the direction 

perpendicular to the propagation direction) is analyzed in the following. A rough 
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estimate of the extension of the TM0 mode in the transverse direction, 𝐿TM0, is 

given by the thickness of the waveguide plus the decay length of the TM0 mode 

above and below the waveguide (shown in Fig. 1.1b). For waveguides much 

thicker than the wavelength of light in free space, the decay length is a fraction of 

𝜆0 . However, as the waveguide thickness reduces, the decay length increases, 

being much larger than the free space wavelength for extremely thin waveguides. 

𝐿TM0  is of the order of magnitude of the wavelength of light in free-space for 

𝑑 ~ 𝜆0, having a minimum at 𝑑 = 190 nm, where 𝐿TM0 = 0.82𝜆0, (corresponding to 

1.24 times the wavelength of light in bulk silica).  For very thick (𝑑 ≫ 𝜆0) and very 

thin (𝑑 ≪ 𝜆0) waveguides, 𝐿TM0 is much larger than 𝜆0. To illustrate the transverse 

confinement of the mode (𝐿TM0) and the mode wavevector (𝑘x) as a function of the 

waveguide thickness, we calculate the field distribution of the TM0 mode 

propagating along the x-axis for two thicknesses, 𝑑 = 1 μm and 0.1 μm  (marked by 

red and green lines, respectively, in Fig 1.1a). We show a snapshot of the vertical 

component of the electric field, Re (𝐸z),  in Fig. 1.1d and e. We note that due to the 

absence of losses in the calculation, the waveguide modes propagate without 

dissipation. For a waveguide of 1 μm thickness, the electric field of the mode is 

mainly confined inside the silica (Fig. 1.1d), and the fields rapidly decay with 

distance to the silica/air interface. However, for the thin waveguide (𝑑 =
𝜆0

5
=

0.1 μm) the electric field of the mode extends significantly into the surrounding 

medium11 (Fig. 1.1e), as expected from the calculated transverse decay length 

shown in Fig. 1.1b. Moreover, the calculation also shows that the mode wavelength 

is reduced in thicker waveguides (compare Fig. 1.1d and e). The presented analysis 

illustrates that, in silica (and more generally in any low index dielectric material5) 

the transverse field confinement cannot be much smaller than the mode 

wavelength. 

Surface plasmon polaritons in metals at visible frequencies 

Subwavelength-scale light confinement in the visible spectral range is possible 

using metals. Metals, such as gold, silver, and copper can have a negative 

permittivity at visible and infrared frequencies12. The permittivity function of a 

metal at visible frequencies depends upon two main facts: (i) conduction electrons 

in the metal that can freely move through the material, and (ii) interband 

excitations that take place when the photon energy is higher than the bandgap 

energy of the metal13. The effect of the free electrons leads to a Drude-like 

permittivity function, whereas the interband excitations lead to additional 

contributions to the permittivity function (described by the Drude-Sommerfeld 

model). Here, for simplicity, we consider a metal with a permittivity in the visible 
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Figure 1.2: Surface plasmon polaritons in the Drude metal/air interface (a) Permittivity 

of the Drude metal. (b) Dispersion of the SPPs in the Drude metal/air interface. (c) Field 

amplitude of the SPP, propagating along the x-direction as a function of x and z. (d) 

Snapshot of the vertical component of the electric field of the SPP. The dashed line in (a-c)  

marks the frequency at which the fields distributions in (d,e) were calculated. The white 

background in (a-c) indicates the region where Re(𝜖m) < 0. 

 

and infrared range described by a modified Drude model. The permittivity of the 

Drude metal is given by the formula: 

𝜖m(𝜔) = 𝜖∞ −
𝜔p

2 

𝜔2 + 𝑖γ𝜔
,     (1.1) 

where 𝜖∞  is the high frequency permittivity, that summarizes the effect of the 

interband transitions, 𝜔p is the plasma frequency of the metal, 𝑖 is the imaginary 

unit and γ is the damping rate. The parameters we consider to exemplify a Drude 

metal are: 𝜖∞ = 2.95 , 𝜔𝑝 = 7.2 ⋅  104 cm−1  and γ = 556 cm−1  (or 1.04 ⋅ 1014s−1) , 
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which describes the permittivity of gold at infrared frequencies. This permittivity 

function does not correctly describe gold at visible frequencies due to the effect of 

interband excitations14,15. However, the Drude model allows for an intuitive 

description of the optical properties of metals, and thus hereafter we refer to a 

metal with the previously described parameters as “Drude metal”. The real and 

imaginary parts of the permittivity of the Drude metal are shown in Fig. 1.2a, 

illustrating that below a certain frequency (located at the near ultraviolet), the 

permittivity becomes negative. 

An interface between a metal (with negative permittivity) and a dielectric can 

sustain surface plasmon polaritons (SPPs)11,16,17, a particular type of polariton which 

is TM polarized and which propagates along the interface and decays 

exponentially in the direction perpendicular to the interface. The dispersion 

relation of SPPs 𝑘SPP(𝜔), normalized to the free-space wavevector, 𝑘0 is given by13  

𝑘SPP(𝜔)

𝑘0(𝜔)
= √

𝜖1𝜖m(𝜔)

𝜖1 + 𝜖m(𝜔)
,       (1.2) 

where 𝜖1 is the permittivity of the dielectric and 𝜖m the permittivity of the metal. 

When a Drude metal/air interface is assumed, the normalized wavevector of SPPs 

(Fig. 1.2b) is close to one at low frequencies (in the mid-IR and THz range). It 

increases with frequency up to several times the free-space wavevector of light 

(near the frequency where Re [𝜖m(𝜔)] = −𝜖1, located at near-UV frequencies). At 

the frequency where Re [𝜖m(𝜔)] = −𝜖1 (marked by a solid black line in Figure 1.2a-

c) we find a transition from normal to anomalous SPP dispersion. For the latter, the 

group velocity, given by 𝑣g,SPP =
𝜕𝑘SPP

𝜕𝜔
, is negative, and the propagation distance is 

smaller than a wavelength. For frequencies above that of Re [𝜖m(𝜔)] = 0, the SPP 

continuously transforms into the Brewster mode13. The field of the SPP supported 

by the metal-air interface at  𝜔 = 3.4 ⋅ 104 cm−1  (a frequency where the SPP 

wavevector is significantly increased with respect to the free-space light 

wavevector) is shown in Figures 1.2d,e. It can be seen that the electric field is 

maximum at the interface and decays rapidly in the transverse direction (z-

direction), with decay lengths 𝐿d  and 𝐿m inside the dielectric and metal, 

respectively, given by: 

𝐿d =
1

𝑘0
Im (√

𝜖1 + 𝜖m

𝜖1
2 ),   𝐿m =

1

𝑘0
Im(√

𝜖1 + 𝜖m

𝜖m
2

).      (1.3) 
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For the frequency 𝜔 = 3.4 ⋅ 104 cm−1 we obtain 𝐿d = 35 nm and 𝐿m = 23 nm. This 

calculation shows that the decay length is smaller in the metal than in the dielectric 

and that both of them are significantly smaller than the free-space wavelength 

(𝜆0 = 294 nm). This property holds generally for SPPs13 and is in contrast to 

waveguide modes in dielectrics (compare to Fig. 1.1). 

The electromagnetic field of the SPP decays exponentially as it propagates (as 

shown in Fig. 1.2d) due to the ohmic losses in the metal, resulting in the heating of 

the material. For 𝜔 = 3.4 ⋅ 104 cm−1, we find a propagation length, given by the 

formula 𝐿p =
1

Im(𝑘SPP)
= 14 μm, which corresponds to several SPP wavelengths. A 

propagation length in the range of microns is common for SPPs in metals at visible 

frequencies13,18. Albeit the propagation length of SPPs can be enhanced by using 

more complicated geometries (up to the milimeter range)19-22,  it stands in stark 

contrast with the much longer propagation length of visible light in a dielectric 

waveguide5,8,23, thus limiting the use of SPPs for long-range communication 

systems. Hence, SPPs in metals (such as gold, silver and copper) at visible 

frequencies can have small wavelengths (𝜆SPP < 𝜆0 ), high lateral confinement 

(𝐿p < 𝜆0  and 𝐿m < 𝜆0), and propagation lengths in the order of dozens of microns. 

Surface plasmon polaritons at mid-infrared frequencies 

The mid-IR spectral band (400-4000 cm-1) is a technologically important spectral 

region. For instance, a large number of biological molecules have their vibrational 

absorption resonances in the mid-IR spectral range. Each molecule possesses a 

unique absorption spectrum, called “spectral fingerprint”, which can be used for 

molecular identification. For this reason, the mid-infrared region is well-suited for 

molecular sensing applications; and subwavelength optical devices could allow the 

direct detection minute quantities of analytes. Moreover, the mid-IR region covers 

the spectral range at which “warm” objects (300-1000 K)24 emit thermal radiation 

(the radiation emitted by any finite-temperature body). Thus, mid-IR radiation is 

of vital importance for thermal emission control, monitoring and imaging25; and 

subwavelength optical structures could serve as thermal coatings26-29 and spectrally 

selective thermal radiators30,31. 

In the mid-IR spectral range, the permittivity of metals (such as gold or silver12) has 

large negative values. As a consequence, SPPs at semi-infinite metal/dielectric 

interfaces have a wavevector similar to the free-space light wavevector (see Fig. 

1.2b,c for the Drude metal), and subsequently large transverse decay lengths in the 

lateral direction28,32. For that reason, they are not suitable for developing 

subwavelength-scale mid-IR photonics. Nevertheless, there are several pathways 
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for the subwavelength control of mid-IR radiation. One possibility is to use 

geometries, different from a metal-dielectric interface, that sustain propagating 

surface polaritons. One of the most common structures are metal-insulator-metal 

(MIM) waveguides33-36, that sustain SPP modes with subwavelength lateral 

confinement. Beyond MIM waveguides, transmission lines37,38 and dielectric stripes 

on metallic surfaces39 support propagating plasmonic modes with great lateral 

confinement. The plasmonic mode wavevectors can be significantly larger than 

𝑘0
37, with reported values around 3𝑘0.  

The use of doped semiconductors offers interesting opportunities for mid-IR 

subwavelength optics. For instance, heavily doped semiconductors with carrier 

densities around 𝑛 = 1019−21 cm−3 (such as Ge, Si, and III-V alloys40,41) can have its 

plasma frequency 𝜔p  (Eq. 1.1) at mid-IR frequencies. As a consequence, the 

permittivities have small-negative values and thus can support SPPs (at a single 

interface) with large wavevectors42 and lateral confinement40.  

The damping rate of free electrons in doped semiconductors, γ, is typically in the 

order40,43,44 of 1013 − 1015𝑠−1. The damping rate influence the characteristics of the 

surface polaritons sustained by a material45,46. For instance, lowering the damping 

rate of a material enhances e.g. the lifetime and propagation length of the sustained 

SPPs. Hence, materials combining smaller damping rates and small negative-

valued permittivities could exhibit surface polaritons with better characteristics 

than SPPs in doped semiconductors at mid-IR frequencies43,47. 

Surface phonon polaritons at mid-IR frequencies 

Another type of materials, polar crystals such as SiC48, GaAs49 or Al2O350, can have 

negative permittivities in the mid-IR spectral range. The negative permittivity 

arises from the coherent oscillations of the lattice atoms of the polar crystal (optical 

phonons). The spectral range of negative permittivity is called Reststrahlen band 

and lies between the transverse optical (TO) phonon frequency and the 

longitudinal optical (LO) phonon frequency, both frequencies taken in the long 

phonon wavelength limit51,52. The permittivity function of the polar crystal at mid-

IR frequencies, 𝜖𝑝(𝜔), can be described by a Lorentz oscillator model51,53,54, 

𝜖p(𝜔) = 𝜖∞ (1 +
𝜔LO

2 − 𝜔TO
2

𝜔TO
2 − 𝜔2 − 𝑖𝜔γ

),      (1.4) 
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Figure 1.3: Surface Phonon Polaritons in 4H-SiC/Air interface (a) Permittivity of 4H-SiC 

in its Reststrahlen band in the mid-IR. (b) Dispersion of the surface phonon polaritons on a 

4H-SiC/air interface. (c) Field amplitude of the SPhP as a function of x and z. (d) Snapshot 

of the vertical component of the electric field. The dashed line in (a-c) marks the frequency 

at which the fields in (d,e) were calculated. The solid black line in (a-c) marks the 

frequency where 𝑅𝑒(𝜖4𝐻−𝑆𝑖𝐶) = −1. The white region in (a-c) represent the Reststrahlen 

band of 4H-SiC. 

 

where 𝜖∞  is the high-frequency permittivity; 𝜔LO  and 𝜔TO  are the LO and TO 

phonon frequencies, respectively, 𝑖 is the imaginary unit, and γ is the damping rate 

of polar phonons. An attractive feature of polar crystals is the typically small 

damping rate of polar phonons (γ ~ 1012 s−1), up to two orders of magnitude 

smaller than that of free electrons in metals and doped semiconductors. The 

reduced damping rate of optical phonons could lead to surface polaritons with 

lower losses than those of plasmonic materials. 
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At frequencies inside the Reststrahlen band, surface phonon polaritons (SPhPs) 

exist. These electromagnetic modes (which are TM polarized) propagate at the 

interface between a polar crystal and a dielectric with a wavevector that is larger 

than the free-space photon wavevector. The dispersion relation of the SPhPs, 

normalized to the free-space wavevector 𝑘0, is given by13: 

𝑘SPhP(𝜔)

𝑘0(𝜔)
= √

𝜖1𝜖p(𝜔)

𝜖1 + 𝜖p(𝜔)
,       (1.5) 

where 𝜖1 is the permittivity of the dielectric and 𝜖p(𝜔) the permittivity of the polar 

crystal. 

4H-SiC is a polar crystal that has a Reststrahlen band in the mid-IR55 that we 

choose as a representative material. Its permittivity function is well described by 

the Lorentz permittivity model, Eq. (1.4), with the parameters56: 𝜖∞ = 6.7, 𝜔LO =

793 cm−1, 𝜔TO = 969 cm−1, γ = 4.76 cm−1 (or 7 ps.). The permittivity function of 

4H-SiC is shown in Fig. 1.3a. The dispersion of SPhPs at the 4H-SiC/air interface, 

calculated using Eq. (1.5), is shown in Fig. 1.3b,c. The SPhPs exist in the range 

between the TO phonon, (where the SPhP wavevector is similar to the wavevector 

of light in free-space), up to the LO phonon frequency. SPhPs can possess 

wavevectors higher than the free-space wavevector (up to 2.5k0 for 4H-SiC), 

differently from SPPs in metals at mid-IR frequencies (these having wavevectors 

close to k0). Due to the small range of frequencies that the Reststrahlen band of 

polar crystals typically covers (see Fig. 1.3a for 4H-SiC), the permittivity function 

of a polar crystal is more dispersive than that of a typical plasmonic material43,47. 

Hence, SPhPs are also more dispersive than SPPs and, as a consequence, the group 

velocity of SPhPs (defined as 𝑣𝑔,SPhP =
𝜕𝜔SPhP

𝜕𝑘
) is typically smaller than that of SPPs.  

The SPhP electromagnetic fields decay exponentially in the lateral direction 

(similar to the SPP fields) as seen in Fig. 1.3d,e. The SPhP decay lengths into the 

dielectric and polar material are given by: 

𝐿d =
1

𝑘0
Im(√

𝜖1 + 𝜖p

𝜖1
2 ) , and         𝐿p =

1

𝑘0
Im(√

𝜖1 + 𝜖p

𝜖p
2

) ,       (1.6) 

respectively, with 𝜖p(𝜔) being defined in Eq. (1.4). For the frequency 𝜔 = 940 cm−1 

(𝜆0 = 10.6 μm, where the wavevector of the SPhP is well separated from the free-

space wavevector), the SPhP decay length into 4H-SiC is 𝐿p = 1.36 𝜇𝑚, and the 

decay length into air is 𝐿d = 2.30 μm, both being much  smaller than 𝜆0. The  
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Figure 1.4: Ultraconfined graphene plasmons. (a) Normalized conductivity of graphene 

at mid-IR frequencies for a Fermi energy of 0.3 eV, a relaxation time of 0.05 ps, and a 

temperature of 300 K. (b) Real part of the normalized wavevector of the GPs. (c) Imaginary  

part of the normalized wavevector of the GPs. (d) Field amplitude distribution of a GP. (e) 

Snapshot of the vertical component of the electric field. The dashed line in (a-c) marks the 

frequency at which the fields in (d,e) were calculated. 

 

propagation length of the mode at the same frequency is 𝐿prop = 44 μm, which is 

4.2 times the free-space photon wavelength or 7.9 times the SPhP wavelength. It is 

worth noting that although the damping rate of polar phonons in 4H-SiC is two 

orders of magnitude smaller than that of free electrons in doped semiconductors40, 

the normalized propagation lengths of SPhPs in 4H-SiC are not much longer than 

those of SPPs in doped semiconductors47. This is related to the fact that the 

propagation length, 𝐿prop,  approximately depends on the damping rate, γ, and the 

group velocity, 𝑣𝑔, as47 𝐿prop ∝
γ

𝑣𝑔
 . 
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Figure 1.5: Summary of polaritons in vdW materials. Taken from Ref. 57. 

Polaritons in vdW materials 

Following the isolation of graphene by Geim and Novoselov in 200458, a huge 

research field has emerged, which aims on exploring the properties of atomically 

thin van der Waals (vdW) materials59-64. The initial excitement was caused by the 

interesting electronic properties of graphene65 (such as a linear electronic band 

dispersion and large electron mobilities66) promising applications in 

nanoelectronics67. However, it was soon realized that its optical properties were 

equally interesting68.  

The conductivity of a graphene layer, 𝜎(𝜔), can be obtained from the Random 

Phase Approximation69 (RPA), and depends upon the temperature (T), the 

chemical potential (𝜇) and the scattering rate (𝜏). In the following we discuss the 

graphene conductivity and the resulting plasmons. The parameters we choose for 

calculating 𝜎(𝜔) are similar to those of graphene fabricated by chemical vapor 

deposition70: 𝑇 = 300 K, 𝜇 =  0.3 eV, and 𝜏 = 0.1 ps. The normalized conductivity, 

defined as 𝛼(𝜔) =
2𝜋𝜎(𝜔)

𝑐
, of graphene at IR and THz frequencies is shown in Fig. 

1.4a. Both Re(𝛼)  and Im(𝛼)  are positive and increase with frequency decrease, 

indicating that the interband contribution to the conductivity dominates in the 

mid-IR frequency region69. Interestingly, in this spectral region electromagnetic 

waves coupled to the graphene charge carriers (electrons or holes) oscillations 

exist: graphene plasmon polaritons (GPs)71-73.  

The dispersion relation of GPs (which are TM polarized) in a free-standing 

graphene layer74 is given by 

𝑘𝐺𝑃(𝜔)

𝑘0(𝜔)
= √1 −

1

𝛼2(𝜔)
,              (1.7) 
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Figure 1.6: Hexagonal boron nitride. (a) Atomic structure of h-BN. (b) Permittivity 

functions of h-BN in the mid-IR spectral range. Red line represents  Re(𝜖∥(𝜔)) and blue 

line represents  Re(𝜖⊥(𝜔)). Colored spectral regions indicate the upper (red) and lower 

(blue) Reststrahlen bands. (c) Isofrequency surface of SPhP on h-BN in the Type II 

Reststrahlen band. (a) and (c) taken from Refs. 75, and 76, respectively. 

 

and shown in Figure 1.4b. A fascinating characteristic of graphene plasmons (GPs) 

in the mid-IR spectral range is their ultra-small wavelengths (Figs. 1.4b,e), which 

can be tuned by applying an electrostatic potential23,24. The low losses (GPs can 

propagate several wavelengths77, as shown in Fig. 1.4e) and exceptional lateral 

confinement of graphene plasmons (shown in Figs. 1.4d,e), along with its electrical 

tunability71,72, has triggered the design of many devices promising biosensing 

applications78 and ultrafast electrooptical elements79.  

Following the discovery of graphene, a great number of vdW materials with 

different physical properties were found. Due to their very different nature 

(metallic27-29, semiconducting30,31, insulating80 and superconducting81,82) a large 

variety of polaritonic modes have been experimentally observed or theoretically 

predicted. 

A summary of the different types of polaritons in van der Waals materials is 

shown in Figure 1.5. Conduction electrons coupled with light form plasmon 

polaritons in graphene71 and black phosphorous83,84 among others. The coupling of 

light with bound atomic charges forms phonon polaritons at mid-IR frequencies in 

h-BN80,85 and MoO386,87. Exciton polaritons, arising from the coupling of light with 

bounded electron-hole pairs, appear in MoS2  and WSe2  at visible and near-IR 

frequencies88. Further, Cooper pair polaritons89 and magnon polaritons90 are 

expected to arise in high-TC superconductors and ferromagnetic materials, 
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respectively. Importantly, the strongly anisotropic crystal structure of vdW 

materials (in-plane covalent bonding and out-of-plane weak van der Waals 

bonding) can cause a highly anisotropic optical response. This optical anisotropy 

leads to so-called elliptic and hyperbolic polaritonic dispersion, which has been 

theoretically predicted84,91,92 and experimentally observed37,38,93 in many vdW 

materials.  

Hexagonal boron nitride (h-BN) is a particularly interesting vdW material for mid-

IR nanophotonics. h-BN is formed by boron and nitrogen atoms bonded covalently 

in the in-plane direction, forming a hexagonal structure (Figure 1.6a). Since the 

difference in electronegativity between boron and nitrogen is larger than 0.4 eV94,95, 

the B–N bond is polar covalent. The adjacent sheets are bonded by weak van der 

Waals forces, as in the case of graphite96. Owing to the highly anisotropic 

crystalline structure of h-BN, the frequencies of the in-plane and out-of-plane 

normal lattice vibrational modes (optical phonons) are different. As a consequence, 

h-BN is an optically uniaxial material, with the optical axis perpendicular to the 

covalently bonded B-N layer (defined as parallel to the z-direction). The h-BN 

permittivity is then described by a diagonal tensor of components 

𝜖̂ = diag(𝜖xx, 𝜖yy, 𝜖zz), where  𝜖xx = 𝜖yy = 𝜖⊥ and 𝜖zz = 𝜖∥.  

Each of the permittivity tensor components can be described by a Lorentz 

oscillator model80,85,97: 

𝜖𝑗 (𝜔) =   𝜖∞,𝑗 (1 +
𝜔LO,𝑗

2 − 𝜔TO,𝑗
2

𝜔TO,𝑗
2 − 𝜔2 − 𝑖𝜔γ𝑗

),      (1.8) 

with 𝑗 =∥, ⊥.  The parameters are 𝜖∞,∥ = 2.95 cm−1 , 𝜔LO,∥ = 760 cm−1 , 𝜔TO,∥ =

825 cm−1 , γ∥ = 2 cm−1 . 𝜖∞,⊥ = 4.9 cm−1 , 𝜔LO,⊥ = 1360 cm−1 , 𝜔TO,⊥ = 1610 cm−1 , 

and γ⊥ = 7 cm−1 (taken from Ref. 97). The h-BN permittivity functions, 𝜖∥(𝜔) and 

𝜖⊥(𝜔), at infrared frequencies are shown in Fig. 1.6b. h-BN has two Reststrahlen 

bands in the mid-IR. These are designated as the upper (𝜔 = 1360 − 1610 cm−1) 

and lower (𝜔 = 760 − 825 cm−1) bands (Fig. 1.6b), originating from the in-plane 

and out-of-plane optical phonons85, respectively. Within these bands, phonon 

polaritons can be supported. However, the sign of the permittivity components is 

different inside each of the two Reststrahlen bands, Re(𝜖∥) ⋅ Re(𝜖⊥) < 0. For that 

reason, light can propagate through bulk h-BN within its Reststrahlen band.  

Light propagating inside h-BN at frequencies within its Reststrahlen bands exhibit  
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peculiar characteristics. For example, the surface formed by the PhPs wavevectors 

in reciprocal space at a given frequency (called isofrequency surface98) forms a 

hyperboloid, as shown in Fig. 1.6c. This stands in stark difference to light 

propagating through an isotropic material, where the magnitude of the wavevector 

the same for all directions (the isofrequency surface being a sphere10). Due to its 

peculiar characteristics, the propagation of light through h-BN is studied in more 

detail in Chapter 2. 

 

1.2 Optical Antennas 

 

In analogy to its radiofrequency and microwave counterparts, an optical antenna99 

is a “device designed to convert free space propagating optical radiation to 

localized energy and vice versa”. Optical antennas provide a unique opportunity 

for achieving enormous field enhancements, strong field localization and large 

absorption. Due to these characteristics, optical antennas find applications in high- 

resolution microscopy100, light101 and thermal30 emission, coherent control of light102, 

photovoltaics53,54 and photocatalysis103 among many others.  

A small metallic sphere of radius 𝑅 (with 𝑅 ≪ 𝜆0) can act as an optical antenna. Its 

polarizability, 𝛼p, calculated in the quasistatic limit13, is given by: 

𝛼p = 4𝜋𝑅3
𝜖m(𝜔) − 𝜖d

𝜖m(𝜔) + 2𝜖d  
,   (1.9)      

where 𝜖m(𝜔) is the permittivity function of the metal, and 𝜖d the permittivity of the 

surrounding medium. At the frequency where the condition  𝜖m(𝜔) = −2𝜖d  is 

fulfilled, the polarizability diverges, indicating a resonance. This resonance (also 

called Fröhlich resonance104) is an example of a localized surface polariton resonance 

(LSR), at which light drives resonantly the conduction electrons (in the case of a 

metallic sphere) to coherent oscillations. 

To identify the nature of this resonance, we show the electric field amplitude 

around an metallic nanosphere (of 𝑅 = 10 𝑛𝑚 ) surrounded by air, when 

illuminated by a plane wave. The metal permittivity is described by a Drude  
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Figure 1.7: Localized surface polariton resonance of a metal nanosphere. (a) Electric field 

distribution at the LSR of a Drude metal nanosphere. The nanosphere is represented in 

dark grey. (b) Scattering and absorption cross-section normalized to the area of the 

nanoparticle as a function of the frequency of the incident plane-wave. Dashed line 

indicates the LSR resonance wavelength. 

 

model (Eq. 1.1), with parameters 𝜖∞ = 2.95 , 𝜔𝑝 = 7.2 ⋅  104 cm−1  and γ =

556 cm−1. At the resonance frequency (𝜆R = 257 nm), the field is localized near the 

nanosphere and strongly enhanced (Fig. 1.7a), and the absorption and scattering 

cross-sections have a maximum13 (Fig. 1.7b).  

Nanorods can also exhibit LSRs105, thus acting as optical antennas. The longitudinal 

LSR of a nanorod can be excited by an incident light beam polarized along the 

longitudinal axis of the nanorod. The frequencies of the LSRs of the nanorod 

depend on its cross section and length, and on the substrate permittivity84,85,105, and 

as a consequence can be tuned over a wide frequency range from the visible to the 

mid-IR106,107. Nanorod antennas play an important role in nanophotonics, being 

used for surface enhanced infrared absorption spectroscopy applications107 and to 

control the angular emission of quantum dots108,109, among others. In a simple 

picture, a LSR of the nanorod can be interpreted as a Fabry-Pèrot (FP) resonance of 

a plasmonic waveguide mode on the nanorod105,110. The FP resonance condition is 

given by 

𝑛𝜋 = 𝜙1 + 𝜙2 + 𝑘m𝐿,   (1.10)      
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Figure 1.8: Localized resonances in metallic nanorod. (a) Near-field distributions at the 

resonances, marked as (i), (ii), (iii) in (b), of a nanorod antenna made of a Drude 

metal. The green line indicates the antenna.  (b) Calculated average electric field at 

the nanoantennas surface as a function of the frequency of the incident plane-wave. 

(c) Electric field distribution (|𝐸𝑧|) of the plasmonic waveguide mode. (d) Snapshot 

of the vertical component of the electric field distribution of the plasmonic 

waveguide mode. (c,d) calculated at 𝜆0 = 0.93 m. 

 

where 𝑘m  is the wavevector of the plasmonic mode propagating through the 

nanorod, 𝐿 is the length of the antenna, 𝜙1 and 𝜙2 are the reflection phases at each 

end of the nanorod, and 𝑛 is the order of the FP resonance. Note that, in our study 

of h-BN antennas (Chapter 3), being h-BN an anisotropic polar crystal supporting 

phonon-polaritons, we will make use of the same notions of Fabry-Pèrot 

resonances of a waveguide mode to identify and analyze the modes supported by 

h-BN nanorod waveguides and antennas. 

To analyze the characteristics of LSR in nanorod metallic antennas, we perform 

full-wave simulations of a micrometer long nanorod antenna of a Drude metal (Eq. 

1.1, using the same optical parameters as the metallic nanosphere considered 

above) illuminated by a plane wave polarized along its longitudinal axis. Fig. 1.8b 

shows that at certain illuminating frequencies, the electric field around the antenna 

is greatly enhanced, indicating LSR resonances. At these resonances, the nanorod 

has large absorption and scattering cross sections111-113. Figure 1.8a shows the 

electric field distribution at each resonance, these having an increasing number of 
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near-field maxima (along the longitudinal axis) for decreasing illuminating 

wavelength. Using Eq. (1.10) we identify the peaks denoted as (i), (ii), and (iii), as 

the first, third and fifth order FP resonances, respectively. The field distribution of 

the plasmonic waveguide mode giving rise to the FP resonances is also shown in 

Fig. 1.8c,d. It can be shown that this mode arises from the hybridization of four 

corner modes propagating along each corner of the rectangular waveguide21. 

 

1.3 Planar periodic polaritonic structures 

 

A periodic structure made of a material sustaining polaritons holds many 

similarities with the well-known photonic crystals (PCs) made of positive 

permittivity materials, that have been subject of intense and widespread 

research114. PCs are based on the interaction between optical waves and a material 

exhibiting periodicity on the scale of the wavelength of light. Due to the periodicity 

of the material, the propagation of the optical (bulk) waves within the material is 

modified. For example, spectral bands where light cannot propagate through the 

PC may appear under appropriate circumstances –a photonic bandgap115. 

However, one can consider surface, rather than bulk modes. If the surface is made 

of a material sustaining polaritons, the relevant optical mode will be a surface 

polariton. The required spatial periodicity can be introduced by e.g. corrugating 

the surface, or spatially changing its optical properties such as the permittivity. As 

in the bulk case, the periodicity will alter the propagation of surface polaritons. 

We show an illustrative example of the effects of introducing a spatial periodicity 

on a planar system hosting polaritons in the mid-IR. The material we choose is 

graphene, using the same conductivity parameters as in Section 1.1 (the losses of 

graphene are reduced by an order of magnitude for simplifying the calculation). 

The conductivity of graphene is periodically modulated in the x-direction. 

Resonance perturbation theory65-67 describes the optical response of modulated 

conductivity layers and can be applied even to strongly modulated systems such 

an array of graphene strips, with finite steps in the conductivity116. For the 

considered example, the perturbation consists on a sinusoidal modulation of the 

conductivity. For a given frequency 𝜔0,  

𝛼(𝜔0, 𝑥) = 𝛼(𝜔0) (1 + 𝐴 ⋅ sin(𝑘𝑙𝑥)),     (1.11) 
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Figure 1.9: Band structure formation in a modulated conductivity layer of graphene. (a) 

Profile of the conductivity in non-modulated graphene. (b) Profile of the conductivity in 

the weakly modulated graphene. (c) Profile of the conductivity in the strongly modulated 

graphene. (d) Graphene plasmon dispersion in the unmodulated conductivity layer. (e) 

Folded GP dispersion of the weakly modulated conductivity layer. (f) Polaritonic band 

structure of a strongly modulated conductivity layer. 

  

where 𝛼(𝜔0) is the conductivity calculated from the RPA, 𝐴 is the strength of the 

modulation, and 𝑘𝑙   the reciprocal wavevector, defined as  𝑘𝑙 =
2𝜋

𝐿
, where 𝐿 is the 

periodicity. We set the periodicity of the modulation to 𝐿 = 100 𝑛𝑚 , the same 

order of magnitude as the graphene plasmon wavelength at mid-IR frequencies.  

A small strength (𝐴 ≪ 1) periodic modulation (Figure 1.9b) create copies of the 

original polariton dispersion at distances 𝑘𝑝 + 𝑘𝑙 (with 𝑘𝑝 the polariton momenta), 

without altering the original polariton dispersion (Figure 1.9e, showing the folded 

polariton dispersion). The modes sustained by the periodic conductivity layer 

satisfy the Bloch condition52, and thus are called polaritonic Bloch modes. The 

efficient excitation of a polaritonic Bloch mode by an electromagnetic wave is 

called a Bragg resonance, and generally gives rise to a maximum in the EM wave 

absorption, transmission or reflection117. Upon increasing the strength of the 

modulation of the conductivity (set to 𝐴 = 0.25 in Fig. 1.9c,f) we observe several 

effects (Figure 1.9f). First, the GP dispersion deviates from the dispersion of GP in a 

non-modulated layer. Further, at some crossing points of the original dispersion, 

band-gaps are opened, prohibiting the propagation of polaritons at those 

wavelengths (𝜔 = 1180-1335 cm-1 in Fig 1.9f).  
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Polaritonic crystals can be periodic in two dimensions, instead of in one. For two 

dimensional polaritonic crystals the same notions of polaritonic Bloch modes and 

Bragg resonances hold to some extent118. Nonetheless, the band structure of a 2D 

polaritonic crystal is richer since the polariton dispersion folding and band 

structure formation occurs in two dimensions117,119(e.g exhibiting intricate band 

structures114, and offering the possibility of opening a complete band-gap for all 

wavevectors and polarizations120). For instance, the studied in Chapter 4 is periodic 

in two spatial dimensions: a 2D array of holes on an h-BN thin film. The Bloch 

resonances and Bragg modes of the polaritonic crystal will be theoretically studied 

by Resonance perturbation theory, and by numerical simulations of the band 

structure. 
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2. Surface and Volume modes in h-BN 
 

In this chapter, we analyze the electromagnetic modes sustained by bulk h-BN and thin 

films of h-BN at frequencies inside its Reststrahlen bands. The knowledge of these modes is 

of critical importance for the study and design of different h-BN nanostructures, such as 

the linear antennas and the polaritonic crystals considered in next chapters. We show that 

light propagates through bulk h-BN in the form of Hyperbolic Volume Polaritons. Then, we 

demonstrate that a rather different polaritonic mode, which we call Hyperbolic Surface 

Polariton, can propagate along the h-BN/dielectric interface when the optical axis of h-BN 

lies along the h-BN-dielectric interface. Thin h-BN films, easily obtained by exfoliation, 

confine the Hyperbolic Volume (and Surface) Polaritons, that propagate as a discrete set of 

Hyperbolic Volume (and Surface) Modes. The characteristics of these modes, such as their 

dispersion, lifetime and propagation length are studied. Some of the results reported in this 

chapter have been published in “Optical Nanoimaging of Hyperbolic Surface Polaritons at 

the Edges of van der Waals Materials” by P. Li, I. Dolado et al, Nano Letters 17, 228-235 

(2017). 

 

2.1 Introduction 

 

h-BN is an uniaxial polar crystal. In its Reststrahlen bands, located at mid-IR 

frequencies, the real part of the in-plane and out-of-plane components of the h-BN 

permittivity tensor have a different sign. As a consequence, the phonon polaritons 

in h-BN have hyperbolic dispersion (their isofrequency surface is a hyperboloid) 

and therefore are called hyperbolic polaritons (HPs). Due to their dispersion, HPs 

show fascinating properties, such as strong directionality and large wavevectors. 

This chapter is devoted to the study of light propagating through h-BN in the 

hyperbolic frequency ranges. The results, however, can be also applied to the 

analysis of HPs in other natural materials91,92 or hyperbolic metamaterials98. The 

chapter is organized as follows. In Section 2 we analyze the propagation of light 

through infinite bulk h-BN (when no boundaries are present), where light 

propagates as hyperbolic volume polaritons (HVPs). In Section 3 we analyze the 

propagation of HVPs in thin h-BN films with nanometric thickness. We show that 

in thin films HVPs form discrete hyperbolic volume modes (HVMs). In Section 4 

we analyze a different class of polaritons sustained by h-BN: hyperbolic surface 
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polaritons (HSPs). HSPs are surface waves that exist at the interface between h-BN 

and a dielectric material, when the optical axis of h-BN is parallel to the interface. 

Section 5 is devoted to the analysis of the waveguide modes originating from HSPs 

that propagate along the thin (with a typical thickness around 50 nm) lateral 

sidewalls of h-BN flakes, named hyperbolic surface modes (HSM).  

 

2.2 Hyperbolic Volume Polaritons in h-BN 

 

In a uniaxial material – with 𝜖̂ = diag (𝜖⊥, 𝜖⊥, 𝜖∥) – where the anisotropy is so strong 

that the sign of the permittivity is different in different directions, Re(𝜖⊥) ⋅ Re(𝜖∥) <

0, light propagates as the so-called hyperbolic volume polaritons (HVPs). These 

hyperbolic polaritons are the extraordinary waves10 (TM polarized) supported by 

uniaxial materials, when the in-plane and out-of-plane permittivity tensor 

components have a different sign. The term hyperbolic comes from the shape of the 

HVPs isofrequency surface in reciprocal (wavevector) space79,80. For instance, the 

isofrequency surface of light in vacuum is given by 𝑘x
2 + 𝑘y

2 + 𝑘z
2 =

𝜔2

𝑐2 , where 𝜔 is 

the frequency, 𝑐 is the velocity of light, and 𝒌 = (𝑘x, 𝑘y, 𝑘z) is the wavevector. Thus, 

it forms a sphere, indicating that light propagates isotropically. In contrast, the 

isofrequency surface of HVPs is given by10,17  

𝑘𝑥
2 + 𝑘𝑦

2

𝜖∥
+

𝑘𝑧
2

𝜖⊥
=

𝜔

𝑐
        (2.1) 

The solutions of Eq. (2.1) (for real 𝜖∥, 𝜖⊥) are open hyperboloids. For complex-

valued 𝜖∥, 𝜖⊥ the isofrequency surfaces (that must be defined for the real values of 

the wavevector components) are more complicated. Nevertheless, assuming 

|Re (𝜖∥)| ≫ Im (𝜖∥) and |Re (𝜖⊥)| ≫ Im (𝜖⊥), we will stick to the same classification 

of the isofrequency surfaces as for purely real-valued 𝜖∥, 𝜖⊥ . 

In each of the Reststrahlen bands, the isofrequency surfaces are topologically 

different. Namely, when  Re(𝜖⊥) > 0  and Re(𝜖∥) < 0  –as in the h-BN lower 

Reststrahlen band–, the isofrequency surface is a two sheet hyperboloid (Type I). In 

contrast, when Re(𝜖⊥) < 0 and Re(𝜖∥) > 0, the isofrequency surface is a one sheet 

hyperboloid (Type II) –as in the h-BN upper Reststrahlen band (Fig. 2.1a)–.  
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Figure 2.1: Propagation of HVPs through a semi-infinite h-BN crystal. (a) Isofrequency 

surface of HVPs in h-BN at 𝜔 =  1470 𝑐𝑚−1 . The dielectric permittivity tensor 

components are 𝜖∥ = 2.75 + 𝑖 ⋅ 4 ⋅ 10−4  and 𝜖⊥ = −6.98 +  𝑖 ⋅  0.4. (b) Vertically oriented 

electric dipole source (green dot) over semi-infinite volume of h-BN. The colorplot shows 

|𝐸𝑧| as a function of x and z. (c) the color plot showing Re(𝐸z). 𝜃 = 57.4°. 

 

Remarkably, along the direction given by the asymptote of the hyperboloid, HVPs 

propagate with arbitrarily large wavevectors (and thus vanishing wavelengths). 

This unique property of hyperbolic polaritons allows channeling and confining 

light in extremely subwavelength volumes81,82 and for enhanced dipole-dipole 

interactions121, among other effects. 

HVPs can be excited in h-BN by localized sources that generate strong near fields 

with large wavevectors. As an example we calculate the electromagnetic fields 

induced by a vertically oriented electric dipole located near the surface of a semi-

infinite h-BN crystal, for a frequency inside the upper Reststrahlen band of h-BN, 

𝜔 = 1470 cm−1. The isofrequency surface of HVPs is a one sheet hyperboloid as 

shown in Fig. 2.1a. 

The HVPs launched by the dipole form a directional ray-like pattern (hereafter 

simply referred as hyperbolic ray122) inside h-BN, which propagates with a given 

angle 𝜃 with respect to the z-axis (color plot in Fig. 2.1b). The hyperbolic ray is 
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formed by HVPs with extremely large wavevectors that propagate with an angle 

given by107,108 𝜃𝐻𝑅 = arctan√−
𝜖⊥

𝜖||
. Interestingly, the hyperbolic ray direction is 

parallel to the direction of the energy flow (Poynting vector, S), as shown in Fig. 

2.1b. In contrast, the direction of the phase velocity (coinciding with the direction 

of the asymptote of the hyperboloid) is nearly perpendicular to the hyperbolic ray 

(and thus to the Poynting vector), as shown in Fig. 2.1c. 

As a final remark, ordinary waves (TE polarized17) can also propagate through h-

BN crystals in the Type I Reststrahlen band (TE waves can propagate through 

uniaxial media if the condition Re(𝜖⊥) > 0 is fulfilled17). However, the wavevector 

magnitude of the TE waves17,  |𝒌𝟎√𝜖⊥|, is small compared to that of the HVPs. 

Since hexagonal boron nitride is a vdW material, due to its weak interlayer 

coupling, thin nanometric slabs of h-BN can be easily exfoliated onto different 

substrates. This is a crucial advantage for the application of h-BN in 

nanophotonics, and opens a plethora of opportunities to fabricate nanodevices 

based on one123 or multiple layers124 of different vdW materials. Thus, it is of great 

interest to analyze the polaritonic modes sustained by thin h-BN films. 

 

2.3 Hyperbolic Volume Modes in thin films 

 

In this section we study the electromagnetic modes (HVMs) sustained by thin h-

BN films. We consider films with the faces parallel to the h-BN atomic layers, so 

that the direction of the optical axis is perpendicular to the surfaces of the film. The 

HVMs in h-BN are, in principle, analogous to electromagnetic modes in dielectric 

waveguides8. In the first subsection we derive analytically the dispersion of HVMs 

in a three layer system consisting in a thin film of h-BN surrounded by two semi-

infinite dielectric media. In the second subsection we analyze the field distribution, 

propagation length and lifetime of HVMs for frequencies inside the h-BN 

Reststrahlen bands. 
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2.3.1 Analytical derivation 

 

Let us first consider an infinite (non-magnetic) uniaxial medium characterized by a 

dielectric permittivity tensor 𝜖̂. We choose the coordinate system in such a way 

that the tensor is diagonal  

𝜖̂ = (

𝜖⊥ 0 0
0 𝜖⊥ 0
0 0 𝜖∥

).       (2.2) 

To mathematically describe the electromagnetic field inside the uniaxial medium, 

we can decompose it in the appropriate basis (for which we have to find the 

appropriate basis vectors). We will follow a standard procedure (used in other 

publications125,126), and represent the �⃗⃗�  and �⃗⃗⃗�  fields in the uniaxial medium in the 

following form 

�⃗⃗� = 𝐸0�⃗� 𝑒
𝑖�⃗⃗� �⃗� −𝑖𝜔𝑡,                 �⃗⃗⃗� = 𝐻0�⃗⃗� 𝑒

𝑖�⃗⃗� �⃗� −𝑖𝜔𝑡,    (2.3)           

where �⃗�  and �⃗⃗�  are the unknown basis vectors of the electromagnetic field in a 

uniaxial medium, 𝐸0  and 𝐻0  are the arbitrary field amplitudes, 𝜔 is the angular 

frequency, �⃗⃗�  is the wavevector, and �⃗�  the position vector. Using Maxwell 

equations,   �⃗⃗� × �⃗⃗� −
1

𝑐

𝛿�⃗⃗� 

𝛿𝑡
= 0 and �⃗⃗� × �⃗⃗⃗� =

1

𝑐

𝛿�⃗⃗� 

𝛿𝑡
, we can exclude the magnetic field, 

and obtain the wave equation for the electric field, 

∇⃗⃗ ⋅ (∇⃗⃗ ⋅ �⃗⃗� ) − ∆�⃗⃗� −
𝜔2

𝑐2
(𝜖̂�⃗⃗� ) = 𝟎.        (2.4) 

Substituting into Eq. (2.4) the fields from (Eq. 2.3) we obtain the homogeneous 

linear system of equations for the three components of the unknown basis vectors. 

ℳ�⃗� = (

Δ𝑥 𝑞𝑥𝑞𝑦 𝑖𝑞𝑥𝑞𝑧

𝑞𝑥𝑞𝑦 Δ𝑦 ±𝑖𝑞𝑦𝑞𝑧

𝑖𝑞𝑥𝑞𝑧 ±𝑖𝑞𝑦𝑞𝑧 Δ𝑧

)(

𝑒𝑥

𝑒𝑦

𝑒𝑧

) = 0,     (2.5) 

where 𝑘0 =
𝜔

𝑐
 is the free-space wavevector, 𝑞𝑥,𝑦 =

𝑘𝑥,𝑦

𝑘0
 are the normalized in-plane 

components of the wavevector, and 𝑞𝑧   is the out-of-plane component of the 

normalized wavevector, introduced according to 𝑘𝑧 = ±𝑖𝑞𝑧𝑘0 . The +  (− ) sign  
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Figure 2.2: Schematics of the three layer system. The regions 1 and 3 are isotropic media 

of permittivities 𝜖1 and 𝜖3, respectively. Region 2 corresponds to the h-BN film of thickness 

d, with the optical axis parallel to the z-direction.  

 

corresponds to the wave propagating along (opposite to) the z-axis. Δ𝑖 is defined as 

Δ𝑥 = 𝜖⊥ − 𝑞𝑦
2 + 𝑞𝑧

2

Δ𝑦 = 𝜖⊥ − 𝑞𝑥
2 + 𝑞𝑧

2

Δ𝑧 = 𝜖∥ − 𝑞𝑥
2 − 𝑞𝑦

2.

           (2.6) 

The system in equation (2.5) has non-trivial solutions only when detℳ = 0, that 

gives the well-known Fresnel equation for the uniaxial medium10,17 

𝑞𝑧
2[𝜖∥(𝑞𝑧

2 + 𝜖⊥
2  ) − (𝑞𝑥

2 + 𝑞𝑦
2) (𝜖∥ + 𝜖⊥)] + 𝜖⊥(𝜖∥ − 𝑞𝑥

2 − 𝑞𝑦
2)(𝜖⊥ − 𝑞𝑥

2 − 𝑞𝑦
2 ) = 0.     (2.7) 

The Fresnel equation is quadratic equation in terms of the squared z-component of 

the wavevector, 𝑞𝑧. Its solutions, denoted as 𝑞𝑒𝑧, 𝑞𝑜𝑧 read as 

𝑞𝑜,𝑒𝑧
2 =

1

2
{
𝜖⊥ + 𝜖∥

𝜖∥
(𝑞𝑥

2 + 𝑞𝑦
2) − 2𝜖⊥} ±

1

2
√𝐷.       (2.8) 

With 𝐷 being 

𝐷 = [2𝜖⊥ +
𝜖∥ − 𝜖⊥

𝜖∥
(𝑞𝑥

2 − 𝑞𝑦
2)]

2

+ 4
(𝜖∥ − 𝜖⊥)2

𝜖∥
2 𝑞𝑥

2𝑞𝑦
2 .        (2.9) 

The solution for the ordinary, 𝑞𝑜𝑧 , (extraordinary, 𝑞𝑒𝑧 ) z-component of the 

wavevector is obtained choosing the plus (minus) sign in Eq. (2.8). Substituting Eq. 

(2.8) into the system (2.5) we find all the three components of the basis vectors  �⃗� . 

We take into account that the z-components of the wavevectors (2.8) are reduced to 

the well-known expressions for the ordinary and extraordinary waves: 



2.3 Hyperbolic Volume Modes in thin films 

44 

𝑞𝑜𝑧
2 = 𝑞2 − 𝜖⊥,         𝑞𝑒𝑧

2 =
𝜖⊥

𝜖∥
𝑞2 − 𝜖⊥ ,   (2.10) 

where 𝑞2 = 𝑞𝑥
2 + 𝑞𝑦

2 is the in-plane wavevector.  Since Eq. (2.5) is homogeneous, 

one of the components must be fixed (to be 𝑞𝑧/𝑞 for the ordinary wave and 𝑞𝑦/𝑞 

for the extraordinary wave, respectively). Without loss of generality, the y-

component of the basis vector is fixed. The basis vectors are then 

𝑒𝑜 =
1

𝑞
(
−𝑞𝑦

𝑞𝑧

0
),          𝑒𝑒 =

1

𝑞

(

 

−𝑞𝑥

𝑞𝑦

𝜖⊥ + 𝑞𝑒𝑧
2

∓𝑖𝑞𝑒𝑧 )

 ,    (2.11) 

where the factor 
1

𝑞
 stays for the normalization.  

Having obtained the basis vectors, we can now derive the dispersion relation of 

HVM in an h-BN thin film of thickness 𝑑  and permittivity 𝜖̂ = diag(𝜖⊥, 𝜖⊥, 𝜖∥) 

occupying the region 0 < 𝑧 < 𝑑  between two dielectric half-spaces with 

permittivities 𝜖1 (region “1”, 𝑧 > 𝑑) and 𝜖3 (region “3”, 𝑧 > 0). 

First, we represent the electric field in the isotropic regions above and below the h-

BN thin film. In these regions we can take the fields in the form of s- and p- 

polarized plane waves. Given the system is symmetric with respect to rotations 

around the z-axis, we can consider, without loss of generality, that the y-

component of all the electric fields is 0. The p-polarized electric fields in the 1 and 3 

regions read as: 

𝐸1,𝑝 = 𝛼1

1

𝑞
 (

𝑞𝑥

0
𝑞2

−𝑖𝑞1𝑧

)𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘1𝑧(𝑧−𝑑),     (2.12) 

𝐸3,𝑝 = 𝛼3

1

𝑞
 (

𝑞𝑥

0
𝑞2

+𝑖𝑞3𝑧

)𝑒𝑖𝑘𝑥𝑥𝑒−𝑖𝑘3𝑧𝑧,     (2.13) 

where  𝑞1,3𝑧 = √𝑞𝑥
2 − 𝜖1,3 > 0  is the out-of-plane component of the normalized 

wavevector. 𝛼1,3  are the unknown amplitudes of the fields.  Since HVMs are 

formed by the extraordinary waves, inside the region 2 we need to consider only 

the extraordinary basis vector (which is p-polarized). The electric fields inside the 

h-BN thin film can be represented as 
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𝐸2,𝑝 = 𝐸2,𝑝
+ + 𝐸2,𝑝

− = [𝛼2−
1

𝑞
(

−𝑞𝑥

0
𝜖⊥ + 𝑞𝑒𝑧

2

+𝑖𝑞𝑒𝑧

)𝑒−𝑖𝑘𝑒𝑧𝑧 + 𝛼2+
1

𝑞
(

−𝑞𝑥

0
𝜖⊥ + 𝑞𝑒𝑧

2

−𝑖𝑞𝑒𝑧

)𝑒𝑖𝑘𝑒𝑧𝑧] 𝑒𝑖𝑘𝑥𝑥,     (2.14) 

where the basis vector 𝑒𝑒 , given by Eq. (2.11), has been simplified taking into 

account that 𝑞𝑦 = 0. 𝛼2±  are the unknown amplitudes of the fields. To find the 

magnetic fields we use the Maxwell equation �⃗⃗� × �⃗⃗⃗� =
1

𝑐

𝛿�⃗⃗� 

𝛿𝑡
. For a plane wave it 

reduces to  �⃗⃗⃗� = �⃗⃗� × �⃗⃗� . The continuity equations for the electric and magnetic fields 

are: 

𝐸1,𝑝,𝑥(𝑧 = 𝑑) = 𝐸2,𝑝,𝑥(𝑧 = 𝑑)         𝐸2,𝑝,𝑥(𝑧 = 0) = 𝐸3,𝑝,𝑥(𝑧 = 0)

𝐵1,𝑝,𝑦(𝑧 = 𝑑) = 𝐵2,𝑝,𝑦(𝑧 = 𝑑)        𝐵2,𝑝,𝑦(𝑧 = 0) = 𝐵3,𝑝,𝑦(𝑧 = 0)
 .       (2.15) 

The boundary conditions in Eq. (2.15) define a set of four linear equations:  

𝛼2+𝑒−𝑖𝑘𝑒𝑧𝑑 + 𝛼2−𝑒+𝑖𝑘𝑒𝑧𝑧 = 𝛼1

𝛼2+ + 𝛼2− = 𝛼3
𝜖⊥

𝑞2𝑧
(𝛼2+𝑒−𝑖𝑘𝑒𝑧𝑑 + 𝛼2−𝑒+𝑖𝑘𝑒𝑧𝑧) = −

𝜖3

𝑞3𝑧
𝛼1

𝜖⊥

𝑞2𝑧

(𝛼2+ + 𝛼2−) = −
𝜖3

𝑞3𝑧
𝛼3.

          (2.16) 

By solving the system of equations in Eq. (2.16) we obtain the dispersion relation of 

the HVMs in a thin film of h-BN 

𝑖 tan(𝑘2𝑧𝑑) =
𝑘2𝑧𝜖⊥(𝑘1𝑧𝜖3 + 𝑘3𝑧𝜖1)

𝜖1𝜖2𝑘2𝑧
2 + 𝜖⊥

2𝑘1𝑧𝑘3𝑧

.   (2.17) 

Equation (2.17), given by the transcendental expression, allows one to calculate the 

wavevector in the direction of propagation, 𝑘𝑥, as a function of the height of the 

waveguide, and the permittivities of the materials.  

This equation simplifies in the quasistatic limit (𝑘𝑥 ≫ 𝑘0)87,88: 

𝑘𝑥,𝑛 =

−𝑖√
𝜖∥

𝜖⊥

𝑑

[
 
 
 

arctan

(

 𝑖
𝜖1

𝜖⊥ ± √
𝜖∥

𝜖⊥)

 + arctan

(

 𝑖
𝜖3

𝜖⊥ ± √
𝜖∥

𝜖⊥)

 + 𝜋𝑛

]
 
 
 

,     (2.18) 

where 𝑛 = 0,1,2, … is the mode index. 

 



2.3 Hyperbolic Volume Modes in thin films 

46 

2.3.2 Hyperbolic Volume Modes in thin h-BN films 

 

In this section, we study the electromagnetic modes sustained by h-BN thin films 

in the h-BN upper and lower Reststrahlen bands. For that, we make use of the 

quasistatic dispersion relation, given by Eq. (2.18). To describe the dispersion of the 

hyperbolic volume modes, Mn, in h-BN thin films, we choose a 40 nm thick h-BN 

film (typical thickness of exfoliated thin films). The film thickness is thus two 

orders of magnitude smaller than the wavelength of light in free space. We 

calculate the dispersion of the HVMs (Figure 2.3a) for frequencies inside both the 

Type I Reststrahlen band (760-825 cm-1) and Type II Reststrahlen band (1360-1614 

cm-1). In each Reststrahlen band, the h-BN thin film support a set of hyperbolic 

volume modes (HVMs), denoted as Mn, being n the mode index (Eq. 2.18). The 

spatial distribution of the vertical component of the electric field for the M0, M1 

and M2 modes at 𝜔 = 1420 cm-1 is shown in Fig. 2.3c-e. Each mode Mn has n+1 

nodes in the vertical direction so that, for instance, the M0 mode has only one 

node. As observed in Fig. 2.3c-e, the lateral confinement increases for higher mode 

indices n, while the wavelength of the mode decreases. In contrast to dielectric 

waveguides8 the higher the mode index n, the larger the wavevector, (see Fig. 2.3a). 

The latter is much larger than 𝑘0, |𝑅𝑒(𝑘𝑀𝑛,𝑥)| ≫ 𝑘0 in both Reststrahlen bands.  The 

dispersion of the modes follows a different trend in the upper and lower 

Reststrahlen band. Namely, in the Type II Reststrahlen band (𝜔 =1360-1610 cm-1), 

the wavevector of the Mn modes has its minimum value near the TO phonon 

frequency and it increases with frequency, reaching an asymptote at the LO 

phonon frequency. In contrast, in the Type I Reststrahlen band (𝜔 =760-825 cm-1) 

the trend is the opposite: the highest values of the wavevectors are reached near 

TO phonon frequency, and its magnitude decreases with frequency, reaching its 

minimal value at the LO phonon frequency. Moreover, as it has been proved 

experimentally127, the phase velocity of the HVMs,  𝑣ph,M𝑛 = 𝜔/𝑘M𝑛, in the Type I 

band is negative and thus, the sign of the real part of the wavevector of the Mn 

modes is negative (we represent the absolute value of the wavevector in Fig. 2.3a 

for compactness). On the contrary, the group velocity, 𝑣𝑔,M𝑛 =
𝜕𝜔

𝜕𝑘M𝑛
, is positive in 

both Reststrahlen bands127, and very small compared to the speed of light in free 

space (with measured values of127 𝑣𝑔,M0 = 0.003 ⋅ c).  

In spite of their large momenta, HVMs can be excited in nanoimaging 

experiments128 by a tip of an scattering-type scanning near-field optical microscope 

(s-SNOM)128 (localized source) which provides sufficiently large momenta.  
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Figure 2.3: HVMs in thin h-BN films. (a) Dispersion of the HVMs in the upper and lower 

Reststrahlen bands of h-BN in the mid-IR, for a 𝑑 =  40 nm thickness film surrounded by 

air, 𝜖1,3 = 1. The sign of the wavevector of the modes in the lower Reststrahlen band is 

negative. We represent the absolute value of the wavevector for compactness. (b) Dipole 

source (green dot) launching the HVMs of a thin film, forming a characteristic “zig-zag” 

pattern, for the same system as (a). (c-e) Vertical component of the electric field of the (c) 

M0, (d) M1, and (e) M2 modes, propagating from left to right. Note the different scale in 

each panel. The frequency in (b-d) is marked by a dashed line in (a), 𝜔 =  1420 cm−1. 

 

Similarly to the tip, HVMs can be excited by other localized sources. a metallic 

antenna on top of h-BN129, a metallic edge over the h-BN surface127 or a wrinkle on 

the surface of h-BN130. To visualize the excitation of the HVMs by a localized 

source, we simulate the distribution of the electric field induced by a vertically 

oriented dipole over the h-BN slab (Fig. 2.3b). Near the dipole the field distribution 

shows a “zig-zag” pattern. The “zig-zag” pattern results from the  superposition of 

many excited Mn modes131, but can also be seen as the reflections of the hyperbolic 

ray from bottom and top interfaces of the slab (since the angles of the zigzag 

coincides with the angle  𝜃HR = arctan√−
𝜖⊥

𝜖||
 defining the hyperbolic ray). Because 

the higher order modes decay faster than the lower order ones, the “zig-zag” 

pattern fades away far from the dipole; and for long distances, only the lower 

modes with small wavevectors and long propagation lengths remain. 
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Figure 2.4: Propagation length and lifetime of the HVMs (a) Dispersion curves of the M0, 

M1, M2 and M3 modes in the upper Reststrahlen band. (b) Propagation lengths. (c) 

Lifetimes. Note that the different curves superimpose in (c). The grey regions indicate the 

frequencies outside the h-BN upper Reststrahlen band. Thickness of h-BN, d = 50 nm. The 

h-BN layer is surrounded by air. 

 

In Figure 2.4 we analyze the propagation lengths and lifetimes of the HVMs in the 

upper Reststrahlen band. Figure 2.4a shows the dispersion of the four analyzed 

volume modes, (from M0 to M3), with momenta up to 𝑘 = 500 ⋅  𝑘0. The calculated 

propagation lengths of the modes, defined as 𝐿𝑝𝑟𝑜𝑝 =
1

𝑘𝑥,M𝑛
′′  

 (where 𝑘𝑥,M𝑛
′′  is the 

imaginary part of the propagation constant 𝑘𝑥,M𝑛 = 𝑘𝑥,M𝑛
′ + 𝑖𝑘𝑥,M𝑛

′′ ), is shown in Fig. 

2.4b. The propagation length of the M0 mode monotonically increases with 

decreasing frequency, reaching a maximal value of 10 microns (while for 

frequencies higher than 1550 cm-1 it propagates less than a micron). The rest of the 

modes propagate less than one micron for all frequencies, thus indicating their 

weak contribution into the near-field images in the experiments. The lifetime of a 

HVM, defined as 𝜏M𝑛 =
𝐿𝑝𝑟𝑜𝑝.M𝑛

𝑣𝑔,M𝑛
  (where 𝑣𝑔,M𝑛 =

𝜕𝜔

𝜕𝑘M𝑛
 is the group velocity) has 

similar values for all modes as shown in Fig. 2.4c. The lifetime of the HVMs is 

remarkably large (around 1 ps). Indeed, its lifetime is larger than the lifetime of 

plasmons in metals16 and graphene77 and is comparable with the lifetime of SPhPs 

in other polar materials such as SiC56, although being smaller than the lifetime of 

the recently discovered PhPs in MoO387 . The lifetime of HVMs in h-BN can be 

further increased by isotopically enriching h-BN132. As seen from Fig. 2.4c the 

lifetime of the modes Mn,  𝜏M𝑛 , is rather constant as a function of frequency,  
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Figure 2.5: M0 mode properties as a function of h-BN thickness(a) Dispersion curves of 

the M0 mode in the upper Reststrahlen band for h-BN thicknesses 𝑑 = 5, 20, 50 and 100 

nm. (b) Propagation lengths. (c) Lifetimes. The grey regions indicate the frequencies 

outside the h-BN upper Reststrahlen band. Note that the different curves superimpose in 

(c). h-BN thickness, d = 50 nm. The h-BN layer is surrounded by air. 

 

indicating that the dispersions of the propagation lengths, 𝐿𝑝𝑟𝑜𝑝, and the group 

velocity , 𝑣𝑔, compensate each other. As demonstrated later on (Section 4.9), the 

lifetime of the M0 mode in h-BN is approximately proportional to 1/γ⊥, where γ⊥ 

is the damping rate in the x- and y-directions in the Drude-Lorentz model of h-BN 

permittivity, Eq. (1.7), and thus constant with respect to the frequency.  

Importantly, the mode dispersion of HVMs is strongly dependent on the h-BN 

thickness, d. Figure 2.5a shows the dispersion of the M0 mode, for different 

thicknesses d. As seen from the figure, the wavevector magnitude 𝑘𝑥,M0 increases 

with the decrease of d, for any given frequency. This dependence is consistent with 

Eq. (2.18), in which the wavevector 𝑘𝑥,M𝑛  depends upon the h-BN thickness as  

𝑘𝑥,M𝑛 ∝
1

𝑑
. On the other hand, the propagation length of the M0 mode decreases 

with the decrease of d, as observed in Fig. 2.5b. At the same time, the lifetime of the 

M0 mode, (shown in Fig. 2.5c) is virtually independent upon d in the shown 

frequency range.  

The first observation of HVM M0 in h-BN by nanoimaging experiments80 in thin 

flakes of h-BN confirmed its high wavevectors and long lifetimes. Subsequent 

experiments also allowed for the detection of the higher order modes123(M1 and  

 



 

50 

 

Figure 2.6: Hyperbolic Surface Polaritons on h-BN-air interfaces (a) Sketch of the system. 

The layered atomic structure of h-BN is indicated by the alternating blue and white colors. 

(b) Isofrequency curve of the HSPs for different frequencies. Dashed lines are guides to the 

eye. (c) Isofrequency curve of the HSPs for different dielectric permittivities. (d) 

Asymptote angle of bulk HVPs and HSPs as a function of frequency, and dielectric 

surroundings for the case of HSP. 

 

M2), with larger wavevectors and smaller propagation lengths (thus, these 

experiments being more challenging) 

 

2.4 Hyperbolic Surface Waves at h-BN-air interfaces 

 

An interface between an isotropic material and a uniaxial crystal (with the optical 

axis parallel to the interface) can support surface waves. These waves, called 

Dyakonov surface waves133, were originally studied by Dyakonov for an interface 

between an isotropic and a uniaxial material with real and positive elements of the 

permittivity tensor. Since the parametric range in which Dyakonov surface waves 

exist is rare for natural materials, the experimental evidence of Dyakonov surface 

waves took around two decades. Finally, these waves were observed in artificial 

metamaterials134.  

Another representative of the “Dyakonov surface waves family” called Hyperbolic 

Surface Polaritons (HSPs), are surface waves at an interface between a dielectric 

and a material hyperbolic material108,109. In this section we illustrate HSPs  
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Figure 2.7: Launching of HSPs at the interface between h-BN and air (a) Electric dipole 

source (green dot and arrow) launching hyperbolic surface polaritons at the interface 

between h-BN and air, at a frequency 𝜔 =  1420 cm−1. The OA is oriented parallel to the 

surface (red arrow). Color plot indicates |𝐸z|. (b) Schematics showing the launching of 

HSPs and HVPs by an electric dipole located near the edge of the thin film with a 

thickness d = 100 nm. The OA is oriented in the y-direction. The dotted rectangle indicates 

the plane near the edge of the flake where the fields in (c) were calculated. (c) Zig-zag 

pattern created due to the launching of HSPs by a dipole source at the edges of the h-BN 

flake. Color plot represents |𝐸z|. The green dot and arrow represents the dipole source. 

The layered atomic structure of h-BN is indicated in (a) and (b) by the alternating blue and 

white colors. 

 

supported at an interface of an h-BN crystal, in case the interface is parallel to the 

optical axis.  

The sketch of the studied system is shown in Figure 2.6a. The isotropic dielectric 

occupies the half-space  𝑦 > 0 , while h-BN occupies the half-space 𝑦 < 0 . The 

optical axis (OA) of h-BN is parallel to the interface between the two materials 

(parallel to the x-direction, indicated by the red arrow in Fig. 2.6a). The dispersion 

of the hyperbolic surface waves is described by the following equation135 

(𝑞𝑑 + 𝑞2)(𝑞𝑠 + 𝑞𝑜)(𝜖𝑑𝑞𝑜 + 𝜖⊥𝑞𝑒) = (𝜖∥ − 𝜖𝑑)(𝜖𝑑 − 𝜖⊥)𝑞𝑜 , (2.19) 

where 𝑞𝑜 = √𝑞𝑥
2 + 𝑞𝑧

2 − 𝜖⊥, 𝑞𝑑 = √𝑞𝑥
2 + 𝑞𝑧

2 − 𝜖𝑑, and 𝑞𝑒 = √𝑞𝑧
2 +

𝜖∥

𝜖⊥
𝑞𝑥

2 − 𝜖∥. Eq. (2.19) 

does not have solutions for the case of 𝜖∥ < 0, and thus HSPs cannot exist in the 
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Type I Reststrahlen band of h-BN. Nevertheless this condition is fulfilled in the 

Type II Reststrahlen band. The HSP isofrequency curve in the Type II Reststrahlen 

band is an open hyperbola, as shown in Figure 2.6b. HSPs thus can comprise 

waves with very large wavevectors that are confined to certain specific directions 

along the interface136. The opening angle of the hyperbola strongly depends upon 

frequency (Fig. 2.6b), being more acute for higher frequencies, as |𝑅𝑒(𝜖⊥)| becomes 

smaller. On the other hand, the position of the vertex of the hyperbola strongly 

depends on 𝜖𝑑 (Fig. 2.6c).  In contrast to HVPs in bulk h-BN, the angle formed by 

the hyperbolic rays formed by HSPs with high wavevectors depends also on the 

permittivity of the isotropic dielectric, 𝜖𝑑 , as it is observed in Figure 2.6c. This 

dependence is given by  

𝜃asymp,𝐻𝑆𝑃 =
𝜋

2
− asin√

𝜖𝑑
2 + |𝜖⊥|𝜖∥

|𝜖⊥|(𝜖∥ + |𝜖⊥|)
.     (2.20) 

The angle 𝜃asymp,𝐻𝑆𝑃 is shown in Figure 2.6d as a function of the frequency for 

different 𝜖𝑑 (red, solid and dashed lines), along with the angle of the asymptote of 

the HVPs in bulk h-BN, given by 𝜃asymp,𝐻𝑉𝑃 = arctan√−
𝜖⊥

𝜖||
  (blue solid line). We 

observe that, at a given frequency, the angle of the asymptote for HVPs is always 

larger than the angle of the asymptote of HSPs. Moreover, the angle 

𝜃asymp,𝐻𝑆𝑃 decreases with the increase of 𝜖𝑑. The cutoff frequency of the HSPs (the 

highest frequency at which the HSPs exist) is given by the condition 𝜖𝑑 = −𝜖⊥ 

(differently from HVPs where the cut-off is given by the condition 𝜖⊥ = 0), and 

takes place when 𝜃asymp,𝐻𝑆𝑃 becomes zero.  

To visualize the propagation of HSPs we perform full-wave simulations of the 

electromagnetic fields created by a point dipole placed in air near the surface of h-

BN. Differently from Section 2.3, the surface of h-BN has a high in-plane 

anisotropy, since the h-BN OA is parallel to the surface (parallel to the z-direction). 

The dipole source, oriented parallel to the surface, launches HSPs that propagate 

away forming highly confined and directional rays, bounded to the surface (Figure 

2.7a). This directional rays comprise HSPs with high wavevectors, hence, 

propagating with an angle  𝜃 ≈ 𝜃asymp,𝐻𝑆𝑃 = 68º. Note that the dipole source also 

launches HVPs (Section 2.2) that propagate inside the h-BN crystal forming a 

cone137, which are not shown in the images for clarity. 

In exfoliated h-BN films the optical axis is perpendicular to the faces of the film. In 

this case, as discussed above, h-BN films do not support HSPs (unless the flake is 

nanostructured into a metasurface138). Nevertheless, at the lateral sides of the flakes  
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Figure 2.8: Hyperbolic surface modes at the edges of h-BN flakes. (a) Dispersion or the 

M0 mode in a slab of h-BN, and dispersion of the modes SM0, SM1 and SM2 modes at the 

edges of an h-BN flake of thickness 𝑑 =  40 nm surrounded by air. White background 

indicates the upper Reststrahlen band of h-BN. (b) Propagation length of the M0, SM0, 

SM1 and SM2 modes. (c-e) Real part of the vertical component of the electric field for a 

plane perpendicular to the propagation direction of the (c) SM0, (d) SM1 and (e) SM2 

modes at a frequency 𝜔 =  1420 𝑐𝑚−1. The h-BN flake contour is marked by the green 

lines. 

 

the optical axis is parallel to the surface (Fig. 2.7b), and thus can support HSPs. 

Due to the nanometric thickness of the slab, the directional HSPs excited by a 

localized source experience multiple reflections at the bottom and top corner of the 

slab, forming a “zig-zag” pattern confined to the edge of the slab, as shown in Fig. 

2.7c. This “zig-zag” pattern can be decomposed as a sum of different HSP modes 

confined at the edges of h-BN, which we will analyze in the next section. 

 

2.5 Hyperbolic Surface Modes at the edges of h-BN 

 

The “zig-zag” pattern confined h-BN flake edges (Fig. 2.7c) can be described as a 

superposition of guided modes confined to the h-BN flake edge. These modes are 
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called Hyperbolic Surface Modes (HSM), and denoted as SMn, being n the index of 

the mode. There is no available analytical solution for HSMs, differently from 

HVMs, so our study will rely on numerical calculations. The calculated field 

distribution of the SM0, SM1 and SM2 modes is shown in Fig 2.8c-e, and evidences 

the confinement of the modes to the edge of the thin film. In general, the 

distribution of 𝐸z of the SMn mode has n+1 nodes in the vertical direction.  

For instance, the SM0 mode distribution of 𝐸z  has one node in the vertical 

direction. as observed in Figs. 2.8c-e. Moreover, the confinement of the SMn modes 

to the h-BN flake edge increases for higher mode indices n. The dispersion curves 

of the modes shown in Fig. 2.8a indicate that HSMs in thin films have wavevectors 

much higher than the wavevector of light in free space, that is, they are deeply 

subdiffractional. The wavevector of the modes increases with frequency, and 

approaches asymptotically a frequency, denoted as SO, where the condition 

𝜖⊥ = −𝜖𝑎𝑖𝑟 = −1 is fulfilled. At this frequency, HSMs ceases to exist137, differently 

from HVMs which exist up to the LO phonon frequency (see section 2.3.2). Further, 

for the same mode order n, the dispersion of an HSM is steeper than the dispersion 

of an HVM, and hence the group velocity of HSMs is smaller than that of 

hyperbolic volume modes137. As observed in Fig. 2.8a, higher order HSMs possess 

higher wavevectors, and interestingly, HSMs (as the SM0 in Fig. 2.8a) have higher 

wavevectors than HVMs of the same order (as the M0 in Fig. 2.8a), thus being 

promising candidates for improving the subwavelength confinement of light.  

At a given frequency, the propagation length of the HSMs, defined as 𝐿prop =
1

𝑘𝑥,SM𝑛
′′  

 , is smaller the higher the mode index of the HSM (Fig. 2.8b). Similar to 

HVMs, the propagation length reduces monotonically with frequency. Moreover, 

for the considered thickness (which is similar to typical experimental thicknesses), 

the propagation length of the lowest mode, SM0, vastly exceeds the propagation 

length of higher order surface modes, thus anticipating that the SM0 mode will be 

prominently excited in nanoimaging experiments. The propagation length of the 

SM0 mode is similar to the propagation length of the fundamental volume mode 

M0, as shown in Fig. 2.8b. 

HSMs were firstly observed by polaritonic interferometry71 (Fig. 2.9a), in thin 

flakes of h-BN over a SiO2 substrate137. In this kind of experiments, the metallized 

tip of a scattering type scanning near-field optical microscope (s-SNOM) is 

illuminated by an infrared beam (𝐸inc ), that converts the incident light into 

strongly enhanced and confined near fields at the tip apex139 (of radius around 

30nm). The tip, thus, acting similar to the dipole source in Figs. 2.3 and 2.7, 

launches hyperbolic surface modes SMn and hyperbolic volume modes Mn along  



2. Surface and Volume modes in h-BN 

55 

 

Figure 2.9: (a) Polariton interferometry scheme illustration. The metallized tip acts as a 

hot-spot for launching polaritons (being the M0 mode the most prominently excited at the 

tip position considered), which propagate toward the edge of the flake, and gets reflected 

back, giving rise to a standing wave pattern that can be visualized in the color plot. (b) 

Near-field imaging of an h-BN flake, showing the M0 (bright fringes at the center of the h-

BN flake) and SM0 modes (dark spots at the edges of the h-BN flake). (b) is taken from Ref. 
137. 

 

the h-BN flake (Fig. 2.9a illustrates the launching of the M0 mode by the 

illuminated tip). Upon reflecting at the edges of the h-BN flake, these modes reach 

the tip again. The launched and reflected waves interfere, creating a standing wave 

pattern (Fig. 2.9a). modulating the field below the tip, and hence the light scattered 

by the tip (𝐸sca),), that is measured by a detector placed in the far-field71. Due to the 

interference between the launched and edge-reflected waves, the spacing between 

fringes in the nanoimaging experiments corresponds to half of the wavelength of 

the polaritonic mode (as Fig. 2.9b). By performing nanoimaging experiments, the 

hyperbolic surface mode SM0137 was observed for the first time (see Fig. 2.9b), 

confirming its short wavelength, long lifetime and high spatial confinement, and 

anticipating its potential usefulness for the design of nanostructured devices, such 

as nanoantennas sustaining high-Q resonances. 
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3. Linear antennas made of h-BN 
 

In this chapter, we analyze phonon polaritonic Fabry-Perot resonances in linear antennas 

made of a natural hyperbolic material, hexagonal boron nitride. Infrared nanospectroscopy 

and nanoimaging experiments reveal sharp resonances with large quality factors around 

100, exhibiting atypical modal near-field patters that have no analogue in conventional 

linear antennas. By performing a detailed mode analysis, we assign the antenna resonances 

to a single waveguide mode originating from the hybridization of two hyperbolic surface 

modes that propagate along the lateral sides of the h-BN waveguide. Our work establishes 

the basis for the understanding and design of linear waveguides, resonators, sensors and 

metasurface elements based on hyperbolic materials and metamaterials. This chapter 

essentially presents the results published in the article “Nanoimaging of resonating 

hyperbolic polaritons in linear boron nitride antennas” by F.J. Alfaro-Mozaz et al, Nat. 

Comms. (2017) 8, 15624. 

 

3.1 Introduction 

 

Polaritons (quasiparticles resulting from the coupling of photons and oscillating 

charges140) in nanostructured materials enable strong confinement and 

enhancement of electromagnetic fields at extreme subwavelength-scale 

dimensions141. Typically, propagating and localized surface plasmon polaritons –

collective oscillations of electromagnetic fields coupled to free electrons in metal 

and semiconductor surfaces1,9,10– have been employed. A promising alternative, 

which is by far less considered yet, are surface phonon polaritons in polar 

crystals14,96,115. These quasiparticles –resulting from the coupling of electromagnetic 

fields and crystal lattice vibrations– exist from mid-IR to THz frequencies in the so-

called Reststrahlen band (defined as the region between the transversal and 

longitudinal optical phonon frequencies, TO and LO, respectively), where the real 

part of the crystals` dielectric permittivity is negative. They offer significantly 

improved field enhancements and quality factors compared to plasmons14,96,116. At 

mid-IR frequencies, they have been studied, for example, in SiC56, quartz142  and 

MoO387, and could find applications in thermal emission control48,117,118 and 

sensing119,120. 
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The emergence of van der Waals materials opens novel opportunities for polariton-

based photonic technologies124. Particularly, hexagonal boron nitride (h-BN) exhibit 

mid-IR phonon polaritons with remarkably low losses28,88,121, while high-quality 

single crystalline layers are easy to prepare by exfoliation. Furthermore, due to 

their layered crystal structure (uniaxial anisotropy), the permittivity tensor 𝜖  is 

diagonal, with 𝜖𝑧𝑧 = 𝜖∥  

and 𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 𝜖⊥  being the components parallel and perpendicular to the 

anisotropy axis, respectively. As explained in Chapter 2, when Re(𝜖∥) ⋅ Re(𝜖⊥ ) < 0  

phonon polaritons propagate inside the material and exhibit a hyperbolic 

dispersion98,143, i.e. the isofrequency surface of the HVPs wavevector 𝒒(𝜔) =

(𝑞x, 𝑞y, 𝑞z) is a hyperboloid. h-BN has two Reststrahlen bands, where one of the 

permittivity components is negative. In the lower Reststrahlen band (760-825 cm-1) 

the real part of the out-of-plane permittivity Re(𝜖∥)  is negative (Type I hyperbolic 

dispersion), while in the upper Reststrahlen band (1360-1614 cm-1) the real part of 

the in-plane permittivity Re(𝜖⊥) is negative (Type II hyperbolic dispersion). The 

hyperbolic polaritons18,22 can propagate with negative phase velocity and slow 

group velocity127, showing extreme mode confinement in thin slabs28,81,121 and 

nanotubes144. High quality factors of phonon polariton resonances (up to 283) in h-

BN nanocones have been reported in Ref. 121, promising that phononic antennas 

made of hyperbolic materials could have strong application potential for IR 

nanophotonics. In this chapter, we analyze linear waveguide antennas –the most 

canonical type of antennas, and basic building block in many nanophotonic 

devices– made of h-BN. 

The chapter is organized as follows. In Section 3.2, we describe the fabrication of 

the h-BN linear antennas by electron beam lithography. In Section 3.3 we describe 

the nanospectroscopy and nanoimaging setup used to study the antennas. Section 

3.4 describes the infrared nanospectroscopy results of a representative antenna, 

which reveal resonances of high quality factors of about 100. In Section 3.5 we 

interpret the resonances via a detailed analysis of the waveguide modes sustained 

by an h-BN waveguide with rectangular cross-section. We find that, surprisingly, 

the resonances are governed by hyperbolic surface modes (Dyakonov 

polaritons108,124-127) rather than hyperbolic volume modes. Section 3.6 shows near-

field images of the antennas and discusses the puzzling near-field patterns 

observed in the experiments. The chapter finishes with conclusions and outlook 

(Section 3.7).  
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Figure 3.1: Sketch of the of the h-BN antennas fabrication process. The chronology 

develops from (a) to (f). 

 

3.2 Fabrication of the h-BN antennas 

 

The fabrication of the antennas was performed by Irene Dolado and Saül Vélez at 

CIC NanoGUNE BRTA. 

First, large and homogeneous h-BN flakes were isolated and transferred onto a 250 

nm thick SiO2 layer on Si. To that end we first performed mechanical exfoliation of 

commercially available h-BN crystals (HQ graphene Co, N2A1) using blue Nitto 

tape (Nitto Denko Co., SPV 224P). Then, we performed a second exfoliation of the 

h-BN flakes from the tape onto a transparent Polydimethyl-siloxane (PDMS) 

stamp. High-quality flakes with large areas and required thickness were identified 

(via both optical inspection and atomic force microscope (AFM) characterization of 

h-BN flakes on the stamp) and then transferred onto a Si/SiO2 (250 nm) substrate 

using the deterministic dry transfer technique128,129.  
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Figure 3.2: Top view scanning electron microscope image of a representative array of h-BN 

antennas fabricated on a SiO2 substrate. 

 

Once the flakes were transferred to the SiO2/Si substrate, the antennas were 

fabricated as illustrated in Figure 3.1. First, a double layer PMMA 495 A4/950 A2 

(positive-tone resist) was spin-coated onto the sample (Fig. 3.1a, the double layer 

represented by the bright and dark green layers). Then the h-BN antennas were 

defined via high resolution electron beam lithography, where the area of the 

antenna was exposed to the electron beam. Afterwards, the sample was immersed 

in Methyl isobutyl ketone (MIBK) for 1 minute and rinsed in isopropyl alcohol to 

remove the resist (Fig. 3.1b). 

 After the development procedure, a metal mask was deposited by electron-beam 

evaporation of chromium (3 nm) followed by thermal evaporation of aluminum 

(40 nm), as depicted in Fig. 3.1c. The lift-off of the PMMA layer was done in 

acetone (Fig. 3.1d), and was followed by chemical etching in a SF6/Ar 1:1 plasma 

mixture at 20 sccm flow, 100mTorr pressure and 100 W power for 30 sec (Fig. 3.1e). 

A commercially available reactive ion etching system (RIE OXFORD PLASMALAB 

80 PLUS) was used for this process. Finally, the metal mask was removed by 

immersing the sample in chromium etchant (Sigma-Aldrich Co., 651826) for 20 

min. Afterwards, the sample was rinsed in deionized water and dried using a N2 

gun (Fig. 3.1f). The fabricated array of antennas containing different widths and 

lengths is shown in the Scanning Electron Microscope (SEM) images, Figs. 3.2 and 

3.3. 
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Figure 3.3: Scanning electron microscope (SEM) image of an h-BN antenna. (a) SEM 

image with the sample being tilted by 48º relative to the surface normal, to better 

recognize its transverse cross-section. The blue colored h-BN antenna is the one studied in 

Section 3.4. Note that the ring-like dirt particle next to the antenna was deposited after the 

near-field measurements shown in Section 3.4. (b) Top-view SEM image of the antenna 

shown in panel (a).  

 

3.3 IR nanoimaging and nanospectroscopy setup 

 

3.3.1 Concept 

 

For infrared nanoimaging and nanospectroscopy we used a scattering-type 

scanning near-field optical microscope (s-SNOM). It is equipped with a Fourier 

transform spectrometer, which allows for nanoscale Fourier transform infrared 

(nano-FTIR) spectroscopy of the antennas. The nanoimaging and 

nanospectroscopy concept is illustrated in Fig. 3.4. The metallic scanning probe tip 

(cantilevered standard Pt-coated silicon tip) of the s-SNOM is illuminated from the 

side with a p-polarized infrared beam of electric field 𝐸inc. Acting as an infrared 

antenna, the tip concentrates the incident field into a nanoscale spot at the apex. 

This nanoscale “hot spot” acts as a local source for launching hyperbolic phonon-

polaritons in the h-BN antennas. The HPs are reflected at the ends of the antennas, 

giving rise to FP resonances. The strongly enhanced near fields caused by these 

resonances are imaged and spectrally analyzed by recording the field scattered by 

the tip, 𝐸s.  
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Fig. 3.4: Infrared nanoimaging and nanospectroscopy of linear h-BN antennas. (a) 

Illustration of a metallic cantilevered tip probing a linear antenna of h-BN. The tip 

oscillates with frequency Ω to allow complete background suppresion. (b) Schematics of 

the s-SNOM/nano-FTIR set-up. For nano-FTIR spectroscopy, we illuminate the tip with 

a broadband laser (Infrared supercontinuum, IRSC). The backscattered light is analysed 

with an asymmetric Fourier transform spectrometer (left). BS, beamsplitter, PZ1, piezo-

actuated moving mirror. For s-SNOM nanoimaging, we illuminate the tip with a 

frequency-tunable QCL. The backscattered light is detected with a Michelson 

interferometer (right)- PZ2, piezo-actuated vibrating mirror. (c,d) Examples of the 

spectra and images taken, respectively. Scale bar in (d), 500 nm  

For nanoimaging, we illuminated the tip with the monochromatic infrared light of 

a frequency-tunable quantum cascade laser (QCL) and recorded the amplitude of 

the tip-scattered field with a pseudo-heterodyne Michelson interferometer as a 

function of tip position (right side in Fig. 3.4b). For nano-FTIR spectroscopy, the 

broadband infrared  

radiation from a laser supercontinuum was used for illuminating the tip. The tip-

scattered light, 𝐸s , was recorded with an asymmetric Fourier transform 

spectrometer (left side in Fig. 3.4b, colored in blue). The recorded spectra were 

normalized to a gold reference, 𝐸𝑠,𝐴𝑢, yielding near-field amplitude spectra, |
𝐸s

𝐸s,𝐴𝑢
|, 

at a fixed tip position (point spectroscopy, Fig. 3.4c). By recording point spectra as 

a function of the tip position, we obtained spectral line scans.  
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3.3.2 Technical details 

 

The nano-FTIR setup is based in a conventional s-SNOM microscope. The metallic 

tip of an Atomic Force Microscope (AFM) and the sample are illuminated with a 

broadband mid-infrared laser supercontinuum (spanning 1,200–1,700 cm−1, average 

power of 1 mW), which is generated by difference frequency generation using a 

Femtofiber pro IR and a Supercontinuum Infrared laser from Toptica (Germany). 

Fourier transform spectroscopy is accomplished as follows. The tip-scattered signal 

is analyzed with an asymmetric Fourier transform spectrometer (left side in Fig. 

3.4b), which is based on a Michelson interferometer. In contrast to conventional 

FTIR spectroscopy techniques, tip and sample are located in one of the 

interferometer arms36. The detector signal is demodulated at a frequency 4Ω 

(where Ω is the oscillation frequency of the tip) for effective background 

suppression. An interferogram is measured by recording the demodulated detector 

signal as a function of the position of the reference mirror, d, at a fixed tip position. 

Subsequent Fourier transform of the recorded interferogram yields the complex-

valued near-field point spectrum, 𝐸s(𝜔). We normalized the obtained point spectra 

to a reference spectrum 𝐸s,Au, recorded on gold. A complex-valued division yields 

the normalized near-field point spectra of the sample (Fig. 3.4c). 

The acquisition time of an individual interferogram was 10 min. The length of one 

interferogram is 2 · 𝑑max = 800 μm, resulting in a spectral resolution of 6.25 cm−1. 

To obtain the spectral line scan shown in Section 3.4.1, we recorded 34 point 

spectra along the antenna axis, with a smaller step size at the center (40 nm) than at 

the extremities (80 nm) of the antenna. 
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3.4 Nanospectroscopy of a single 

antenna 
 

3.4.1 Experimental results 

 

We start by performing nano-FTIR spectroscopy (Fig. 3.5) of a representative, 1.8 

μm long h-BN rod antenna (a SEM image is shown in Fig. 3.3) at its extremity and 

center (positions marked by red and blue dots respectively in the topography 

image shown in Fig. 3.5). Within the upper Reststrahlen band we observe several 

spectrally sharp and closely spaced peaks (denoted by 𝑛 = 1, . . . ,6 in Fig. 3.5) at 

frequencies 𝜔𝑛, indicating antenna resonances. From the width of the peaks we 

estimate quality factors (𝑄) in the range of Q𝑛 ~ 80-120. They are comparable to the 

previously reported Q-factors of h-BN nanocones145 and SiC nanopillars8, and are 

higher than the Q-factors reported for metal (plasmonic) antennas in the mid-IR 

spectral range146. The corresponding lifetimes of the resonances (𝜏𝑛 = 2Q𝑛/𝜔𝑛) are 

in the order of half a picosecond.  

To identify the origin of the resonances, we performed a spectral line scan (Fig. 

3.5d) along the axis of the antenna (marked by dashed line in Fig. 3.5c). For each 

peak 𝑛 we find strong near-field signal oscillations along the antenna. The number 

of the near-field signal maxima and minima is steadily growing with increasing 

frequency, while the distance between them (along the antenna) decreases. Such 

behavior is a clear indication of a spectrally evolving standing wave pattern, i.e. 

longitudinal Fabry-Pèrot resonances in the h-BN rod, similar to plasmon 

resonances in metal rods131,132. We can clearly distinguish the first six longitudinal 

resonances in Fig. 3.5d, corresponding to the 𝑛 = 1,… ,6 peaks in Fig. 3.5a. The first-

order dipolar resonance (𝑛 = 1) manifests at 1370 cm−1 by the two near-field signal 

maxima close to the rod extremities, while the second-order (𝑛 = 2) resonance (𝜔 = 

1395 𝑐𝑚−1) exhibits a strong near-field signal maxima in the center of the rod and 

two less pronounced near-field signal maxima at the rod extremities. The third-

order (𝑛 = 3) resonance at 1411 𝑐𝑚−1  clearly shows the four typical near-field 

signal maxima along the antenna axis. The trend continues up to the sixth order. 

However, the peaks become less pronounced, which we attribute to the increase of 

losses for higher-order longitudinal antenna modes (analogous to plasmonic 

antennas110).  
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Figure 3.5: Nano-FTIR study of a 1.723 nm long h-BN antenna on SiO2. (a) 

Experimental and (b) simulated nano-FTIR amplitude spectra. They were obtained at 

the two position marked by the red and blue dots in (c), and normalized to the nano-

FTIR spectrum of a gold film. For clarity, the spectra has been vertically shifted by the 

indicated values. The white background colour indicates the upper Reststrahlen band. 

(c) AFM topography image of the antenna. The antenna has a thickness of 74 nm 

(measured from the AFM image). Its average width and height were measured by 

electron microscopy and amount for 190 nm and 1.723 nm, respectively (See Section 3.2). 

Scale bar, 200 nm. (d) Experimental and (e) simulated spectral line scan along the dashed 

green line in (c). Open and solid symbols mark the resonances analyzed in Fig. 3.6. 

 

3.4.2 Simulations 

 

To corroborate our experimental data we perform full-wave simulations of the 

near-field spectra. To that end, we used a model where the metallic tip is 

approximated by a dipole source located above the antenna70. This model has been 

shown to reliably reproduce the experimental near-field images in graphene 

nanoresonators70. By plotting the normalized near field below the dipole as a 

function of frequency, 𝜔 (for a fixed dipole position), we obtain near-field spectra, 
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|
𝐸𝑧

𝐸𝑧,𝐴𝑢
|. By plotting near-field spectra as a function of the lateral dipole position, we 

obtain spectral near-field line scans. The simulated point spectra at the rod 

extremity and center are shown in Fig. 3.5b (red and blue points in Fig. 3.5c, 

respectively), while the spectral line scan along the antenna axis is displayed along 

the antenna axis is displayed in Fig. 3.5a,d. Our model can thus be applied for a 

combined experimental and theoretical in-depth analysis of FP resonances in 

linear-h-BN antennas. 

Simulation details 

We performed the numerical calculations using a finite element method 

(COMSOL). The AFM tip as modelled by a vertically oriented point dipole source. 

Such an approximation takes into account that the elongated tip in the experiment 

is oriented perpendicular (vertical) to the sample and is illuminated by p-polarized 

light. We approximate the signal detected in the far field by the vertical component 

of the electric field, 𝐸𝑧, below the dipole. By scanning the dipole parallel to the 

substrate and above the h-BN resonators at a fixed frequency and recording 𝐸𝑧 

below the dipole, we simulate the near-field images. In contrast, the near-field 

spectra are calculated by changing the frequency and maintaining the dipole at the 

same position. The simulated near-field spectra are normalized to the spectra 

above the gold substrate, 
𝐸𝑧

𝐸𝑧,𝐴𝑢
, analogously to the experimental data treatment. For 

calculations of the spectral line scan shown in Fig. 3.5e, the electric field below the 

dipole is recorded as a function of both frequency and position of the dipole. In all 

simulations, the height of the dipole above the antenna was fixed to 300 nm, and 

the vertical component of the electric field was recorded 15 nm above the antenna 

surface. 

 

3.5.1 Results 

 

For studying the dispersion 𝜔(𝑞) of the HP mode yielding the longitudinal Fabry-

Perot resonances, we extracted from both the experimental (Fig. 3.5d) and 

simulated spectral line scans (Fig. 3.5e) the HP wavevector 𝑞𝑛  at the resonance 

frequency 𝜔𝑛 of the longitudinal n-th order mode. The wavevectors 𝑞𝑛 are parallel 

to the longitudinal axis of the antenna (y-axis) and to the atomic layers of 
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3.5 Dispersion analysis of the resonating mode  
 

 

Figure 3.6: Dispersion and near-field distribution of hyperbolic phonon polaritons in h-

BN slabs and waveguides. (a) Near-field distribution of the HVM mode of a slab (M0), 

and of a rectangular waveguide (M0-W). (b) Dispersion curves of HVMs (green solid and 

dashed lines) and HSMs (black dashed line (SM0), and red and blue solid lines (SM0-S and 

SM0-A)). The experimental (open symbols) and calculated (solid symbols) data points (𝑞𝑛, 

𝜔𝑛) were extracted from Fig. 3.5d,e, respectively. The different symbols represent the data 

obtained from the different resonance orders n. The horizontal axis is normalized to the 

momentum of light in free space, 𝑞0. The white area marks the Reststrahlen band. The 

horizontal black dashed line indicates the asymptote for surface modes (𝜔SO). (c) Near-

field distribution of the fundamental surface mode of a semi-infinite slab (SM0), the 

symmetric surface mode (SM0-S) and the antisymmetric surface mode (SM0-A) of a 

rectangular waveguide. The width and height of the rectangular waveguide are 190 nm 

and 74 nm, respectively. The height of the slab is 74 nm. Scale bars, 100 nm (a,c). 

 

the h-BN slab out of which the antennas were fabricated. They are calculated using 

the relation  𝑞𝑛  = 𝜋/𝐿𝑛 , where 𝐿𝑛 is the distance between the adjacent maxima in 

the central part of the antenna (for each resonance order 𝑛 > 2). Fig. 3.6b shows the 

dispersion obtained from experiment (filled symbols) and simulation (open 

symbols). We observe that (i) the wavevector 𝑞 is significantly increased compared 

to that of free-space photons of the same energy, 𝑞0, and (ii) strongly increases with 

frequency. Both findings indicate that highly confined waveguide polaritons are 

the cause of the longitudinal Fabry-Perot resonances. To identify the waveguide 

mode, we performed a numerical quasi-eigenmode analysis of an infinitely long h-

BN waveguide (as described in Section 3.5.2) which has a cross-section that is 
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identical to that of the antenna (using the same dimensions as in Section 3.4). As 

expected for hyperbolic material waveguides147, we found a variety of coexisting 

waveguide modes. The mode with the smallest wavevectors (mode profile M0-W 

in Fig. 3.6a; green solid line in Fig. 3.6b) can be identified as the fundamental 

volume-confined HP mode. Indeed, at large wavevectors its dispersion curve 

converges to that of volume-confined HPs in an infinite h-BN slab of the same 

thickness (mode profile M0 in Fig. 3.6a, green dashed line in Fig. 3.6b). Because of 

the strong discrepancy of the M0-W dispersion curve with the data points 

(symbols), we can exclude that this mode is observed in the h-BN antennas. Our 

mode analysis also reveals modes with larger wavevectors and symmetric and 

antisymmetric spatial distribution of the vertical component of the electric field, 

Re(Ez)  (mode profiles SM0-S and the SM0-A in Fig. 3.6c; solid red and blue 

dispersion curves in Fig. 3.6b). Interestingly, the dispersion curve of the SM0-S 

mode matches perfectly the measured data points (symbols), which let us conclude 

that this mode is the root cause of the observed Fabry-Perot resonances in the h-BN 

antennas. 

To elucidate the physical nature of the SM0-S mode, we calculated its dispersion 

ω(q) up to wavevectors 𝑞 ≈ 120 𝑞0. We find that 𝜔(𝑞) asymptotically approaches 

the frequency 𝜔𝑆𝑂  = 1576 cm-1 (horizontal black dashed line in Fig. 3.7b). 

Interestingly at 𝜔𝑆𝑂 the condition 𝜖⊥ = −1 is fulfilled, which typically determines 

the dispersion limit of surface polaritons140 (see Sections 2.4 and 2.5). We thus 

conclude that the SM0-S mode is a hyperbolic surface polariton mode (HSM), 

rather than a hyperbolic volume polariton mode (HVM). Indeed, a uniaxial 

(layered) material can support surface waves (also called Dyakonov surface 

waves133,134) at the surfaces that are perpendicular to its layers. Particularly, when 

the material exhibits hyperbolic dispersion, the supported modes are HSPs (or 

Dyakonov polaritons108,125,126,134). This condition is fulfilled at the edges of h-BN 

antennas (see Section 2.4 and 2.5). Because of the finite thickness of the slabs, 

however, the hyperbolic surface polaritons propagate along the edges as guided 

modes (HSM), as we confirmed by s-SNOM imaging of the edges of large h-BN 

flakes137. The dispersion of the lowest guided surface mode in a thin semi-infinite 

h-BN slab (mode profiles SM0 in Fig. 3.6c) is shown by the dashed black line in Fig. 

3.6b. It lies between the SM0-S and SM0-A modes, while sharing the same 

asymptote at 1576 cm-1 (horizontal orange dashed line in Fig. 3.6b). We conclude 

that the SM0-S and SM0-A modes of the h-BN waveguide are hybridized surface 

modes (exhibiting symmetric and antisymmetric field distributions, respectively), 

which result from the electromagnetic coupling of the SM0 mode propagating at 

the two opposing edges of the h-BN waveguide (see Fig. 3.6c). From the spectral 

near-field analysis, which is consistent with the full-wave simulations, we can 
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finally conclude that our h-BN antennas exhibit Fabry-Perot resonances of the 

SM0-S mode. 

We note that the near fields at the tip apex, in principle, can excite any of the 

modes found in Fig. 3.6. However, in the spectral line scans of Figs. 3.5d,e we only 

observe the SM0-S mode. We explain this finding by the strong damping of the 

M0-W mode, which propagates less than one polariton wavelength (see Section 

3.7). On the other hand, the SM0-A mode cannot be excited when the tip is scanned 

along the longitudinal antenna axis, where the field of the SM0-A mode is zero. 

This mode, however, might be excited and observed in the future by scanning the 

tip, for example, along one of the long antenna edges.  

The spectral line scan has allowed us to observe the resonance peaks giving rise to 

the Fabry-Perot resonances. However, a single spectral line scan does not provide 

information about the complete structure of the fields induced in the antenna. To 

obtain that information we perform, in Section 3.6, single-frequency near-field 

imaging experiments on the antennas at different frequencies.  

 

3.5.2 Method for mode calculation 

 

To identify the mode giving rise to the resonances of the h-BN antenna (Fig. 3.5), 

we performed a quasi-normal mode analysis of infinitely long h-BN waveguides. 

The quasi-normal mode analysis takes into account that hyperbolic phonon 

polaritons in h-BN are damped and have a strong dispersion. It was performed 

with the COMSOL mode solver. We consider infinitely long waveguides, which 

offers two advantages. First, finding the modes in an infinitely long waveguide 

require only 2D simulations (instead of 3D calculations required for truncated 

waveguides), which are computationally much less demanding and much less 

time consuming. Second, analyzing the modes in an infinite waveguide provides a 

simple and intuitive physical interpretation of the resonances in our antennas (in 

terms of Fabry-Pèrot resonances of a waveguide mode). Our approach is justified 

by the excellent agreement between the calculated and experimental dispersion 

(that we show in Fig. 3.6) as well as between the calculated and experimental mode 

profiles (that are shown in Fig. 3.8c,d, respectively). 
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Figure 3.7: Mode mapping of a linear h-BN antenna of 1,220 nm in length. (a) 

Experimental s-SNOM images recorded at frequencies marked by black squares in d. 

Scale bar, 0.4 m. (b) Simulated s-SNOM images. Green arrows in a,b indicate the 

position of the near-field maxima along the transverse direction. (c) AFM topography 

image of the antenna. Scale bar, 0.4 m. (d) Nano-FTIR spectrum recorded at the 

position marked by the blue dot in c. The white background color indicates the 

Reststrahlen band. The height of the antenna measured in the AFM was 65 nm, and the 

average width obtained from the AFM topography was 250 nm. 

 

We further assumed a rectangular cross-section for the h-BN waveguide and thus 

neglected the slight tilting of the fabricated antenna edges, which is seen in Figure 

3.3a. It is justified for the following reasons: (i) we obtained mode dispersions and 

mode profiles in good agreement with the experimental results, (ii) in Ref. 148 it has 

been shown that tilted edges have no significant influence in the optical response 

of hyperbolic structures and (iii) the rectangular cross-section facilitates the 

discussion, interpretation and understanding of the modes. 

 

3.6 Near-Field imaging of h-BN antennas 

 

In the previous section we have demonstrated that, among the many modes 

sustained by a hyperbolic waveguide, the measured Fabry-Perot resonances arise  
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Figure 3.8: Analysis of the SM0-S mode of a rectangular waveguide of 250nm width 

and 65 nm thickness. (a) Simulated near-field distribution, Re(𝐸𝑧), of the SM0-S mode at 

1,445cm-1 (top) and 1,416 cm-1 (bottom). Scale bar, 100nm (a). (b) Calculated dispersion of 

the SM0-S mode. The inset shows the schematics of the waveguide and the near-field 

distribution of the SM0-S mode at 1,445 cm-1. The dashed line indicates the direction of 

the near-field profiles in c,d. (c) Calculated near-field profile of |𝐸𝑧| in a height of 5 nm 

above the waveguide surface of the waveguide at 1,445, 1,432, 1,424, 1,400 and 1,381 cm-1 

(from top to bottom) (d) Experimental near-field profiles measured at 1,443, 1,432, 1,424, 

1,416 and 1,408 cm-1 (from top to bottom). For better visibility of the near-field 

variations, we plot the central part of the near-field profiles in b,c in darker color. For a 

better comparison of calculated and experimental near-field profiles in c,d, we mark 

local near-field maxima by black arrows. 

 

due to a single hyperbolic surface mode, the SM0-S mode. We gain further insights 

into the Fabry-Perot resonances by studying both near-field spectrum and near-

field images of a shorter h-BN rod antenna (Fig. 3.7). The topography of the rod 

with the length of 1220 nm is shown in Fig. 3.7c.  

The near-field spectrum (recorded at the position marked by a dot in Fig. 3.7c) 

again reveals several peaks (Fig. 3.7d). They correspond to the different 

longitudinal resonance orders, which are readily identified with the help of the 

experimental (Fig. 3.7a) and simulated(Fig. 3.7b, matching well the experiment) 

near-field images. With increasing frequency, we clearly observe an increasing 

number 𝑛 of near-field signal maxima along the antenna, corresponding to the  
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Figure 3.9: s-SNOM images of a set of linear h-BN antennas of a different length, L. 

Imaging frequency 𝜔 = 1,432 cm-1. The width and thickness of each antenna (according 

to the AFM topography images) are 230 nm and 64 nm, respectively. (a) L = 746 nm. (b) 

L = 1,327 nm. (c) L = 1,713 nm. (d) L = 2,210 nm. Scale bar, 500 nm. 

 

(𝑛 − 1)-th resonance order of the SM0-S mode (note that the maxima at the rod 

extremities are weak, similar to electron energy loss spectroscopy images132,135). 

Surprisingly, we also observe near-field signal oscillations in the transversal 

direction (marked by green arrows in Fig. 3.7a and 3.7b), which have no analogue 

in conventional plasmonic antennas. Their periodicity is much shorter than the 

wavelength of the SM0-S mode, which lets us exclude transverse polariton 

resonances. We further note that the number of transverse near-field signal 

maxima does not match the number of near-field signal maxima in longitudinal 

direction. For example, the third-order longitudinal antenna resonance exhibits 

both three and four transverse near-field signal maxima at 1433 and 1445 cm-1, 

respectively. 

In Fig. 3.8 we elucidate the origin of the transverse structure of the antenna mode 

by numerically analyzing the SM0-S mode of the corresponding h-BN waveguide 

(dispersion shown in Fig. 3.8b). To that end, we plot the calculated transverse near-

field profiles (5 nm above the surface of the waveguide) at different frequencies 

(Fig. 3.8c) and compare them with experimental s-SNOM profiles (Fig. 3.8d, 

extracted from near-field images such as the ones shown in Fig. 3.7a). The 

calculations of the line profiles were made at frequencies slightly different from 

those corresponding to the experimental line scans (the frequencies are indicated 

in the corresponding figure caption) to match the experiment and theory due to the 



3.6 Near-Field imaging of h-BN antennas 

72 

uncertainty in the width and height of the antenna, which strongly affects the 

profile of the mode. An excellent agreement is observed. Particularly, we find that 

the number of transverse near-field signal maxima does not monotonously 

increase with increasing frequency. We clarify this observation by plotting in Fig. 

3.8a the simulated near-field profile of the SM0-S mode, Re(𝐸𝑧), at two different 

frequencies. Inside the h-BN waveguide, we recognize “zig-zag” patterns. They 

manifest HP rays that emerge from corners83,121,136 and reflect at the top and bottom 

h-BN waveguide surfaces149, as explained in detail in Section 2.3. As the 

propagation angle 𝜃 of the hyperbolic rays depends on the frequency ω (given 

by145 tan 𝜃 (𝜔) = 𝑖√(𝜖⊥  (𝜔)/√𝜖∥ (𝜔) ), the multiple reflections yield complex and 

frequency-dependent field distributions inside the waveguide, which extend 

several nanometers above the top waveguide surface. Scanning the tip in close 

proximity across the top waveguide surface (perpendicular to the longitudinal 

waveguide axis) thus leads to the transversal near-field oscillations observed in 

Fig. 3.7c (marked by green arrows). On the other hand, in Fig. 3.8a we observe a 

rather homogeneous near-field distribution at distances larger than 100 nm both 

above the top waveguide surface and below the bottom surface. Its structure 

(opposite sign of the vertical component of the electric field above and below the 

waveguide) does not change with frequency, thus revealing that the different near-

field profiles shown in Figs. 3.8ca belong to one and the same waveguide mode. 

Strikingly, our results demonstrate that the transverse near-field structure of one 

specific hyperbolic waveguide mode (here the SM0-S mode) can exhibit significant 

variations upon frequency change.  

Finally, we performed near-field imaging of differently long antennas of the same 

width and height (Fig. 3.9). With increasing antenna length L, the images (all 

recorded at 𝜔 = 1432 cm-1) exhibit an increasing number of near-field signal 

maxima along the antenna, revealing the different resonance orders. Importantly, 

the transverse near-field profile is identical for all antennas (up to 2.25 m in 

length), confirming that the exotic transverse near-field profile of the SM0-S mode 

is a robust and intrinsic feature of the waveguide mode, and not affected by the 

antenna length.  
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3.7 Conclusions 

 

We have employed real-space infrared nanoimaging and nanospectroscopy for 

studying Fabry-Perot resonances of hyperbolic phonon polaritons in h-BN linear 

antennas. We found resonances exhibiting Q-factors up to 100, which make the 

antennas interesting building blocks for the development of infrared molecular 

sensors, narrowband thermal emitters or metasurfaces for flat infrared photonic 

elements. By a detailed mode analysis we demonstrate that the waveguide mode 

exhibiting Fabry-Perot resonances originates from the hybridization of hyperbolic 

surface modes that propagate along the edges of the h-BN antennas (respectively 

the h-BN waveguides). This mode exhibits a stronger field confinement (i.e. larger 

wavevector) compared to the waveguides´ volume modes (of the same order). We 

have also analyzed the properties of the volume modes, and presented a general 

overview of the modes present in h-BN waveguides and antennas. From a general 

perspective, our results provide valuable insights into the fundamental properties 

of polariton modes in deeply subwavelength-scale linear waveguides based on 

naturally or artificially layered materials, such as van der Waals materials and 

vdW heterostructures or metal-dielectric metamaterials. The knowledge about the 

mode properties will be of critical importance for the development of photonic 

circuits based on hyperbolic polaritons in linear waveguides and antennas. 
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4. Deeply subwavelength photonic 

crystal made of a van der Waals material 
 

In this chapter, we study and engineer a nanoscale hole array in a van der Waals material 

(h-BN) supporting ultra-confined phonon polaritons (PhPs) – atomic lattice vibrations 

coupled to electromagnetic fields. Such a hole array represents a polaritonic crystal for mid-

infrared frequencies having a unit cell volume of 10−5  𝜆0
3 , with 𝜆0  being the free-space 

wavelength, where PhPs form ultra-confined Bloch modes, with a remarkably flat 

dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg 

resonances, as verified by both far-field spectroscopy and near-field optical microscopy. Our 

findings could lead to novel miniaturized angle- and polarization-independent infrared 

narrow-band couplers, absorbers and thermal emitters based on van der Waals materials. 

This chapter essentially presents the results published in the article “Deeply subwavelength 

photonic crystal made of a van der Waals material” F.J. Alfaro-Mozaz et al, Nat. Comms. 

(2019) 10 (1), 42. 

 

4.1 Introduction 

 

Photonic crystals (PCs) offer the possibility to manipulate the optical modes with 

small volumes for enhancing light-matter interactions in numerous opto-electronic 

technologies and quantum optical devices, and for controlling the spontaneous 

emission rate of local emitters150,151. At mid-infrared frequencies PCs find uses as 

thermal emitters and optical couplers152 for chemical and biological spectroscopy 

applications153 and environmental monitoring (e.g., gas sensing)154. They are 

normally fabricated by either patterning Si slabs155 or metal layers156 that are 

combined with quantum wells operating at the desired wavelength. In both cases 

the value of the refractive index of the supported electromagnetic modes, 𝑛, is 

rather low (e.g. 𝑛~3 for Si) thus, restricting the confinement of light and putting 

limitations to the dimension of PCs and potential PC-based integrated circuits (for 

example, room-temperature IR subwavelength photodetectors157,158).  
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Figure 4.1: Comparison of unit cells sizes. From left to right, the free-space wavelength 

cube, the typical dimensions of a photonic crystal made of silicon in the mid-IR, and the 

dimensions of the h-BN polaritonic crystal studied in this chapter. 

 

Low 𝑛 also implies a steep dispersion of the PC modes (close to the light cone), 

leading to a broadening of the resonances in IR PCs and an angle-dependent 

absorption/emission156. The confinement of the electromagnetic modes can be 

improved by means of polaritons –dipolar excitations coupled to electromagnetic 

fields140.  

Structured thin films of doped semiconductors28,159 and graphene16,17, supporting 

plasmon polaritons, or polar dielectrics (such as SiO2, Al2O3 or SiC16,150-153), 

supporting phonon polaritons (PhPs) can be seen as polaritonic crystals117 – lattices 

with a spatial period comparable to the polariton wavelength. However, the 

intrinsic losses of these materials are relatively high (the quality factor Q of the 

resonances are limited to 30), with the exception of SiC slabs (where PhPs have 

long lifetimes)151-153, whose fabrication face substantial practical difficulties.  

Promising alternative materials for IR polaritonic crystals can be found among 

many newly emerging low-dimensional van der Waals (vdW) crystals that support 

a diversity of polaritons with unique properties (enormous confinement, 

tunability, low losses, or negative phase velocity, among others), having a large 

interest for nanophotonics154,155. Particularly, as discussed in Chapters 2 and 3 of 

this thesis, in the mid-infrared frequency range, hexagonal boron nitride crystals 

present anisotropic phonon resonances and support Type I (Re(𝜀𝑧) < 0, Re(𝜀𝑥,𝑦) >

0) and Type II (Re(𝜀𝑧) > 0, Re(𝜀𝑥,𝑦) < 0) hyperbolic phonon polaritons (HPhPs) 
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inside the lower and upper Reststrahlen bands, respectively28,120. In h-BN slabs, 

HPhPs propagate in the form of waveguide modes (HVM) M 𝑛 , with 𝑛 =

0,1,2, …,28,87,110,120 with both their wavelength and propagation length decreasing 

with 𝑛. Due to their remarkably long lifetimes87,96, HPhPs in h-BN can be used for 

molecular vibration spectroscopy and strong coupling160. Moreover, the 

preparation of thin h-BN films is a well-established process as well as its 

structuring into cones145, rods97 and stripes160, in which HPhPs exhibit sharp Fabry-

Perot –cavity- resonances. Despite these promising initial works, periodically 

structured h-BN films in which HPhPs can built collective modes have not been 

considered yet, so that until now the concept of a h-BN PhP crystal has remained 

unexplored (although h-BN-based conventional PC have been demonstrated at the 

visible frequencies, where HPhPs are not supported161). 

In this chapter we propose, design, and fabricate a mid-infrared polaritonic crystal 

formed by a rectangular hole array (HA) in a thin h-BN flake (See Fig. 4.1). The 

chapter is organized as follows. In section 2, we describe the fabrication process of 

the hole arrays. In section 3 we perform mid-infrared spectroscopy and we reveal 

narrow geometrically-tunable Bragg resonances. In section 4, we perform 

nanoimaging experiments on the polaritonic array at the resonance peak to 

visualize the highly confined Bloch modes. We calculate the band structure of the 

polaritonic crystal in section 5 finding that the first Bragg resonance is associated 

with an extremely flat polaritonic band formed by highly confined (deeply 

subwavelength) Bloch modes. The findings in section 5 are confirmed by the 

analytical description of the polaritonic array made in section 6 and lead us to 

prove experimentally and numerically that the Bragg resonances in the polaritonic 

crystal are angle (and polarization) independent in section 7. The characteristics of 

the first Bragg resonance are further studied as a function of the structural 

parameters in section 8. Finally, the long lifetime of the Bragg resonances is 

discussed in section 9. 

The smallness of our vdW polaritonic crystal –the whole polaritonic crystal can fit 

in a single period of a wave on free space (Figure 4.1)– goes far beyond the original 

concept by Yablonovich162 and enables generalization of all the PC-based photonics 

to a deeply subwavelength scale.  
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Figure 4.2: Environmental scanning electron microscope (eSEM) images of a hole array 

with period L = 1050 nm. The images show (a) the regularity of the fabricated array and 

(b) the precise lithography of a single hole. 

 

4.2 Fabrication of the polaritonic crystals 

 

The fabrication of the antennas were performed by Irene Dolado and Saül Vélez at 

CIC NanoGUNE BRTA. 

The polaritonic crystal consists in a square array of holes patterned in an h-BN thin 

film flake. We fabricated hole arrays by patterning h-BN flakes via electron beam 

lithography. In order to obtain large and homogenous h-BN crystals flakes, we first 

performed mechanical exfoliation of commercially available h-BN crystals (HQ 

graphene Co, N2A1) using blue Nitto tape (Nitto Denko Co., SPV 224P). 

Afterwards, the flakes attached to the tape were exfoliated onto several 

polydimethylsiloxane stamps. The stamps were inspected using an optical 

microscope and large and homogeneous h-BN flakes (with a thickness of t = 38 nm) 

were identified and transferred onto a transparent CaF2 substrate using the 

deterministic dry transfer technique163.  

We patterned the arrays of holes using high resolution electron beam lithography. 

The sizes of the arrays were 15 x 15 µm, with a fixed hole diameter (300 nm) and 

periodicities L between 0.6 and 1.2 µm, being thus about one order of magnitude 

smaller than the illuminating wavelength and consequently exhibiting an ultra-

small volume of the unit ell of about 10−5𝜆0
3. 
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Figure 4.3: Geometry of the polaritonic crystals. (a) Schematics of a hole array in a h-BN 

slab with thickness t = 38 nm on CaF2 substrate. (b) Optical image of a hole array with 

period 𝐿 = 600 nm. The arrows represent the wavelength of light in free space, λ0, and 

that of the M0 mode, λM0 , respectively. The inset shows the Fourier transform of the 

optical image.  

 

To that end, we used a single layer polymethyl methacrylate (PMMA) 495 A4 resist 

as an electron sensitive resist. The desired holes were written with the electron 

beam and developed in MIBK:IPA 1:3, resulting in a patterned PMMA layer that is 

used as a mask to protect the h-BN areas underneath during the etching process. 

The uncovered h-BN areas were chemically etched in a SF6/Ar 1:1 plasma mixture 

at 20 sccm flow, 100 mTorr pressure and 100 W power for 60 s (RIE OXFORD 

PLASMALAB 80 PLUS reactive ion etcher). Finally, the sample was immersed in 

acetone for several hours for removing the PMMA mask, rinsed in IPA and dried 

with a N2 gun. 

To ensure the proper fabrication quality of the hole arrays, we imaged them by 

means of atomic force microscope (AFM) (performed simultaneously with the 

optical near-field imaging). environmental scanning electron microscopy (eSEM, 

Fig. 4.2), and optical microscopy (Fig. 4.3b). The Fourier transform (FT, inset of Fig. 

4.3b) has prominent sharp peaks at �⃗� = (±𝐺, 0) and �⃗� = (0,±𝐺) with 𝐺 = 2𝜋 𝐿⁄ , as 

expected for a square lattice. 
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4.3 Spectroscopic analysis of the polaritonic crystals 

 

The schematic of the polaritonic crystal (square array of circular holes with 

diameter 𝑑 = 300 nm ) considered in this chapter is shown in Fig. 4.3a. The 

polaritonic crystals are designed to exhibit HPhP resonances at mid-IR frequencies 

(1360-1480 cm−1). To optically characterize the polaritonic crystals, we performed 

Fourier-transform infrared spectroscopy (FTIR) experiments using non-polarized 

thermal radiation, under normal incidence, as described in details in section 4.3.1. 

 

4.3.1 FTIR Setup 

 

Microspectroscopy transmission spectra of the h-BN polaritonic crystals are 

recorded with a Bruker Hyperion 2000 infrared microscope coupled to a Bruker 

Vertex 70 FTIR spectrometer. The polarized infrared beam from the interferometer 

is focused through the Swartzchild lens 1 providing waves with incident angles 

ranging from º to º. Albeit there is a range of incidence angles, it can 

be approximated by a normal incidence beam in our experiments. The beam is 

focused onto the h-BN hole array. The transmitted light is then refocused by the 

Swartzchild lens 2 that sends the beam to the detector. The spectral resolution was 

1 cm-1. The area covered by the IR beam was around 10x10 𝜇𝑚2. By using a stage 

we can rotate the sample along the XY and XZ axis. The stage can rotate the sample 

from -40º to 40º in the XZ axis. It allowed recording transmission spectra of linearly 

polarized light.  

 

4.3.2 Spectroscopic analysis 

 

The transmission spectra, 𝑇 𝑇𝐶𝑎𝐹2
⁄ , are shown in Fig. 4.5a (color curves) together 

with the spectrum obtained for a bare h-BN slab (black curve). Apart of a strong 

dip corresponding to the h-BN TO phonon (𝜔𝑇𝑂 = 1366 cm−1), the spectra of the 
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Figure 4.4: Schematics of the FTIR spectrometer in transmission mode. 

 

polaritonic crystals show sharp dips (with an estimated Q-factor of 190) at larger 

frequencies, revealing a clear dependence upon L. To better analyze this result, the 

spectral positions of both the TO phonon dip (squares) and period-dependent dip 

(circles), together with the numerically simulated transmission spectra 𝑇 𝑇CaF2
⁄  as a 

function of both L and 𝜔, are plotted in Fig. 4.5b. The experimental results are 

corroborated with full-wave simulations of the transmission spectra, made by a 

finite element method (COMSOL). In both experiment and theory, we observe that 

while the minima at the h-BN TO dip is not affected by the periodic structuring, 

the frequency of the second dip strongly decreases with increasing L. Remarkably, 

according to the simulations, the value of the absorption in the second peak (Fig. 

4.5c) is comparable to that of the TO phonon absorption peak, revealing the high 

coupling efficiency provided by the HA. These results demonstrate that the 

transmission dips in the spectra of our deeply subwavelength polaritonic crystals 

can be tuned by 𝐿, in a similar fashion to the geometrical plasmonic resonances in 

metallic hole arrays at visible frequencies117, the latter however having significantly 

lower Q-factors (by a factor of 10). 
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Figure 4.5: Spectroscopic analysis of h-BN polaritonic crystals (a) Experimental 

normalized transmission spectra for the hole arrays with 𝐿 ranging from 600 to 1200 nm. 

(b) Simulated transmission as a function of frequency and 𝐿  (colormap). The points 

indicate the position of the dips from the experimental spectra. (c) Simulated absorption 

spectra of the hole array with 𝐿 = 900 nm -1. 

 

To understand the origin of period-dependent transmission dips in our polaritonic 

crystals, we simulated the field snapshot, Re[𝐸𝑧(𝑥, 𝑧)] (Fig. 4.3a) at the wavelength 

of the dip minimum for 𝐿 = 900 nm. A zigzag ray pattern in the slab region (𝑥-𝑧 

plane) is observed, evidencing the excitation of many HVM modes with different 

wavelengths at the edges of the holes82,87,160. However, the field distribution outside 

of the slab is very different, as we see field oscillations with a single period 

(alternating red and blue lobes). The period of the oscillations 
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Figure 4.6: Transmission, absorption and reflection coefficients. (a) Reflection, (b) 

absorption and (c) transmission coefficients for the fabricated hole arrays shown in the 

main manuscript. The dashed (solid) lines correspond to the experiment (simulations). 

 

matches with the wavelength of the HVM M0 mode (found from the mode 

dispersion5), and the nodes are located at the center of the holes. The field 

distribution thus resembles that of a standing wave, which permits us to identify 

the period-dependent dip in the polaritonic crystal transmission spectra as the 

first-order Bragg resonance of a HVM M0 mode. 

We complete the spectroscopic analysis by a detailed study of the transmission, 

absorption and reflection coefficients of the considered hole arrays. The data is 

shown in Figure 4.6. The calculated reflection coefficient is about 10% at 

frequencies close to the first Bragg resonance for all the fabricated hole arrays. On 
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the other hand, the absorption at the first Bragg resonance frequency, that is 

comparable to that of the TO phonon (at  = 1366 cm-1), increases with decreasing 

the period, 𝐿 , of the hole array. The simulated transmission spectra show an 

excellent agreement with the experiment in terms of spectral position, while the 

depth of the experimental peaks is slightly smaller than in the calculated ones. The 

latter discrepancy can be explained by the small aperture used in the spectrometer 

and the finite size of the hole array in the experiment.  

 

4.4. Near-field imaging at the resonance peak 

 

We employ near-field imaging to experimentally observe the electric field 

distribution in the polaritonic crystal at the measured (Figure 4.5) resonance peak. 

The near-field distribution, corroborated by with full-wave simulations, 

corresponds to that of the first order Bloch resonance. 

 

4.4.1 Experimental setup 

 

We used an s-SNOM microscope from Neaspec Gmbh (Munich). It is based on an 

atomic force microscope (AFM). Conventional dielectric (silicon) tips acted as 

scattering near-field probes. In contrast to a metallic tip (typically acting as both 

polariton launcher and near-field scatterer71,72) a dielectric tip acts as a weak 

scatterer. It does not launch any polaritonic mode, but only scatters the near-fields 

that are generated on the sample by the incident laser beam161,162. The laser beam 

was generated by a Quantum Cascade Laser (QCL, tunable 𝜔 =1,295–1,445 cm-1, 

Daylight Solutions, USA) and focused to the tip apex using a parabolic mirror. The 

polarization of the illuminating beam in the presented experiments was parallel to 

the h-BN surface (s-polarization) and we recorded the out-of-plane near-field 

component, 𝐸z (p-polarization)164. The near fields scattered by the silicon tip were 

collected with the same parabolic mirror and recorded simultaneously  

with the sample topography. Background contributions were suppressed by 

vertical tip oscillation at frequency 𝛺 ≈ 300 kHz  (tapping-mode AFM) and by 

subsequent higher harmonic demodulation of the detector signal at  4𝛺 . The 

modulation amplitude of the tip was around 100 nm. 
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Figure 4.7: Schematics of the illumination of the sample in the s-SNOM. (a) The tip 

probes the point p1, and the phase of the illuminating wave is 𝜙𝑏𝑎𝑐𝑘. (b) The tip probes the 

point p2, and the phase of the illuminating wave is 𝜙𝑏𝑎𝑐𝑘 . (c) In the simulation, the 

illuminating phase of points p1 and p2 is different 𝜙𝑏𝑎𝑐𝑘,𝑝1 ≠ 𝜙𝑏𝑎𝑐𝑘,𝑝2. The dashed line 

indicates the height at which the field is calculated in the simulation. 

 

The amplitude and phase of the near-field components were measured with a 

pseudo-heterodyne detection module165. In the s-SNOM used in the experiment, 

the tip (the probe point) does not move relative to the illuminating field. Instead, 

the stage in which the sample is located moves relative to the background field (see 

Figure 4.7), in such a way that, at the measuring position, the phase of the 

background field is fixed.  

 

4.4.2 Simulation of the near-field images 

 

We model the near-field images by using a finite element method (COMSOL). The 

simulations were performed within one unit cell, with periodic conditions 

matching the illuminating wavelength wavevector. We illuminate the hole array 

with a plane wave at a 50º angle with respect to the normal, similar to the near-

field imaging experiment, and then extract the simulated near-field distribution 

above the hole. In the simulation, given that the incident field is oblique, there is 

field retardation between each point of the sample: every point of the polaritonic 

crystal surface is illuminated with an electric field with a different phase (Figure 

4.7c). However, as explained in Section 4.4.1, in the experiment, the tip position 

(the point where the near-field is probed) 

does not move with respect to the background (see Figure 4.7a,b where the tip 

position and illuminating background are fixed while the sample moves in the x- 
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Figure 4.8: Comparison of (a) the experimental image with the simulated near-field 

distributions, (b) without, and (c) with phase compensation.  

 

direction). Due to that, the experimental image is different from the simulated 

image (Figure 4.8 a and b, respectively). We compensate this difference between 

the images by doing the following transformation on the simulated map of the 

vertical component of the electric field, 𝐸z,com(𝑥, 𝑦): 

𝐸z,com(𝑥, 𝑦) = 𝐸z,sim(𝑥, 𝑦) ⋅ exp(𝑘x,inc ⋅ 𝑥 + 𝑘y,inc ⋅ 𝑦).        (4.1) 

Here, 𝐸z,com(x, y) is the vertical component of the simulated near field accounting 

for the phase compensation. 𝐸z,sim(x, y) is the vertical component of the simulated 

near field, and 𝑘x,inc  and 𝑘y,inc  are the wavevector in-plane components of the 

background field. By using equation (4.1), we transform the simulated near-field 

distribution in Figure 4.8b and obtain an excellent agreement (Figure 4.8c) with the 

experimental near-field image (Figure 4.8a). 

 

4.4.3 Near-field analysis 

In Section 4.3 we identified that the resonances in the transmission spectra are due 

to the first order Bragg resonance of the M0 mode. To provide more insight into 

the field structure at the resonance, we image the near-field distribution on top of 

the hole array by s-SNOM, using a weakly scattering Si tip illuminated by an s-

polarized obliquely incident light (see schematics in Fig. 4.9a) as a probe and 

recording the scattered p-pol radiation, 𝐸s, (as explained in Section 4.4.1). The near-

field image (the real part of the signal, 𝐸s) obtained at the frequency of the 

transmission dip (1428 cm-1, dark blue curvein Fig. 4.5a) is shown in Fig. 4.9b. We  
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Figure 4.9: Near-field imaging of a Bloch mode in the h-BN polaritonic crystal. (a), 

Schematics of the experiment. (b), experimental near-field image. (c) Simulated field 

snapshot of the polaritonic crystal with L = 900 nm at the resonant frequency 1428 cm-1. 

Black arrows indicate the direction of the electric field, Einc, and in-plane wave vector of 

the incident wave, 𝐤0. The effective induced dipole and the k-vectors of (0,1) and (0,-1) 

diffraction orders constituting the Bloch mode are indicated in (c) by the black arrows. 

Scale bars in (b,c): 450 nm. 

 

see field oscillations with the opposite polarities (red and blue colors) that match 

the period L of the polaritonic crystal, thus revealing the spatial field structure of 

the HPhP M0 Bloch mode in the 𝑦-direction. 

The slight rotation of the observed field pattern is attributed to the illumination 

used in our experiment (the plane of incidence is rotated by the angle 𝜓 with 

respect to one of the HA’s translation vectors), which together with the effective 

electric dipoles induced by the holes also allows for exciting a Bloch mode in the 𝑥-

direction. We corroborate this experimental result by simulating a snapshot of 

Re[𝐸𝑧(𝑥, 𝑦)] (Fig. 4.9c) assuming a similar illumination scheme (both angle and 

polarization) as in the experiment. A perfect matching between experiment and 

simulation validates our near-field characterization using a Si tip, which permits to 

identify the deeply subwavelength Bloch mode excited in the first-order Bragg 

resonance of the polaritonic crystal. Notice that the imaging of the Bloch modes 

outside of the light cone (not excited via the far-field) with the Si tip is not possible. 

Alternatively, these modes can be accessed via polariton interferometry with s-

SNOM34, which uses metallic tips and allows for the local excitation of the highly-

confined fields. However, the polaritonic interferometric s-SNOM imaging would 

require the back-reflection of the Bloch mode from edges or other discontinuities in 
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the polaritonic crystal and thus would strongly complicate the interpretation of the 

near-field images. 

 

4.5 Band structure of the polaritonic crystal 

 

In this section we study the excitation of the Bloch modes in the polaritonic crystal 

for large wave vectors, thus extending the scope of previous sections –focused on 

the normal or near-normal incidence–. For that, we obtain the band structure of the 

M0 HPhP Bloch modes in the hole array with a period L = 0.9 m using Finite 

Difference in Time Domain (FDTD) simulations. We also calculate the isofrequency 

contours at the frequencies of interest using a Finite Element Method, and we 

compare it with the transmission spectra of the crystal to identify the polaritonic 

branch giving rise to the transmission dips in the spectra. 

 

4.5.1 Methods for band structure calculations  

 

We used the FDTD method to simulate the HPhP band structure of the polaritonic 

crystal. We set up periodic Bloch conditions at the boundaries of the unit cell. 

Uniaxial perfect matched layers were imposed at surfaces of the cell parallel to the 

h-BN film. We use mesh element sizes ranging from 2 to 5 nm. The dielectric 

constant in cells at the h-BN-substrate and h-BN-superstrate interfaces is taken as 

that of the medium with the largest volume inside that particular cell. The band 

structure is calculated by exciting the system with a superposition of randomly 

placed and oriented electric dipoles (to allow the excitation of modes with all 

possible symmetries), and imposing Bloch’s theorem at the boundaries of the unit 

cell. Then the value of the amplitude of the electric fields for different Bloch phase 

factors (wave-vector) and frequencies is calculated, revealing the band-structure of 

the HA. By changing the position of the dipoles, either outside of the HA (Fig. 

4.10a) or inside the holes of the HA (Fig. 4.10b), we are able to efficiently excite 

bands with lower energy (Fig. 4.10c) or higher energy (Fig. 4.10d) allowing to track 

the modes of the hole array.  
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Figure 4.10: Calculated polaritonic band structure of the polaritonic crystal by different 

illumination distribution. L = 900 nm. Sketch of a unit cell of the hole array illuminated 

with the dipole sources placed in: (a) outside of the hole array, and (b) inside the holes. 

The electric field probes are similarly distributed in (a) and (b). (c) and (d) shows the band 

structure obtained by measuring the intensity of the electric field (colorplot) when the 

sources are placed according to (a) and (b), respectively. The dashed lines in (c,d) 

correspond to the dispersion of the M0 mode in the h-BN layer. The rhomb symbols in (c) 

and (d) represent the position of maxima in the field intensity averaged over the h-BN unit 

cell.  

 

We calculated the isofrequency surfaces of the hole array by FEM calculations. We 

placed a single dipole over the structure and calculated the radial electric field 

induced by the dipole in the hole array, 𝐸ρ,h−BN(𝑥, 𝑦). The same calculation was 

done removing the h-BN film from the structure, obtaining the distribution of the 
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field above the substrate, 𝐸ρ,sub(𝑥, 𝑦). Then, Fourier transform of the subtracted 

fields, Eρ,h−BN(𝑥, 𝑦) − 𝐸ρ,sub(𝑥, 𝑦), was performed, obtaining 𝐸ρ(𝑘x, 𝑘y). To mimic 

the source with the electric field fulfilling the Bloch’s theorem, the following 

summation over different Brillouin Zones have been performed: ∑ 𝐸ρ(𝑘x + n ⋅n,m

G, 𝑘y + m ⋅ G). This procedure is equivalent to the monitoring the field (satisfying 

the Bloch’s theorem) at the position (𝑥 = 0, 𝑦 = 0 ). The isofrequency surfaces 

𝐸ρ(𝑘x, 𝑘y) allow us to see, at a given frequency 𝜔, the wavevector of the modes 

sustained by the polaritonic crystal. 

 

4.5.2 Band structure results 

 

Fig. 4.11a shows the calculated band structure of the polaritonic crystal with 

𝐿 = 900 nm, along the main directions  Γ − 𝑋 − 𝑀 − Γ in the first Brillouin zone. 

One can recognize features reminiscent to the folded dispersion curves for M0 

HPhP in a continuous h-BN slab5 (Fig. 4.11a, the blue dashed lines). At momenta, 

where the folded dispersion curves for the continuous slab intersect (e.g. in the 

vicinity of the 𝑀-point at 𝜔 = 1420 cm−1), partial band gaps open, prohibiting the 

propagation of the M0 mode in the polaritonic crystal. Note that in conventional 

photonic crystals, the band structure is mainly formed in the region of propagating 

waves, 𝑘 ≤ 𝜔 𝑐⁄ . Conversely, the major part of the band structure in our polaritonic 

crystal is formed outside of the light cone, 𝑘 > 𝜔 𝑐⁄  (Fig. 4.11a, vertical dashed 

vertical lines), thus covering mainly the region of the evanescent waves in free 

space with high in-plane momenta. We complement the band structure by the 

Fourier transforms (FTs) of the simulated fields emitted by a vertical point dipole 

above the HA – counterparts of the isofrequency contours (ICs), see Section 4.5.1 –, 

illustrated in Fig. 4.11c. Such FTs implicitly provide the information on the density 

of polaritonic modes in the k-space. At low frequencies the ICs show a circular 

shape (Fig. 4.11c, bottom), similar to the bare ICs of the continuous slab, 𝑘𝑥
2 + 𝑘𝑦

2 =

𝑘𝑀0
2  (Fig. 4.11d, bottom),  so that at low momenta the density of Bloch polaritonic 

modes is zero and the light does not couple to the polaritonic crystal (no maxima 

in the difference transmission signal, Δ𝑇, Fig. 4.11b). Oppositely, at the frequency 

of the Bragg resonance, the ICs show a high density of Bloch modes in a large area 

of the Brillouin zone (Fig. 4.11c, top), and particularly in the whole area of the light 

cone (black circle, Fig. 4.11c,d). The high density of modes is consistent with 
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Figure 4.11: Band structure of hyperbolic phonon polaritons in the h-BN polaritonic 

crystal. (a) Simulated band structure of the polaritonic crystal. The colorplot renders the 

amplitude of the electric field generated by the dipoles, averaged over the unit cell of the 

array (Section 4.5.1). The blue dashed lines trace the folded dispersion curve of the HVM 

M0 mode in a continuous h-BN slab. The horizontal blue lines mark the frequencies of the 

plots in (c,d). The red curves trace the maxima in various colorplots (generated for 

different positions and orientations of the dipole sources). (b) Experimental (blue) and 

calculated (red) normalized transmission spectra. (c), Calculated isofrequency plot at  = 

1388.8 cm-1 (top) and 1432 cm-1 (bottom) for the HA with 𝐿 = 900  nm. (d) Bare 

isofrequency contours (dashed blue lines). In (c,d) the black circles represent the light 

cone, while the dotted black squares represent the first Brillouin zone. Scale bars in (c,d): 

2k0. 

 

the band-structure of Fig. 4.11a, where a nearly 𝑘-independent band for the whole 

range of momenta is formed around 𝜔 = 1428 cm−1. Such flat polaritonic band can 

find uses in ultraslow light166,167 and near-field radiative thermal transport167,168 at 

deeply subwavelength scale. Remarkably, the flat band indicates that the coupling 

to the polaritonic crystal by an incident plane wave can happen for any in-plane 

momenta (see the maximum in the difference transmission spectra, Δ𝑇, Fig. 4.11b), 

and thus for any incident angle, 𝜃 (related to the momentum as 𝑘𝑥 = 𝑘0 sin 𝜃). This 

finding will be further explored analytically and experimentally in next sections. 

 

4.6 Analytical analysis of the polaritonic Bloch modes 

and Bragg resonances  

 

The band structure calculations have unveiled the angle-independent HPhP Bragg 

resonance of the polaritonic crystal. In this section, we provide an analytical 
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description of the resonances, based on the resonance perturbation theory64-66, 

which allows us to link the angle-independent absorption peaks with the field 

structure of the modes, and to further predict the properties of the crystal upon 

variation of the geometric parameters.  

In order to simplify the analysis, we approximate the thin h-BN film by a 2D 

conductivity layer (Appendix A). Furthermore, we will approximate the hole array 

by a 1D periodic structure modulation, considering that the excited HPhP modes 

correspond to the standing waves along one direction. We discuss the general 

formulation of the problem (Section 4.6.1) as well as an analytical derivation of the 

amplitudes of the modes excited by a normal incident plane wave in Section 4.6.2. 

Finally, in Section 4.6.3 we compare the results of the analytical model with the 

full-wave simulations. 

 

4.6.1 General Formulation 

 

To analytically treat the diffraction of the electromagnetic wave by the polaritonic 

crystal, we approximate the thin h-BN slab by a 2D conductivity layer, following 

Appendix A. We assume that the conductivity layer is placed between two 

dielectric half-spaces with the dielectric permittivities 𝜀1  (for 𝑧 > 0) and 𝜀2  (for 

𝑧 < 0), respectively, as depicted in Figure 4.12. The hole array can be seen as 

spatially (and periodically) modulated74 effective conductivity, 𝛼, and thus we will 

consider a general periodic structure with an arbitrary spatial Fourier spectrum. 

For simplicity, we restrict ourselves to considering the incident plane wave with 

the in-plane electric field component parallel to one of the translation vectors of the 

hole array (aligned along 𝑥 - and 𝑦 -axes, according to the chosen system of 

coordinates). In this case the excited Bloch modes will be predominantly standing 

waves along 𝑥 - or 𝑦 -directions. Neglecting the weak interaction between the 

standing waves excited in the perpendicular directions118, we can approximate the 

hole array by two perpendicular one-dimensional (1D) periodic gratings and 

consider each grating independently. Without loss of generality, let us study the 

1D periodic modulation of the conductivity along the 𝑥-direction (Figure 4.12).  

The periodically modulated effective conductivity can be written as (for 

convenience of the equations writing, we introduce the normalized conductivity74, 

𝛼, as α = 2πσeff c⁄ ) 
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Figure 4.12: Sketch of a periodically-modulated conductivity layer. The conductivity 

varies in the x-direction. The linearly-polarized incident plane wave impinges the layer at 

normal incidence, exciting mainly field harmonics with the k-vectors  𝑘−1x and 𝑘1x  (first-

order diffracted waves). 

 

𝛼(𝑥) = 𝛼(𝑥 + 𝐿) = ∑ 𝛼𝑛𝑒𝑖𝑛𝐺𝑥
𝑛 , (4.2)  

with  𝐺 =
2𝜋

𝐿
 being the reciprocal grating vector, 𝑛  an integer and 𝛼𝑛  the n-th 

Fourier harmonic of the normalized effective conductivity. The in-plane 

component of the electric fields in the superstrate (labelled as “1”) and substrate 

(labelled as “2”) can be taken in the form of the Fourier-Floquet expansion: 

E1x = eikxx−ikzz + ∑ rne
iknxx+ik1nzz

n , (4.3) 

E2x = ∑ tne
iknxx−ik2nzz

n ,                (4.4) 

where 𝑘𝑛𝑥 = 𝑘𝑥 + 𝑛𝐺 and 𝑘1,2𝑛𝑧 = √𝜀1,2𝑘0
2 − 𝑘𝑛𝑥

2  are the x- and z-components of the 

wave-vectors for the diffracted (scattered) plane waves and 𝑘0 = ω c⁄  is the k-

vector in free space. The coefficients rn and tn are the amplitudes of the spatial 

Fourier harmonics (waves diffracted in the nth order) in the upper and lower half-

spaces, respectively. 
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Using Maxwell’s equations, 𝑯 = (1 𝑖𝑘0⁄ )∇ × 𝑬, we can find the y-component of the 

magnetic fields in the substrate and superstrate. Then, we match the fields at the 

conductivity layer (z = 0) according to the boundary conditions 

          𝐞z × [𝐇1 − 𝐇2] =  2α ∙ 𝐞z × [𝐞z × 𝐄1],   

𝐞z × [𝐄1 − 𝐄2] = 0.     (4.5) 

Using the Fourier series for α(x)  in Eq. (4.2), we obtain the linear system of 

equations for the amplitudes rn and tn. 

eikxx + ∑ (rn − tn)e
iknxx

n = 0,  

−Yie
ikxx + ∑ (rnY1|n − tnY2|n)e

iknxx
n = −2∑ α̅mtne

iknxx
n,m , (4.6) 

where 𝑌𝑖 = 𝜀1𝑘0 𝑘𝑧⁄  is the admittance (the inverse of the wave impedance9) of the 

incident wave and 𝑌1,2|𝑛 = 𝜀1,2𝑘0 𝑘1,2𝑛𝑧⁄  are the admittances of the diffracted waves. 

Taking into account that Eq. (4.6) must hold for any value of x, we have to equal 

the coefficients at different exponentials. Then we obtain a compact system of 

equations for the amplitudes tn:  

∑ Dnmtmm = Vn,   

Dnm = δnm(Y1|n + Y2|n + 2𝛼0) + 2α̅n−m, Vn = 2Yiδn0, (4.7) 

where with δnm  we mean the Kronecker symbol, and α̅n  represents the Fourier 

harmonic of 𝛼(𝑥), given by Eq. (4.2), but with the excluded zero harmonic (α̅0 = 0) 

The amplitudes, rn, are related to the amplitudes, tn, as follows: 

rn = −δn0 + tn.  (4.8) 

The infinite linear system of equations (4.7) can be solved numerically for any type 

of  periodic function α(x) . For each type of modulation, an appropriate finite 

number N  of he diffraction orders, n , must be taken into account in order to 

achieve the convergence of the solution (truncation of the infinite system). In some 

cases, however (particularly, for periodic modulations with abrupt changes of α(𝑥) 

as, for example, for a layer structured into ribbons), the convergence with 𝑁 can be 

very slow and the system of equations (4.6) becomes unpractical. On the other 

hand, smooth profiles of α(𝑥), provide a good convergence and the number of 

required diffraction order is not large, so that even an analytical treatment of the 

system of equations is possible. 
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The solution of the system of equations (4.7) can be found also analytically. 

Assuming small modulation amplitude, we can use the resonance perturbation 

theory. The main idea of the resonance perturbation theory consists in the 

retention in the system of equation (4.7) all the resonant field harmonics 

(harmonics with high amplitudes compared to that of the incident wave), and then 

the minimal number of non-resonant field harmonics (originating from the lowest-

order scattering of the resonant field harmonics by the diffraction grating). The 

number of the non-resonant field harmonics (and the contributing scattering 

processes) is selected with respect to the desired precision of the final solution (for 

more detailed description of the resonance perturbation theory in diffraction 

problems see Refs. 64,66,169). In the lowest-order approximation, the reduced 

system for the resonant field harmonics (whose diffraction orders we label by “r”) 

has the following form: 

∑ D̃rr′tr′r′ = Ṽr,   

D̃rr′ = δrr′br + 2α̅r−r′ − 4∑
α̅r−Nα̅N−r′

bN
N    (4.9), 

Ṽr = −4α̅r
Yi

b0
,    

where, for brevity, we have used the following notation: bN = Y1|N + Y2|N + 2𝛼0. In 

the sums of Eq. (4.9) only non-resonant diffraction order harmonics are included 

(that is the resonant field harmonics with indices r are excluded). 

 

4.6.2 Field distribution of the Bloch modes 

 

Under normal incidence (the incident plane wave has no in-plane momentum 

component, i.e. kx = 0), and in case of a symmetric grating profile, α̅m = α̅−m  the 

unknown amplitudes in the system of equations (4.7) are symmetric with respect 

to the diffraction order m , i.e. rm = r−m  and tm = t−m . According to the field 

representation, Eqs. (4.3) and (4.4), the above symmetry results in the excitation of 

only cos-like spatial field distributions (for the in-plane electric field) of the Bloch 

modes: rmeikmx𝑥 + r−me−ikmx𝑥 = 2rm cos kmx𝑥. This property of the inhomogeneous 

system of equations does not however mean that the corresponding homogeneous 

system of equations (with zero right-hand side) does not have solutions 

(eigenmodes) with other field distributions. 
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Let us consider the Bloch wave excited in the First-Order Bragg resonance, 

experimentally visualized in Section 4.3 and 4.4. To study the Bloch (eigen-) 

modes, we should consider the system (4.9), but with the right hand side set to 0 

(no incident wave). In the latter system we have only two spatial field harmonics 

with the amplitudes t1, t−1. It reads as 

𝐷t1 + 𝑑t−1 = 0, 

𝑑t1 + 𝐷t−1 = 0.      (4.10) 

where, for compactness, we have defined 𝐷 = D̃11 = D̃−1−1 and 𝑑 = D̃1−1 = D̃−11. 

The eigenfrequencies can be defined by the dispersion relation (when the 

determinant is set to 0) 

𝐷2 − 𝑑2 = 0.      (4.11). 

The roots of Eq. (4.11) (which we label as S and A) can be symbolically written as 

𝐷𝐴 = 𝑑 , and 𝐷𝑆 = −𝑑 , from which the eigenfrequencies 𝜔𝐴,𝑆  can be found. 

Substituting the roots back into the system (4.10), we find two solutions for the 

eigenvectors: 

𝑡1
S = 1,             𝑡−1

S = 1

𝑡1
A = 1,           𝑡−1

A = −1,
    (4.12) 

By inserting the two solutions, S and A, in Eqs. (4.3) and (4.4), yield the following 

in-plane electric field distributions on top of the modulated conductivity layer: 

𝐸x,1
S  ~ cos (G𝑥) , 𝐸x,1

A  ~ sin (G𝑥).   (4.13) 

For the out-of-plane electric field component (𝑧-component), we have (consistently 

with the Maxwell´s equation ∇ ⋅ 𝑬 = 0): 

𝐸z,1
S  ~ sin (G𝑥),  𝐸z,1

A  ~ cos (G𝑥). (4.14) 

Therefore, according to the correspondence between Eqs. (4.13) and (4.14), the 𝑧-

component of the mode excited under the normal incidence (the so-called bright 

mode) is distributed according to sin (G𝑥). The other mode, with the vertical electric 

field distributed according to cos (G𝑥) is the so-called dark mode. 
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Notice that this result is confirmed by the near-field experiments (Section 4.4), 

where the observed standing wave pattern has a zero at the center of the hole, 

confirming that we indeed excite the bright mode of the system. 

Interestingly, depending upon the geometrical parameters of the grating (its 

spatial Fourier spectrum) 𝜔𝐴 can be either larger or smaller than 𝜔𝑆, so that A is 

either higher- or lower-frequency mode (with respect to S). This will be explored in 

Section 4.8.  

 

4.6.3 Comparison of the analytical solution with full-wave 

simulations 

 

To further corroborate the validity of our analytical approximation developed in 

Section 4.6.1, we compare the absorption in the polaritonic crystal calculated with 

the help of full-wave simulations (COMSOL) and the linear system of equations 

(4.6). For the solution of the system of equations 4.6 we use the expression for the 

amplitudes of the Fourier harmonics, 𝛼𝑛, corresponding to the holes. As before, we 

assume that the polaritonic crystal is placed on the CaF2 substrate. The results of 

the full-wave simulations and calculations according to Eq. (4.6) are shown in 

Figure 4.13, demonstrating an excellent agreement between the two approaches 

(color plots in Figure 4.13c and Figure 4.13d). Apart from the absorption, in Fig. 

4.13c,d we also show the dispersion branches of both modes A and S (green and 

blue curves, respectively). The dispersion curves were obtaining by analyzing the 

zeros of the determinant of the system of equations (4.6). The mode S (lower 

frequency branch) perfectly matches with the bright maximum in the colorplots, 

and shows an almost constant frequency with respect of the angle of incidence. 
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Figure 4.13: Absorption of a p-polarized incident plane wave by the h-BN polaritonic 

crystal, as a function of the angle of incidence and frequency. (a) Schematics of the 

conductivity layer periodically modulated in one direction, placed on top of a CaF2 

substrate. The incident wave excites the Bloch mode formed by the field harmonics with 

the k-vectors  𝑘−1 and 𝑘1  (first-order diffracted waves), giving rise to the first-order Bragg 

resonance. (b) Schematics of the polaritonic crystal. The excited Bloch mode is formed by 

the field harmonics with the k-vectors 𝑘0−1 and 𝑘01 . The period of both the hole array and 

the 1D periodic lattice is L = 900 nm. The plane of incidence (marked by white solid line) is 

parallel to the lattice vector in (a) and the rows of holes in (b), respectively. (c) and (d) 

show the absorption as the function of 𝜃 and 𝜔 (colorplots), with the help of the system of 

equations (4.6) and full-wave simulations, respectively. The blue and green curves 

represent the dispersion of the modes S and A, respectively. 
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4.7 Omnidirectional and polarization independent 

absorption peaks 

 

The band structure calculations provided us hints that the absorption on the 

system is nearly angle-independent. Moreover, the analytical description of the 

HPhPs in the hole array further corroborated this observation and allowed us to 

describe the Bloch modes measured by near-field microscopy (in terms of 

symmetric or antisymmetric electric field distributions). In this section, we 

experimentally prove the omnidirectional absorption of the polaritonic crystal 

(originating from the almost frequency-independent momenta of the first order 

Bloch mode). We carry out optical transmission measurements at oblique incidence 

for both p- and s-polarization, schematically shown in Figs. 4.14a,d. The measured 

normalized extinction, 1 − 𝑇 𝑇CaF2
⁄ , as a function of the incident angle, 𝜃 , and 

frequency, 𝜔, is represented in Figs. 4.14b,e. Strikingly, for both polarizations, the 

extinction maximum is clearly independent upon 𝜃 in the whole measured range, 

thus finding an excellent agreement with the calculated absorption (Figs. 4.14c,f). 

The theoretical analysis carried out in Section 4.6 of both symmetric, 𝑆 , and 

antisymmetric, 𝐴, Bloch modes, allows us to unambiguously attribute such angle-

independent Bragg resonance to the excitation of 𝑆 Bloch modes (Figs. 4.14a,d). 

Namely, the excited modes 𝑆y  (p-polarization) and 𝑆x  (s-polarization) have a 

symmetric vertical electric field distribution with respect to the hole centers, 

𝐸z,Sy
~sinG𝑦 and 𝐸z,Sx

~sinG𝑥, respectively. The field distribution of the modes is 

derived in Section 4.6. This result is also corroborated by the field distribution 

revealed by our near-field measurements (Fig. 4.9) and is consistent with the 

previous studies of the plasmonic resonances in metallic hole arrays and 

gratings2,37,38, thus generalizing the coupling to the symmetric Bloch modes to a 

deeply subwavelength polaritonic crystal. Our findings demonstrate both angle 

and polarization independence of the narrow Bragg resonances in a h-BN 

polaritonic crystal, making the latter attractive candidates for narrow-band 

omnidirectional infrared absorbers, couplers and thermal emitters, significantly 

smaller than those based on conventional bulk materials46-48. 
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Figure 4.14: Angle- and polarization-independent HPhP Bragg resonance in the h-BN 

polaritonic crystal. a,d, Top: schematics of the angle-dependent transmission experiments 

for p- and s-polarization. Bottom: spatial distribution of the vertical electric field of the 

Bloch modes in the vicinity of the resonance frequency. b,e, Measured normalized 

extinction, 1 − T TCaF2
⁄ , as a function of the stage rotation angle, ϕ and frequency. c,f, 

Calculated normalized absorption as a function of the incident angle, θ and frequency. 
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4.8 Tuning the bright and dark Bloch modes  

 

In the previous sections we have derived the dark and bright modes that occur at 

the first Bragg resonance (Section 4.5 and 4.6) of the polaritonic array, and 

identified the emerging Bragg resonance by the coupling of the incident wave to 

the bright mode (Section 4.4). In this section we explore the variation of the 

polaritonic crystal parameters. We determine which of the two modes (S or A, 

according to Section 4.6) appears at lower frequencies and quantify the band gap 

between both modes. 

In an explicit form, the Eq. (4.11) can be rewritten as: 

(b − 4Γ1)
2 − (2α̅2 − 4Γ2)

2 = 0, (4.15) 

where we have introduced the following notations: 

𝑏 = 𝑏1 = 𝑏−1, 

Γ1 = ∑
α̅1−Nα̅N−1

bN
N ,  Γ2 = ∑

α̅1−Nα̅N+1

bN
N , (4.16) 

where the summation is realized in all the diffraction orders, except 1 and -1, and 𝑏 

is defined as in Section 4.6.1. Let us write the solutions of Eq. (4.15) as 𝜔 = 𝜔0 +

𝛿𝜔, by introducing a small deviation from the frequency of the polaritons in the 

unmodulated conductivity layer (with the normalized conductivity α0), 𝜔0. The 

latter frequency follows from the dispersion relation 𝑏(𝜔0) = 0. This equation (in 

the large momentum/short lattice period approximation, 𝐺 ≫ ε1,2k0 , providing 

under the normal incidence Y1,2|1 ≃ ε1,2k0 iG⁄ ) yields 𝜔0 = −𝑖α0 ∙
2𝐺𝑐

ε1+ε2
. To explicitly 

find 𝛿𝜔 from Eq. (4.15), we will assume that all the quantities in Eq. (4.16) are taken 

at 𝜔 = 𝜔0, except 𝑏(𝜔) = 𝑏(𝜔0 + 𝛿𝜔). By expanding 𝑏(𝜔), we have: 

𝑏(𝜔) ≃ b(𝜔0) +
ε1+ε2

𝑖Gc
𝛿𝜔. (4.17) 

From Eq. (4.17) we find the two values for 𝛿𝜔: 

𝛿𝜔𝐴,𝐵 =
𝑖Gc

ε1+ε2
[4Γ1 ± (2α̅2 − 4Γ2)]. (4.18) 

Then the expressions for the eigenfrequencies of the modes A and S become 
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Figure 4.15: Amplitude of the first four Fourier harmonics of the rectangular hole array 

as a function of the ratio between radius and array period, 𝒂 𝑳⁄ . The sign of the second 

harmonic approximately dictates the position of the eigenfrequencies relative to each 

other. 

𝜔𝐴 = 𝜔0 +
4𝑖Gc

ε1+ε2
Γ1 + Δ𝜔, 

𝜔𝑆 = 𝜔0 +
4𝑖Gc

ε1+ε2
Γ1 − Δ𝜔. (4.19) 

with 

Δ𝜔 =
2𝑖Gc

ε1+ε2
(α̅2 − 2Γ2). (4.20) 

We see that both eigenfrequencies are shifted with respect to 𝜔0  by the term 

proportional to Γ1 (the shift of the center of the bandgap). This term is contributed 

from the second-order scattering processes (via non-resonant diffraction orders) 

between the bare HPhPs given by the resonant diffraction orders 1 and -1. The 

splitting, defined by Δ𝜔, is contributed from both second-order processes (term 

proportional to Γ2 ) and the linear interaction between the bare HPhPs (term 

proportional to α̅2). 

To simplify the analysis of Δ𝜔 we neglect the ohmic losses, assuming that the 

effective conductivity (and its Fourier harmonics) is purely imaginary. We also 

assume that for a weak modulation, the second-order lattice harmonic, α̅2, exceeds 

the term 2Γ2 so that the linear interaction between the bare HPhPs dominates over 

the second-order scattering. Then according to Eq. (4.20) the sign  
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Figure 4.16: Calculated normalized absorption as a function of angle for two different 

radii of the holes. (a) Sketch of the polaritonic crystal (L = 900 nm) on a CaF2 substrate. A 

p-polarized wave impinges the hole arrays with an angle 𝜃 with respect to the normal. 

(b,c) Calculated absorption in the hole arrays (colorplot) as a function of 𝜃 and 𝜔.The 

sketches show the relative size of the hole with respect to the unit cell. The solid and 

dashed lines are guides to the eye, highlighting the position of the bright (S) and dark (A) 

modes, respectively. 

 

of Δ𝜔 is mainly determined by the sign of the second Fourier harmonic of the 

grating, �̅�2, multiplied by the imaginary unit. Namely, when sign(𝑖�̅�2) < 0, the S 

mode (bright mode) has a higher frequency, “𝜔+”, while the A mode (dark mode) 

has a lower frequency, “𝜔−”. In contrast, when sign(𝑖�̅�2) > 0, the S mode (bright 
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mode) has a lower frequency, “𝜔−”, while the A mode (dark mode) has a higher 

frequency, “𝜔+”. Taking into account that the imaginary part of the normalized 

effective conductivity of the unmodulated layer, 𝛼𝑏, is positive, the condition of 

sign(𝑖�̅�2) > 0  (sign(𝑖�̅�2) < 0) is equivalent to sign(�̅�2 𝛼𝑏⁄ ) < 0  (sign(�̅�2 𝛼𝑏⁄ ) > 0), 

respectively (we remind here that we are neglecting the losses). 

In order to apply the results of our approximate analysis directly to the case of the 

hole array, let us write the modulation of the normalized effective conductivity of 

the hole array as 𝛼(𝑥, 𝑦) = [1 − 𝑓(𝑥, 𝑦)] ∙ 𝛼𝑏 , where 𝑓  takes 1 (0) value inside 

(outside) of the holes, respectively. The Fourier transform of 𝑓(𝑥, 𝑦) in case of a 

rectangular array (with period 𝐿 ) of circular holes (with radius 𝑎 ) is  𝑓𝑛,𝑚 =
𝑎

𝐿

1

√𝑛2+𝑚2
𝐽1(2𝜋

𝑎

𝐿
√𝑛2 + 𝑚2), with 𝐽1  

being the Bessel Function of the first kind. The spectrum of the 1D grating, 

equivalent to the hole array can be obtained from the 2D Fourier harmonics of the 

normalized effective conductivity,  �̅�𝑛,𝑚, by setting  �̅�𝑛 =  �̅�𝑛,0. It reads: 

 �̅�𝑛

𝛼𝑏
= −

𝑎

𝐿

1

𝑛
𝐽1(2𝜋

𝑎

𝐿
𝑛).    (4.21)  

When the diameter of the hole changes, the weight of the second harmonic of the 

Fourier decomposition of the hole array varies (see Figure 4.16). According to our 

approximation, in the range of 𝑎 𝐿⁄ < 0.3 (where sign(�̅�2 𝛼𝑏⁄ ) < 0), the modes S 

and A are expected to have low (𝜔−) and high (𝜔+) frequencies, respectively (blue 

region in Figure 4.15). In contrast, for 𝑎 𝐿⁄ > 0.3 (sign(�̅�2 𝛼𝑏⁄ ) > 0), the modes S 

and A should have high (𝜔+) and low (𝜔−) frequencies, respectively (green region 

in Figure 4.16). 

We verify the results of our analytical analysis by performing the full-wave 

simulations (COMSOL) for the two hole arrays (placed on CaF2 substrate) with 

radii of holes 𝑎 = 300, and 150 nm (Figs. 4.16a,b), and period 𝐿 = 900 nm. The 

parameters of the arrays have been chosen in such a way that the arrays with the 

smallest and largest 𝑎  correspond to the blue and green areas in 4.15. The 

simulated absorption, as a function of frequency, 𝜔, and angle of incidence, 𝜃, is 

shown in Figure 4.16. For the hole array with 𝑎 = 300 nm (𝑎 𝐿⁄ = 0.33) we have 

sign(�̅�2 𝛼𝑏⁄ ) > 0 (blue region in Fig. 4.15) and as predicted above, the bright mode 

S has a higher frequency than the dark mode A. In contrast, for the hole array with 

𝑎 = 150 nm (𝑎 𝐿⁄ = 0.167) we have sign(�̅�2 𝛼𝑏⁄ ) < 0 (blue region in 4.15) and the 

bright mode S has a lower frequency than the dark mode A. As seen in the 

colorplots of Fig 4.16b and c, for the oblique incidence the incident wave breaks the 

symmetry and both A and S modes are excited (this is clearly seen for angles 
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𝜃 > 20𝑜 ). Thus, the numeric simulations corroborate our analytical results, 

revealing the key role of the second harmonic of the hole array in the relative 

frequency position of the Bloch modes in the first-order Bragg resonance. 

The results of our analysis are consistent with previous studies for one- and two-

dimensional metallic diffraction gratings and hole arrays in metal films, although 

these studies were limited to the periods comparable to the free-space wavelength 

in both cases170-172.  

 

4.9 Lifetime of the Bloch modes excited in the first-

order Bragg resonance 

 

By spectroscopic measurements (reported in Section 4.3) we have found that the 

Bragg resonances at normal incidence are spectrally narrow, with quality factors 

around 200. In this section, we analyze these long-lived HPhPs corresponding to 

these resonances, and the ohmic and radiative loss channels. 

In our analysis, we will take into account only the first-order Fourier harmonic of 

the modulated conductivity. We assume that this harmonic plays the dominating 

role in both the excitation of the first-order polaritonic Bloch modes and their 

radiative coupling. Thus, the conductivity profile is given by the following 

relation: 

𝛼(𝑥) = 𝛼𝐵 + Δ𝛼 cos(𝐺𝑥), (4.22) 

so that only the first-order Fourier harmonic α1 = Δα/2 is different from zero. In 

Eq. (4.22) Δα is the modulation amplitude. For the conductivity profile given by Eq. 

(4.22), the dispersion relation of the S mode (given by Eq. (4.7)) simplifies to: 

b1 − Δα2 (
2

b0
+

1

b2
) = 0. (4.23) 

The imaginary part of the complex root of Eq. (4.23), Im(ωS), represents the inverse 

lifetime, from which both the radiative and ohmic contributions can be extracted. 

Aiming on the qualitative description of the results, we will assume that the 

dielectric permittivity of the substrate is 1 (so that the conductivity layer is free-

standing). This assumption simplifies the writing of equations, but does not affect 
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the generality of the lifetime dependence upon the lattice parameters. The 

admittances Yn  appearing in Eq. (4.22) can be explicitly written as Y1,2|0 =

1;  Y1,2|1 ≃
−iω

Gc
; Y1,2|2 ≃

−iω

2Gc
, where we assume that the reciprocal lattice vector, 𝐺, is 

much larger than the wavevector of light in free space, 𝑘0. 

The dispersion relation of polaritons in the unmodulated conductivity layer reads 

as b1 = 0 . This equation simplifies to ω0 = −iαB(ω0) ⋅ Gc (see Section 4.6.2) and 

determines the frequency of the bare polaritons in the unmodulated layer, ω0. 

Let us find the explicit expression for the effective normalized conductivity. We 

take the perpendicular dielectric permittivity of h-BN according to Ref. 145: 

𝜀⊥ = 𝜀⊥,∞ + 𝜀⊥,∞ (
𝜔⊥,LO

2 −𝜔⊥,TO
2

𝜔⊥,TO
2 −𝜔2−𝑖γ⊥𝜔

). (4.24) 

Then, following the procedure developed in Appendix A, the effective normalized 

conductivity of the layer can be written as 

𝛼𝐵(𝜔) = 𝐴
𝑖𝜔

𝜔2−𝜔⊥,TO
2 +𝑖γ⊥𝜔

, (4.25) 

where A =
t

2c
(ω⊥,LO

2 − ω⊥,TO
2 )ε⊥,∞, with 𝑡 being the h-BN thickness. In Eq. (4.25) we 

neglect the frequency-independent term 𝜀⊥,∞ that appears in eq. (4.24), since the 

Lorentzian contribution has a large negative value in the region of interest. 

 

Assuming that γ ≪ ω, the real part of the conductivity (responsible for the ohmic 

losses) is small compared to the imaginary part, Re(α) ≪ |Im(α)|. Additionally, we 

assume the modulation amplitude is small, |Δα| < αB. Therefore, we can consider 

the imaginary part of the frequency as a perturbation to ω = ω0. Let us take into 

account both the perturbation due to the ohmic losses and lattice as δω, so that the 

frequency of the mode S can be written as ωS = ω0 − iδω. Then we can expand Eq. 

(4.22) into the Taylor series (considering δω, γ and Δα to be the small parameters): 

−2
𝑖(𝜔0−𝑖δ𝜔)

𝐺𝑐
+ 2𝛼|𝜔=𝜔0

𝛾⊥=0
− 2

𝜕𝛼

𝜕𝜔
|𝜔=𝜔0
𝛾⊥=0

iδ𝜔 + 2
𝜕𝛼

𝜕𝛾⊥
|𝜔=𝜔0
𝛾⊥=0

𝛾⊥ − Δ𝛼2 (1 +
𝑖𝐺𝑐

2𝜔0
) = 0, (4.26) 

where due to small value of α, we have replaced b0 and b2 (defined in Eq. 4.9) 

by 2Y1|0 and 2Y1|2, respectively. Taking into account the dispersion relation for the 

bare polaritons in the unmodulated slab, the correction to the frequency, δ𝜔, can be 

explicitly found from Eq. (4.26):  
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Figure 4.17: Radiative and ohmic lifetimes of the Bloch mode as a function of the period 

of the polaritonic crystal. (a) Total (experimental, triangle symbols, calculated, red line), 

radiative (calculated, green line; analytical, blue line), and ohmic (black line) lifetime of the 

polaritonic Bloch mode excited in the hole array as a function of its period. (b) Absorption 

as a function of period, L. 

 

δ𝜔 = −

Δ𝛼2(1+
𝑖𝐺𝑐

2𝜔0
)−2

𝜕𝛼

𝜕𝛾⊥
|𝜔=𝜔0
𝛾⊥=0

𝛾⊥

2

𝐺𝑐
+2𝑖

𝜕𝛼

𝜕𝜔
|𝜔=𝜔0
𝛾⊥=0

. (4.27) 

This equation can be written in the form of the sum of the two terms: δω0 

(independent upon Δα) and δωrad (independent upon γ⊥), these being the inverse 

ohmic and radiative lifetimes, τ0 and τrad, respectively: 

δ𝜔 = δ𝜔0 + δ𝜔𝑟𝑎𝑑 = 𝜏0
−1 + 𝜏𝑟𝑎𝑑

−1 . (4.28) 

Taking the derivatives 
∂α

∂ω
 and 

∂α

∂γ⊥
 from Eq. (4.25), the correction related to the 

ohmic losses becomes 
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δ𝜔0 = 𝜏0
−1 =

𝛾⊥

2
.              (4.29) 

The polariton lifetime due to the intrinsic losses in a thin h-BN slab is thus 

independent upon the film thickness and frequency. 

The radiative correction to the resonant frequency is given by (we use the explicit 

expression for αB from Eq. (4.25) at γ = 0 and ω = ω0) 

δ𝜔𝑟𝑎𝑑 = −
1

4𝐴
⋅ Δ𝛼2 ⋅

(𝜔0
2−𝜔𝑇𝑂

2 )
2

𝜔0
2 .  (4.30) 

In this expression we do not include the term proportional to 
iGc

2ω0
 (coming from the 

denominator of Eq. (4.27)), since the latter contributes to the frequency shift 

(contributes to the real part of frequency). As we see from Eq. (4.30), the radiative 

correction to the frequency is proportional to the squared modulation amplitude, 

Δ𝛼2. This correction originates from the forward and back-scattering of the 1st 

diffraction orders (mainly composing the Bloch polariton) via the 0th order field 

harmonic. 

According to Eqs. (4.21), the amplitude of the first Fourier harmonic of the hole 

array is α1 =
Δα

2
= −αB

a

L
J1(2π

a

L
). Substituting Δα into Eq. (4.29) (we use αB given by 

Eq. (4.26) at γ = 0 and ω = ω0), we have the following explicit expression for the 

radiative lifetime, as a function of the parameters of the hole array: 

δ𝜔𝑟𝑎𝑑 = 𝜏𝑟𝑎𝑑
−1 = 𝐴 ⋅ (

𝑎

𝐿
)
2

⋅ 𝐽1
2 (2𝜋

𝑎

𝐿
).  (4.31) 

Notice that in contrast to the ohmic lifetime, the radiation lifetime is thickness-

dependent (via the factor A ∝ t, introduced in Eq. (4.25)). 

To corroborate our analytical results, we calculate the total lifetime of the 

polaritons, τtot, in the hole array with the help of the full-wave simulations and 

experimental data. We extract the lifetime from both the simulated and 

experimental transmission spectra of several hole arrays (with different periods 𝐿) 

by fitting them to Lorentzian profiles. The extracted experimental values for τtot 

(triangles) are plotted in Fig. 4.17 as a function of period, L, finding a very good 

agreement with the simulations (red curve). Both red curve and the triangular 

symbols show a clear dependence upon 𝐿, deviating from the constant value of the 

ohmic lifetime, τ0 , (calculated according to Eq. 4.29), traced by the black solid 

curve. This deviation is due to the finite radiative lifetime, which can be extracted 
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from the total lifetime as τrad
−1 = τtot

−1 − τ0
−1. In the shown interval in Fig. 4.18) , the 

radiative lifetime, τrad, is larger than τ0 up to one order of magnitude (10 ps vs 1 ps 

for L= 1200 nm), indicating that the polaritons require significantly more time to 

couple to the free-space radiation than to be dissipated into the heat. 

The result of Eq. (4.31) (corrected by a constant factor) is shown in Figure 4.14 by 

the blue continuous curve. The tendency provided by Eq. (4.31) finds a good 

agreement with τrad extracted from the full-wave simulations (Figure 4.17a, green 

curve). This agreement indicates that the mechanism of the radiative losses of the 

polaritonic Bloch mode (excited in the first-order Bragg resonance) is consistent 

with the scattering of the Bloch mode via the first-order harmonic of the hole array 

into the diffracted wave of 0th order. As τrad approaches τ0 (with decreasing 𝐿), 

the polariton-induced absorption of light by the hole array increases (Figure 4.17b). 

In fact, the optimal absorption is expected under the general condition of the 

equality between the radiative and ohmic losses, τrad = τ0, which can be achieved 

by optimizing the aspect ratio a/L, and the symmetry of the array (e.g. considering 

the hole arrays of triangular or hexagonal symmetries). 

 

4.10 Conclusions 

 

In summary, we have introduced and experimentally realized IR deeply 

subwavelength polaritonic crystals based on hyperbolic phonon polaritons in 

nanostructured van der Waals crystal slabs. Such crystals –being the counterpart of 

the structured artificial hyperbolic metamaterials (demonstrated at visible 

frequencies168)– support highly-confined Bloch modes with flat bands, giving rise 

to angle- and polarization-independent geometrically-tunable resonances, even in 

case of the simplest square symmetry. Apart of their potential usage for the 

subwavelength omnidirectional IR absorbers, couplers and reflectors, h-BN 

polaritonic crystals can be utilized for inhibiting spontaneous emission (the latter, 

in contrast, being enhanced/accelerated by h-BN optical antennas120,157,174). The 

suppression of spontaneous emission can be achieved by tuning the parameters of 

the polaritonic crystal (particularly, its symmetry) to open up the full polaritonic 

bandgap. From a different perspective, the h-BN hole arrays can be also used as 

polaritonic hypercrystals (possessing extremely high density of optical states)175-177, 

where several HPhP slab modes are simultaneously explored by superimposing 

several hole arrays with different periods in the same slab. Furthermore, the 
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combination of h-BN polaritonic crystals/hypercrystals with other low-

dimensional materials (such as e.g. h-BN-encapsulated graphene158) can open the 

door to integrable hybrid metamaterials with unique opto-electronic properties on 

the nanoscale. 
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A.1 Analytical Approximation of an h-

BN thin slab as a 2D conductivity layer  
 

 

Figure A.1: Dispersion and field distribution of the M0 mode in an h-BN slab and the 

polaritonic mode in an equivalent conductivity layer. (a) The h-BN flake is approximated 

as a conductivity layer. (b) Wavevector, 𝑘 , of the M0 mode in a slab of 𝑡 = 38 nm 

surrounded by air as a function of frequency. Solid blue line renders the real part, while 

the dashed blue line represents the imaginary part, respectively. Both real and imaginary 

parts of k are normalized to that of the free space light 𝑘0 =
𝜔

c
. (c) Simulated vertical 

component of the electric field, 𝐸z (at = 1428 cm-1) of the M0 mode propagating along the 

x -axis (from left to right). (d) The same as in (c), but for the polaritonic mode propagating 

along the conductivity sheet. 

 

The calculations of the electromagnetic fields in thin films and nanostructures are 

sometimes simplified if they are modelled as 2D conductivity layers instead of 

structures with certain thickness. In this appendix, we demonstrate that the M0 

mode of a thin layer of h-BN (see Section 2.3) can be well described by modelling 

the h-BN thin film as a conductivity layer with zero thickness (see Figure A.1a). 
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This approximation avoids the calculation of the fields inside the slab, and has 

been proven valid for in-plane isotropic 2D materials (e.g., graphene74, silicon 

carbide169, and transition layer polaritons100) with a layer thickness, 𝑡, much smaller 

than the polariton wavelength (𝑡 ≪ 𝜆𝑀0). Using this approximation, the effective 

conductivity is given by 𝜎eff = (𝑐𝑡 2𝑖𝜆0)𝜖⁄ , where ϵ is the dielectric permittivity of 

the slab. Analogously, we model the h-BN layer by an isotropic in-plane 

conducting layer with zero thickness and an effective two-dimensional 

conductivity 𝜎eff = (𝑐𝑡 2𝑖𝜆0)𝜀⊥⁄ , neglecting the contribution of the in-plane part of 

the dielectric permittivity of h-BN, 𝜀|| . It is important to note that 𝜎eff  scales 

linearly with 𝑡, thus taking into account the effect of the slab thickness. 

We justify the validity of our model by Figure A.1, showing an excellent agreement 

between the dispersions (Figure A.1b), and between the spatial electric field 

distributions (Figure A.1c,d) of the M0 mode in the h-BN slab (obtained from the 

quasistatic approximation Eq. 2.18) and a polaritonic mode in the equivalent 2D 

conductivity layer. 
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