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To my beloved Family

Our virtues and our failings are inseparable, like force and matter.
When they separate, man is no more.
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Abstract

Superconductivity is an intriguing phenomenon that crosses many fields of sci-
ence with still very high interest in fundamental understanding and technology ap-
plications. Electron-electron interactions and correlations are a basic interest of con-
densed matter physics, in fact, they describe many phenomena including magnetism
and superconductivity. In this thesis, with Ultra-High-Vacuum material synthesis we
couple normal metals, superconductors, 2D materials, magnetic atoms, and molecules
to study the interplay of different properties transferred by proximity at the atomic
scale described within various theoretical frameworks.

The interaction of a magnetic atom with a superconductor can be described clas-
sically following the well-established Yu-Shiba-Rusinov treatment. Here, we build
2D diluted atomic lattices of Mn on the β-Bi2Pd superconductor by means of scan-
ning tunneling microscope (STM) atomic manipulation. The anisotropic Fermi sur-
face of β-Bi2Pd implies a strong dependence of the coupling on the orientation of the
build structures. In cross-like structures made by 5 Mn atoms, we observe an increas-
ing splitting while composing the cross and a different splitting depending on the
orientation with respect to the substrate. In an atomically built 25 Mn atoms squared
lattice, we identify three YSR collective modes. The simple model simulations repro-
duce the three main contributions in which spatial distribution is correlated with the
experimental dIdV maps.

In this thesis, we also show how tunneling a single electron can excite a pair-
breaking excitation in a proximitized gold film in the presence of magnetic impu-
rities. Combining STM with theoretical modeling, we map the excitation spectrum
of an Fe-porphyrin molecule on the proximitized surface into a manifold of entan-
gled Yu-Shiba-Rusinov and spin excitations. Pair excitations emerge in the tunneling
spectra as peaks outside the spectral gap only in the strong coupling regime, where
the presence of a bound quasiparticle in the ground state ensures the even fermion
parity of the excitation. Our results unravel the quantum nature of magnetic impuri-
ties on superconductors and demonstrate that pair excitations unequivocally reveal
the parity of the ground state.

Graphene has many remarkable properties, it is a 2D semimetal, has relativistic-
like electronic properties, and is almost free of defects. This makes very promising the
study of induced superconductivity in graphene. In this thesis, we deposit Pb islands
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on SiC graphene and induce superconducting by proximity effect. These islands can
slide on the surface of graphene, pushed by the STM tip without being damaged
critically. This manipulation tool allows the building of superconducting nanostruc-
tures that can confine superconductivity in graphene in virtually infinite geometries.
We study the effect of graphene domain boundaries, twisting angles, and magnetic
fields on superconducting coherence. In confined structures, the quasiparticle exci-
tations present a spatial structure, which influences the induced Cooper pair density
in graphene. For graphene grown on the two different faces of the polar crystal SiC,
we observe strikingly different proximity effects. On the C-face, where graphene is
at charge neutrality, the correlations only live for the coherence length, while in the
Si-face graphene, n-doped, we observe an extremely homogeneous induced gap. We
show that this is due to the Josephson coupling of the sparsely distributed Pb island
on the surface that induces a macroscopic 2D superconducting state in graphene.
The proximitized graphene superconducting substrate constitutes a novel platform
to study superconductivity and magnetism at the atomic scale.

The contact between graphene and the Pb islands can be tuned by modifying
the island size, which leads to the Coulomb blockade phenomenon. The interplay
of Coulomb blockade and superconductivity is an intriguing phenomenon still not
fully understood and interesting for engineering the parity of superconductors for
quantum computing applications. In this thesis, we study the transition from con-
ventional BCS superconducting Pb islands to small islands that manifest a Coulomb
gap. These show a characteristic asymmetry of the coherence peaks that is switch-
able by island manipulation on the surface. We correlate the asymmetry with the
presence of an excess charge on the islands. This effect can suppress completely one
of the coherence peaks and can be switched by island manipulation. This joint with
the manipulation can be used as a probe for the local work function of graphene.
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1Introduction

Scanning tunneling microscopy (STM), which was developed in 1981 [1], has
enabled the study of fundamental properties of matter with atomic-scale control. The
technique consists in stabilizing a metallic tip on a crystalline surface with picometer
precision. The exponential dependence of electron tunneling with the tip-sample
distance allows for atomic-level topographic and spectroscopic imaging of materials.

One area in which STM has seen significant progress is superconductivity. By
using electron tunneling spectroscopy, it became possible to measure the excitation
gap ∆ of a superconductor [2]. These measurements provided crucial support for
the Bardeen-Shriffer-Cooper (BCS) theory, which was proposed in 1957 to explain
the microscopic phenomena in superconductivity [3]. The central idea behind this
theory is that the attractive interaction between electrons results in the formation of
correlated electron pairs, called Cooper pairs. These pairs of electrons follow the
bosonic statistics, condensing in a macroscopic state called the BCS ground state. In
this ground state, all the electrons with E < ∆ are paired, resulting in an energy gap
for tunneling electrons.

When a magnetic impurity is deposited on a superconductor it couples to the
Cooper pairs via exchange interactions. This locally modifies the excitation spectrum
of the superconductor and, depending on the strength, also the ground state of the
superconductor. In three seminal works Yu Shiba and Rusinov (YSR) described inde-
pendently how a classical spin locally produces bound states for quasiparticles [4–6]
visible as excitation peaks inside the superconducting gap. While their first experi-
mental observation by STM was in 1997 [7], research on YSR states got boosted in the
last decade due to many proposals for topological quantum computation based on
non-abelian Majorana bound states [8, 9]. These are sought on the edges of magnetic
impurity chains coupled to superconductors in the presence of spin-orbit coupling
[10], fueling a great advancement in the atomic manipulation on superconductors.

Apart from this goal, these systems present very rich phenomenology often de-
scribed with classical spin models. These models predict that a YSR bound state
appears for each spin-polarized atomic d-orbital interacting with the superconduc-
tor [11], the wavefunction of each of these YSR interaction channels extends for dis-
tances in the order of the superconducting coherence length [12] and can mediate the
coupling between YSR states in multi-impurity systems [13]. A YSR state strongly
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depends on the nature of the Fermi Surface (FS), and scattering vector nesting may
result in extended YSR wavefunction [12, 14, 15].

The extension of the YSR wavefunction in presence of anisotropic FS can al-
low the coupling of diluted structures, where no direct orbital overlap is present [16].
Moreover, 2D diluted structures of magnetic atoms in presence of spin-orbit coupling
are predicted to show topological superconductivity when extended [17]. In chapter
3 of this thesis, I study the hybridization of YSR states of Mn atoms deposited on β-
Bi2Pd superconductor with a strong Fermi surface anisotropy. The 1D and 2D multi-
impurity structures built with atomic precision are modeled using a Green function
model, adapted in our group in collaboration with Jon Ortuzar for describing N mag-
netic impurities interacting with a superconductor [18]. We observe and study the
weak coupling between YSR states and observe that it depends on the orientation of
the 2D structures with respect to the superconductor atomic lattice.

Single atomic impurities as Mn on β-Bi2Pd are well described by a classical spin
approximation, where the spin is modeled as a classical vector with a fixed direction.
However, the presence of spin-flip processes between spin states with different quan-
tum numbers [19], calls for the use of a quantum spin description of the spin. These
out-gap spin excitations have been usually considered independent from in-gap YSR
states [20–22] and measured on molecules coupled to superconductors as excitations
outside the superconducting gap [23]. In this thesis, I study how magnetic molecules
with large magnetic anisotropy induce a rich spectrum of entangled YSR and spin-
flip excitations. In collaboration with Jon Ortuzar, Sebastian Bergeret, and Miguel
Cazalilla we model these excitations with a single-site quantum spin model that ac-
counts for the interplay between magnetic anisotropy and exchange coupling [24].

BCS predicted the possibility of Cooper pair-breaking excitation at energy 2∆
can exist [3]. These pair-breaking excitations can be accessed with microwave pho-
tons and their coherent manipulation is interesting since they consist in a model q-bit
system [25, 26]. However, due to parity conservation, explored in chapter 4, these
excitations are forbidden for electrons. A key component to distinguish the pair ex-
citation is the use of a proximitized superconductor, namely a gold film deposited on
a vanadium superconductor.

The proximity effect refers to the transfer of a physical property between two
materials when they are in contact. In this way, superconductivity is induced in a
normal metal by its proximity to a superconductor. Empirically this is described as
the leaking of Cooper pairs from the superconductor to the normal metal [27–29],
that induces a gap in the density of states. If the proximitized material has a non-
trivial band topology, topological superconductivity, and Majorana bound states can
emerge [30–32]. The interaction of a magnetic impurity with a proximitized normal
metal is of fundamental interest since the microscopic description of the coupling re-
mains elusive. In chapter 4, we study the excitation spectrum of a magnetic molecule
that presents YSR excitation on a proximitized Au film. This is a potential platform
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for on-surface synthesis of nanographenes [33], in which localized spin moments can
induce YSR states.

The proximity effect occurs also when islands of a superconductor material are
deposited on a normal metal. Graphene is a semi-metallic material, one way of mak-
ing it superconducting is by proximitizing it. It has been proposed that proximi-
tized graphene can host new states of matter [34]. Induced superconductivity was
studied for graphene grown on SiC0001 [35] but no further development appeared.
However, an extensive theoretical effort has been done on modeling proximitized
junctions and superconducting loops mainly to describe mesoscopic physics systems
[36, 37]. In chapter 5 of this thesis, in collaboration with Eva Cortés-del Rio, Ivan
Brihuega and Juan Carlos Cuevas we use a new method to proximitize graphene,
where the Pb islands can be easily manipulated on the surface with the STM tip. This
allows the construction of virtually unlimited geometries to confine and probe su-
perconductivity in graphene. This opens many possibilities to engineer at the atomic
level arbitrary superconducting nanostructures and probe how superconductivity is
induced in monolayer and bilayer graphene on SiC.

The ability to manipulate Pb island on the graphene surface is due to a weak
physical contact interaction between island and surface. This also affects the electri-
cal contact between the island and the substrate. We observed by STM that with small
islands on graphene, a capacitive effect gives rise to the Coulomb Blockade physics
[38, 39]. While the Coulomb blockade phenomena in weakly coupled metallic grains
were studied intensively in the last century [40–42], the interplay of Coulomb block-
ade phenomena with superconductivity remains not yet understood. In chapter 6 we
study this interplay in small Pb islands, observing the presence of asymmetric quasi-
particle excitation gaps that we interpret based on the presence of excess charge on
the island due to local gating [43, 44].

3





2Theory and experimental methods

2.1 Superconductivity

Superconductivity is a fascinating phenomenon still being studied intensively,
despite being discovered more than 110 years ago by the Nobel laureate H.K. Onnes
[45]. After the observation of the zero resistance drop below the critical temperature
Tc, a significant contribution came by Meissner and Ochsenfeld, that discovered how
superconductors expel the magnetic flux, showing perfect diamagnetism [46]. Later
on, London described theoretically the Meissner effect calculating the magnetic field
inside a superconductor as B(x) ∝ B0e

−x/λL where λL is the London penetration
depth [47]. Later on, J. Bardeen and Pines proposed a Hamiltonian containing a
phonon-mediated electron-electron attraction [48] that set the basis for the Bardeen-
Cooper-Schrieffer theory.

BCS theory

Cooper took the first step by describing an instability of the Fermi surface due to
an arbitrarily weak electron-electron attraction [49]. This is due to the scattering pro-
cess Vk,k’ consisting of the virtual exchange of a phonon between two electrons with
opposite spin and momentum [Fig. 2.1a] and results in the formation of a Cooper
pair. The interaction is attractive only for electron pairs with energy within ℏωD from
the Fermi surface:

Vk,k’ =

{
−V0 |ϵk|, |ϵk’| < ℏωD

0 otherwise.
(2.1)

Schrieffer advanced by proposing a ground state consisting of a coherent state
of Cooper pairs operators c†k↑c

†
-k↓:

|BCS⟩ =
∏

k

(uk + vkc
†
k↑c
†
-k↓) |0⟩ . (2.2)

The peculiarity of the BCS ground state is that consists of a mixture of states
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Figure 2.1: Phonon mediated coupling and superconducting gap. a) The scattering process
that is responsible for the BCS pairing, is the exchange of a phonon between two electrons with
opposite spin and momentum. b) The excitation spectrum of a BCS superconductor shows the
gap with square root singularities at ±∆.

with different particle number weighted by the coefficients defined as:

|uk|2 ≡ 1

2

1 +
ϵk√

ϵ2k + |∆k|2

 ,

|vk|2 ≡ 1

2

1− ϵk√
ϵ2k + |∆k|2

 .

(2.3)

Finally, Bardeen Schrieffer and Cooper (BCS) solved the problem, proposing the
Hamiltonian that effectively accounts for the electron-electron pairing [3]:

H =
∑
k,σ

ϵkc
†
kσckσ +

1

N

∑
k,k’

Vk,k′c†k↑c
†
-k↓c-k’↓ck’↑. (2.4)

The product of four fermionic operator can be simplified by mean-field approx-
imation in this form:

HMF =
∑
k,σ

ϵkc
†
kσckσ +

∑
k

∆∗kc−k↓ck↑ +
∑

k

∆kc
†
k↑c
†
−k↓ + const. . (2.5)

This Hamiltonian gives an effective description of the physics of the low-energy
pairing, where the term ∆∗kc-k↓ck↑ consists in the conversion of 2 electrons into a
condensate of Cooper pairs.

6
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The mean-filed Hamiltonian in (2.5) is rewritten in a matrix form by defining a
Nambu spinor basis in electron-hole space [50]:

H =
∑

k

(c†k↑ c−k↓)

[
ϵk ∆
∆∗ −ϵk

](
ck↑
c†−k↓

)
+ const. . (2.6)

This Hamiltonian is diagonalized by doing the Bogoliubov-Valatin transforma-
tion[51], from electron-hole operators (c†k↑) to quasiparticle operators: (γ†k↑):

γ†kσ = c†kσuk + sgn(σ)c−kσvk, (2.7)

where σ is the electronic spin, while uk and vk are the defined in (2.3). The Bo-
goliubov quasiparticle operators capture the essence of superconductivity, that is the
mixture of electrons and holes. This new basis allows the recast of the Hamiltonian
in a diagonal form:

H =
∑

k

(γ†k↑, γ−k↓)

[
Ek 0
0 −Ek

](
γk↑
γ†−k↓

)
+ const. . (2.8)

The ground state of this Hamiltonian is the |BCS⟩ state described in eq. 2.2.
This is the analog of the electron vacuum |0⟩, being the vacuum for quasiparticles
since its product with the quasiparticle destruction operator is γ |BCS⟩ = 0 (defini-
tion of vacuum), and therefore there are no quasiparticles contained. From the |BCS⟩
ground state, the excitation spectrum is shown in Fig. 2.9b and consists of quasipar-

ticle excitations with energy Ek =
√
ϵ2k +∆2. One of the most direct confirmations of

BCS theory is the measurement of the excitation spectrum by tunneling spectroscopy
[2]. Since the total number of particles is conserved, NsdEk = Nndϵk, where Ns and
Nn are the quasiparticle excitations density in superconducting and normal state. It
follows:

Ns(Ek) = Nn(0)
dϵk

dEk
= Nn(0)

(
Ek√

E2
k −∆2

)
θ(Ek −∆), (2.9)

where θ is the Heaviside function. In Fig. 2.1c we show the excitation spectrum of
a superconductor, which shows a gap surrounded by the so-called coherence peaks
at ±∆. The coherence peaks represent the onset for quasiparticle excitation. Above
them, the density of states shows a square-root decay asymptotically reachingNn(0),
the density of states of a normal metal. The BCS density of states in eq. 2.9 goes
to infinity at ∆, in a real system the peak is broadened and acquires a finite height.
This is described by adding an imaginary component to the energy Ek → Ek + iΓ,
obtaining the Dynes formula [52, 53]:

Ns(Ek) = N0Re
[

|Ek + iΓ|√
(Ek + iΓ)2 −∆2

]
, (2.10)

7
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the Dynes parameter Γ is a phenomenological broadening due to a general depairing
mechanism.

Single site BCS model

A very simple and instructive model is the reduction of a BCS superconductor
to a single site [24, 54, 55] at the Fermi level (ϵ = 0). This is formulated with the
convenient choice of basis Ψ = {|0⟩ , c†↑c

†
↓ |0⟩ , c

†
↑ |0⟩ , c

†
↓ |0⟩} , which for brevity is Ψ =

{|0⟩ , |2⟩ , |↑⟩ , |↓⟩}. The Hamiltonian of eq. 2.6 describes only quasiparticle excitations
since the ground state is more cumbersome to include due to the infinite products of
eq. 2.2. This new single-site basis allows writing the Hamiltonian that also contains
explicitly the BCS ground state:

H = ∆c†↑c
†
↓ + h.c. . (2.11)

This can be cast in a 4x4 block-diagonal form:

H = Ψ

[
Heven 0

0 Hodd

]
Ψ†, (2.12)

where the first block Heven is the even parity subspace because of the even number
of particles in the superconductor:

Heven =

[
0 ∆
∆ 0

]
, (2.13)

with two eigenvectors |BCS⟩ = 1√
2
(|0⟩+ |2⟩ = and |BCS⟩ = 1√

2
(|0⟩−|2⟩), with eigen-

values (−∆ and ∆), and Hodd is the odd parity subspace Hodd = 02,2 (null matrix),
with eigenvalue 0 and eigenvectors |↑⟩ and |↓⟩. Therefore there are two possible exci-
tations from the |BCS⟩ ground state, one quasiparticle excitation (∆) that changes the
parity of the system and a pair excitation (2∆) that conserves the parity [3].

2.2 Yu-Shiba-Rusinov states induced by magnetic impurities on su-
perconductors

Macroscopic magnetic fields destroy the coherent superconducting state at a
critical value. At the nanoscale, single magnetic impurities interact with Cooper
pairs modifying locally the spectrum of the superconductor. This interaction induces
sub-gap excitation peaks at E < ∆ called Yu-Shiba-Rusinov states that are routinely
detected experimentally [7, 56–59]. The physical picture involves exchange coupling
between the spin of the impurity d-electrons (S) and the spin of conduction electrons
(s) [60]. This exchange interaction can be treated in a classical spin approximation or
with a full quantum spin model. In the classical spin description, a preferential axis
is chosen such that S = Szẑ and the exchange coupling is considered purely longitu-
dinal ∼ Szsz . This neglects transversal exchange and breaks time-reversal symmetry

8



2.2. Yu-Shiba-Rusinov states induced by magnetic impurities on superconductors

(analogous to a magnetic field). In the full quantum model, time-reversal symmetry
remains unbroken and the transversal exchange is considered. This allows the de-
scription of magnetic anisotropy effects that strongly affect the excitation spectrum
[24].

Classical spin Yu-Shiba-Rusinov model

Classical impurity spin models were first developed by Yu Shiba and Rusinov
in their seminal work [4–6]:

Hs−d = ψ†(Uτzσz + Js · S)ψ, (2.14)

where s is the spin operator of the conduction electrons at the impurity spin S, and
U is a potential scattering term that reflects charge scattering and results in an asym-
metry of the electron and hole wavefunctions. Adding Hs−d to the BCS Hamiltonian
of eq. 2.6 in the classical spin approximation, pairs of Yu-Shiba-Rusinov resonances
are induced inside the superconducting gap [Fig. 2.2a] at energies:

ε = ∆
1− α2 + β2√

(1− α2 + β2)2 + 4α2
, (2.15)

where α = πν0JS/2 is the dimensionless exchange coupling (v0 as the normal-state
density of states at Fermi energy) and β = πν0U the dimensionless potential scatter-
ing. Phenomenologically, the classical magnetic impurity tends to align the electrons
of the Cooper pairs, lowering the "binding energy" ∆, and thus, creating bound states
inside the gap. These states can be excited resulting in quasiparticle excitations, anal-
ogous to excitations of bare superconductors. At low exchange coupling the impurity
spin is in the weak coupling regime. When the exchange J is increased up to a critical

Figure 2.2: Classical spin YSR spectrum and quantum phase transition. a) The spectrum of a
magnetic impurity shows in gap states, with a non-zero potential scattering U a particle-hole
asymmetry is induced. b) As the exchange J is increased a level crossing occurs inducing a
quantum phase transition. On the right: in the weak coupling regime the spin is free and in
the strong coupling regime, the impurity spin binds a quasiparticle forming a singlet.

9



2. THEORY AND EXPERIMENTAL METHODS

value the YSR excitation peak crosses zero energy inducing a quantum phase transition
[Fig. 2.2b] to the strong coupling regime, where a quasiparticle binds to the impurity
forming a singlet state [60].

The YSR excitation has a spatial shape that is obtained by solving the problem
with the Green Function approach. Given a general Hamiltonian, the Green function
(or propagator) is defined as [37]:

[ϵ− H(r)]G(r, r′, ϵ) = δ(r − r′). (2.16)

The Green function G(r, r′, ϵ) is a complex-valued function that depends on the spa-
tial coordinates and the energy. This function is directly connected to the density of
states:

ρ(r, ϵ) = ± 1

π
Tr{Im[Ga,r(r, r′, ϵ)]}. (2.17)

The function ρ(r, ϵ) is peaked at the poles of the Green function (YSR peaks in [Fig.
2.2a]), which are the eigenvalues of the Hamiltonian (eq. 2.16). The retarded and
advanced Green Functions (Ga,r(r, r′, ϵ)) are defined by adding an infinitesimal imag-
inary part to the energy ϵ → ϵ ± iη. This has the practical application of giving a
non-zero line width (η) to the peaks in the spectrum, which accounts for a finite life-
time and energy resolution.

Figure 2.3: Impurity scattering and Fermi surface anisotropy. a) Constant energy contour in
the k-space showing a back-scattering process q. b) Real-space modulation resultant from the
scattering process in a), reproduced from [18]. c) Constant energy contour in k-space of a metal
with anisotropic Fermi surface. The scattering vectors with q-direction perpendicular to the
parallel energy branches are called nested vectors. d) Real-space modulation with focusing
resultant from the nested scattering vectors in c), reproduced from [18].

With this approach, the spatial distribution of ρ(r, ϵ) is calculated for the elec-
tron and hole component of the YSR state [60]. For an isotropic superconductor, an
analytical solution can be easily obtained which yields:

ρ(r, h/e) ∼ sin(kF r − δ
+/−
0 )

(kF r)(1−d)/2
e−r/ξ| sin (δ+0 −δ

−
0 )|, (2.18)
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2.2. Yu-Shiba-Rusinov states induced by magnetic impurities on superconductors

this is an oscillating wavefunction that decays away from the impurity with the co-
herence length (ξ) and the dividing factor depends on the dimensionality of the sys-
tem d=1,2,3 [12]. The spatial distribution of the YSR state depends on the shape of
the Fermi surface. For a 2D superconductor with a circular Fermi contour [Fig. 2.3a]
the radial oscillations of Fig. 2.3b are observed in real space. For anisotropic Fermi
contours, the scattering vector nesting occurs between parallel sectors of the Fermi
surface [Fig. 2.3c] inducing focusing of the extensions along preferred directions [Fig.
2.3d] [14, 18] that makes inter-impurity coupling strongly anisotropic.

Quantum treatment of spin, beyond the Yu-Shiba-Rusinov model

While the classical YSR models are quite successful [13, 60–62], they cannot cap-
ture the correct degeneracies of the ground and excited states and usually preclude
the consideration of anisotropy effects. The superconducting single-site model, in-
troduced previously (eq. 2.11), was extended by von Oppen in [24] to describe
the YSR states of a quantum spin in presence of magnetic anisotropy. For an S
= 1/2 coupled to a superconductor, one uses the single site superconductor basis
ψS=1/2 = [(|0⟩ |2⟩ |↑⟩ |↓⟩)⊗ |±1/2⟩], i.e. the vector product of BCS states and impurity
spin states, obtaining the following Hamiltonian:

H = ∆sc
†
↑c
†
↓ + h.c.+

∑
σσ′

c†σ

[
V δσσ′ + JzŜzs

z
σ,σ′ + J⊥

(
Ŝ+s

−
σσ′ + Ŝ−s

+
σσ′

)]
cσ′ , (2.19)

where Jz and J⊥ are the axial and transverse magnetic exchange couplings, and V is
the impurity scattering potential, which we set to 0 for now. This Hamiltonian can
be recast in an 8x8 block diagonal matrix as eq. 2.12, where:

Heven =


0 0 ∆ 0
0 0 0 ∆
∆ 0 0 0
0 ∆ 0 0

Hodd =


Jz/4 0 0 0
0 −Jz/4 J⊥ 0
0 J⊥ −Jz/4 0
0 0 0 Jz/4

 . (2.20)

The even parity subspace has eigenvectors |±1/2⟩ |BCS⟩ and |±1/2⟩ |BCS⟩ with
eigenenergies (−∆ and ∆), while the odd parity subspace has one in-gap eigenvector
(YSR state):

|odd⟩ = 1√
2
(|1/2⟩ |↓⟩ − |−1/2⟩ |↑⟩), (2.21)

with eigenvalue (−J/4 − J⊥). While the even states merge with the continuum in a
real superconductor, the |odd⟩ state (eq. 2.21), i.e. the YSR resonance, is an entan-
gled state of a quasiparticle and the impurity spin in the weak coupling regime. The
energy of the in-gap YSR lowers for increasing J and when it reaches −∆ there is a
quantum phase transition like in the classical approximation. The new ground state
|odd⟩ has S=0 since the spin of the impurity is screened by the quasiparticle.
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2. THEORY AND EXPERIMENTAL METHODS

In chapter 4 we use the Hamiltonian of eq. 2.20 generalized for an S=5/2 system
with magnetic anisotropy to describe a molecular spin coupled to a proximitized
superconductor. In this study, we will show how the single-site model describes well
the YSR physics also in the case of a proximitized superconductor, the subject of the
following section.

2.3 Superconducting proximity effect

The proximity effect is a phenomenon that occurs when a normal metal N is
contacted with a superconductor S and Cooper pairs leak from S to N [63]. In S there
are no fermionic states at energies below the gap, therefore to connect the electrons
reservoir of N with the Cooper pairs reservoir of S, a process called Andreev reflec-
tion occurs at the interface [27]. This process was described in detail by Blonder et
al. [28] who solved the Bogoliubov de Gennes (BDG) equation at the interface. To
describe a realistic system one must face the possible disorder that causes scatter-
ing and inhomogeneities in the order parameter. The complexity is reduced in the
quasi-classical theory that consists in the calculation of the impurity-averaged Green
function resulting in the Usadel equations that reduce the complexity of a full BDG
treatment [64]. In the limit of a perfectly clean ballistic SN, one can directly solve
the BDG equation setting the boundary conditions that respect the geometry of the
system.

Andreev reflection

Starting from the mean-field Hamiltonian of eq. 2.5 and writing c−k↓ = h†k↑ as a
hole operator, one can rewrite the same term as h†k↑∆

∗ck↑, this is a scattering process
called Andreev reflection where an electron is converted into a condensed pair and a
hole [51]:

Andreev reflection : e− ⇌ pair2− + h+, (2.22)

where the reflected hole has the same momentum of the incoming electron, but op-
posite group velocity, leading to a non-specular reflection [Fig. 2.4]. The mixing of
electron and hole degrees of freedom opens the gap ∆ in the quasiparticle excitation

Figure 2.4: Andreev reflection. One incident electron from the normal metal N is reflected into
a hole and a Cooper pair is transferred in the superconductor S.
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2.3. Superconducting proximity effect

spectrum. The quasiparticle excitation of eq. 2.1 is described in the BDG formalism
by a two-column vector [28]:

ψ =

[
f(x)
g(x)

]
, (2.23)

where the functions f(x) and g(x) they are proportional to uk and vk and satisfy the
differential equations:

iℏ
∂f(x)

∂t
= Hf(x) + ∆g(x),

iℏ
∂g(x)

∂t
= −Hg(x) + ∆f(x).

(2.24)

two coupled equations for electron and hole quasiparticle components.

The wavefunctions of the particles incident, reflected, and transmitted for E >
∆ are:

ψinc =

[
1
0

]
eiq

+x, ψref =
v0
u0

[
0
1

]
eiq

−x, ψtrans =
1

v0

[
u0
v0

]
eik

+x, (2.25)

where u0 and v0 are the k-dependent particle-hole weights. At the steady state, there
is an incident electron and a time-reversed hole in N and a quasiparticle propagating
in S. AtE < ∆ the incident electron is totally reflected as a hole (k+ = kF +i

√
∆2−E2

ℏvF ),
the resultant quasiparticle current is exponentially suppressed in S:

Jq = 2evF exp

(
−2

√
∆2 − E2x

ℏvF

)
. (2.26)

This disappearing quasiparticle current is converted into a reappearing supercurrent
when entering the superconductor:

JS = 2evF

(
1− exp

(
−2

√
∆2 − E2x

ℏvF

))
. (2.27)

Thus the incident electrons are effectively converted into Cooper pairs that propagate
in S. In N, the time-reversed electron-hole pair also carry a charge 2e, resembling a
super-current.

Diffusive limit of the proximity effect

In the 1960s, a qualitative description of the proximity effect emerged [63]. The
superconducting correlations in a normal metal are quantified by the amplitude of
condensation F (r) =< ψ↑(r)ψ↓(r) > which is the probability of finding a Cooper
pair at r. In a superconductor, the pair potential is ∆(r) = V (r)F (r), where V (r)
is the pairing interaction (electron-phonon coupling). The function ∆(r) reduces to
the order parameter inside the superconductor and vanishes in the normal metal,

13



2. THEORY AND EXPERIMENTAL METHODS

although F (r) does not [64]. So in the normal metal, there is no order parameter, but
the condensation amplitude can be non-zero.

This was rationalized later by Andreev and Klapwijk [27, 29] who use Andreev
reflection to interpret this condensation in the normal metal as the formation of cor-
related electron-hole pairs that travel in the normal metal for a distance called co-
herence length (ξ). A pair dephases by a factor of −2iEt/ℏ after entering the normal
metal. For a dephasing of order 1, t ≈ ℏ/E, so a pair travels a distance of the order
dE =

√
DN t =

√
ℏDN/E with DN the diffusion constant of the normal metal. There-

fore dE is the coherence length of the electron-hole pairs in the metal. If we consider
now an SNS geometry, if the length L of the normal metal region is d < dE , correlated
pairs flow between the two superconducting leads of SNS (Josephson current) [65].
This is equivalent to saying that electrons with E < ETh = ℏD/d2, where ETh is the
Touless Energy, are still correlated when reaching the opposite lead.

For a dirty superconductor, the electronic mean free path (l) can be lower than ξ.
Usadel realized that in this dirty limit, the Green function is almost isotropic in space
and he further simplified the Gorkov equation in a diffusion-like form [66]:

ℏD
π

∇(G∇G) + H = 0. (2.28)

where G is the retarded Green function that depends on energy and position. Setting
the boundary conditions, the DOS is determined with eq. 2.17. This treatment is very
powerful and allows us to describe the modification of the DOS depending on the
system geometry.

The most significant examples are SN and SNS structures. In Fig. 2.5a we
reproduce a calculation from [64] for an SN junction with a normal part of length
d = 4ξ the local DOS in the function of energy shows a constant minigap along the N
part with the DOS evolving continuously from standard BCS DOS to a smooth DOS

Figure 2.5: Diffusive SN and SNS junctions DOS. a) Diffusive Usadel equations for SN junc-
tion with a normal part of d = 4ξ, reproduced from [64]. b) Simulation of an SNS junction with
a normal part of d = 4ξ. In both a and b, there is a constant minigap, and the coherence peaks
decay getting far from S, reproduced from [64]
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2.3. Superconducting proximity effect

with no peaks in N. The constant minigap is determined by the Thouless energy
∆g = 0.765ETh, which depends on the ratio of ξ and L since ETh = ∆(ξ/d)2, where ∆
is the bulk gap of S. In an SNS junction, the DOS is symmetric with the appearance
of a minigap constant through the structure. In Fig. 2.5b we reproduce from [64] the
calculation for a junction of d = 4ξ. The BCS singularity goes from being peaked
close to S to a faint dip in the middle of the junction.

So far we have considered the ideal situation where the SN interfaces are per-
fectly transparent and the two superconducting leads have the same macroscopic
phase. A phase difference also closes the minigap reaching the normal state at ϕ = π
[Fig. 2.6a]. A similar behavior occurs with the interface opacity, r>0 closes the mini-
gap that scales as 1/r [Fig. 2.6b].

Figure 2.6: Interface reflection coefficient and phase dependence of SNS junction. a) DOS in
the middle of a diffusive SNS junction, changing the phase of the two superconducting leads
to the minigap closes, reproduced from [64] b) DOS in the middle of a diffusive SNS junction,
changing the reflection coefficient of the SN interfaces, reproduced from [64]

Ballistic limit of the proximity effect

We described the proximity effect in the dirty limit where the diffusive model
simplifies the problem. For clean systems, the mean free path is much longer than
the coherence length and the full Bogoliubov equations (eq. 2.24) have to be solved
with proper boundary conditions.

Phenomenologically, the confinement of Bogoliubov quasiparticle in the normal
metal induces the presence of bound states at an energy below the bulk gap of the
leads. These are the so-called Andreev bound states. While in SNS geometries only
Andreev reflections are involved, in SN geometries an additional normal reflection
occurs at the N-vacuum interface. The proximity gap is defined by the energy sep-
aration E0 of the two lowest Andreev bound states. The mean time τdwell between
Andreev reflections sets the Thouless Energy E0 = Egap = ℏ/τdwell. Like in the diffu-
sive case, the minigap is smaller than the bulk gap by a factor ξ/vF τdwell [67], where
ξ = ℏvF /∆.

The approach was first developed by McMillan [69] and adapted to SN and SNS
junctions by Arnold [68] and Kulik [70]. The SN system is depicted in Fig. 2.7a, with
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2. THEORY AND EXPERIMENTAL METHODS

the superconductor at x>0 and a normal metal at −d < x < 0. We are interested in the
DOS of the system that is calculated from the Green function. From the Bogoliubov
equations (eq. 2.24) and the Gorkov equation (eq. 2.16) one can calculate the Green
function applying the boundary conditions at the SN interface:

dGN,S(x, x
′)

dx

∣∣∣∣∣
x=0

= 0 =
dGN,S(x, x

′)

dx

∣∣∣∣∣
x′=0

, (2.29)

where GN,S is the Green function in N or S and at x=0 is the NS interface. At free
surfaces, the Green’s function must vanish. We give directly the simplified form of
the Green function calculated in [68] expressed here in atomic units (ℏ = 1):

GS,N =
m

kF

iF (E) cos (K+x+K−d)− sin (K+x+K−d)

iF (E) sin [(K+ −K−)d]− cos [(K+ −K−)d]
, (2.30)

where

F (E) =
E√

E2 −∆2
,

K+ =
√
k2F + 2mE,

K− =
√
k2F − 2mE.

(2.31)

Figure 2.7: Ballistic SN junction DOS. a) SN geometry adopted by Arnold [68], we take the
limit of large S and large tunnel probe c. b) The plot of the ballistic SN junction DOS using
eq. 2.30 for different thickness values d = (0,0.4,0.8,0.16,40)·ξ of N. c) Thickness-dependent
evolution of the SN DOS, increasing number of Andreev bound states appear in the supercon-
ducting gap with the normal metal thickness with out-gap oscillations.
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2.4. Coulomb blockade phenomena in ultra-small tunnel junctions

Figure 2.8: Ballistic SNS junction level scheme. a) Energy level diagram for the ballistic SNS
junction model [70].b) Phase dependence of the Andreev bound states energy [71].

From GS,N one can calculate the DOS with eq. 2.17 and plot it in the function of
the thickness of the normal layer in Figs. 2.7b-c. We can see the formation of multiple
in-gap states increasing d In the limits of large d, we have a flat, metallic density of
states and in the limit of small d, the DOS reduces to the standard BCS gap equation.

Kulik in [70] calculated the same quantities in the SNS junction case. Where the
phase of the two superconductors is an additional parameter Also in this case, a set
of doubly degenerate bound states is obtained with energies:

E±n = (v/2d)[2π(n+ 1/2)∓ χ] (n = 0, 1, 2, ...). (2.32)

Fig. 2.8a, adapted from [70] sketches the energy levels as bound states with constant
energy along the junction, split by the phase difference (χ). The energy of the levels is
constant across the junction and depends on the phase difference between the leads.
In Fig. 2.8b, we see how Andreev bound states shift towards zero energy as the phase
is increased, and a change in phase of 2π returns to the initial state.

In chapter 4 we study thin films of Au deposited on vanadium superconductor
and we observe sub-gap peaks whose energy position depends on the thickness of
Au, which we associate to Andreev bound states formed in the SN junction. In chap-
ter 5 we study induced superconductivity in graphene where we build SNS struc-
tures where we have evidence of both diffusive and ballistic proximity effects.

2.4 Coulomb blockade phenomena in ultra-small tunnel junctions

In chapter 6 we observe how superconductivity is affected by reducing the size
of Pb nanoislands deposited on graphene. This is well described by the Coulomb
blockade that arises due to the weak coupling of the island with the substrate.

The coulomb blockade effect in tunneling experiments results in the suppres-
sion of the tunneling conductance due to the reduction of the density of states at zero
energy by e-e interaction [72]. This can have two possible origins, the first consists
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in the existence of finite charging energy in ultra-small junctions with small capaci-
tances, where the energy EC = e2/2C is needed to add an extra electron. The second
phenomenon is called dynamical Coulomb blockade (DBC) and is caused by the re-
distribution of charges in junctions induced by electron tunneling where the time
scale of propagation becomes important. These two effects were unified and de-
scribed within the same framework by Rollbühler et al. in the so-called P(E) theory
[72]. The function P(E) describes the probability for an electron to emit energy E into
the electromagnetic environment.

Coulomb blockade phenomena also arise for double barrier tunnel junctions
(DBTJ) systems, for example, when tunneling to nanosized grains that present very
small tunneling capacitance to the substrate underneath. This is described by the "or-
thodox" theory of correlated electron tunneling [73], which was described and proved
experimentally by Hanna and Tinkham [41]. These two frameworks describe two
types of phenomenology, the Coulomb blockade gap (or Coulomb gap) that appears
for both single and double tunneling junctions, and the Coulomb staircase, a series
of steps in the tunneling current that appear only in the double junction regime [41].
We briefly introduce in the following sections the DBC (single junction) and DBTJ
(double junction) models.

Dynamical Coulomb blockade model

We describe here the steps for calculating the Coulomb blockade gap in the DBC
framework from [38, 74], the first step is to calculate the P(E) function given by [75]:

P (E) =
1

2πℏ

∫ ∞
−∞

dt exp [J(t) + iEt/ℏ] (2.33)

This expression is the Fourier transform of the equilibrium correlation function
of the phase across the junction and can be expressed in terms of the impedance Z(ω)
of the total system, following [75]:

J(t) =
2e2

h

∫ ∞
0

dω

ω
Z(ω)

{
coth

(
ℏω

2kBT

)
[cos (ωt)− 1]− i sin (ωt)

}
. (2.34)

For the circuit in the inset of Fig. 2.9a the tip-island-substrate total impedance
reads Z(ω) = [iωCT + Z−1ex ]−1 where CT is the tip-island capacitance and Zex(ω) =
1/(iωC + 1/R) is the impedance related to the island-substrate contact. This results
in a total impedance of Z(ω) = [iω(C + CT ) + 1/R]−1. Since the tunneling resis-
tance RT = 1MΩ − 1GΩ is generally much larger than the quantum of resistance
(∼ 12.9kΩ) we follow a treatment where the tunnel junction coupling is treated as a
small perturbation [38].
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Figure 2.9: Dynamical Coulomb blockade. a) P(E) function of eq. 2.33 computed for various
values of island-surface capacitance. b) Resultant dynamical Coulomb blockade gap using the
P(E) shown in a) calculated in collaboration with Jon Ortuzar.

The tunneling current is given by I(V ) = e[Γisl→tip(V )− Γisl←tip(V )], with:

Γisl→tip(V ) =
1

h

∫ ∞
−∞

dE

∫ ∞
−∞

dϵf(E)[1− f(E − ϵ+ eV )]P (ϵ), (2.35)

and the tip and substrate were considered with a constant density of states. We show
in Fig. 2.9a the P(E) function for different values of capacitance, and the Coulomb
gap in Fig. 2.9b. Lowering C the onset of the Coulomb blockade gap shifts at higher
energies, while increasing R just increases a broadening of the gap edge. The gap is
well visible when Ec = e/2C < kBT , while it is smeared for higher temperatures.
For a very high capacitance P(E) resembles a Dirac-delta and the effect on the DOS is
negligible and only visible at very low temperatures [76].

Double tunnel junction model

The orthodox model describes the I(V) characteristic of double tunnel junction
(DBTJ) systems, where the Coulomb blockade and Coulomb staircase interplay with
the excess charge leading to a rich diagram of charged states. We follow the treatment
of Hanna and Tinkham that consider the DBTJ model in the didactic limit of RT >>
R, where the expressions are analytic [41]. The system is depicted in Fig. 2.10a, a
center electrode (island) is connected to two side electrodes (tip and sample) by two
tunnel junctions (j=1,2). The electron tunneling rate for the two junctions is:

Γ±j (n) =
1

Rje2

( −∆E±j

1− exp(∆E±j /kBT )

)
. (2.36)
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Figure 2.10: dI/dV of a double tunnel junction. a) Scheme of a DBTJ and the tunneling rates in
the tip-island-substrate system. b) Coulomb blockade gap dependence on the island-substrate
capacitance in the RT >> R limit with CT << C. c) Appearance of Coulomb staircase (charg-
ing peaks in dI/dV) increasing CT (C = 200 aF, e/2C = 0.4 mV). d) Coulomb blockade gap
dependence on the Excess charge, generating a Coulomb diamond.

The ∆E1 is the energy change of the system subsequent to a tunneling event:

∆E±1 =
e

CΣ

(
e

2
± (ne−Q0)± CTV

)
,

∆E±2 =
e

CΣ

(
e

2
± (ne−Q0)∓ CV

)
,

(2.37)

where CΣ = C + CT and Q0 is the excess charge on the central island, usually asso-
ciated with a difference in work functions of tip and sample.

The general net current is given by the expression:

I(V ) = e

∞∑
n=−∞

σ(n)[Γisl→tip(n)− Γisl←tip(n)] (2.38)

where σn is the probability of having n electrons on the center electrode. This infinite
sum simplifies greatly in the RT >> R limit where n0, the most probable number
of electrons in the center electrode, is determined only by junction 1 (since Γ >> ΓT

and therefore depends only on CT [41]:

e−1(−CTV +Q0 − e/2) ≤ n0 ≤ e−1(−CTV +Q0 + e/2) (2.39)

The resultant current I(V) is 0 in the so-called Coulomb blockade when:

(−e/2 + n0e−Q0)/C ≤ V ≤ (e/2 + n0 −Q0)/C (2.40)

Outside the Coulomb gap, the current is:

I(V ) =
1

RT (CΣ)

(
− (n0e−Q0) + CV − e

2
sgn(V )

)
(2.41)
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where n0 is obtained from eq. 2.39. The coulomb gap opens with decreasing C as
shown in Fig. 2.10b where we plot the calculated dI/dV with a thermal broadening.
The Coulomb staircase manifests as charging peaks outside the Coulomb gap [Fig.
2.10c] that with increasing CT move at higher energy. Finally, we show in Fig. 2.10d
how excess chargeQ0 shifts the Coulomb gap and the charging peaks resulting in the
well-known Coulomb diamond plots where the Coulomb gap closes at Q0 = ±e/2.

2.5 Scanning tunneling microscopy and spectroscopy

Scanning tunneling microscopy (STM) is an established scanning probe tech-
nique that allows the topographic and spectroscopic mapping of the surface of solids
at the nanoscale, giving access to single atoms and molecules and their electronic
properties. STM was invented in 1982 by G. Binnig and H. Rohrer, who were awarded
the Nobel Prize in physics in 1986. From these early days, the technology developed
consistently, especially in cryogenic solutions to cool down the setup at temperatures
as low as 10mK [77]. The low T, the isolation from mechanical vibrations, and the
ultra-high vacuum allow the scanning of a sharp metallic tip by piezoelectric actua-
tors with pm precision while measuring the tunneling current.

One electron with energy E can penetrate a barrier ϕ > E. In the barrier, the
electron wavefunction decays exponentially [78]:

It ∝ V ρs(EF )e
−1.025z

√
ϕ (2.42)

where V is the bias voltage between tip and sample, ρs is the density of states of the
sample and 2 is the tip-sample distance. With a typical barrier of ϕ = 5eV (gold work
function), the tunneling current decays one order of magnitude when z is changed
by 1Å.

In eq. 2.42 the current is directly proportional to Vρs and a constant dependent
on the tip-sample height. The most powerful feature of an STM is scanning tunneling
spectroscopy (STS), where V is swept at constant z. The general form for the bias-
dependent current flowing between tip and sample is:

It(V ) =
4πe

ℏ

∫ ∞
−∞

ρs(ε− eV )ρt(ε)|T 2|[f(ε− eV )− f(ε)]dε, (2.43)

where we set EF = 0. This mathematically is a convolution between the density
of states weighted by the Fermi Dirac distributions f(E) and the tunneling matrix
elementM . Then the differential conductance dI/dV is equal to ρs. This is true in the
approximation of a constant ρt and at low voltages.

Tunneling between two Superconductors

In this thesis, the quantities ρt and ρs of eq. 2.43 are frequently BCS density of
states (DOS). In Fig. 2.11a we show the BCS DOS seen with a normal tip (not super-
conducting, with a constant DOS). The coherence peaks are broadened by the metallic

21



2. THEORY AND EXPERIMENTAL METHODS

Figure 2.11: Tunneling between two superconductors. a) DOS of a superconductor at T=1.1K
measuring with a metallic and superconducting tip, showing the increased energy resolution.
Note that the Fermi Dirac distribution is flat at the coherence peak. b) Semiconductor analogy
for the tunneling between two superconductors, that occurs when aligning empty with filled
states. The same description applies to YSR states.

tip Fermi-Dirac distribution. With a superconducting tip, the coherence peaks appear
at 2∆ or ∆t +∆s if sample and tip have different gaps. The Fermi Dirac distribution
can be approximated to a step-function if the tip and sample superconducting gaps
are larger than kBT , and therefore the coherence peaks appear as very sharp reso-
nances. The conductance outside the superconducting gap is usually constant at the
normal state conductance (GN ). In this Thesis, we will frequently normalize the dI/dV
expressing it in units of GN . This is useful to compare spectra taken at different cur-
rent setpoint values.

Microscopically, the tunneling between two superconductors can be rational-
ized with a semiconductor analogy. This is done by rewriting eq. 2.5 [51] dividing
the Brillouin zone into two halves and using the fermionic commutation relations:

H =
∑

k∈ 1
2BZ,σ

Ek(γ
†
kσγkσ − γ−kσγ

†
−kσ) (2.44)

in this picture, the BCS ground state can be regarded as a filled sea of negative energy
quasiparticles (first term) and an empty sea of positive energy quasiparticles (second
term). At T=0 the tunneling between two such a semiconductor is possible only when
aligning holes and electrons bands [Fig. 2.11b], therefore applying a bias voltage of
V = ±2∆/e. This picture works in the same way with in-gap YSR states, where
the YSR component below Fermi energy is filled and the one above is unoccupied.
Thermal tunneling can occur when kBT ≈ ∆ or in the presence of in-gap features
when kBT ≈ ε, where ε is the in-gap feature position with respect to zero energy
[79]. This is rationalized in the semiconductor analogy with partial filling of the
electron/hole bands with holes/electrons.
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2.5. Scanning tunneling microscopy and spectroscopy

Dynes deconvolution

The density of states measured by STS is the convolution of tip and sample DOS.
The numerical operation to retrieve the sample DOS knowing the tip DOS is called
deconvolution. The convolution is a linear operation that, with a discretized data set,
is effectively a matrix multiplication [80]:[

dI

dV

]
=Mg · [ρs] (2.45)

where Mg is a function (matrix form) that contains the Fermi-Dirac distribution and
ρt. While the Fermi-Dirac is known, here we consider a conventional BCS tip gap
described by the Dynes function of eq. 2.1. The deconvolution process then reduces
to the inversion of the Mg matrix. As this is a non-rectangular matrix the Moore-
Penrose pseudoinverse M+

g is used instead, which is based on least squares fit. The
sample density of states is therefore obtained as:

[ρs] ∼M+
g

[
dI

dV

]
. (2.46)

Edge effects can be seen when the range of measurement is limited. In the case of a
superconductor spectrum, the DOS outside the gap is constant, therefore additional
points with normal conductance can be added to solve the problem [80]. When both
DOS are BCS-like the temperature parameter has a negligible effect since the Fermi-
Dirac can be approximated to a step function. The Dynes parameter is chosen in
order to provide an artifact-free density of states and usually in the order of ∆/20.
The outcome of the deconvolution is also very sensitive to the data sampling and
spectral background noise, a problem solved by colleague Jon Ortuzar that imple-
mented an interpolation procedure and Savizky-Golay filtering of the data prior to
deconvolution.

STM operation modes

In this section, we will briefly describe the measurement modes used to measure
the data that will be presented.

Topography

During a constant current scan, the tunneling current is maintained constant fol-
lowing the topographical features by controlling the tip z position via piezoelectric
actuators with a feedback loop. The feedback loop can be also deactivated in scan-
ning conditions, and the topography information is then contained in the tunneling
current. This is called constant height mode and is often used to map the atomic
lattice resolution of the substrates.
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Bias spectroscopy

The spectroscopy is recorded by sweeping the sample-tip bias voltage while the
tip is held at a fixed distance with respect to the sample. We use two methods for
measuring dI/dV, the first, to do fast checks, consists in numerically differentiating
the I(V) curve. The second, to take fine measurements, involve the use of an AC volt-
age modulation at 1kHz generated by a lock-in amplifier. This, with phase-sensitive
detection, collects the response from the current signal, that has the same frequency
giving the local dI/dV. The modulation amplitude must be chosen to be lower than
the interested DOS features (≈ 50−100µV for coherence peaks), to avoid their broad-
ening.

The dI/dV is recorded on user-defined patterns, for example, in horizontal lines,
grids, and vertical lines to see how the tip-sample interaction affects the dI/dV . This
signal can also be recorded during scanning to obtain dI/dV maps, setting the scan-
ning speed slow enough to integrate the signal at least one time constant (voltage
modulation period) per scan pixel.

Atomic and island manipulation

A tool that was used extensively in this work is the STM tip manipulation of
atoms and Pb islands on graphene. This allowed studying the coupling in magnetic
atom lattices and the tuning of the superconducting proximity effect in graphene.

The atom manipulation technique depends on many factors, such as the tip apex
composition, the affinity of the atom with the substrate, and its adsorption configu-
ration. In this work, we manipulate Mn atoms on β-Bi2Pd using β-Bi2Pd tips, with
tunneling resistance of 100-200 kΩ. Fig. 2.12a shows how the tip is moved with
respect to the atom with the feedback on while monitoring the tunneling current
(horizontal manipulation). The typical manipulation current profile has a saw-tooth

Figure 2.12: a) Lateral atomic manipulation where an STM tip pulls an atom on the surface. b)
Tip height registered during the manipulation event, approaching the tip from R = 120 kΩ to
R = 100 kΩ allows for continuous manipulation. c) Lateral manipulation scheme of a Pb island
on graphene. d-e) Two manipulation stages of two Pb islands on Gr/SiC.
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2.5. Scanning tunneling microscopy and spectroscopy

shape as the one we report in Fig. 2.12b each jump corresponding to the atom jump-
ing between lattice sites. The tip must be prepared carefully, indenting slightly in
clean β-Bi2Pd until the manipulation works. Usually, tips with isotropic topography
can manipulate atoms in all directions more reliably.

In this thesis, we use the Pb island manipulation technique on graphene, op-
timized in collaboration with Ivan Brihuega and Eva Cortez-del Rio. This allows
moving laterally Pb islands on the surface of graphene with nanometric control. The
methodology is sketched in Fig. 2.12c and consists in stabilizing the tip on graphene,
removing the feedback, changing the bias to 0mV, and moving the tip towards the
islands until contact. Then keep moving the tip in the same direction until the tip
is in the desired final position for the island edge. The islands slide smoothly on
the surface with no preferential directions and the process leaves the graphene intact
with the island showing only slight defects at the touching point. Figs. 2.12c-e shows
two frames before and after Pb island manipulation. The right island is pushed in
the direction of the left island closing what we call a superconducting resonator. The
islands align to the underneath graphene lattice allowing the natural placement of
the islands’ edges parallel to each other.
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2.6 Experimental setup

The experiments were carried out in a commercial JT SPECS STM [Fig. 2.13] that
works at a base temperature of 1.3K, in UHV conditions (P < 1e−10 mbar) and allows
up to 3 teslas out of the plane magnetic field. The STM is controlled by a Nanonis v4
SPECS unit. This provides the voltage and receives the current signal from a DLPCA-
200 FEMTO Messtechnik current amplifier. The controller has an integrated lock-in
amplifier, where the modulation is added directly to the generated bias. Both signals
are filtered by an LC filter and divided by a 1/100 voltage divider that improves the
applied bias resolution.

The STM chamber is attached to a preparation chamber and an MBE chamber.
Here the samples are cleaned by sputtering-annealing cycles using an ion gun and an
e-beam heating stage. The Au/Pb evaporation is done by pointing a metal evapora-
tor directly to the sample surface and monitoring the evaporation rate with a quartz
balance. In situ evaporation on the cold sample is done to have single Mn atoms on
the surface. The Mn atom beam (e-beam evaporator) reaches the cold sample thanks
to the evaporation ports in the STM radiation shields.

Figure 2.13: JT SPECS low-temperature STM. The machine is on the left, sitting on a concrete
block for vibration isolation. The rack on the right allows for control of the STM and the
preparation chamber.
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3Collective Yu-Shiba-Rusinov states in atomic
lattices of Mn impurities on the β-Bi2Pd

superconductor

3.1 Introduction

Research on interacting spin ensembles on superconductors is a major interest
in condensed matter physics. A common objective for this research is the study of
Yu-Shiba-Rusinov (YSR) states [4–6], bound states for quasiparticles in superconduc-
tors that are induced by magnetic impurities and appear as excitations inside the
superconducting gap [24, 56, 81].

Isolated magnetic impurities may present multiple YSR states spin-polarized
along the impurity spin alignment direction [82–84] of the multiple impurity d-orbitals
[11, 85–88]. Rusinov in [6] already predicted that ferromagnetically (FM) aligned
impurities undergo energy splitting of the YSR peaks in bonding and anti-bonding
states [Fig. 3.1a] when brought in close vicinity [13, 86, 89–92], while for anti-ferromagnetic
(AFM) dimers only a small energy shift is expected. This phenomenology is due to
the overlap of the oscillatory YSR wavefunction that together with Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling results in an oscillatory behavior of the coupling
[89]. This is reflected in the dI/dV spectra that we calculate for a YSR dimer in the
function of the atomic spatial separation, showing an oscillatory splitting for FM con-

Figure 3.1: YSR coupling. a) Sketch of the potential well for quasiparticles for a mag-
netic atoms dimer. Ferromagnetic (FM) alignment results in overlap and in the formation
of bonding-anti-bonding states, while in the AFM alignment, no overlap is present. b) Green
function simulations adapted from [18] for FM atomic dimer where the splitting Es oscillates
with the distance. c) Same calculation for the AFM dimer, the YSR state does not split, and its
energy oscillates with the distance merging with the coherence peak for small distances.
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figuration [Fig. 3.1b] and a small oscillatory shift for AFM configuration [Fig. 3.1c]
[18].

Two classes of YSR lattices can be defined on the basis of the coupling, the
densely packed limit, where impurities couple via direct d-orbital overlap, and the
diluted impurity limit, where YSR wavefunction overlap mediates the coupling. In
the high-density limit, their YSR states form 1D or 2D quasiparticle bands. This was
observed in spin chains [59, 93–95] or in 2D magnetic islands directly grown on su-
perconductors [12, 31, 96–98]. Under specific circumstances, the bands may be topo-
logically non-trivial, and become a potential platform for topological superconduc-
tivity and Majorana fermions [10, 99–101].

In the diluted impurity limit the coupling is mediated by the extended wave-
function of YSR states. As treated in chapter 2.2 the spatial extension of the YSR
states is mediated by the dimensionality of the superconducting host and the shape
of its band structure. This extends the YSR wavefunction nanometers away from the
impurity [12, 14]. The large extension also enables an additional mechanism of in-
direct magnetic exchange between impurities, which competes with RKKY coupling
[102]. YSR lattices in this diluted impurity limit have been proposed for the realiza-
tion of topological superconductivity [17, 103]. 1D YSR structures in the diluted limit
show collective behavior leading to delocalized excitations [16]. A natural extension
is towards building structures, where the atomic spacing and the alignment with the
crystal lattice are expected to play a crucial role in defining the excitation picture.

We start this chapter by giving a brief introduction to the study done on Mn
dimers on β-Bi2Pd started by Zaldivar in [104]. In this thesis, we continue this work
exploring the formation of YSR lattices of Mn on β-Bi2Pd where we demonstrate the
importance of the orientation of the multi-impurity lattice with respect to the β-Bi2Pd
substrate lattice.

3.2 Mn single atoms and dimers on β-Bi2Pd

The layered material β-Bi2Pd is an s-wave superconductor with a critical tem-
perature Tc = 5.4 K [106] and a superconducting gap ∆/e of around 0.75 mV [107–
109]. The samples, were synthesized by E. Herrera, I. Guillamón. H. Suderow (IFI-
MAC, Madrid), are thin crystals (<1mm) 1-3 mm wide, and they are glued with low
temperature conductive epoxy on Mo sample holders [104]. Thanks to the β-Bi2Pd
layered structure sketched in Fig. 3.2a, the samples are prepared via mechanical ex-
foliation in UHV conditions, exposing a square-symmetrical Bi-terminated surface
with a = 3.3 Å (atomic resolution in the inset of Fig. 3.2b). The surface topogra-
phy has frequent Bi vacancies visible as dark spots [Fig. 3.2b], that does not affect
the superconducting gap [Fig. 3.2c], which is homogeneous on the surface. In this
experiment, we use superconducting tips that are prepared by dipping the tip in the
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3.2. Mn single atoms and dimers on β-Bi2Pd

Figure 3.2: β-Bi2Pd superconductor. a) The crystallographic structure of β-Bi2Pd alternates
Bi-Pd-Bi layers, with cleavage planes in between, reproduced from [104]. b) STM topography
of a cleaved β-Bi2Pd crystal showing Bi vacancies as depressions (V = 1 V, I = 100 pA) and
the a = 3.3 Å atomic resolution in the inset (V = 3 mV, I = 10 nA), both reproduced from [104].
c) dI/dV spectrum of β-Bi2Pd showing a superconducting gap that is homogeneous on the
surface (V = 2.5 mV, I = 250 pA). d) Four-fold symmetrized Fermi surface of β-Bi2Pd measured
by ARPES, reproduced from [105].

β-Bi2Pd substrate. In the result presented here, we use mainly tips with ∆t/e = 0.68
mV, giving coherence peaks at (∆s +∆t)/e ∼ 1.46 mV.

The electronic structure of this material has been described by quasiparticle in-
terference STM (QPI-STM), density functional theory (DFT) [110], spin- and angular-
resolved photoemission spectroscopy (SARPES) [105]. Given its layered structure,
the bands acquire strong 2D character with the presence two surface states [110]. The
material has also strong spin-orbit coupling that causes most of the surface bands to
be spin-polarized as demonstrated by SARPES. Fig. 3.2d shows ARPES results from
[105] that reproduce the squared shape of the Fermi surface (FS) in reciprocal space.
The FS anisotropy gives rise to high-density vector nesting along the parallel con-

Figure 3.3: YSR wavefunction of a V atom on β-Bi2Pd . a) dI/dV map the YSR state of a
vanadium atom on Bi2Pd that reflects the anisotropy of the YSR wavefunction, reproduced
from [18]. b) YSR intensity profile for positive and negative YSR of a V atom on β-Bi2Pd
extracted from a line-scan, that shows the presence of two modulations periods of 0.7 and 3
nm used as input for the model, adapted from [104].
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tour branches [111], which is essential to understand the peculiar pattern of the YSR
wave-function extension away from the impurity [12, 14, 104].

The long YSR extension in β-Bi2Pd was studied in [104] mapping the YSR inten-
sity on a single vanadium atom [Fig. 3.3a]. The spatial oscillation of the wavefunc-
tion display two modulations [Fig. 3.3b] resulting from the spin-polarized character
of the YSR states and β-Bi2Pd bands [104], a short modulation with λ1 ∼ 0.7 nm
(pF1 ∼ 0.2/a0) and a longer one with λ2 ∼ 3 nm (pF2 ∼ 0.05/a0). Since in this work
we explore mainly atomic distances < 1 nm and along directions non-collinear to the
oscillations, we consider λ1 as the main source of overlap modulation. Therefore we
use pF1 as fixed parameter to model multiple Mn atom structures, which properties
derive from the fundamental nature of the YSR wavefunction. Our model framework
is a Green function approach developed with Jon Ortuzar and Sebastian Bergeret to
describe N impurities in the presence of the squared Fermi surface of β-Bi2Pd [18].

The Mn impurities were evaporated on a freshly cleaved sample at the STM
base temperature T = 1.3K, and they absorb on 4-fold hollow sites. Single Mn atoms
on β-Bi2Pd are characterized by two types of spectrum (I,II) reported in Fig. 3.4a,
adapted from [104] with majority of type I atoms. We found that this is not related
to a different Mn atomic species since the same Mn atom can switch reversibly be-
tween two types of the spectrum when manipulated between different 4-fold hollow
sites. This is probably related to the vicinity of the lattice site with a vacancy in the
top or second substrate layer. The lateral manipulation with β-Bi2Pd -coated super-
conducting tips grants high-resolution spectroscopy maintained during the building
stages. This allows for identifying the type of lattice site, fundamental for engineer-
ing a homogeneous structure. Therefore, before constructing a structure, every lattice
site used was checked by manipulating the same Mn atom at all sites making sure of
having only type I Mn atoms.

Figure 3.4: Isolated Mn atom and
√
5a Mn dimer. a) YSR state of the two Mn types found

on β-Bi2Pd (V = 3mV, I = 300 pA), adapted from [104]. b) Spectrum of a Mn dimer before and
after dimer formation (topography on the right) showing the splitting in two components αd0

and αd1 (V = 3mV, I = 300 pA), adapted from [104].
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In this chapter, we build YSR lattices of magnetic Mn atoms with atomic preci-
sion on β-Bi2Pd superconductor. Structures with atoms in contiguous sites frequently
change to form direct bonds [104], these structures are avoided in our experiments.
The structures are stable when lying at next-neighboring sites, still being able to ex-
change interact and resulting in YSR splitting into two components [Fig. 3.4b] that we
refer to as αd0 and αd1 . We build three different 5-Mn structures, differently oriented
with respect to the β-Bi2Pd lattice. The YSR splitting increases monotonically with
the number of Mn atoms along (120) and (110) directions of β-Bi2Pd , indicating ferro-
magnetic spin-alignment. Along the (100) direction, the YSR states shift towards the
gap onset, pointing to anti-ferromagnetic spin alignment. The (120) direction shows
the most pronounced splitting and a monotonic increase in particle-hole asymmetry
that is absent in the (110) structures. To model the behavior, I use in collaboration
with Jon Ortuzar a multiple impurity Green Function approach (model details in
[18]) that we implement numerically in Python language for N impurities to get in-
sight into the hybrid YSR states. In the 5 Mn structures, we model quantitatively
the monotonic splitting depending on the cluster orientation. Surprisingly a small
potential scattering results in a monotonic increase of the particle-hole asymmetry
only for the (120) direction. In a 25 Mn atom square lattice, we map the YSR state
spatial distribution and, with the aid of the simulations, associate it with collective
YSR modes raising from the coupling.

3.3 Mn atoms linear chain along (120) direction

The Mn chains we present are built by adding the Mn atoms always on the same
side of the chain along the (120) direction, resulting in an atomic separation of

√
5a

. In Fig. 3.5a we show the STM topography of 3 snapshots of an 18 Mn atoms chain
built along the (120) direction. In Fig. 3.5b we report a line of spectra along the three-
atom chain. On the central atom, we see a YSR splitting greater than the atoms on
the sides indicating wave-function overlap. This is more evident in the 9-atom chain
snapshot of Fig. 3.5c, where the YSR energy of the last 3-4 atoms shows a continuous
energy modulation indicating a collective behavior. The last snapshot with 18 Mn
atoms of Fig. 3.5d start showing sign of disorder in the YSR energy, probably due to
nearby Bi vacancies that start affecting the YSR coupling.

In Figs. 3.5e-f-g we show the simulated DOS done using only parameters ex-
tracted from the behavior of the single atom: pF1 = 0.191/a0, ξ = 20.4 nm, α =
πν0JS/2 = 0.030, β = πν0U = 0 and the atomic coordinates extracted from STM. For
the three-atom chain, the agreement is quantitative, and for the longer chains, it is
evident that the YSR energy modulation interest the last Mn atoms on the side, while
in the chain center, the YSR splitting is constant. This scenario does not change for
the last snapshot of 18 Mn atoms, indicating a possible energy saturation.

To investigate this, we summarize the complete data set of all 18 different snap-
shots calculating the average αd1 component energy position. We plot the result in
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Figure 3.5: Building and measurement of 18 atom Mn chain along
√
5a− (120) . a) STM

topography of three building stages of the Mn chain, final length 13.3 nm (V = 100 mV, I = 30
pA). b-g) STS line of spectra along the chains (V = 3mV, I = 300 pA) with the corresponding
simulation using the Green function approach (parameters in the text). h) Energy of the αd1

YSR component extracted from the experiment and comparison with the model simulation
(simulation parameters pF1 = 0.191/a0, ξ = 20.4 nm, α = πν0JS/2 = 0.030, β = πν0U = 0).

Fig. 3.6h and we observe that the average energy decreases relatively fast for the first
3-4 atoms added and then saturates at a constant energy value. In the background of
Fig. 3.6h we plot the average of αd1 extracted from the simulated dI/dV. The isolated
atom behavior defines all the input parameters, the excellent simulation agreement is
the result of only one fitting parameter, the coherence length (ξ). Varying ξ we fit the
data of Fig. 3.6h and obtain the best agreement with ξ ∼ 20 nm, slightly higher than
reported in the literature, but still reasonable for this material. We use this estimated
value to perform all the simulations in this chapter.

The energy saturation is related to the fast decay of the YSR wavefunction along
the (120) direction [Fig. 3.3b]. Although we have evidence of collective behavior, this
configuration does not reach a zero energy crossing that is one requirement for topo-
logical superconductivity [10, 59, 112]. An obvious direction is to build structures
along the (100) direction, that potentially has greater overlap. However, Mn dimers
along the (100) with distance 2awere studied by Zaldivar and did not show any split-
ting, suggesting AFM spin alignment, and therefore not interesting for the absence
of hybridization. In the next section, we corroborate this (100) AFM spin alignment
assignation done by Zaldivar and study the rich behavior of 2D atomic lattices built
along the different directions.
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3.4 2D cross-like structures along different crystalline directions

In this section, we present three cross-like structures made by 5 Mn atoms made
along the (100), (110), and (120). We measure the YSR splitting of the central Mn
atom that results from the collective YSR wavefunction overlap of the 4 peripheral
Mn atoms. In Figs. 3.6a-c we show a sequence of manipulation snapshots where the
starting point is a central Mn atom with 4 atoms positioned at 3a, 2

√
2a and 2

√
5a

distance from it. The spectra of the atoms for the last two configurations are the same
as for an isolated Mn atom. This changes for the 3a cluster where the YSR peak is at
lower energy, this can be rationalized on the basis of the AFM interaction with the 4
neighboring atoms that shift the initial YSR energy.

Next, we manipulated with the STM tip the neighboring Mn atoms, sequentially
pulling them towards the central Mn while its STS is monitored. For the structure
along the (100) direction, we move the atoms from 3a distance to 2a. In the spectra
reported in Fig. 3.6a we observe how the energy of the main YSR peak maximum
shifts slightly towards the gap edge. This indicates a sequential lowering of the ex-
change coupling, that occurs in the case of antiferromagnetic coupling.

We find a different behavior for the two non-collinear directions. In Fig. 3.6b
we report the spectra mnipulating the atoms from 3

√
2a to 2

√
2a . In the first step,

we do not see a clear splitting, which could suggest a negligible interaction along the
(110) direction. However, when we approach the additional atoms we indeed see a
monotonic splitting of the peaks. The shift of internal YSR component αd1 increases

Figure 3.6: Central spectroscopy of Mn5 cross like structures. a-c) STS of the central atom of
the Mn structures after moving each lateral Mn atom, offset vertically for clarity (V = 5 mV, I
= 500 pA). In the in-sets STM topography of the Mn cross-like structures of Mn on β-Bi2Pd at
the different stages of manipulation (V = 300 mV, I = 30 pA).
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at every atom addition becoming maximum when the cross is completely formed. A
slightly greater splitting is observed for the cross along the (120) direction, already
visible from the first stage in Fig. 3.6c.

While the characteristics of the splitting are similar for the
√
5a and 2

√
2a struc-

tures, the positive and negative YSR intensities behave differently. In STM for pos-
itive bias, we are tunneling with electrons and for negative bias, we are removing
electrons (tunneling with holes). Therefore an asymmetry in the intensity of the pos-
itive and negative YSR is referred to as particle-hole asymmetry. If we compare this
in the datasets of Figs. 3.6b-c, we see that for 2

√
2a no particle-hole asymmetry is

developed. Differently, the
√
5a cross develops a particle-hole asymmetry that mono-

tonically increases after each addition. This is also present in the 2a cluster but the
analysis is hindered since the peak is merging with the β-Bi2Pd continuum.

We rationalize the observation by comparing the measured spectra with the
Green function model simulation for the central Mn atom of all configurations. The
gradual YSR shift towards the gap energy in the 2a cluster points to AFM spin orien-
tation that effectively lowers the exchange. The simulation of the 2a clusters with an
AFM spin alignment are shown in Fig. 3.7a. We note that the YSR peak slightly shifts
at higher energy, qualitatively reproducing the effect observed in the experiment.
For simulating the 2

√
2a and

√
5a crosses we set an FM spin orientation, guided by

the pronounced splitting observed experimentally. Remarkably the simulations in
[Figs. 3.7b-c] quantitatively reproduce the YSR component αd1 that monotonically

Figure 3.7: Model simulation of the 5 impurity structures with the Green function approach.
a-c) The dashed lines indicate the energy position of the isolated atom. Same parameters (text)
for all simulations except the atom positions (insets) and the spin orientation angle that is 90°
for 2a-(100) while 0° for the other two configurations (simulation parameters pF1 = 0.191/a0,
ξ = 20.4 nm, α = πν0JS/2 = 0.030, β = πν0U = 0.014).
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Figure 3.8: YSR energy and asymmetry simulation. a) Measured energy of the αd1 component
for the

√
5a (green) and 2

√
2a (orange) crosses, extracted from Fig. 3.6. The stars are energies

of αd1 extracted from the model simulation of Fig. 3.7. b) Simulated dI/dV spectrum for
the central atom of 5 Mn atom crosses going from a (110) to a (120) alignment (simulation
parameters pF1 = 0.191/a0, ξ = 20.4 nm, α = πν0JS/2 = 0.030, β = πν0U = 0.014). On the
right, we sketch the atomic positions for the calculated structures.

increases as the atoms are added to the structures. The αd0 component at energies
close to the gap in the experiment is suppressed in the simulation due to the vicinity
of the gap edge. In Fig. 3.8a we compare the measured and modeled magnitude of
the αd1 components, obtaining a reasonable agreement. The splitting of the YSR state
is monotonic with the number of added Mn atoms joined to the central atom, trend
that tends to a saturation as observed for the linear chains.

Adding the Mn atoms to the crosses the YSR states also change gradually the
particle-hole symmetry after every Mn atom addition. Considering the FM-aligned
clusters, the behavior only manifests in the (120) cross, while is absent in the (110)
cross. To model this we include a potential scattering term β = πν0U = 0.014 in
our simulation. Remarkably, in Figs. 3.7c-d, the model reproduces the particle-hole
asymmetry that is strongly dependent on the cluster orientation. In Fig. 3.8b we
calculate the dI/dV for a cluster at various rotation stages between (110) and (120),
observing a gradual increase of the particle-hole asymmetry.

3.5 Collective YSR modes in 25 Mn atom squared lattice

In this section, we present a 25 Mn atom squared lattice with a spacing aMn =√
5a = 0.74 nm. In Fig. 3.9 we compare the spectra of the central Mn atom of three

structures increasing the dimensionality. The general trend in the central Mn atom
spectrum is a decrease in the YSR energy and the emergence of additional compo-
nents induced by the coupling. We built the Mn square atom by atom using a normal
tip that does not allow the recognition of type1 and type2 Mn atoms. After preparing
a superconducting tip and relocating the structure, we recognize one of the atoms as
accidentally a Mn type2, with a lower YSR energy (larger J) (see Fig. 3.4a). We show
in Fig. 3.10a the dI/dV spectra for three atoms far away from the type 2 atom where

35



3. COLLECTIVE YU-SHIBA-RUSINOV STATES IN ATOMIC LATTICES OF MN
IMPURITIES ON THE β-BI2PD SUPERCONDUCTOR

we observe 3 main in-gap spectroscopic features labeled α, β, and γ, apart from the
coherence peaks. To rationalize this apparently complex spectrum, we employ our
Green function model using the same simulation parameters as the previous sections,
apart from the potential scattering, which we set here to zero for simplicity. The black
line in Fig. 3.10a is a simulation of the central atom showing three main in-gap YSR
resonances that dominate the spectrum for all the square atoms.

With a 64x64 points spectroscopic grid, we mapped experimentally the YSR en-
ergies at Vα ∼ 0.95 mV, Vβ ∼ 1.05 mV, Vγ ∼ 1.30 mV. In Fig. 3.10b, in the experimental
raw data grid, we observe that the symmetry of the maps is reduced, due to the pres-
ence of a type 2 Mn lattice site indicated by a cross. In Fig. 3.10b we show the grid
simulated with our model for a perfect square. We plot the model grid cuts at the en-
ergy of the three resonances α, β, and γ. Although we can find some similarities with
the experimental map, the presence of the defect hinders direct comparison with the
simulation. To circumvent this we use two methods: first, we perform a symmetriza-
tion of the raw data, and second we simulate the structure by inserting a type II Mn
atom in the square to reproduce the defect.

The structures together with the substrate have C4 symmetry that does not con-
tain mirror planes, due to the rotation between the β-Bi2Pd and the Mn lattice. In
fact, the main symmetry direction of the Mn lattice is the (120), which is rotated by
∼ 26.6° with respect to the β-Bi2Pd surface lattice. According to the C4 group we
symmetrized the maps in Fig. 3.10b averaging 4 maps rotated by 90° each with re-
spect to the Mn lattice high symmetry direction. The symmetrized maps in Fig. 3.10b
show indeed a better correlation with the simulated map. The state α is located in the
center, β on the atoms close to the corners, and the state γ in the edge of the square.
We note that these features are also visible in the raw maps, with a lowered sym-
metry and modified intensity. Instead of symmetrizing the experimental maps we
can break the symmetry in the simulation, setting a higher exchange for the defective

Figure 3.9: Comparison of YSR excitation for increasing dimensionality. a) STM topography
of three Mn structures built with a minimum spacing of

√
5a with an increasing number of

atoms (3,5 and 25 Mn). b) From the bottom: STS on the central atom of the 3Mn chain (blue),
and the 5Mn structure (orange).
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Figure 3.10: Squared Mn25 structure. a) In the STM topography the type 2 Mn atom is in-
dicated with an orange cross. Spectra on indexed atoms of the structure (1,2,3), far from the
type 2 Mn. The recurrent YSR modes (α, β, and γ) are highlighted in the spectra and visi-
ble in the simulation of the central atom at the bottom of the graph (black curve). b) In the
first raw of the raw dI/dV maps extracted from grids. In the second raw the C4 symmetrized
maps. In the third row the simulations at the three modes’ energies. In the fourth row the
simulation including the effectual Mn type 2 (simulation params pF1 = 0.191/a0, ξ = 20.4
nm, α = πν0JS/2 = 0.030, αMn type2 = πν0J

∗S/2 = 0.06, β = πν0U = 0).

atom to simulate the presence of a type 2 Mn [Fig. 3.4a]. The result is reported in
Fig. 3.10b where we see a better agreement with the raw experimental maps. This is
evident in peak β where the state is more localized to the bottom of the Mn lattice,
with α, where the spectral density is enhanced around the defect, and in γ where the
symmetry of the edge state is broken.

3.6 Discussion and conclusions

Mn atoms have an S = 5/2 spin configuration, and multiple YSR resonances
due to the orbital character [11] are observed in other substrates, where the crystal
field lifts the degeneracy of the d orbitals [11, 86, 92]. For Mn on β-Bi2Pd the YSR
peak width is relatively broad and was interpreted by Zaldivar as 5 YSR components
overlapping [104]. In our experimental data, the YSR channels upon hybridization
show the same coupling without the appearance of additional components in our
energy resolution window. Our model can capture the experimental observations
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quantitatively with a minimal classical-spin single-channel (S=1/2) model without
any orbital structure. This seems rather coincidental, but plausible since the coupling
is mediated only by the YSR overlap and not by the direct orbital overlap.

The Fermi surface anisotropy of β-Bi2Pd shapes the coupling between magnetic
atoms along different crystallographic directions. This phenomenology is visualized
in the cross-like structures, which splitting depends on the cluster orientation. In this
study, we show that the cluster orientation also affects the particle-hole asymmetry
of the central YSR state. The presence of particle-hole asymmetry in the YSR states is
often connected with potential scattering effects [113, 114]. Previous studies did not
report a change of particle-hole asymmetry on the orientation of the structures [59,
112, 115] or did not focus on this aspect [91, 116]. Our model calculation reproduces
this behavior observed in the (120) cluster with the simple addition of a potential
scattering. This points to an interplay of the anisotropy of the overlap with the po-
tential scattering resulting in a gradual increase of the particle-hole asymmetry in the
central atom. This effect gradually disappears when the structure is oriented along
the (110) direction, confirming the fundamental role of the coupling anisotropy in
defining the particle-hole asymmetry.

This symmetry breaking is well visible in the simulated maps for the 25 Mn
atoms lattice. A common behavior that occurs in atom lattices is the lifting of the
level degeneracy and the formation of delocalized modes when increasing the lattice
extension [117]. In the dimers and atomic crosses, the wave functions of the lateral
atom are concurrently overlapping, resulting in an increasing splitting of the central
Mn atom. In the extended 25-atoms squared lattice, we can change from a dimer
overlap perspective to a delocalized YSR modes perspective. The dI/dV maps allow
visualizing the spatial distribution of three confined YSR modes in Fig. 3.10 that are
differently distributed on the structure, α having a central maximum, β mainly on
4 peripheral atoms, and γ distributed on the edges. Note how the simulated maps
have a 4-fold symmetry, importantly lacking the mirror planes due to the rotation
with respect to the β-Bi2Pd . This has the consequence that there are two possible
squared lattices that one can build on the surface, connected by a mirror symmetry
operation.

In conclusion, we show how we can control and simulate the YSR states in atom-
ically precise Mn lattices on β-Bi2Pd . The anisotropic character of the Fermi surface
implemented in a Green function formalism can account for the different stages and
orientation of the structures when additional impurities are added. The symmetry
breaking due to the rotation with respect to the β-Bi2Pd lattice of the 5-Mn structure
changes the splitting and particle-hole asymmetry that raises from the YSR lattice
rotation with respect to the substrate. This offers an alternative route to tune YSR
energy and particle-hole asymmetry [116, 118, 119]. In a 25 Mn atom squared lat-
tice we observe multiple YSR modes that can be connected to collective YSR modes.
With our multi-impurity model, we can simulate arbitrary structures, allowing com-
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parison with the experiment to obtain agreement and insight into the YSR collective
excitations.
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4.1 Introduction

Superconducting materials are an ideal platform for designer quantum states
with potential as qubits [25, 120, 121]. The superconducting ground state, a conden-
sate of Cooper pairs, is protected from quasi-particle excitations by a pairing energy
gap ∆. Ground state excitations can be achieved by electrons [2], correlated pairs in
Josephson currents [122, 123], or microwave photons [26, 124, 125]. In bulk supercon-
ductors, these excitations populate a continuum of Bogoliubov quasiparticles (QPs)
and admix with other states that quickly quench their quantum coherence. Sub-gap
quasi-particle excitations, in contrast, can live long in a coherent state. For exam-
ple, sub-gap Andreev bound states in a proximitized link between two supercon-
ductors host addressable (doublet) QPs and (singlet) pair-breaking excitations with
long quantum coherence [25, 120]. QP states are odd in fermion parity and can be
excited by adding a fermion to the even-parity BCS ground state [Fig. 4.1a]. Pair ex-
citations require two correlated QPs into the pair-excited state, thus, with even-parity
[3]. Therefore, they are only accessible by absorption of one microwave photon or by
the addition of two fermions with opposite spin [Fig. 4.1a].

Sub-gap excited states can also appear when a magnetic impurity interacts with
a superconductor via magnetic exchange J . These are the Yu-Shiba-Rusinov (YSR)
[4–6] excitations, which are typically addressed by tunnelling electrons from a scan-
ning tunneling microscope (STM) [15, 23, 59, 85]. YSR excitations correspond to the
addition of a tunneling electron/hole into the ground state and appear in tunnel-
ing spectra as sub-gap bias-symmetric pairs of narrow peaks. In the regime of weak
exchange interaction J compared to the pairing energy ∆, YSR peaks are thus QP
excitations of the BCS ground state. Pair excitations are, however, forbidden be-
cause these would require the tunneling of two correlated electrons simultaneously
[Fig. 4.1b].
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Figure 4.1: Excitation scheme of a superconductor exchange coupled to a magnetic impurity.
a) Scheme of the excitations of a superconductor with energy gap ∆. Pair excitations (BCS) can
be probed by microwaves, while electrons can excite Bogoliubov quasiparticles. The arrow
boxes refer to the number of quasiparticles involved. b) The exchange J induces YSR bound
states below ∆. Due to parity selection rule single electrons cannot excite the pair excitation
(BCS). c) Increasing J, the ground state becomes odd in parity, and the BCS state becomes
accessible.

Here, we report the observation of Cooper pair excitations in the YSR spec-
trum of an Iron Porphyrin molecule on a proximitized gold thin film. Owing to
the magnetic anisotropy of the molecule, YSR states appear split in multiple reso-
nances both inside and outside the proximitized gap. When the molecule lies in the
Kondo-screened regime (J larger than ∆) pair excitations emerge as faint spectral
resonances, scaling in energy with twice ∆. Supported by model calculations for
quantum spins, we show that inducing pair excitations with single particles does not
contradict parity-conservation rules when the magnetic molecule lies in the Kondo
regime because the magnetic impurity is screened by a captured QP, turning the
ground state odd in fermion-parity. [81, 118, 128–130]. From this ground state, single-
particle tunneling allows now YSR excitations into even states such as the BCS state
and its higher-lying pair-breaking excitation BCS [Fig. 4.1c].

4.2 FeTPPCl on proximitized Gold film

Our measurements were performed at 1.2 K using an STM (SPECS GmbH) un-
der ultra high vacuum conditions. We used a V(100) single crystal as superconduct-
ing substrate (Tc= 5.4 K and ∆V(1K)=0.75 meV). The clean V(100) surface appears
with the characteristic (5x1) oxygen reconstruction [131, 132], which does not affect
its superconducting properties [58, 62, 133–135]. The V(100)-O(5x1) surface was cov-
ered with gold films, with thicknesses ranging from 1 to 10 ML, and shortly annealed
to ∼550◦C to produce epitaxial layers [Fig. 4.2a] with a 2.9Å square lattice [inset
Fig. 4.2a], compatible with an unreconstructed Au(100) surface [136, 137], probably
with some intermixing with the vanadium substrate [138].
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Figure 4.2: FeTPPCl on a proximitized Gold film. a) STM image of the epitaxial film pro-
duced by depositing 2 ML of Au on V(100) and annealing to 550◦C (VS = 10 mV, I = 100 pA).
Inset: constant height STM image of its square atomic lattice (VS = 10 mV). b) dI/dV spectra
measured on V(100) and on Au/V. c) Andreev reflections at the interface with V(100) deplete
the film DOS and open a gap in the normal metal. d) STM image showing different FeTPP
and FeTPPCl species on 7 ML Au/V(100) (VS = 300 mV, I = 30 pA), Inset: chemical structure
of FeTPPCl. e) dI/dV spectrum measured over a 4-fold FeTPPCl molecule (in gray on the Au
film), labelling two extra-gap states (A,B) and four intra-gap resonances (α, α∗, β, γ). (VS = 3
mV, I = 75 pA). Data analysed with WSxM [126] and SpectraFox [127].

The proximitization of the gold thin film was ascertained by comparing dI/dV
spectra over the films and the bare V(100)-O(5x1) surface [Fig. 4.2b]. To enhance
the spectral resolution we used superconducting tips obtained by tip indentations in
the V(100) substrate. Spectra on V(100) show an absolute gap and two sharp peaks
at ±(∆t + ∆V )/e = ± 1.5 mV [Fig. 4.2b], corresponding to the convolution of the
superconducting density of states of tip (∆t) and sample (∆V /e = 0.75 mV). Spectra
on the investigated gold films also exhibit a similar hard gap [139], but with a pair of
very sharp resonances at slightly smaller bias of ±(∆s+∆t)/e = 1.4 mV. These peaks
are attributed to QP excitations of de Gennes Saint-James (dGSJ) bound states in the
gold film [140], which are Andreev pairs confined between the Au surface and the
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Au-V interface [Fig. 4.2c]. Owing to their confinement, the dGSJ QP excitation peaks
shift to lower energy with increasing Au film thickness [68, 141–144], and therefore
are a useful knob for tuning the gap ∆s in the experiment.

Next, we deposited the organometallic molecule iron tetraphenylporphyrin chlo-
ride (FeTPPCl) [Fig. 4.2d] on the proximitized gold films. This species hosts an Fe3+

ion with a S=5/2 spin and easy plane magnetic anisotropy, which survives on metal-
lic surfaces [23, 145]. Some of the molecules retain the Cl ligand [Fig. 4.2d], and
appear with two different shapes: the two-fold symmetric FeTPPCl interact weakly
with the substrate [144], while the four-fold symmetric molecules investigated here
behave as quantum impurities coupled to the superconducting substrate.

Spectra on the four-fold FeTPPCl molecules are characterized by a complex pat-
tern of intra- and extra-gap resonances, as summarized in Fig. 4.2e. Measuring with a
superconducting tip, direct YSR resonances appear between ±∆t and ±(∆t+∆s). We
typically find three intra-gap pairs of peaks (α±, β± and γ±) that appear with larger
intensity at positive bias due to finite potential scattering [57, 146]. Additionally, the
thermal YSR excitation α∗± is observed below ±∆t in the spectra.

In addition, dI/dV spectra show fainter peaks [A± and B± in Fig. 4.2e] above the
proximitized gap. Since peak A lies at 1.3 meV above the gap-edge resonances, it can
be associated with theMs = ±1/2 →Ms = ±3/2 spin-flip excitation of the molecular
spin multiplet, with axial anisotropy constant D=0.65 meV [20–23, 144]. The origin
of peak B, at ∼ 0.6 meV outside the gap, cannot be directly connected with inelastic
spin transitions. Instead, as shown in the following, peak B corresponds to a pair
excitation of the superconducting condensate.

A hint on the origin of superconductors excitations can be obtained from their
evolution with exchange coupling (J) variations [81, 118, 119, 129, 130]. In tunneling
regime, the STM tip exerts attractive forces that distort the flexible molecular system
and reduce J . Moving the tip away from the molecular center reduces this effect and
causes an increase in J and a shift in dI/dV peaks. In the spectral map of Fig. 4.3a,
the three intra-gap YSR resonances shift to lower energies as the measuring position
is laterally changed from the center towards the phenyl groups. For the α state the
shift is large enough to cross the ∆t line and exchange position with the thermal state
α∗. This is a fingerprint of a parity-changing quantum phase transition (QPT) in the
ground state of the molecule-superconductor system [81, 118, 129].

Unexpectedly, the extra-gap peaks A and B change intensity and position with
J following different trends [Fig. 4.3b]: peak A vanishes towards the sides, while
peak B, fainter in the center, shift to higher energies. The apparent connection of the
shifts of extra-gap peaks with intra-gap excitations [Fig. 4.3c] suggests they are all
related to the same many-body state, renormalized by the tip-induced changes in J .
This state is formed by the spin S=5/2 of the quantum impurity, with D ∼0.65 meV,
coupled to the superconducting substrate with quasi-particle excitation peaks at ∆s.
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Figure 4.3: STM tip tuning of the exchange coupling. a) Map of dI/dV spectra measured
across a 4-fold FeTPPCl molecule (sketched on the right) with VS = 3 mV and I = 75 pA. The
spectrum on top is measured over the center. b) Zoom of the extra-gap spectral region to
highlight signals A and B. c) Energy position of peaks at negative bias extracted from the line
profile.

4.3 Spin-5/2 quantum spin coupled to a single site superconductor

To interpret the results we used a minimal single-site model [54, 147], extended
for quantum impurities on superconductors by von Oppen and Franke [24, 148]. Cal-
culations using this model are light and provide useful insights into the many-body
spectrum of the system. The Hamiltonian reads:

Hs = H0 +HM +HJ

H0 = ∆sc
†
↑c
†
↓ + h.c.

HM = DS2
z + E(S2

x − S2
y)

HJ =
∑
σσ′

c†σ[JzSzs
z
σσ′ + J⊥(S+s

−
σσ′ + S−s

+
σσ′)]cσ′ ,

(4.1)

where H0 describes a single-site superconductor, and HM accounts for the magnetic
impurity spin anisotropy, with transversal components E. The term HJ represents
the (anisotropic) J between impurity and superconductor states characterized by Jz
and J⊥, axial and transverse exchange couplings, respectively.
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In Fig. 4.4a we display the evolution with D and J of excitation energies in a
tunneling experiment, obtained from the eigenstates of Eq. (4.1). Adding a tunneling
electron (or hole) to the ground state of the system leads to a change in fermion parity.
Therefore, only transitions between even and odd parity states are allowed [blue and
orange in Fig. 4.4a]. For negligible exchange J , the molecular anisotropy D splits
the spin multiplet into non-degenerate levels of equal Sz (left side in Fig. 4.4a. The
ground state is a product state of the molecular spin-doublet and the BCS ground
state:

|even⟩ = |Sz⟩ ⊗ |BCS⟩ = |±1/2⟩ ⊗ (|0⟩+ |2⟩) (4.2)

with |0⟩ the vacuum and |2⟩ = c†↑c
†
↓ |0⟩. Tunneling experiments in this regime re-

solve peaks caused by a QP excitation at ±∆s, and by an additional spin excitation
at ±(∆s + 2D) [22, 23, 144]. The spin multiplet in the BCS ground state can also be
thermally populated when kbT > 2D [129].

A finite exchange J [right panel in Fig. 4.4a] mixes the spin multiplet with Bo-
goliubov QPs into symmetric (+) and anti-symmetric (-) entangled states with definite
total spin projection ST

z [149, 150]. As shown in Fig. 4.4a, symmetric states appear as
excitations outside the gap, while the anti-symmetric ones correspond to intra-gap
excitations. For example, peak A in our experiments corresponds to the excitation
of the entangled symmetric state with ST

z =1 [22], while the antisymmetric state is a
YSR excitation split by the axial magnetic anisotropy [24, 129, 149, 150]. In fact, reso-
nances β and γ observed in the experiment are reproduced when a small transversal
anisotropy E is also included to further split this state into two (see appendix 4.6).

Increasing J above a critical value induces a QPT [Fig. 4.3a], where the ground
state becomes an odd parity entangled state of impurity’s spin and a QP [60, 118]:

|odd⟩ = |1/2⟩ |↓⟩ − |−1/2⟩ |↑⟩ . (4.3)

From |odd⟩, there are two even parity states accessible by tunneling electrons or
holes: the state (4.2), resulting in the YSR peaks α in spectra, and the state:

|even⟩ = |±1/2⟩ ⊗ |BCS⟩ = |±1/2⟩ ⊗ (|0⟩ − |2⟩). (4.4)

This second state is a pair excitation, i.e. the excitation of two QPs over the BCS
state: γ†↑γ

†
↓ |BCS⟩ = |BCS⟩ [3]. The pair excitation lies at an energy 2∆s above the YSR

state, hence, it is independent of the molecular magnetic anisotropy [Fig. 4.5a]. As
we discuss next, peak B in the spectra corresponds to this pair excitation.

In Fig. 4.4b we show a calculated spectral line profile simulating the experimen-
tal results of Fig. 4.3a, obtained by solving the Hamiltonian (4.1). We obtain J from
the position of α, D = 0.65 mV from measurements on weakly coupled molecules
[144], and we include a small transversal anisotropy E that replicate β (see appendix
4.6). The results account for all excitations observed and reproduce their evolution
with J , by using a single orbital channel. Fermion parity selection rules explain
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Figure 4.4: Single site model for S=5/2 single channel quantum spin. a) Allowed electron
excitations, and their parity, for a spin 5/2 coupled to a superconductor, obtained from eq. 4.1
Left: spin multiplet split by magnetic anisotropy D. Right: exchange coupling J leads to in-
gap states. Around the QPT, thermal effects are shown as gradient lines. b) Simulation of a
spectral map like in Fig. 4.3a using the effective model, adopting as input the position of α and
the re-normalized D (see appendix 4.6).

that peaks A, β and γ fade away when the molecule enters in the strong interac-
tion regime. Furthermore, the stronger intensity of peak B in this regime, and its shift
with J agrees with the behaviour of pair-excited state BCS.

4.4 Pair excitation correlation with ∆s

To further corroborate the identification of peak B as a pair excitation, we stud-
ied the evolution of peak A and B on 15 molecules lying on different regions and
film thicknesses [Fig. 4.5a], with different values of ∆s [Fig. 4.5b]. In these molecules,
the position of peak B, measured with respect to α, scales with 2∆s [Fig. 4.5d], as
expected for pair excitations, ruling out other possible origins [151]. In contrast, the
position of peak A with respect to ∆s, i.e. 2D, is uncorrelated from ∆s [Fig. 4.5c].

The different evolution of peaks A and B with J is reflected by comparing spec-
tra on the center of three molecules in different interaction regimes [Fig. 4.5e]. PeakA
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Figure 4.5: Pair excitation correlation with ∆s. a) Scheme of A and B excitations (J fixed to
the QPT point); Peak A scales with anisotropy D and Peak B with ∆s. b) Value of ∆s measured
close to 15 different molecules lying on different positions on the substrate, and on film with
different thickness. c) Position of peak A for the 15 molecules, showing no correlation with
∆s. d) Evolution of peak B with ∆s, showing a linear dependence. EA is the energy of peak A
over the gap edge, while EB is the energy of peak B with respect to YSR state α. e) Spectra of
three molecules of the set, in weak, at QPT, and strong regimes (detected through the particle-
hole asymmetry of α). Peak A is more intense in the weak coupling case, while peak B in the
strong coupling regime.

shifts to lower energy with increasing J , due to renormalization of D [22], and van-
ishes in the strong coupling case. Peak B, in contrast, becomes more intense in the
strong coupling regime and shifts with J parallel to α, spaced by 2∆s, as expected
for the pair excitation.

To date, pair excited states were only observed through adsorption of microwaves
[25, 120] photons or Andreev pairs [123]. Fermion-parity conservation forbids a sin-
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gle tunneling electron from exciting a pair of Bogoliubov quasi-particles (the BCS
state) in a superconductor. In our experiment, the observation of the pair excitation
with electrons was made possible by the existence of an odd-parity Kondo-screened
ground state of a magnetic molecule state on a superconductor, which enabled the
excitation of two even-parity states [Fig. 4.3]: the BCS state, leading to the intra-gap
YSR resonance and the BCS pair excited state, observed as peak B. Even if this res-
onance appears outside the spectral gap, the pair state in the proximitized film is a
double population of a subgap state and, hence, it is expected to have a larger life-
time, facilitating its detection.

It is noteworthy that the quantum spin model used here accounted for all ob-
served resonances using just one single channel. Multiple sub-gap excitations re-
sulted by entangled states of impurity and quasiparticles, mixed by magnetic anisotropy
constantsD andE. As we show in the appendix 4.6, a small value ofE suffices to jus-
tify peak β, because the YSR excited state is integer and with large spin. This model
successfully explains the important role of transversal and axial anisotropy and the
effect of exchange on the magnetic anisotropy.

4.5 Conclusions

In conclusion, we have used a proximitized gold film as a platform for studying
many-body excitations in magnetic impurities [139]. The magnetic molecule FeTPPCl
interacting with the substrate electrons host subgap YSR states and spin excitations
outside the gap that are readily described by a superposition of Bogoliubov quasi-
particles and impurity spin states using a zero-bandwidth model. Interestingly, we
found an excitation of a BCS pair state on molecules in the Kondo-screened regime,
which scales with the different pairing energy of proximitized films of different thick-
nesses. This is an excitation that remains hidden to tunneling electrons and becomes
available for magnetic impurities that bind a quasi-particle, thus behaving as a de-
tector of the parity of the ground state. In a proximitized metal film, the excited pair
populates dGSJ sub-gap states and inherits their coherent and spatial evolution and,
thus, their potential for becoming elementary states for quantum processing.

4.6 Appendix

Deconvolution and fitting of the proximitized gap

In this section we show how the V(100)/Au system can be well described by
a ballistic SN junction model developed by Arnold [68]. The clean V(100) surface
shows the known (5x1) oxygen reconstruction that manifests in the STM topography
[Fig. 4.6a] as a series of lines with periodicity 5 times the vanadium lattice parameter
[131, 132]. As explained before, annealing to 550C after Au deposition forms homo-
geneous Au films on the surface [Fig. 4.6b]. The spectrum of vanadium is strongly
modified by the presence of gold. In Fig. 4.7c we report the DOS spectra before and
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Figure 4.6: BCS gap compared with dGSJ resonances. a) STM topography of V(100) with the
5x1 oxygen reconstruction. b) STM topography after gold evaporation showing Au layers. c)
On bare V(100) the spectrum shows BCS like density of states, after Au deposition the coher-
ence peaks shift at lower energy and a dip feature appears at 2∆V . d) Deconvolution of the
spectra in b).

after deposition. Note as the gap closes and a dip-like feature appears at 2∆s. If we
deconvolute the two spectra [Fig. 4.6d] we see that V(100)/Au has a sharper peak
line-shape.

The most direct way to model this line-shape is using the ballistic Arnold model
density of states [eq.2.30] that describes the tunneling density of states of an SN
junction. To do so, we implement the Python code to compute the temperature-
broadened convolution [eq2.43] of a BCS dos (tip) with the Arnold dos (substrate).
Than we fit the spectrum varying the ratio d/ξ and adjusting the broadening param-

Figure 4.7: Arnold model description and deconvolution of the dGSJ spectrum. a) Fit of the
Au/V spectrum with the Arnold model (∆t = ∆s = 0.75 meV, d/ξ = 0.0135, T = 1.3 K,
Γt = 3.0 · 10−5, Γs = 2.2 · 10−6) convoluted with a BCS density of states (tip). b) Components
of the fit. c) Comparison of the Arnold model with the Au/V deconvoluted spectrum.
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eters of tip and sample with a ∆ = 0.75 meV for both tip and S part of the sample.
We obtain the best fit shown in Fig. 4.7a, with d/ξ = 0.013. This means that the actual
thickness is 1.3% of the coherence length of the system, the very thin film limit. The
tip and sample DOS components of the fit are shown in Fig. 4.7b and the in Fig. 4.7c
we compare the deconvoluted spectrum of the sample [Fig. 4.6c] with the calculated
one showing the quantitative agreement.

Line profile of a strongly coupled FeTPP-Cl

Most of the FeTPP-Cl molecules investigated behave like the example shown in
Fig. 4.3 of the main text. However, some species appear in a different interaction
regime. In every case, we can identify the coupling regime by analyzing both the
energy shift of the α and B peaks with the tip position over the molecule and the
particle-hole asymmetry (as shown in Fig. ??e.

In Fig. 4.8 we study a FeTPP-Cl molecule in the strong coupling regime and
show that this specie appears with protruding pair excitation spectral features. A
spectrum on the center of the molecule ( Fig. 4.8a appears with sub-gap YSR α peaks
lying close to zero energy (detected at ∆t/e bias, because of the superconducting tip),
indicating that it lies very close to the quantum phase transition (QTP) between the
two YSR interaction regimes. Accordingly, the molecule shows both A and B peaks
outside the superconducting gap with similar intensity.
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Figure 4.8: Additional exchange tuning line in a strongly coupled molecule. a) Tunneling
Spectrum of a 4-fold FeTPP-Cl molecule measured at its center. The α peak is tuned to the
quantum critical point of QPT whilst the A and B peaks outside of the gap are clearly dis-
tinguishable. b) For the same molecule, a line of dI/dV spectra taken along the transversal
direction.
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Figure 4.9: Height dependence of the exchange interaction tuning. a-b) Linescan of the
molecule presented in Fig. 4.3 of the main text at two set-point current values (V= 3mV I =
15, 75 pA). c) The α peak energy shift (dotted traces on the maps), both in the strong and weak
coupling, is enhanced by raising the tunneling current.

As shown in Fig. 4.8b, both the sub-gap YSR α peak and the pair excitation
peak B shift towards higher energies as the STM tip moves away from the molecule
center. The stronger interaction regime explains the strong pair excitation detected in
the spectrum.

Dependence of molecule-surface interaction on tip vertical position

The attractive effect induced by the STM tip over the molecule can be slightly
controlled via variations of tip proximity to the molecule. In Fig. 4.9 we compare
spectral profiles across the molecule in Fig. 4.3 of the manuscript with different junc-
tion resistances. The increased interaction with the tip for the higher resistance case
leads to larger variations of YSR peaks as the tip is moved across. This dependence
on the tip’s vertical distance also proves that the observed variations of J are not an
intrinsic property of the molecule but are induced by the interaction of the molecule
with the STM tip [119].

Dependence of pair excitation amplitude on the exchange interaction J

In Fig. 4.5 of the manuscript we have shown that the pair excitation is a prop-
erty of the molecule in the strong coupling regime (the Kondo-screened regime). In
Fig. 4.10 we plot the amplitudes of the pair excitation peak B, measured at the cen-
ter of a set of 15 FeTPP-Cl molecules, as a function of the corresponding exchange
interaction J . The molecules are those studied in Fig. 4.5a of the manuscript. The
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Figure 4.10: Amplitude of the pair excitation as a function of the exchange interaction. For
a set of 15 FeTPP-Cl molecules we measured the amplitude of peak B. The solid line is a
Boltzmann fit, showing how the peak is more intense in the strong coupling regime.

value of J is obtained in each of them by fitting the position of YSR peaks α with the
theoretical model.

The intensity of the pair excitationB is very small in the weak interaction regime
(free-spin case). In this regime and at zero temperature, this transition should be zero.
The finite temperature of our experiment enables a small excitation probability due
to the thermal population of the α YSR state. The pair excitation amplitude increases
significantly beyond the QPT, where now the ground state is odd in fermion parity
and enables direct excitation of the pair state with a single tunneling electron. We fit
the behavior with a Boltzmann distribution obtaining a temperature T = (1.2 ± 0.2)
K, that is compatible with the experimental temperature.
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Figure 4.11: Kondo and step excitations without superconductivity. dI/dV spectra of a 4-fold
FeTPP-Cl with an applied magnetic field of 2.7 T applied in the direction perpendicular to the
substrate. The superconducting gap of the surface and tip is suppressed.
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Spectrum of a FeTPP-Cl in the normal state

We quenched the superconducting state of tip and sample with a perpendicular
magnetic field of 2.7 T to study the spectral shape of FeTPP-Cl at low energy in the
absence of superconductivity. The resulting spectrum (Fig. 4.11) reflects the presence
of Kondo-screening interactions and spin excitation, as we also find in the supercon-
ducting state. In particular, we observe a step excitation at 1.3mV (dashed line in
Fig. 4.11) corresponding to the spin excitation Ss = 1/2 to Sz = 3/2 (D = 0.65 mV)
and a weak Kondo resonance at 0 energy, signature of a ground state with Sz = 1/2.
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Theoretical model

As mentioned in the main text, we describe the superconductor by using a
single-site model which is an extension of the one discussed in Ref. [24]. Including
the tip, the Hamiltonian reads:

Hmodel = Hs +Ht +Hts, , (4.5)

where Hs and Ht describe sample and tip, respectively, and Hts is the tunneling
Hamiltonian; Hs is a single site superconductor coupled to a quantum impurity with
spin S = 5/2:

Hs = H0 +HM +HJ

H0 = ∆sc
†
↑c
†
↓ + h.c.

HM = DS2
z + E(S2

x − S2
y)

HJ =
∑
σσ′

c†σ
[
V δσσ′ + JzSzs

z
σ,σ′

+J⊥
(
S+s

−
σσ′ + S−s

+
σσ′

)]
cσ′ .

(4.6)

Here ∆s is the strength of the superconducting pairing in the substrate, D and E
are the axial and transverse magnetic anisotropy of the molecule, and Jz and J⊥
are the axial and transverse magnetic exchange couplings, and V is the impurity
scattering potential. The effects of different terms on the spectrum of the system will
be described in the following subsections.

We also treat the Hamiltonian describing the superconducting tip,Ht, as a single-
site superconductor:

Ht = ∆tc
†
t↑c
†
t↓ + h.c. . (4.7)

Finally, the tunneling between the tip and sample is described by

Hts =
∑
σ

Tσσ′c†tσcσ′ + h.c. (4.8)

with Tσσ′ = T0+T1S ·σσσ′ , where T0 is normal tunneling and T1 is the spin-flip tun-
neling. Throughout we assume no Josephson current or multiple Andreev reflections
between the tip and the sample, as expected in the weak tunneling regime.

The Hamiltonian (4.5) is invariant under time-reversal symmetry (TRS) and
commutes with the parity operator of combined the tip+sample system, PT = (−1)NT ,
where NT = Nt + Ns is the total electron number operator. Notice that the tunnel-
ing Hamiltonian Hts does not commute with the sample (tip) parity operator Ps =
(−1)Ns (Pt = (−1)Nt ). However, Ps is still a good quantum number when consider-
ing the diagonalization of H alone, as we shall do below. Thus, the Hilbert space of
the sample can be separated into two parity sectors: even parity with Ps = 1 and odd

55



4. COOPER PAIR EXCITATION MEDIATED BY A MOLECULAR QUANTUM SPIN ON A
SUPERCONDUCTING PROXIMITIZED GOLD FILM

parity with Ps = −1. In addition to TRS and parity, Eq.(4.5) exhibits other symme-
tries in certain limiting cases. For example, in the limit where the transverse magnetic
anisotropic E vanishes, the Hamiltonian is invariant under the Z2 symmetry that
maps ST,z → −ST,z and interchanges ST,x ↔ ST,y , where ST = S+ 1

2c
†
σσσσ′cσ′ is the

total spin operator. This symmetry is generated by the rotation Û = eiπST,yeiπST,z/2.
In addition, we neglect the scattering potential V in Eq. (4.6). This potential breaks
particle-hole symmetry (PHS) and would modify the spectral weights of the peaks as
mentioned in the main text. However, it does not modify the overall structure of the
spectrum and only adds an additional fitting parameter to the model. Therefore, for
the sake of simplicity, it can be taken to be zero, which renders the model invariant
under PHS.

Single site Superconductor

To gain some basic understanding of the single-site superconductor model and
fix the notations, let us start by ignoring the magnetic molecule entirely:

Hs = H0 = ∆sc
†
↑c
†
↓ + h.c. . (4.9)

The Hilbert space of the above Hamiltonian is a four-dimensional linear space spanned
by {|2⟩ , |0⟩ , |↑⟩ , |↓⟩}, where |σ =↑, ↓⟩ = c†σ|0⟩, |2⟩ = |↑↓⟩ = c†↓c

†
↑ |0⟩, and |0⟩ is the zero-

particle or vacuum state. In this basis, the Hamiltonian takes the following matrix
form:

H0 =


0 ∆s 0 0
∆s 0 0 0
0 0 0 0
0 0 0 0

 . (4.10)

Upon diagonalization, the eigenstates are:{
|BCS⟩ = 1√

2
(|2⟩+ |0⟩), |BCS⟩ = 1√

2
(|2⟩ − |0⟩), |↑⟩ , |↓⟩

}
, (4.11)

with (eigen-) energies {−∆s,∆s, 0, 0}, respectively. The eigenstates have well defined
parity: Ps|BCS⟩ = |BCS⟩, Ps|BCS⟩ = |BCS⟩, i.e., they are even under parity, whilst
Ps|σ⟩ = −|σ⟩ (σ =↑, ↓), i.e. they are odd under parity.

Fig. 4.12 a) shows the spectrum and the possible transitions between the differ-
ent states of the sample in the single-site approximation. The even and odd parity
states are connected by a single creation/annihilation operator of an electron (or a
Bogoliubov quasi-particle, see below). However, the two even-parity states are con-
nected by two electrons/holes or two Bogoliubov operators, i.e. |BCS⟩ ∝ γ†↑γ

†
↓ |BCS⟩

(see Sec. 4.6). Note that the tunneling of a single electron from the tip will always
change the parity of the sample.

Let us consider now the tunneling between the tip and the sample at zero tem-
perature, when both, the tip and the sample, are in their respective ground states:
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|GS⟩ = 1
2 (|2⟩t + |0⟩t)(|2⟩s + |0⟩s) = |BCS⟩t|BCS⟩s. When e.g. a spin up electron

tunnels from sample to tip (see Fig. 4.12 a)), we have

c†t↑c↑ |GS⟩ =
1

2
|↑⟩t |↓⟩s . (4.12)

This corresponds to a transition of energy ∆s+∆t, whilst the process in the opposite
direction (from tip to sample) involves an energy −(∆t + ∆s). This translates into
two peaks at ±(∆t + ∆s) in the tunneling spectrum, which mimic the coherence
peaks observed in the tunneling between two s-wave superconductors.

Spin-5/2 impurity with zero exchange coupling

Next, we consider how the excitation of the molecular spin reflects on the tun-
neling spectra. Since D is a large energy scale, we will first neglect the exchange
coupling and set Jz = J⊥ = 0. This limit is expected to capture some of the physics
on the weak coupling side of the quantum phase transition (QPT, see below) [21, 22].
Now the Hamiltonian of the sample is Hs = H0 +HM , where the spin Hamiltonian
HM accounts for the intrinsic magnetic anisotropy of the molecular spin:

HM = DS2
z . (4.13)

We assume easy-plane anisotropy (D > 0) and, for the sake of simplicity, zero trans-
verse magnetic anisotropy E = 0. The effect of the latter will be discussed in the last
subsection where the spectrum of full Hamiltonian is described.

Since in this limit, there is no exchange coupling, the Hilbert space of the sam-
ple is the tensor product of the Hilbert space of the superconducting site and the
molecular spin (see Fig. 4.12 b)). We use the basis {(|2⟩ , |0⟩ , |↑⟩ , |↓⟩) |M⟩}, where
M is the eigenvalue of z-projection of the impurity spin, Sz . In the even parity sec-
tor ST,z = Sz = M , which is half-integer (recall that S = 5/2) and therefore, by
TRS the eigenstates {|BCS⟩ |M⟩ (|BCS⟩ |M⟩}) with the ST,z = ±M are Kramers pairs
and therefore degenerate in energy. In the odd parity sector, the Z2 discussed above
ensures the same for the eigenstates |σ⟩ |M⟩. Since D > 0, the ground state is the
doublet ST,z in the even parity sector, i.e. |GS⟩ = |BCS⟩ |±1

2 ⟩. The eigenstates in the
odd parity sector describe single (quasi-) particle excitations and, in this limit, have
higher energy (see Fig. 4.12).

Let us consider the tunneling of a single electron between the tip and the sample
in this limit. The tunneling Hamiltonian, Eq. (4.8), contains a spin-independent and
spin-dependent terms with amplitude T0 and T1, respectively. Since the tunneling
current is second order in the tunneling amplitude, there are three different contribu-
tions. The term of order |T0|2 yields a spectrum identical to the one described in the
previous subsection. The term of order T0T ∗1 and its complex conjugate vanish due
to TRS (but they would not in an external magnetic field that breaks TRS). Finally,
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the term of order |T1|2 accounts for the spin-flip processes which we discuss in the
following. One of the possible tunneling processes is:

c†t↓cs↑S+ |GS⟩ = c†t↓cs↑S+

[
|BCS⟩t |BCS⟩s |

1
2 ⟩
]

∝ |↓⟩t |↓⟩s |
3
2 ⟩ . (4.14)

This process involves an excitation of the molecular spin and costs an energy ±(∆s+
∆t + 2D), the minus sign corresponding to tunneling in the opposite direction (i.e.
from tip to sample). Transitions ( Fig. 4.12 b)) to higher spin states are enabled by
spin pumping [23].

Spin-5/2 impurity with finite exchange coupling

Next, we account for the exchange coupling between the impurity and the sub-
strate in the single site approximation and explain how the parity changing QPT
takes place. The sample Hamiltonian is given in Eq. (4.6), where HJ is the exchange
term. We begin by investigating the isotropic limit where Jz = J⊥ = J and D = E =
0, i.e. HM = 0. The situation is not quite realistic but makes the discussion of the
QPT particularly clear.

In the isotropic limit, the total spin of the superconductor plus impurity ST is
conserved. Therefore, the eigenstates are organized into multiplets of 0 ⊗ 5

2 = 5
2 , for

the even parity sector with Ps = +1, and 1
2 ⊗ 5

2 = 2 ⊕ 3, for the odd parity sector
with Ps = −1. In the latter sector, the lowest energy state belongs to the multiplet
with the smallest total spin, i.e. ST = 2. Note that, by introducing a new energy
scale J > 0, the ground state is no longer uniquely determined by ∆s (see Fig. 4.12
c)). In particular, the parity eigenvalue Ps of the ground state can change from even
to odd by tuning J , resulting in a QPT [60, 118]. The transition takes place when
the energies of the lowest energy states in the even and odd parity sectors cross as J
increases. For a S = 5/2 quantum impurity in the isotropic exchange limit the critical
value is JC = 4∆/7.

Regarding the overall structure of the spectrum, in the even parity sector, the
spin of the single-site superconductor is zero and therefore the exchange coupling
has no effect. The eigenstates take the form {|BCS⟩ |M⟩ , |BCS⟩ |M⟩}, i.e, there are
two eigenstates per impurity spin Sz = M projection. The states with the same
superconductor component are Kramers pairs for Sz = ±M and therefore degenerate
in energy.

On the other hand, in the odd parity sector, the exchange coupling is effective
and the total spin of the eigenstates is an integer, as discussed above. In the multiplet
with ST = 2, the eigenstate (| 12 ⟩ |↓⟩−|− 1

2 ⟩ |↑⟩)/
√
2 with zero ST,z eigenvalue becomes

the lowest energy state. Indeed, forD > 0 both multiplets of ST split, resulting in the
states with the smallest ST,z eigenvalue from both multiplets having the smallest en-
ergy. The Z2 symmetry implies that the eigenstates with the opposite ST,z eigenvalue
are degenerate.
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Figure 4.12: Full energy level scheme of a single-site superconductor coupled with a S=5/2
single channel quantum impurity. a) Spectrum of a single-site superconductor with states
labeled by fermion parity: even (blue) and odd (orange) parity. When adding a spin S =
5/2 quantum impurity with easy-axis magnetic anisotropy D but negligible exchange each
eigenvalue split in three components. b) Effect of a finite exchange coupling together with
axial magnetic anisotropy on eigenvalues and eigenvectors. The parity changing QPT occurs
for exchange greater than a critical value. To simplify the notation the coefficients of the linear
combinations have been suppressed.

Full Hamiltonian

We now discuss the combined effect of all terms in the model of Eq. (4.6). In Fig.
4.13 we show the evolution of the spectrum as the values of the different couplings
are turned on up to values compatible with the experimental ones. The blue and
orange lines correspond to the eigenstates with even and odd parity, respectively. The
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Figure 4.13: Full evolution of even and odd parity eigenvalues of the Hamiltonian. The
evolution of the energy levels is plotted as a function of the model parameters: the magnetic
anisotropy D, the exchange coupling J , transverse anisotropy E and the ratio of the transverse
and longitudinal exchange p couplings. The solid lines are the states reachable by tunneling
one electron, while the dotted are prohibited by spin selection rules.

solid lines are the levels reachable by tunneling electron (at 0th order in E) resulting
in the terms of order |T0|2 and |T1|2 in the tunneling current.

Consistent with the existence of large axial magnetic anisotropy D in the molec-
ular spin, we have assumed an anisotropic exchange coupling where Jz ̸= J⊥. We
find an optimal value for the ratio p = J⊥/Jz = 3. This value is close to the one
obtained by projecting a S = 5/2 spin onto the S = 1/2 pseudo-spin describing the
lowest energy doublet for a quantum impurity withD > 0 [149]. However, generally.
the anisotropic exchange may result from several different mechanisms [149].
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Symmetries of the system states # states #
J < JC J > JC

D = E = J = 0 TRS, Z2, FSRsub, FSRmol 2 1
D > 0, E = J = 0 TRS, Z2, FSRsub 6 3
D,J > 0, E = 0 TRS, Z2 6 7
D,J,E > 0 TRS 6 12

Table 4.1: Symmetries of the model in various limiting cases. The acronyms and symbols
stand for TRS = time reversal symmetry, FSRsub = full spin rotation symmetry for substrate
electrons, FSRmol = full spin rotation symmetry for molecular spin, Z2= 180º rotation around
the y-axis followed by a 90º rotation around the z-axis, .

Finally, we briefly discuss the effect of the transverse magnetic anisotropy e).
In contrast to the anisotropic exchange, which does not break the Z2 symmetry, the
transverse anisotropy does. This has no effect on even parity states, where, due to the
Kramers degeneracy, states with opposite total spin z-projection are degenerate. On
the other hand, the breaking of Z2-symmetry leads to splittings of the energy of odd
parity states whose degeneracy is not protected by TRS. This effect accounts for the
splitting seen in the γ and β peaks discussed in the main text. As the value of E used
is rather small (0.044 meV), we expect a small splitting. A first order perturbation
theory calculation for the degenerate states | 12 , ↑⟩ − |32 , ↓⟩ and |− 1

2 , ↓⟩ − |−3
2 , ↑⟩ yields

a splitting of ∆E ∼ 3
√
2E. Thus, we see that this small E can account for a ∆E ∼ 0.2

meV separation between the two peaks.

An alternative explanation of the observed in-gap splitting can be proposed
with a two-channel model. This approach increases the number of fitting parameters
and complicates the description, justifying our adoption of the simpler one-channel
model. The splitting of the remaining states is not substantial and can be ignored in
a first approximation. Furthermore, the admixture of the states with different Sz,T

introduced by E is very small and is not expected to introduce substantial changes
to the discussion provided above.

Phenomenology of the pair excitation

Starting from the even-parity BCS ground state (weak coupling) in the zero-
bandwidth model:

|BCS⟩ = (u+ vc†↓c
†
↑) |vac⟩ . (4.15)

From [152] creation and annihilation operators of quasiparticles excitations are:

γ†↑ = uc†↑ + vc↓

γ†↓ = uc†↓ − vc↑

γ↑ = uc↑ + vc†↓

γ↓ = uc↓ − vc†↑,

(4.16)
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The odd parity excited state is obtained by adding a quasiparticle to the BCS state:

|odd⟩ = γ†↑ |BCS⟩

= (u2c†↑ + uvc†↑c
†
↓c
†
↑ − vuc↓ − v2c↓c

†
↓c
†
↑) |vac⟩

= (u2 + v2)c†↑ |vac⟩

= c†↑ |vac⟩

(4.17)

Where we simplified using commutation relations for fermions.

From this state, by single electron tunneling, the system can return to the |BCS⟩
state annihilating the quasiparticle (YSR excitation):

γ↑c
†
↑ |vac⟩ = (u+ vc†↓c

†
↑) |vac⟩ = |BCS⟩ (4.18)

or exciting another quasiparticle and reaching the pair excited state:

γ†↓c
†
↑ |vac⟩ = (v − uc†↓c

†
↑) |vac⟩ = |BCS⟩ (4.19)

Being |BCS⟩ the vacuum of quasiparticles, it is annihilated by destruction operator,
while |BCS⟩ is not since contains two quasiparticles:

γ↓ |BCS⟩ = γ↑ |BCS⟩ = 0

γ↓ |BCS⟩ = c†↑ |vac⟩

γ↑ |BCS⟩ = c†↓ |vac⟩

(4.20)
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5Tuning the superconducting proximity effect
in graphene via Pb islands manipulation

5.1 Introduction

The proximity effect plays an important role in many devices and can be most
helpful in the design of novel superconducting quantum systems. At a superconduc-
tor (S)-normal metal (N) interface, electrons with energy below the energy gap at the
N side are Andreev reflected, generating electron-hole correlated pairs [29] that in-
duce superconductivity in the normal metal. This triggers the appearance of numer-
ous novel effects, such as bound states caused by the coupling of superconductivity
and ferromagnetism [153–155], topological states [32, 156, 157] and charge density
waves [158–160]. While proximitized systems have been studied mainly through
electrical transport measurements [161–165], STM enables the local mapping of the
induced superconducting pairing as a function of the lateral distance, facilitating the
study of length dependence of pairing, among other properties [166].

Shortly after graphene discovery [167, 168] superconducting correlations in graphene
were induced by proximity effect coupling it to a Ti-Al superconductor [169, 170] or
by Li-ion intercalation [171]. This encouraged numerous predictions about the inter-
play between superconductivity and the peculiar electronic structure of graphene
[34, 172, 173]. After the first promising results on superconductor-graphene hy-
brids, progress has been relatively scarce, probably due to a lack of precise control
on graphene-superconductor control or local probe that would give access to more
direct evidence [35, 174, 175].

In this chapter, we use STM to study the superconducting proximity effect in-
duced by crystalline Pb islands on graphene supported by silicon carbide (SiC). The
Pb-graphene interface is optimal since it enables electron transmission to/from graphene,
resulting in the proximity effect, as well as the movement of islands on the sur-
face. This allows the construction of Pb-graphene junctions with nm precision and
the study of how graphene doping affects the induced superconductivity. The sub-
strate SiC is a polar crystal and graphene is grown either on the Si-terminated face
(Gr/SiC0001) or the C-terminate face (Gr/SiC0001) [176]. Since the graphene of each
side has a different effective doping level, the chosen face has a strong influence on
the induced proximity effect.

Sections 5.2, 5.3, and 5.4 will cover the study and manipulation of the prox-



5. TUNING THE SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE VIA PB
ISLANDS MANIPULATION

imity effect on the C side of SiC, where the Fermi level is at the charge neutrality
point. Using the island manipulation technique we study how grain boundaries and
Moirè patterns affect the proximity effect and we confine superconductivity in SNS
junction-like structures. Then, in section 5.5, we focus on the sub-gap structure aris-
ing when approaching the tip very close to graphene, this allows mapping of the
Josephson current in a proximitized system and correlates it with the quasiparticle
excitation maps. In section 5.6 we study how magnetic field induces in-gap states
in confined graphene regions. Finally in section 5.7, we show how the proximity
effect on the Si-side of SiC, which is n-doped, is significantly different from that on
the C side. The Si side graphene presents a nearly homogeneous gap all over the
sample that points to a 2D superconductor due to a collective proximity effect of the
phase-coupled array of Pb islands.

5.2 Proximity effect in Gr/SiC0001 (C-side)

High-temperature annealing of SiC results in multilayer graphene where the
mutual twisting angle between the last two or three layers defines a Moirè pattern
[177]. The graphene Gr/SiC single crystal was prepared by V.Cherkez, P. Mallet and
J-Y. Veuillen in Grenoble following the procedure in [178]. This consists in heating
the SiC at 1600°C in an RF furnace in vacuum, and then inducing the graphitiza-
tion in Ar/H2 (95%-5%) atmosphere. The samples were then transferred to our STM
chamber and cleaned with a 600°C annealing.

A topography map of the bare graphene surface in Fig.s 5.1a shows grain bound-
aries as bright lines where the orientation of the last graphene layer changes. This
results in a change of the Moirè pattern generated from the twisting angle between
the first and second layers. The twisting angle θ can be calculated from the Moirè

Figure 5.1: Gr/SiC0001 (C-face) topography and Pb deposition. a) Gr/SiC0001 topography
image with different Moirè pattern domains (V = 1V, I = 100pA). b) Moirè pattern raising in
twisted bilayer graphene. The Moirè periodicity D depends on the angle θ between the upper-
most and second layers. c) Gr/SiC0001 after Pb deposition, Pb islands with 3-fold symmetry
are distributed on the surface (V = 1V, I = 100pA).
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periodicity D with the formula:

θ = 2arcsin

(
a

2D

)
, (5.1)

being a = 0.246 nm the lattice constant [Fig. 5.1b]. In the Moirè picture, the main axis
of the Moirè superstructure is rotated by φ with respect to the graphene lattice axis,
retrieved from the zig-zag graphene direction visible in atomic resolution images.
The relationship between θ and φ is:

φ = 30◦ − (θ/2). (5.2)

Comparing the zig-zag direction with the Moirè high symmetry direction one can
check if the Moirè pattern is created from the overlap of the 1st and 2nd layer or the
overlap of the 2nd and 3rd layer. The presence of a Moirè that does not respect eq.
5.2 means that is formed between the 2nd and 3rd graphene layers, with the possible
coexistence of two Moirè patterns.

Graphene has different electronic properties depending on the twisting angle,
from the semi-metallic, free-like monolayer graphene for a high twisting angle, to an
insulating phase showing van Hove singularities for graphene bilayers with small
twist angles and flat bands for angles close to the magic angle [179]. The presence
of these features around the Fermi level indicates very low doping, with the Fermi
level located at the Dirac point. It was demonstrated that in multilayer graphene on
SiC, the last graphene layer behaves as free-standing graphene when the twist angle
is greater than ∼ 20°[180].

The Pb evaporation is done with the substrate at room temperature with a rate of
∼0.1 A/s, for t = 1-3 min depending on the wanted coverage. In Fig. 5.1c we show an
STM image of a Pb-covered graphene region. The islands are 6-fold symmetric with
thicknesses ranging from 3.5 to 7.5 nm and lateral sizes from 50 to 300 nm. The dI/dV
spectroscopy of islands of these dimensions shows an absolute superconducting gap
of ∆/e ∼ 1.35 mV that is the same as the bulk one, with the only difference that the
double gap structure due to Pb multi-band character [94] is not visible in this case.
All the measured spectra are taken with a superconducting tip to enhance the energy
resolution. In this chapter, we will frequently show deconvoluted dI/dV data, which
retrieve the real density of states of the sample, as explained in section 2.5.

Estimation of the coherence length of proximitized graphene in an SN junc-
tion

The coherence length (ξ) of a superconductor is the distance from the SN inter-
face in which the Andreev pairs are coherent. To estimate it we chose the Pb island
in Fig. 5.2a, limiting a graphene region without a Moirè pattern of more than 300 nm
free of other Pb islands. From the edge of the island, we measured a dI/dV spec-
tra along the dashed line in Fig. 5.2a and show the corresponding spectral map in
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Fig. 5.2b and Fig. 5.2c. The proximity-induced gap is characterized by three main
features: the position of the coherence peak, the intensity of the coherence peak, and
the size of the minigap (or zero energy conductance when an absolute minigap is
not present). The zero conductance region between the dashed lines is due to the
superconducting tip that shifts the Fermi level of the sample at ±∆t. The dI/dV
of Fig. 5.2c shows a non-zero conductance at the sample Fermi level (dashed lines)
that indicates the absence of an absolute minigap (finite zero energy conductance) in
graphene. This zero-bias conductance [Fig. 5.2d] increases gradually while increas-
ing the distance from the island, reaching the normal metal conductance. At the same

Figure 5.2: Superconducting coherence length in C-side graphene. a) Pb islands that prox-
imitize a graphene region with no additional islands and without a Moirè pattern (V = 1V, I
= 100pA). b) Line of spectra along the line in a), ∆t is marked with dashed lines (V = 5 mV,
I = 1 nA). c) Three selected spectra from b) at 0,50 and 200 nm from the Pb island, where we
see the gap fading out. d) Coherence extracted from the coherence peak intensity and fitted
with an exponential to extract the coherence length of ξ = 90 nm. e)Deconvolution of b) that
shows a flat metallic density of states away from the Pb island. f) Extracted spectra from e). g)
Simulation with Usadel equation by J.C. Cuevas (UAM) of an SN junction with an infinite N
part (ξ = 90 nm, ∆p = 1.15 meV).
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time the coherence peaks decay in intensity, which we fit with an exponential func-
tion [Fig. 5.2g] to estimate a coherence length ξ ∼ 90 nm. Later in this chapter, the
coherence length will be compared with the distance between Pb islands observing
modifications of the proximity effect when this is comparable with ξ.

This situation can be described as an SN junction where the normal part extends
to infinity. We collaborate with by J.C. Cuevas (Universidad Autónoma de Madrid,
UAM) who models this configuration with the Usadel approach (eq. 2.28) to simulate
the data. When the N part (d) extends much more than the coherence, the Thouless
energy ETh = ξ2∆/d2 is negligible and, even very close to the Pb island, we do not
observe an absolute minigap. This is particularly clear in the deconvoluted data of
Figs. 5.2e-f where the shaded region indicates the non-zero in gap conductance. The
Usadel simulation assuming the estimated ξ and the proposed SN geometry is re-
ported in Fig. 5.2h, note the nice agreement with the data. In particular, it reproduces
both the absence of a minigap and the decay of the quasiparticle peaks.

5.3 Effect of the twist angle in the proximity effect in graphene

As it has been recently observed, twisted layers of graphene induce electron-
electron correlations that lead to exotic correlated phases such as superconductivity
[181]. A natural question raises, namely if a Moirè pattern can affect the e-e corre-
lations induced by the proximity effect [182, 183]. The investigation of the effect of
the Moirè pattern in the proximity effect can give insight into superconductivity in
twisted bilayer systems. No theory can currently describe this effect, but it is known
that a Moirè pattern can induce spontaneous orbital magnetization in graphene [184,
185], where pseudo-magnetic fields localize electrons in circular orbits [186]. The
possibility of moving the Pb islands on the surface allows testing of how supercon-
ductivity is induced in different graphene domains, and relating it to the twisting
angle of the two uppermost layers, identified by measuring the Moirè pattern peri-
odicity.

In Fig. 5.3a we show the topography of a Pb island that was moved inside a
graphene domain with a 6.6° twisting angle between the two upper-most layers (in-
set). The same island was then moved to an adjacent domain [Fig. 5.3b], where it
spontaneously aligns itself with the zig-zag direction of the upper-most graphene
layer. In this case, since no Moirè pattern is present, we preclude a high twisting
angle between the two upper-most layers, and thus as quasi-free standing top-most
graphene layer [179, 180, 187]. The proximity effect induced in these two domains
shows a striking difference. We quantify it by taking spectra around the perimeter of
the islands as close as possible to the edge. In Fig. 5.3 the average of these spectra
is reported and compared for the two regions. In the domain with the Moirè pattern
superconductivity is absent, indicating a probably very short coherence length. This
is deduced from the weak coherence peak and the absence of an induced gap, with
zero-bias conductance of the same magnitude as the normal conductance [Fig. 5.3d].
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Figure 5.3: Moirè dependence of the proximity effect. a) STM topography of a Pb island on
a graphene domain with Moirè pattern (V = 1 V, I = 100 pA ), on the left a zoom of the Moirè-
atomic resolution (V = 100 mV, I = 100 mA). b) The island of a) was manipulated with the STM
tip to a different graphene domain with no visible moirè pattern (constant I at V = 5 mV). c-d)
dI/dV spectra (convoluted and de-convoluted) of graphene averaged along the perimeter of
the island before and after moving it, showing the opening of the gap (V = 5 mV, I = 500 pA).
e) Graphene area of a-b) after removal of the Pb island (V = 1 V, I = 100 pA). f) Average of
the line of spectra along the line in e). g) Deconvolution of f) showing that no proximity gap,
excluding proximity effect coming from secondary Pb islands (V = 5 mV, I = 500 pA).

After manipulating the islands in the Moirè free area the average intensity of the co-
herence peaks close to the islands increases drastically and the zero-bias conductance
is reduced by the proximity effect. Is important to check that the induced gap is in-
deed due to the Pb island introduced in the domain and not induced by neighboring
islands. This is proved by measuring STS in the same area after the removal of the Pb
island [Figs. 5.3e-g]: spectra on the bare graphene domain show indeed neither gap
nor coherence peaks.

Summarizing, we find that the proximity effect is strongly dependent on the
presence of a Moirè in graphene. Moirè patterns create corrugations in graphene that
leads to electron localization, ultimately generating flat bands (vF ∼ 0) at the magic
angle [188]. Electron localization can enhance the Coulomb repulsion [189] inducing
an insulating state that can potentially compete with superconducting correlations
suppressing the superconducting proximity effect as observed in this experiment.
This experiment calls for a systematic Moirè dependence study, comparing the co-
herence length with the twist angle on different domains.

Proximity effect across a graphene domain boundary

It is known that the grain boundaries are detrimental to the transport properties
[190, 191] being critical for high-temperature superconductors [192, 193]. A proposed
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Figure 5.4: Proximitized superconductivity across a grain bounday. a) Pb island close to
a graphene grain boundary that separates two areas with different twisting angles (see Fig.
5.1 (V = 1 V, I = 100 pA, differentiate filter to visualize both island and grain boundary). b)
The spectra on top are taken close to the island and after the GB. Below, we report a line of
spectra along the blue line in a), where the position of the grain boundary is highlighted (V
= 4 mV, I = 400 pA). c) Deconvoluted data from b). d) Constant current map showing the
lattice mismatch of θ = 25 at the grain boundary (constant I at V = 5 mV). e) Height of the
quasiparticle peak (coherence) going across the grain boundary (red dashed line). f) Diffusive
Usadel calculation by J.C. Cuevas (UAM) for a superconductor-normal-barrier-normal system
(normal probe) where the barrier is perfectly reflective.

microscopic theory treats the GB as regions of a crystal where the current flow has
closed loops or flows backward [194] and successfully described experimental data
[195]. Local measurements using STM can provide valuable insight into the effect
of GB on electronic properties. The C side of Gr/SiC presents areas with different
carbon lattice orientations separated by GBs, which can also present different Moirè
patterns. Here, we test locally how the superconducting proximity is affected across
GB, thus giving information on the variation of electronic properties across the GB.
These measurements are done by placing a Pb island close to a GBs separating two
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domains (same as presented in the preceding section) with a ≈25° mismatch [Fig.
5.4d] between the graphene lattices, which appears reflected in a change of a Moirè
pattern.

Both island and GB are mapped in Fig. 5.4a. STS is recorded along the line
that crosses the GB, in Fig. 5.4b the corresponding dI/dV line profile reveals a strong
discontinuity of the superconducting gap at the grain boundary. The spectrum before
the GB, shows well-defined coherence peaks, marked by dashed lines in the blue
spectrum of 5.4b. The intensity of the coherence peaks slightly decays in intensity
with the distance from the island and proximity gap closes slightly, visualized in the
deconvoluted dI/dV in Fig. 5.4c. These changes are negligible when compared to the
crossing of the GB. The coherence peaks are suddenly suppressed, as shown by the
line cut of the line profile at the coherence peak energy in Fig. 5.4e where we observe
a sharp decrease of coherence at the GB. In the same position the minigap completely
closes leaving a peak feature at ∆t, which in the deconvolution appears as a peak at
zero energy.

We describe the experiment with by J.C. Cuevas (UAM) making the limit as-
sumption of the GB acting ideally as a perfect reflective potential barrier. This is
obtained by considering an effective SNbN (superconductor-normal-barrier-normal)
junction. The calculated density of states at increasing distance from the supercon-
ductor [Fig. 5.4f] shows the presence of a minigap that is interrupted abruptly at the
boundary. We note that the presence of such a barrier not only naturally impedes the
diffusion of correlated Andreev pairs, but acts as a confinement barrier that opens
further the minigap in the proximitized region. The microscopic reason for this re-
flection can be related to a mismatch between k-vectors due to the different graphene
orientations. Another possible explanation would be correlated to the presence of
the Moirè pattern since in the previous section we saw how this suppresses the co-
herence.

This approach could be extended for studying electronic scattering across grain
boundaries between various kinds of domains, opening for systematic studies of dif-
ferent matching angles and comparison with theory [196]. The coherence drop sug-
gests a high reflectivity of the GB for electrons-hole pairs that are Andreev reflected
from the Pb island. The GB interface acting as a mirror could lead to the formation of
Andreev-bound states in the case of ballistic transport. In this case, the energy of the
bound states inside the superconducting gap in which energy should depend on the
island-GB distance.

5.4 Confinement of superconductivity by means of a tunable SNS
junction

We studied how a single Pb island induces superconductivity in graphene. The
controlled manipulation of Pb islands opens the possibility of building structures
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Figure 5.5: Asymmetric gap SNS junction conductance. a) SNS junction made of 2 Pb islands
(V = 1V, I = 100pA, differentiate filter). b) Zoom in the junction between the two islands, d is the
gap between the Pb edges. c) Line of spectra along the blue dotted line in b) showing a 2 peaks
structure (V = 6 mV, I = 600pA). d) Deconvolution of c) e) Simulation using Usadel equation by
J.C. Cuevas (UAM) considering ∆G1 = 1.17± 0.02 mV, ∆G2 = 0.77± 0.02 mV, ξ = 76.4 nm. f)
deconvoluted dI/dV spectra with and without the Pb island to show the absence of spurious
superconductivity from additional islands (subsequent stage of manipulation Fig. 5.21c).

with more than one island and investigating S-graphene-S hybrid structures, with
tunable size. The simplest structure is when two triangular islands are brought close
with parallel edges that we will refer to as a resonator. In this case, the proximitized
graphene is limited by two superconductors in one direction and modeling an SNS
junction. We fabricated this geometry using two islands of similar size [Fig. 5.5a],
creating what we refer to as a resonator. In Fig. 5.5c we show the measured dI/dV
spectral line profile measured in the region enclosed by the two islands, along a line
perpendicular to both islands for the initial separation of 107 nm. The spectrum is
characterized by two sets of coherence peaks that decay from each respective island.
The dI/dV shows that the induced gap is different close to each island and, therefore,
the system is an asymmetric S1NS2 junction. In Fig. 5.5f we compare the dI/dV in
the resonator region before and after the complete removal of the Pb islands. This
is an important check to ensure that the observed signals are indeed caused by the
analyzed Pb islands.

To describe this asymmetric junction we do a simple assumption, that the two
islands are inducing a different gap in the graphene. This could be explained by a dif-
ferent interface configuration. In-fact the reflection coefficient of the island-graphene
interface can reduce the gap continuously down to zero energy for perfect reflectiv-
ity (no Andreev reflection) [64]. Therefore the labels 1 and 2 in S1NS2 refer to the
proximitized region below the islands. With the help of by J.C. Cuevas (UAM) the
behavior in a linear SNS junction model with the Usadel equations, i.e. assuming
diffusive promiximity effect. We use as input parameter d = 107 nm and the values

71



5. TUNING THE SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE VIA PB
ISLANDS MANIPULATION

Figure 5.6: Tuning of the SNS junction moving lower island. a-b) The graphs from left to
right; STM topography of two Pb islands that enclose a graphene region (V = 1 V, I = 100 pA),
the bottom island is moved to tune the spatial gap. STS line of spectra along the lines in the
topography maps, note the oscillations and the homogeneity of the d=44 nm configuration
(V = 6 mV, I = 600 pA). Deconvoluted dI/dV. dI/dV simulations of the SNS junctions using
Usadel equations by J.C. Cuevas (UAM) with ∆G1 = 1.17±0.02 meV, ∆G2 = 0.77±0.02 meV,
ξ = 76.4 nm and using the experimental junction lengths.

of the gaps ∆1 = 1.17± 0.02 meV and ∆2 = 0.77± 0.02 meV, adjusted in the simula-
tion changing the island-substrate reflection coefficients. The simulation in Fig. 5.5e
reproduces the two coherence peaks at different energy, that decay closing partially
the gap towards the center of the structure. This behavior reproduces quantitatively
the experimental data and so demonstrate that the coherence length estimated pre-
viously plays a fundamental role. Moreover, this suggests that the resonator is in a
diffusive limit, in this case, probably because the separation between the islands is
bigger than the coherence length.

To explore the dependence of the LDOS in the SNS resonator with the island sep-
aration, we studied the evolution of dI/dV line spectra in the proximitized graphene
between the islands as we reduced their separation using the island manipulation
technique. We pushed one Pb island towards the other [Figs. 5.21a-c] to reduce the
length of the normal region d of the SNS junction. The spectral line profiles in the
junction show, first, the appearance of oscillations at d ∼ ξ. When the junction is
closed further the two distinct gaps disappear from the spectral maps and, instead,
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we observe one single excitation with energy ∆G3 = 0.84 ± 0.02 meV , i.e. between
the two previous gap values. This single gap configuration persist for smaller sepa-
rations d ∼ 44 nm [Fig. 5.21c] giving a single gap spectrum along the junction.

In Fig. 5.21 we report diffusive model calculations for d = 90,70 and 44 nm. The
diffusive framework does not predict dI/dV oscillations and fails describe quanti-
tatively the line-profiles. When the dimensions of the SNS junction become compa-
rable with the mean-free path a transition to a more ballistic-like type of transport
is expected, where the confinement geometry of the system plays an important role.
We can calculate the diffusive mean free path with:

l =
2∆ξ2

ℏvF
, (5.3)

where ξ is the diffusive coherence length, vF = 1 · 106 m/s is the Fermi velocity and
∆ = 1.35 meV is the superconducting gap of Pb. With ξ = 76.5 nm we estimate a
mean free path l = 24 nm that starts to be comparable with the small resonator size.

Ballistic transport in the long junction regime is theoretically characterized by
the presence of multiple Andreev-bound states. In the small junction regime, bal-
listic and diffusive transport give very similar spectral features, making it hard to
discern between the two regimes. In our experiment, we observe a homogenization
of the SNS density of state when the junction size is reduced. This, together with the
deviation from the diffusive Usadel simulation, could be the onset of a transition to
a ballistic system.

5.5 Sub-harmonic excitations structure in proximitized graphene

The coherence peaks at the border of the absolute gap are the main spectro-
scopic features of a superconductor-insulator-superconductor (SIS) junction. These
consist of the creation of a quasiparticle on both sides of the junction with a total
charge transfer of 1e [135]. When the tunneling conductance increases, as the tip
approach, a well-established sub-structure of in-gap states emerges due to multiple
Andreev reflections processes (MARs) [197, 198] and Josephson tunneling [65, 134].
The Josephson tunneling consists of the tunneling of Cooper pairs at zero voltage
between two superconductors [65]. This is characterized by a zero net current at zero
bias, with a negative current peak followed by a positive current peak near zero bias
conductance [134, 199]. This appears as a zero energy peak in the dI/dV spectrum
[200, 201].

The MARs sub-harmonic structure appears in the gap with peaks at energy
2∆/n (n=2,3,...) in the case of a tunnel junction that connects two superconductors
with the same gap. These processes are multiple reflections of order n − 1, involv-
ing an increasing number of Andreev reflections (AR). The situation is more complex
when the two superconducting leads have a different gap as studied by Ternes et al.
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[202]. The excitation mechanisms of such an asymmetric junction is reproduced in
Fig. 5.7 from ref. [202], and involves processes where one AR (first order) or two
ARs (second order) occurs. We label the different gaps of the leads as ∆t, the tip
gap, and ∆p the proximity induced gap, that is always lower than the Pb tip gap.
The onset for first-order MARs is when either ∆t or ∆p gap onsets are aligned with
the respective Fermi levels. Based on the ∆p/∆t ratio, two different regimes are dis-
tinguished. When ∆p/∆t > 0.5 the dominant second order process is (∆t + ∆p)/3.
When ∆p/∆t < 0.5 the second order process ∆t −∆p dominates. This latter process
is peculiar since can only be visualized in a very asymmetric SNS junction, condition
realized in the next subsection for a Pb island corral.

In a proximity system, the gap of the sample is naturally different from the tip
gap, since it is usually lower than the bulk superconducting gap. The AR involved
in MARs processes occurs between the superconducting tip and the normal sample,
which in our experiment is proximitized graphene. Phenomenologically, the poten-
tial drop occurs in the vacuum between the tip and the sample thanks to electron-hole
mixing, needed to convert an electron into a hole (AR). To our knowledge, no existing
theory describes the MARs in a proximitized metal away from the SN interface. The
first possible scenario is that the reflection does not occur at the normal interface but
at the island-graphene one, instead. This, though, would result in a symmetric Pb-
Pb junction with peaks at 2∆/n. A second scenario is the reflection occurring at the
graphene-vacuum-tip interface, here we would have the MARs structure of an asym-
metric junction as shown in Fig. 5.7. This would imply that the proximity-induced
correlations can favor electron-hole mixing far away from the SN interface.

In this section, we present two experiments where we measure proximitized
graphene in high conductance regimes with a superconducting tip. In the two sys-
tems, graphene has different induced gap values leading to different second-order
MARs signals. In the first part, we investigate the sub-harmonic structure in prox-
imitized graphene, identifying the MARs processes through the change of the prox-
imity gap induced by tip-approach. In the second part, we study a triangular region
of graphene enclosed by three Pb islands, where the quasiparticle spatial structure
influences the Josephson current distribution.

Josephson current and multiple Andreev reflections in proximitized graphene

We perform point-spectroscopy decreasing the tip-sample distance to visualize
MARs processes. We do this on a free-standing-like graphene (no Moirè) area, in
a point 15 nm away from the Pb island on the right side of the topography in Fig.
5.8a. In the dI/dV spectrum of Fig. 5.8b, we observe the proximity-induced gap
at V R

p (where R stands for right island) and we see three in-gap features: the MAR
V R
ar1, V R

ar2, and the Josephson peak at zero energy. To rationalize the origin of the
sub gap peaks, we model this system as an asymmetric junction, where we expect
the processes depicted in Fig. 5.7. The superconducting tip has a gap parameter
∆t ∼ 1.35 meV and the proximity gap, obtained by subtracting the tip gap from the
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Figure 5.7: Multiple Andreev reflections in asymmetric junctions. We adapt from [202] the
1st and 2nd-order MARs processes scheme in an asymmetric SIS’ tunnel junction. We adopt
the notation ∆t for the tip gap and ∆p for the proximity gap, with always ∆t > ∆p. a)
Three MARs processes are expected in the regime ∆t/∆p > 0.5. b) Four MARs processes are
expected in the regime ∆t/∆p < 0.5, with the gap sum (∆t + ∆p)/3 process expected to be
faint [202].

position of the proximity gap in graphene, amounts to ∆p = 0.8±0.02 meV. The peak
V R
ar1 lies at the energy of ∆t, thus being the 1st order MAR related to the tip gap. The

peak V R
ar2 appears at 0.8 ± 0.02 mV coinciding with the other 1st order MAR at ∆p.

From this deduce that in this experiment we are in the regime ∆t/∆p > 0.5, resulting
in the MAR (∆t +∆p)/3 as the dominant 2nd order process.

To study the tip height dependence of the sub gap structure we report a series
of spectra approaching the tip [Fig. 5.8b], where the resistance of the tunnel junction
decreases from 60 kΩ to 12 kΩ. In Fig. 5.8d we report the relative energy positions
of the coherence and sub-gap peaks obtained from a Gaussian fit. The energies of
the peaks V R

p and V R
ar1 are not dependent on the tip-sample distance. Differently, the

inner V R
ar2 peak shifts at lower energy while approaching the tip, this is not expected

since this process should scale with ∆p, that is independent from the tip height (con-
stant V R

p ). Instead, we consider that the shift is caused by the gradual appearance of
the mentioned second order MAR which is expected to appear at (∆t+∆p)/3. In the
experiment we do not see the appearance of an additional peak, but instead a shift
in the total contribution that can be caused by the gradual appearance second-order
process. To illustrate this we simulate the MAR at ∆p and a growing contribution
of (∆t + ∆p)/3, each represented by a Gaussian function with center and width ex-
tracted by fitting the experimental signals. The sum of the two contributions indeed
results in a broader peak which maximum shifts in energy as observed in the exper-
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Figure 5.8: Height dependent spectroscopy on proximitized graphene. a) Topography map
of two Pb islands, named Left and Right islands in the text (V = 1 V, I = 100 pA). b) dI/dV spec-
troscopy at high conductance close to the Right island of a) where we see three main features:
that we label V R

p , V R
ar1, V R

ar2 (V = 6 mV, I = 700 nA). c) Point spectroscopy approaching the tip
to graphene close to Right island in a) (V = 6 mV, I = 150-500 nA). d) Zoom of the V R

ar1, V R
ar2

features in c) where the expected MARs processes are highlighted with by the dashed lines.
The dI/dV is normalized to the ∆t value to show the evolution of ∆p. e) Energy position of
V R
p , V R

ar1, V R
ar2 increasing the conductance G=1/R with respect to their initial energy values,

extracted with a Gaussian fit. f) Analogous set as in c) but close to the Left island in a) (V
= 6 mV, I = 250-700 nA).g) Zoom of f) on the MARs processes (analogous to panel d), h) En-
ergy positions of V L

p , V L
ar1, V L

ar2 increasing the conductance, extracted with a Gaussian fit. k)
Simulation of the two processes at ∆p and (∆t +∆p)/3, showing the energy shift to the total
contribution due to the appearance of the 2nd order MAR.

iment. At the lowest resistance the final maximum lies between the energies of the
two MARs processes [Fig. 5.8c], confirming the assignation.

In Figs. 5.8f-h we show an analogous dataset presented before, collected close
to the island on the left of Fig. 5.8a. Here, we also observe similar MARs signals V L

ar1
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Peak Right (µV/µS) Left (µV/µS)
Vp 0.09 ± 0.08 1.15 ± 0.14
Var1 0.007 ± 0.2 -0.45 ± 0.28
Var2 1.43 ± 0.18 2.28 ± 0.2

Table 5.1: Shift ratio of the states reported in Figs. 5.8e-h for the right and left islands calculated
with a linear fit.

and V L
ar2 but now, we detect a notable shift of the proximity gap (V L

p ). It is interesting
to correlate the shift of V L

p with the MARs. The peak V L
p shifts with a rate of 1.15

µV/µS and the V L
ar2 peak with a greater rate of 2.28µV/µS [Fig. 5.8g]. This suggests

that the shift observed in Fig. 5.8d, due to the appearance of the 2nd order MAR is
still present. The higher shifting rate of this second measurement is due to the shift
of V L

p , which affects both MARs processes ∆p and (∆t +∆p)/3. These shifts confirm
the nature of the V L

ar2 sub-gap resonance as an AR process involving the proximity
gap and, therefore, the existence of correlated pairs. Finally, the fact that peak V L

ar1

does not shift confirms its assignment to the MARs scaling with ∆t, since the tip gap
does not depend on the junction resistance.

In conclusion, we observed MARs processes in proximitized graphene. We as-
sign each signal to MARs processes occurring in an asymmetric junction by study-
ing how the coherence peak shift affects their energy. The presence of MARs in the
graphene-vacuum-tip interface shows that the proximity effect in graphene not only
consists of leaking correlated pairs but additionally provides the finite pairing poten-
tial needed to mix electron and hole states far from the Pb-graphene interface. This
stimulates the study of how Andreev-bound states can interplay with the MARs pro-
cesses, in the case of a ballistic junction.

Mapping quasiparticle excitation and Josephson current in a superconducting
corral

In the previous section, we presented the point spectroscopy properties of prox-
imitized graphene where we found the presence of multiple Andreev reflections and
a supercurrent. In this section, we study the same phenomena in a more defined
proximitized region where we confine superconductivity in a corral-like structure.
In the confined region we find a rich spectrum of quasiparticle excitations, Andreev,
and Josephson processes.

The transport properties of an SNS junction [Fig. 5.9a] can be diffusive or bal-
listic depending on the mean-free path and junction dimensions. In the small SNS
junction limit, it is not easy to disentangle between the two behaviors. In fact, both
a diffusive Usadel approach and a ballistic Bogoliubov de Genens (BDG) approach
can describe the density of states. In Fig. 5.9b we show the calculated density of
states along the normal region of a diffusive SNS junction done by J.C. Cuevas. The
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Figure 5.9: Local DOS in an SNS junction in the diffusive and ballistic regimes. a) Scheme
of an SNS junction with infinite S leads. b) Density of states obtained with the diffusive Usadel
model along the N part of an SNS junction, calculated by J.C. Cuevas [205]. c) Wavefunction
of the Andreev bound states in a ballistic SNS junction, calculated with a Green function ap-
proach, adapted from [203]. d) Electronic Andreev eigenmodes of a triangular normal region
embedded in a superconductor, calculated with Green functions, adapted from [204].

LDOS map shows the minigap onset as a peak in the center of the junction, while
the bulk superconductor quasiparticle peak penetrates in the normal region for a dis-
tance in the order of the coherence length. In a ballistic case, as shown in section
2.3, the sub-gap structure is discretized and the wavefunction is expected to show
multiple eigenmodes that reflect quasiparticle interference in the structure [68, 70].
This regime has been simulated by Nakayama who solved the BDG equations for the
1D problem. He obtained the spatial distribution of wave function amplitude for the
discrete set of confined Andreev bound states and found that, for example, the first
eigenmode has a maximum in the center reproduced in Fig. 5.9c from [203]. The ge-
ometry of the confinement determines the spatial distribution of the eigenmodes. For
example, for the case of a confining triangular structure of a normal metal embedded
inside a superconductor, Stavropoulos et al. obtained the distribution of the Andreev
states shown in Fig. 5.9d, which resembles states of a triangular quantum box [204].

A conventional LT-STM can be used to map the Josephson current (or Josephson
conductance) mapping spectroscopy at zero energy. The mapping of the Josephson
current is related to the Cooper pair density in a superconductor and mapping the
spatial distribution of its amplitude with STM has provided insight into the field
of unconventional superconductors [206–209]. In conventional superconductors like
Pb, the very high phase stiffness and the high coherence length results in a spatially
homogeneous pairing density [210]. Instead, Cho et. al. in [210] observed a strong
spatial modulation of the Josephson peak in Iron-based superconductors and they
found a strong correlation with the height of the coherence peak. The Josephson
maps show spatial modulations with characteristic lengths comparable with the co-
herence length (size of Cooper pairs), which is interpreted as an intrinsic superfluid
inhomogeneity.
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Here, we study a confined Pb island system on graphene mapping the coherence
peaks and the multiple Andreev reflections (MARs). We find that the confinement
induces a spatially modulated quasiparticle excitation that is strongly correlated with
the Cooper pair density visualized through Josephson peak mapping.

Figure 5.10: Proximitized graphene in a triangular Pb corral. a) Topography image of three
Pb islands forming a corral that encloses a triangular graphene region (V = 1V, I = 100 pA). b)
Zoom in on the enclosed region, Moirè pattern explained in the text. c) Spectra in the border
(blue) and in the center (orange) of the region in b), we label the two signals Vp and Vc (V = 5
mV, I = 500 pA). d) Deconvolution of the spectrum in c). e) Line of spectra along the green line
in b) showing the distribution of the two signals highlighted with the arrows.

Through the manipulation of the Pb islands, we can form closed structures that
we refer to in the following as corrals. In Fig. 5.10a we show a corral enclosing a
triangular region of graphene. The zoom-in of Fig. 5.10b shows a Moirè pattern
formed between the second and third graphene layers. The topmost layer is thus
free-standing like graphene. The spectrum inside the corral in Fig. 5.10c and the
deconvolution in Fig. 5.10d shows a double peak structure which component we will
refer to as peaks Vc and Vp. The first lies close to the Pb bulk coherence peak and has a
larger amplitude close to the islands, the latter is more prominent in the center of the
corral. This is shown in the line of spectra of Fig. 5.10e, where Vp dominates over the
center of the corral, while Vc extends from the edge of the Pb islands, disappearing
in the center.
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Figure 5.11: Formation of a triangular corral. a) Corral formed by bringing in proximity three
Pb islands of different size. The triangular region between them is not fully enclosed by Pb
islands. b) Corral closed after manipulation of the island in a) as indicated with an arrow.
This process closed completely the corral. c-e) Three manipulation stages of the corral. Three
area of the three corrals amounts to where the average triangle heights of the regions are h =
60,45,20 nm. f) Spectra in the center of the corral in the various stages show a shift of the inner
component Vp (V = 4 mV, I = 400 pA, the tip gap does not change between the manipulation
stages).

To investigate the nature of the two peaks we modified the corral size by moving
one of the islands towards the corral center as shown in Figs. 5.11a-b. In this manner,
we manipulate the corral in three stages shown in Figs. 5.12c-d-e and measure dI/dV
spectroscopy in the center. In Fig. 5.11f we show as the peak at Vc remains at the
same bias and increases in intensity upon closing the corral. This is in line with the
identification of Vc as related to Andreev processes to the bulk Pb gap. The peak
Vp interestingly shifts at higher energy when the size of the corral reduces. This
behavior is expected in proximitized systems because the Thouless energy depends
on the inverse of the junction dimension ETh = ℏD/d2. The last manipulation step
does not produce any change in Vp since most probably the corral size is already
below the coherence length.

Focusing on the largest stage of the corral, we spatially map the dI/dV inside
the enclosed graphene region by measuring a squared 64x64 grid of spectra. This grid
cannot cover the whole graphene region [red dashed line Fig. 5.12a] due to the tip-
shading effect, however importantly includes the center of the corral. The reference
spectra for the outer and inner parts are in Fig. 5.12b, the significant energies are the
inner quasiparticle peak Vp that ranges from 1.90±0.05 mV (center) to 2.00±0.05 mV
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Figure 5.12: Spatial distribution of the two corral resonances. a) The enclosed graphene
region of the corral. We mark in red the real corral size, and indicate with black dashed lines
the center of the corral.b) dI/dV spectra in the center and in the edge of the corral, showing
the minigap Vp and the coherence peaks Vc. c) dI/dV map extracted from a spectral grid at
1.90 mV showing the spatial distribution of the minigap edge peak Vp (V = 6 mV, I = 1.15 nA).
d) Another grid cut at 2.54 mV showing the coherence peak Vc spatial distribution.

(side) and Vc = 2.54 ± 0.05 mV. We report the corresponding dI/dV maps extracted
from the grids in Fig. 5.12c-d and we see that the Vp intensity maximum is located
in the center of the corral, while the coherence component Vc is located in the outer
part of the corral. If we compare this scenario to the theoretical picture of Fig. 5.9, it
matches both the diffusive and ballistic regimes. In the diffusive regime, the V peak
corresponds with the minigap edge and Vc with the coherence peak. In the ballistic
regime, Vp and Vc correspond to confinement-induced Andreev bound states in the
corral, having inverse spatial distributions [Fig. 5.9d].

The Josephson peak and the MARs processes can be seen when the tip is brought
closer to graphene. In Figs. 5.13a-c, we show dI/dV point spectroscopy in the corral
center, where the tip is approached at resistance (R) from 1.27 MΩ to 0.23 MΩ. In Fig.
5.13c we report a zoom on the sub-harmonic conductance, where we see three promi-
nent features: the Josephson tunneling peak at zero bias and an Andreev reflection
signature at ±Var ∼ 0.8 ± 0.05 mV. In Fig. 5.13d we report the energy position in
the function of the conductance, where we see that Var shifts at lower energies while
approaching the tip while the Vp signal shifts at higher energies, with the same rate.

Like in the previous section, we can rationalize the observed signals using the
asymmetric SNS junction model described in [202]. This describes the sub-gap har-
monic structure of a junction between superconducting leads with different gaps ∆t

(tip gap) and ∆p (proximity-induced gap). Differently from the previous section, here
we are in the regime of ∆p/∆t < 0.5. Therefore the expected processes are 1st order
MAR at ∆t, ∆p, observed in the last section, only a faint contribution of (∆t +∆p)/3
and the peculiar 2nd order MAR at ∆t − ∆p, that was forbidden in the previous
section experiment.

81



5. TUNING THE SUPERCONDUCTING PROXIMITY EFFECT IN GRAPHENE VIA PB
ISLANDS MANIPULATION

Figure 5.13: Height dependent spectroscopy and Josephson mapping of the corral. a) Set
of spectra at different tip heights in the center of the enclosed triangular corral region (V = 6
mV, I from 0.47 nA to 2.6 nA, R decreasing linearly from 1.27 MΩ to 0.23 MΩ). b) Zoom of
the spectra centered around the positive Vp peak in a), which shifts to higher energy. c) Zoom
in on the area centered around 0 V in a). The Josephson peak increases while the Andreev
reflection Var peak decreases and shifts to lower energies. d) Distance dependence of the
peak position of Var and Vp as the tip approaches. e) Map at zero energy of the Josephson
peak showing a maximum in the center of the corral. f) Spatial distribution of the Var peak,
obtained by mapping the amplitude of the dI/dV spectra at 0.8 mV. On the right, the scheme
of the ∆t −∆p MAR process from [202].

All the expected MARs are highlighted by dashed lines in the dI/dV of Figs.
5.13a-b, calculated starting from ∆t = 1.35 meV and ∆p/e = Vp − ∆t/e = 0.55 mV.
The MAR process at ∆t is located at similar energy of the minigap Vp, therefore is
hidden by the quasiparticle resonance that prevails on the low Andreev signal in Fig.
5.13a. The (∆t + ∆p)/3 process is expected to be weak in the ∆p/∆t < 0.5 regime
[202], explaining why is not observed here. The most prominent Andreev reflection
signature we at Var ∼ 0.80 ± 0.05 mV coincides with the ∆t −∆p process. This is in
line with the observed shift of Var to lower energy, correlated with the opposite shift
of Vp [Fig. 5.13d]. The ∆t−∆p process consists in a double Andreev reflection where
the quasiparticle tunnels relatively deep into the ∆p continuum. Differently in the
process ∆p the quasiparticle tunnels at energy right above the quasiparticle peak Vp,
where in our experiment we observe a conductance dip. This probably suppress the
process ∆p, expected at ∼ 0.55 meV [Fig. 5.13c].
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In the same 64x64 grid presented in Fig. 5.12, we extract spatial dependence of
Var and the Josephson current in the corral. The spatial dependence of Var shows a
maximum in the center, consistent with its assignation with the MARs process ∆t −
∆p that follows the distribution of ∆p = Vp −∆t reported in Fig. 5.12b. In Fig. 5.13f
we show the energy cut at E=0, showing that the Josephson tunneling amplitude
has also a maximum centered inside the corral. We have strong evidence that the
quasiparticle peak at Vp is caused by confinement since its energy scales with the size
of the structure and the intensity map agrees with reported calculations [203, 204].
The modulation of the intensity of the quasiparticle peak Vp reflects in the pairing
density, modulating the Josephson tunneling peak, which acquires the same spatial
distribution.

In the picture where the Cooper pairs are leaking from the superconductor to the
normal metal, the highest paring density, namely Josephson tunneling, is expected
close to the S-N interface. In our Pb superconducting corral on graphene, we see that
the Josephson tunneling is strongly modulated by the quasiparticle intensity distri-
bution, leading to a maximal pairing density in the middle of the corral. This phe-
nomenology still has no existing theory and is of high interest for unconventional
superconductivity [210], where an inhomogeneous superfluid density is correlated
with thermal phase fluctuations and glassy superconductivity [211, 212]. The corre-
lation of the Josephson peak with the quasiparticle peak establishes a confinement-
engineered Cooper pair density. This is of fundamental interest since it opens up
the study of how a different density of Cooper pairs can affect magnetic impurities
eventually increasing the impurity-superconductor coupling.

5.6 Magnetic field induced in-gap states in a closed Pb corral on graphene

Quantum corrals are one of the most beautiful experiments done in STM giving
access to the quantum coherent nature of electrons [213, 214]. These experiments
were successful thanks to the atomic manipulation capability of an STM. Previously
we have shown that we can induce a strong proximity effect by confining graphene in
the closed corral. Superconducting loops, which are analogous to our Pb corrals, are
at the basis of superconducting quantum interference devices (SQUIDs), that found
extensive application as magnetic field sensors [215, 216]. These are superconducting
loops interrupted by weak links, usually a proximitized normal part or a small barrier
[217]. With an external magnetic field, a phase gradient along the loop gives rise
to a monotonic closing of the gap in the weak link [Fig. 2.6b]. This effect has been
observed by STM, where the phase-dependent density of states is probed in the weak
link along the superconducting ring [36]. Another effect of the magnetic field is the
formation of vortices. Vortices induced in material with non-trivial topology can
induce topological states [218, 219]. It is known that Pb islands behave as type-II
superconductors [220, 221], showing the presence of vortices like the one shown in
Fig. 5.14. When a magnetic flux of at least ϕ0 penetrates a proximitized normal
metal, a vortex feature can develop in the normal part [64, 222]. To describe vortex
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Figure 5.14: Abrikosov vortex on a Pb island on graphene. a) Topography of a Pb island on
C-side graphene (V = 1 V, I = 100 pA). We impose a dI/dV map of the vortex as a guide to
localize it on the island. b) Series of line profiles at different magnetic fields (0-250 mT) along
the dashed line in a), with respective deconvolutions (∆t = 1.35 meV). At 100 mT a vortex
is generated in the island, at 150 mT two vortices are present. At 250 mT only the tip gap is
visible. c) dI/dV map of the vortex at energy 2∆Pb and magnetic field 100 mT imaging the
suppression of the coherence peaks (V = 4mV, I = 400 pA). d) dI/dV map of the vortex at V =
∆Pb and 100 mT, the hexagonal shape of the vortex is due to the Fermi surface anisotropy. e-f)
dI/dV maps at 150 mT showing a ring-like structure, probably composed of multiple vortices
(dI/dV maps at V1 = 1.3 mV and V2 = 2.5 mV, stabilization at V = 4 mV, I = 400 pA ).

states in normal metals, the term Josephson vortices was coined, which is defined as a
region enclosing a magnetic flux quantum, without a net current circulating through
it. Although progress has been made in the identification of vortexes in proximitized
normal metals [223–225], their possible presence in proximitized graphene remains
an open question.

Here, we study the magnetic field dependence of the LDOS inside a corral
made of Pb islands, constituting a superconducting ring, lying on a normal metal
(graphene). This is a very peculiar geometry since the ring itself induces super-
conductivity in the inner metallic part, thanks to the efficient contact and reduced
dimensions. This is a nice platform to investigate flux penetration in proximitized
graphene, where no evidence of superconducting vortices has been reported to date.
To address this we map the sub-gap structure inside the corral with an applied mag-
netic field out of the plane. This shows the presence of two regimes, depending on
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the magnetic flux penetrating the ring, where we observe either in-gap induced res-
onances or vortex-like signatures.

We build the closed corral structure in Fig. 5.15a joining 5 Pb islands with the
manipulation technique. A zoom in the corral is shown in Fig. 5.15b resolving mul-
tiple domains in the enclosed graphene area. We restrict our analysis to the lower
domain because this is free-standing like graphene, i.e. there is no Moirè pattern.
The spectrum in the corral [Fig. 5.15c] presents one quasiparticle peak resonance Vp
at similar energy than the bulk Pb gap. The deconvoluted spectrum in Fig. 5.22d
shows a well-developed proximity mini gap, very similar to the Pb bulk. Its spatial
distribution, plot in the line profile of Figs. 5.22e-d, shows a homogeneous induced
gap along the corral at zero magnetic field.

We estimate the amount of magnetic field that can penetrate inside the corral.
In superconductors the magnetic flux is quantized in multiples of ϕ0 = h/2e, the
quantum of magnetic flux. The magnetic field flux in the corral is ϕ = B · A, where
A ∼ 9000 nm2 is the area of the corral and B is the magnetic field value. From
this estimation, to have 1 flux quantum penetrating the corral the magnetic field has
to go higher than ∼ 200 mT. This is the theoretical minimum value to observe flux
penetration inside the structure.

The magnetic field dependence data were collected for B ranging from 0 to 300
mT. We start by comparing in Fig. 5.16a a set of dI/dV spectra measured at the center

Figure 5.15: Five islands Pb corral DOS. a) Closed corral composed of 5 Pb islands (V =
1 V, I = 100pA). b) Zoom of the enclosed graphene region, the lower part without a Moirè
pattern was studied (V = 1 V, I = 100 pA). c) Spectra of the Pb islands compared with the
proximitized region (V = 5 mV, I = 500 mV). d) Deconvolution showing the graphene proximity
gap. e) dI/dV line profile in the corral along the dashed line in b) (V = 5 mV, I = 500 mV). f)
Deconvolution of the data in e).
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Figure 5.16: B field dependence measured in the center of the corral. a) Spectra in the corral
center for 0, 50, 200, 300 mT magnetic fields (V = 5 mV, I = 500 mV). A vertical offset is applied
for clarity and the dashed lines serve as guides for ∆t and Vr b) Deconvoluted data from b),
visible the in-gap state Er ∼ 0.25 meV and the proximity gap Ep ∼ 1.1meV. To deconvolute
we use the bulk Pb superconducting gap ∆t/e = 1.35 mV, considering it constant for the small
range of magnetic fields [226].

of the at 0, 50 mT, 200 mT, and 300 mT magnetic field values, respectively. Remark-
ably, at 50 mT we observe the appearance of a sharp resonance Vr, with an energy
maximum located at 1.54 mV. This value lies between ∆t and ∆t +∆p, meaning that
Vr lies in the proximitized gap. As shown in the deconvoluted spectrum in Fig. 5.16b,
the resonance is well evident after the deconvolution process.

With a 50 mT applied magnetic field, the applied flux is below the value of one
quantum of magnetic flux, and theoretically, no magnetic flux is penetrating inside
the structure. To induce flux penetration we raise the B field to 200 mT, at ∼1 quan-
tum flux value. In the dI/dV at 200 mT Fig. 5.16, we observe that the spectral feature
appears now at V = ∆t, which in the deconvolution corresponds to a peak located
at Fermi energy of the sample. This is a signature of magnetic flux penetrating the
corral and possibly generating a vortex. Increasing the magnetic field at 300 mT we
observe a flattening of the density of states. This indicates that graphene almost re-
covered a normal metal density of states, although a 300 mT magnetic field still does
not quench completely superconductivity.

The evolution of the deconvoluted LDOS in the center of the corral is shown
in Fig. 5.17b for magnetic fields between 0 and 300 mT. This remarkably shows
three regimes. First, at zero fields, the proximity gap in graphene is fully devel-
oped. Second, we observe the appearance of subgap resonances at Vr whose inten-
sity decreases until disappearing. At last, we observe the appearance of a peak at
zero energy attributed to the onset of flux penetration in the corral. This signature
fades away when increasing the field, a consequence of the gradual quenching of
superconductivity by the magnetic field.

We studied the spatial distribution of the LDOS across the graphene in the corral
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Figure 5.17: Spatial dependence of the dI/dV inside the corral under magnetic field. a)
Topography of the inner area of the corral with the line-profile dashed line. b) Magnetic field
dependence of the dI/dV in the corral center for the extended magnetic field range. Marked
by the arrow the point where ϕ ∼ ϕ0. c-e) Line profiles of dI/dV spectra along the line in a)
for B=50, 200 and 300 mT. (V = 2 mV, I = 200 pA)

by deconvoluting the superconducting tip from dI/dV spectra measured along the
dashed line of Fig. 5.17a for various applied magnetic fields. At 50 mT we observe
[Fig. 5.17c] that the in-gap state Vr has small spatial dependence, fading slightly
close to the Pb islands. For 200 mT, the 0 energy state [Fig. 5.17d] shows a modulated
intensity along the corral length. This has a maximum in the center of the corral,
where the penetrating magnetic flux is concentrated. Finally, at 300 mT the intensity
of the 0 energy state is drastically reduced [Fig. 5.17e], although some density of
states is still visible, indicating that superconductivity is not completely destroyed.

We rationalize the experimental finding with two different phenomenologies.
The first involves a phase gradient developed along the corral when magnetic flux
ϕ < ϕ0. The second considers flux penetration that leads to Josephson vortex forma-
tion in graphene at ϕ > ϕ0.

We start with the regime ϕ < ϕ0, where we observe an in-gap resonance at
energy Er/e = Vr − ∆t/e = 0.23 mV. When a B field is applied on a ring, a phase
gradient is developed along the ring to expel the magnetic flux [227–229]. Since our
corral is made of separate islands, we approximate it as a superconducting ring made
of different sections connected by weak links as sketched in [Fig. 5.18a]. In this
configuration, the major phase change occurs in the weak links, which we consider
similar to each other, thus giving all the same phase changes. The phase change in a
single island is negligible with respect to the weak links. In this approximation the
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five islands have respectively 0, 2π
5 , 4π

5 , 6π
5 , 8π

5 , closing in a loop of 2π due to the flux
quantization of a ring [230].

Figure 5.18: Phenomenological model based on phase gradient. a) Scheme of the corral di-
vided into 5 sections (islands), with B>0 a phase gradient develops along the structure closing
at 2π. The average phase difference between all islands of the corral for different islands num-
bers. For a ∆ = 1 meV the induced minigap is Vr = ∆/e−∆φ/e.

Let’s recall that in an SNS junction, the gap size depends on the phase differ-
ence between the superconductors. In a diffusive system, the electron pathways lose
information about the geometry and the minigap depends only on the Thouless en-
ergy. We suppose that once the phase is locked in a loop, the Thouless energy is given
by the average phase difference between all the island sections. The minigap asso-
ciated with the Thouless energy closes when the phase difference is π as visualized
in Fig. 2.6b. We perform the calculation of the average islands phase difference for
corrals with an increasing number of sections. We plot the resulting average of the
phase differences between the islands ∆φ/π in Fig. 5.18b. For 5 islands the result is
∆φ5/π ∼ 0.77, which decreases approaching a saturation value for increasing islands
number. Considering a minigap completely open at ∆φ = 0 and completely closed
at ∆φ = π, the theoretical expected minigap value is ET

r = ∆(1 − ∆φ5/π). In our
deconvoluted data in Fig. 5.16b, the deconvoluted position of the proximity gap Vp
in the corral is ∼1.1 mV, this results in an expected theoretical minigap of ET

r ∼ 0.25.
The in-gap state is at Er = eVr −∆t ∼0.25 meV, indeed matching with the resulting
minigap extracted from the simple model.

In the regime where ϕ > ϕ0 we observe the sudden appearance of 0 energy
conductance. The Josephson vortices are an analogy with the more conventional
Abrikosov vortices of type-II superconductors [231]. These are characterized by zero
energy bound states for electrons in the vortex core, described by Caroli deGennes
and Matricon (CdGM) [232]. The CdGM states can be imaged by STM and present
a characteristic energy splitting that increases with the distance from the vortex core
until the CdGM states merge with the gap in superconductor outside the vortex [233–
235]. The sudden appearance of 0 bias dI/dV signal at ϕ = ϕ0 suggests the formation
of a vortex due to the penetration of flux in the corral. In the line profile of Fig. 5.17d

88



5.7. Collective proximity effect in Gr/SiC0001 (Si-side)

we see that the maximum of the 0 energy signal is in the center of the coral, but the
characteristic splitting of the CdGM peak going away from the vortex center is not
visualized [e.g. see Fig. 5.14b at 100 mT]. We attribute this to two observations. First,
since the measurement is done entirely in the proximitized graphene part, we are not
imagining the transition between the inner vortex normal core and the superconduc-
tor, that is where the zero energy state dispersion is usually observed. Second, the
radius of a vortex developed on the Pb islands is ∼ 200 nm, larger than the confined
area of measurement in the corral. The observed vortex is different than conventional
Abrikosov vortices, motivating further research and theoretical modeling.

In conclusion, we realized and probe locally for the first time a superconducting
corral on graphene, that shows an intriguing magnetic field response. Below the
flux penetration onset, the dI/dV is dominated by an in-gap resonance, for which
we propose an explanation based on the phase gradient developed along the ring.
Sweeping up the magnetic field, we observed a sharp transition that is a hallmark
of flux penetration. The prominent 0 energy peak in the deconvoluted DOS and
the spatial distribution consist in a piece of evidence of a Josephson-like vortex in
graphene. However, the observation of a well-defined vortex core remains elusive.
This platform opens for further investigations, e.g. the possible interplay of the in-
gap features with Yu-Shiba-Rusinov states generated by magnetic impurities.

5.7 Collective proximity effect in Gr/SiC0001 (Si-side)

The proximity effect induced by flat superconducting islands on thin conductors
has been studied in several substrates, from 200 nm Al islands on Gr/SiC0001 [35], or
monolayer Nb2Se on HOPG [236]. All these studies have in common that the super-
conducting coherence length is smaller than the inter-island distance. This caused a
relatively inhomogeneous proximity effect depending on the amount of area covered.
It has been predicted that when superconducting islands are uniformly distributed
on a fraction of the surface area at distances comparable with ξ, superconductivity
can be induced uniformly [237] giving rise to a metal-to-superconductor transition
[238]. The theoretical pre-requisites for having this transition in graphene are sum-
marized in [237]:

• large gate potential, Fermi level away from charge neutrality point (Dirac point);

• low electron density with respect to metals, to avoid inverse proximity effect
and suppression of Pb island superconductivity;

• regular island array, irregularities smear and reduce the gap.

Such a transition was observed in granular superconductors [239] or in pat-
terned superconducting arrays [39] in transport configuration, where the gate voltage
can be easily tuned. It was shown that at the charge neutrality point the resistance of
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the substrate increases and the superconducting state collapses [39]. The conditions
to have a 2D superconductor are very well met on the Si side of Gr/SiC0001 graphene
because its strong n-doping shifts the Dirac point 200 meV below the Fermi level.
On the C-side, which is at charge neutrality, we are on the metallic side [237]. The
Pb proximity in Gr/SiC0001 substrate without graphene was studied and showed
strong variations of induced gap [166], this supports that the superconductivity is
confined in 2D in the graphene layer.

In this section, we present a signature of the collective proximity effect induced
by dispersed Pb islands graphene. This system shows uniform superconducting
properties at a large scale that only weakly depend on the local arrangement of Pb is-
lands. To corroborate our analysis we show how changing the island’s density affects
the induced superconductivity. Finally, we compare the proximity effect induced on
the C-side (presented in the last sections) and the Si-side of Gr/SiC.

In Fig. 5.19a we show a topography map of bare Gr/SiC0001 where the terraces
are very large with no grain boundaries, in contrast to the C side. The main difference
between this side and the C-side resides in the position of the Fermi level in graphene
(doping), that the C side is at the charge neutrality point and the Si side is above the
Dirac point (n-doped). This is shown in Fig. 5.19b, where the spectrum recorded
on pristine Gr/SiC0001 graphene shows the Dirac point as a depression of density
of states at -200 mV, while flat bands singularities are frequently seen on the C-side
[179, 180]. As a reference for superconductivity, we report in Fig. 5.19c a spectrum in
Gr/SiC0001 bare surface measured with the same Pb superconducting tip used for
the following measurements. In the same graph, the spectrum obtained by deconvo-
lution from the dI/dV plot the DOS of a superconducting tip with ∆t/e = 1.35 mV
shows a flat, metallic density of states.

Figure 5.19: Topography and spectroscopy of bare Gr/SiC0001 (Si-face). a) Topography map
of the bare Si0001 (Si side) surface (V = 1V, I = 100 pA). b) Long-range dI/dV spectrum of the
bare Si0001 surface showing the Dirac point depression at V = −220 mV, indicating n-doping
(V = 1V, I = 1 nA). c) Spectra of the bare surface measured with a Pb superconducting tip and
imposed deconvolution showing no sign of superconducting gap.
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Non-decaying minigap in Si-face graphene/SiC

The Pb growth works on Si-side Gr/SiC in a similar way as explained for C-Side,
resulting in 10-15 ML thick islands. In Fig. 5.20a we show an overview topography
of SiC0001 after Pb deposition. The substrate is covered with crystalline Pb islands
distributed on the surface forming a random array. To simulate ideal conditions of
one island proximitizing the graphene we chose the area of Fig. 5.20b and removed
the Pb islands around it by pushing them away with the STM tip, to measure the
proximity effect resulting from the island left in the area [Fig. 5.20c]. The spectrum
in the emptied region [in Fig. 5.20d] shows pronounced peaks at Vp = 1.60 mV, and
in the deconvolution of Fig. 5.20f we observe a clear gap at ∆p = 0.16 meV induced
in graphene [see Fig. 5.20 for details on the minigap estimation]. The dI/dV spectra
were mapped going away from the Pb islands, following the line in figure Fig. 5.20c.
In Fig. 5.20d the line of spectra is plotted in a color-map and, remarkably, no visible
decay neither of the minigap nor of the intensity of the coherent peaks is observed.
In the deconvoluted data of Figs. 5.20f-g we see that the remanent minigap for the
deconvolution is indeed extending with no substantial modification.

The fact that the observed features are independent of the distance hinders the
estimation of the coherence length with the method used for the C-face Gr/SiC. We
will discuss in this chapter that this absent minigap decay is explained by the pres-
ence of a distributed array of islands analogous theory used to explain Tin supercon-
ducting arrays on graphene [39]. We will see that this minigap depends on the global

Figure 5.20: Virtually homogeneous proximity gap in Si-face Gr/SiC. a) STM topography of
the Si side of SiC graphene after Pb deposition (V = 1 V, I = 30 pA). b-c) Zoom of the region
highlighted in blue in a), where all Pb islands except one were moved away. c) dI/dV spec-
troscopy of the proximitized region showing a minigap edge at ±(∆s + ∆t) and the thermal
excitation at ±(∆s − ∆t) (V = 4 mV, I = 400 pA). d) Line of dI/dV spectra recorded mov-
ing away from the island in b), showing that the induced minigap stays constant for 250nm.
f-g) Deconvolutions of d) and e) that shows the graphene minigap of ∆30%

p ∼ 0.15 meV. We
estimate the minigap as the spectral energy value at 0.8 GN value of conductance after normal-
ization to the normal conductance GN . We will use always this method to compare different
minigap sizes.
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properties of the sample, such as the island coverage, while the 2∆Pb onset depends
more on the local details of the system, appearing when graphene is confined by Pb
islands.

Confinement dependence of minigap and coherence peak

Here, we study the effect of confining the proximitized graphene between two
islands, thus forming an SNS junction. A good approximation of an SNS junction in
our system is the resonator in Fig. 5.21a. Using the island manipulation technique
we tune the mutual distance between two islands. In Fig. 5.21a we report the STM
topography maps of the different manipulation stages for spatial gaps between the
islands of 115, 102, 69, and 52 nm. In Fig. 5.21b we show the size-dependent spec-
troscopy, where each spectrum was measured at a point close to the right island. The
peak at the bulk Pb onset (2∆Pb) increases substantially when closing the resonator,
this affects the spectral shape of the gap going from the single peak at the minigap
onset to a double peak structure. This detail is clear in the deconvolution in Fig. 5.21c
where we see that the width of the minigap is also slightly affected by opening from
∆115nm

p = 0.18 meV to ∆52nm
p = 0.25 meV. The spectral shape changes significantly,

with the quasiparticle peak weight transferring from the inner peak to the outer peak.

Figure 5.21: Tunable resonators on Si side of SiC graphene. a) STM topography images of
the different manipulation stages, where the Pb island on the left was pushed to close the res-
onator. b) dI/dV spectroscopy in the resonators close to the right island, the dI/dV is constant
in the direction perpendicular to the edges (V = 4 mV, I = 400 pA). Closing the resonator the
direct proximity peaks at 2∆Pb are enhanced. c) Deconvoluted data from b) that shows a slight
variation of the minigap from ∆115nm

p ∼ 0.18 meV to ∆52nm
p ∼ 0.25 meV and change of the

spectral shape. d-e) Line profiles of dI/dV spectra along the lines in a) for the d = 115 nm and
the d = 52 nm. The arrow indicates the onset of the bulk 2∆Pb peaks. f) Density of states at
energy 2∆Pb compared for the small and large island. we performed a summation of around
2∆Pb ± 0.05meV, averaging for positive and negative bias.
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To study the spatial dependence of these features along the resonator we plot in
Figs. 5.21d-e two lines of spectra along the topography maps for the largest and the
smallest resonator sizes. The arrow indicates the position of 2∆Pb, that in the large
resonator shows no peak feature, but only a faint dip, also visible for the isolated
island case presented before. In the narrow SNS junction configuration, instead, we
observe an overall increase in the intensity of the peak 2∆Pb, with a higher intensity
close to the right island (0 nm). If we plot a line cut along 2∆Pb energy (averaged
for positive and negative) we obtain the points in Fig. 5.21f. Here we see that the
intensity of the peak at 2 ∆Pb is fairly constant within the noise level for the case of
a wide resonator. The peak grows in intensity, being more intense close to the Pb
islands. This data points to the different origins of the minigap and the 2∆Pb peak.

Magnetic field dependence of the minigap and the coherence peaks in an SNS
junction

In the previous section, we saw how the minigap edge is only slightly affected
by the confinement. In contrast, we se a trend of the 2∆Pb peak being enhanced in
the confined regions like Fig. 5.23b and not present close to isolated islands like Fig.
5.20d. In this section, we study the magnetic field dependence of the same resonator
presented before [Fig. 5.22a], where additional islands were coupled to the sides to
equal the phase of the two islands. This enhances the signal at ∆Pb and enhances the
minigap from 0.24 meV to 0.35 meV.

We compare spectra on two sites. Inside and outside the resonator to see the
effect of the magnetic field on the minigap and the 2∆Pb onset, separately. As shown

Figure 5.22: Magnetic field dependence outside and inside the resonator. a) SNS junction
where the two leads are connected by Pb. b) Zoom of the dashed line box in a). c-d) dI/dV
and deconvoluted dI/dV spectra from 0 mT to 100 mT inside the resonator (V = 4 mV, I = 400
pA). The minigap is fully quenched while the bulk-induced peaks are still visible at ±2∆Pb.
e-f) At 100 mT magnetic field, at the resonator side, the minigap is fully quenched together
with the direct SNS junction proximity.
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in Figs. 5.22c-e the onset at 2∆Pb is more intense in the middle of the resonator, in
the absence of a magnetic field. The B-dependent spectra are superimposed on the
plots and follow the indicated color scale. The effect of the magnetic field can be
clearly observed in the corresponding deconvolution, in Figs. 5.22d-f. We observe
that the minigap closes gradually with the magnetic field, in the same way, both
inside and outside the resonator. On the contrary, 2∆Pb onset is still visible inside
the resonator, and outside is completely suppressed, confirming again its correlation
with the confinement.

Inside the resonator, the bulk 2∆Pb signature shows only a slight change in re-
sponse to the 100 mT field, a B value that is well below the island’s critical field (200-
300 mT). On the other hand, outside of the resonator, the much weaker 2∆Pb peak
is completely suppressed by the field. Notably, the minigap disappears completely
both inside and outside the resonator, providing further evidence of its different ori-
gin. Feigelman et al. have proposed a model in [237] that predicts that the magnetic
field exponentially weakens the inter-island Josephson coupling. This model pro-
vides an explanation for the observed suppression of the collective proximity effect
minigap in graphene, which reduces the system to weakly coupled Josephson junc-
tions (SNS) that show proximity effect only in confined regions.

Double peak structure of the superconducting proximity gap in a Si-side Gr/SiC
confined region

The dI/dV spectrum in a region of graphene enclosed between Pb islands [Fig.
5.23a] shows a very peculiar double-peak structure [Fig. 5.23b]. The presence of
a double peak structure was already described first by McMillan [69] and then by

Figure 5.23: Double peak structure in Pb confined Si-face Gr/SiC a) Topography map of a
Si0001 graphene region enclosed within Pb islands (V = 1 V, I = 100 pA). b) Spectrum of Pb
Islands and proximitized graphene (V = 4 mV, I = 400 pA). The in-gap features are thermally
activated tunneling processes caused by the tip-sample gap difference. c) The calculated den-
sity of states for a diffusive SNtNS junction varying the thickness with respect to the coherence
length ξ reproduced from [161], where the double peak structure is visible. d) Scheme of direct
and thermally activated tunneling, to interpret the multiple in-gap peaks of b).
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Golubov [161]. In Fig. 5.23c the calculated spectra for a diffusive SNtNS junction
(t=tunnel coupling) are reproduced from [161]. Note that increasing the thickness d
of the normal metal, the peak at 2∆Pb is suppressed, but a dip-like feature survives
for large d. The peak at 2∆Pb is due to Andreev reflections at the energy of the
bulk Pb superconductor and is enhanced by increasing the confinement as shown
previously. While the second peak corresponds to the onset of Andreev conductance
in the graphene and is the proximity-induced minigap edge of graphene. Is also
remarkable the presence of the thermal excitation at ±(∆p − ∆t) that occurs when
the coherent peak of the tip is aligned with the graphene gap [scheme in Fig. 5.23d].
The presence of this excitation is a strong confirmation of the presence of a proximity
gap in graphene.

Minigap dependence on Pb island density

According to the model in Ref. [90], the minigap size ∆p for the collective prox-
imity effect depends both on the average distance between the islands and their size
[237]:

∆p ≈ 2.65ETh

ln b/4a
, (5.4)

in the limit of b >> a, where b is the distance between the islands, a is the island
radius [Fig1 of [237]], and ETh is the Thouless energy. It is intuitive that ∆p decreases
with increasing islands distance and increases with the size of the islands, thus for a
sample with a smaller islands density we expect a smaller induced minigap.

Figure 5.24: Lower Pb amount preparation and comparison. a) Overview topography map
of a new preparation with less Pb coverage than the one presented in Fig. 5.20 (V = 500 mV,
I = 20 pA). b) Isolated Pb island. where additional islands were removed (V = 500 mV, I = 20
pA). c) dI/dV spectra of the islands for reference and in graphene. The thermal component
∆t − ∆p is indicated. c) Spectrum along the dashed line in b) showing again no substantial
decay of the gap. e-f) Deconvolution of c-d) showing the remanent minigap. g) Comparison
of the deconvoluted minigap for different preparations: ∆0%

p ∼ 0 meV, ∆20%
p ∼ 0.08 meV,

∆30%
p ∼ 0.15 meV.
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To test this hypothesis, we repeated a Pb evaporation on graphene with less
coverage, using the same evaporation rate but evaporating 2/3rd of the time. From
the topographic overview in Fig. 5.24a, we can extract a coverage of ∼20%. That
corresponds to about 2/3 of the coverage of the first preparation presented. In Fig.
5.24b, we show an area where all the islands were removed except one. The aver-
age graphene spectrum in Fig. 5.24c shows the thermal feature at ∆t − ∆p and the
minigap coherent peak at ∆t + ∆p. The presence of these two processes sketched
in Fig. 5.23d ascertains the existence of a proximitized graphene gap. A dI/dV line
spectral map in Fig. 5.24d measured along the dashed line of Fig. 5.24b reproduces
the constant gap of the previous preparation. Deconvoluting with a ∆t/e = 1.35 mV
tip shows a constant minigap feature [Figs. 5.24e-f]. The comparison of the minigap
obtained with %20 and with %30 Pb coverage is reported in Fig. 5.24g. The esti-
mated minigaps for the different preparations are ∆0%

p ∼ 0 meV, ∆20%
p ∼ 0.08 meV,

∆30%
p ∼ 0.15 meV, showing that the minigap increases with the coverage, as expected

from equation (4).

The opening of the minigap ∆p is the result of the Josephson coupling of the
array of islands, that scales with the Josephson energyEJ . This quantity is associated
with the transfer of Cooper pairs between two superconducting electrodes and must
overcome the thermal energy (EJ > Et) to induce the opening of a minigap. In a
triangular array of Josephson coupled islands EJ is [39, 237]:

EJ(T = 0) =
πhD

8R□b2 ln
2 (b/a)

, (5.5)

where D is the graphene diffusion coefficient, R□ is the graphene sheet resistance in
units of the resistance quantum h/2e, b is the island distance and a is the island radius.
For our case, we give a rough estimation of EJ considering D ∼ 40 cm2/s from [240]
and a sheet resistance R□ of 0.2-0.3 Ω/□ [241, 242]. The parameters a and b [Fig1 of
[237]], are estimated by analysis of the 1.15um topographic images [Fig. 5.20a, Fig.
5.24a] using WSxM software [126], where we calculate the average island area and
the average next nearest neighbor distance. For the 20% and 30% preparations we
estimate a20% ∼ 25 nm, b20% ∼ 100 nm, a30% ∼ 45 nm, b30% ∼ 120 nm. The result
is E20%

J ∼ 1.27 meV and E30%
J ∼ 1.79 meV, in both cases greater by one order of

magnitude with respect to Et(1.3K) = 0.112 meV.

Discussion and comparison with C-side graphene

It is interesting to compare how the collective proximity changes from C-side to
Si-side graphene. In Si-side graphene, the islands behave as an array of Josephson
junctions, sharing a global phase thanks to the Josephson currents connecting the is-
lands [237]. Ideally, with a perfect array and a phase equal to zero for all the islands,
the induced gap would be equal to the bulk Pb gap. Clearly, we are not in this ideal
regime, and the induced gap is only slightly affected by moving islands locally, as
in the resonator case. This reduced gap can be viewed as similar to magnetic frus-
tration, where a collection of islands stabilize the phase at an intermediate value, in
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Figure 5.25: Proximity comparison between C-face and Si-face Gr/SiC. a) Spectra 200 nm
away from islands extracted from Fig. 5.2b and Fig. 5.20e, blue on Si side and orange on C
side (V = 5 mV, I = 500 pA). b) Deconvolution showing metallicity (absence of gap) on the C-
side and superconductivity on the Si-side, which have different doping (scheme in the inset).

a similar manner compared to a spin ensemble [243, 244]. A major role of the gap
smearing is played by phase fluctuations, which can be thermally generated, or due
to limited supercurrent channels that connect the islands. What limits the inter-island
supercurrent can also be a partial Coulomb blockade due to the weak link between
the islands and the substrate [38, 245] and see Chapter 6. The doping of graphene is
crucial in determining the metallic or superconducting phase. It was demonstrated
that when proximitized graphene is tuned to the charge neutrality point, the collec-
tive superconducting state collapse resulting in a superconductor-to-metal transition
[39, 239, 246].

In the C-side Gr/SiC, the Fermi level is close to the charge neutrality point [179],
thus the proximitized graphene is well into the metal side of the superconductor-to-
metal transition. This is indeed the case since on C-side we observe how the coher-
ence decays exponentially from the island to graphene [Fig. 5.2b]. Differently, on
the Si side, the superconducting gap does not close away from the islands. In Fig.
5.25, we compare the spectra of C- side and Si-side graphene 200 nm away from Pb
islands. On the C-side Gr/SiC we observe the metallic density of states, while on the
Si-Side a developed minigap.

Also, the behavior in confined structures is fundamentally different. In the C-
side the sub-gap structure and the zero energy conductance are dependent on the
confinement [Fig. 5.21] going from a double-gap structure to a homogeneous gap. In
Si-side the confinement affects only slightly the gap size, that in the smallest config-
uration increases the width of the proximitized gap by a small fraction of the bulk
gap. The minigap size is defined by the Josephson array phase, and for the wider
configuration, the gap saturates at the one measured away from the islands.

In conclusion, we created a Josephson junction array without using patterning
or masking techniques. The dependence of the effect with the doping (C-Si side) and
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the density of the island confirms the predictions made in [237] and the transport
measurements in [39] that demonstrate the presence of a 2D superconducting state
confined in graphene with a very homogeneous gap. Apart from a fundamental
advance in the understanding of 2D superconductivity and proximity, the substrate
could function as a novel platform to study superconductivity and magnetism at the
atomic scale.
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6Interplay of Coulomb blockade and
superconductivity in Pb islands on graphene

6.1 Introduction

Size confinement, Coulomb repulsion, and weak electric contact in metallic is-
lands induce the formation of energy gaps between states with different electron
numbers [40–42, 247]. In 1959, Anderson proposed a size limit below which an island
ceases to be superconducting [248]. Below the Anderson limit, the minimum energy
level spacing, called Kubo gap [249], is larger than the superconducting pairing en-
ergy, thus there are no superconducting correlations. This occurs when reducing in
size the superconductor, being a quantum dot the extreme limit, where the level spac-
ing can be in the order of eVs [250]. The size reduction enhances electron-electron
Coulomb repulsion, which competes with the attractive electron-phonon coupling
responsible for superconductivity. The Coulomb interaction can prevail below a crit-
ical size, inducing a superconductor-Coulomb insulator transition with the reduction
of the dimensions [236].

If superconducting correlations can survive in the presence of Coulomb repul-
sion and how this affects the excitation spectra is still an open question. This coex-
istence can be especially interesting in superconductors, whose electron parity (elec-
tron number) is a conserved quantity. The Coulomb repulsion can force the number
of electrons in the system to be even or odd [251–254], inducing quantum phase tran-
sition analogous to the YSR case [255], phenomena at the basis of Majorana q-bits
based on small superconducting islands [30].

Superconducting gaps larger than the bulk value are not always related to the
destruction of superconductivity. For example, a superconducting gap twice the
one of bulk Pb was observed in small Pb islands on STO. This was interpreted as
a substrate-mediated electron-phonon coupling enhancement [256]. Another cause
of gap opening can be the weak electric contact between the nanosized supercon-
ductor and the sample. This is described by Coulomb blockade physics, a successful
framework, adopted to describe many experiments [38, 41, 43, 44, 74, 257]. The main
aspect is a depression of the density of states near zero energy, visible in dI/dV spec-
troscopy at voltages below the charging energy EC = 2e/C, and at sufficiently low
temperature (EC ≤ kbT ).

Here, we study the interplay of Coulomb blockade with superconductivity in
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small Pb islands grown on C-side Graphene/SiC. We found that, for islands with lat-
eral size below ∼50 nm, the charging energy EC has a similar magnitude compared
to the Pb superconducting gap. When the lateral size of our Pb island is below a
critical value (~20 nm) we observe the appearance of a Coulomb blockade gap, as re-
ported by Brun et. al. for Pb islands on HOPG [Fig. 6.1a] [38]. For intermediate-sized
islands, between 20 nm and 50 nm, we observe a strong asymmetry of the coherence
peaks. This asymmetry can be switched by moving the Pb islands on the surface with
the island manipulation technique. The presence of bias and conductance asymme-
tries of the Coulomb blockade gap are usually connected to the excess charge trapped
in the island, which can depend on local variations of in the substrate work function
[41, 74, 258]. For example the spectrum of a metallic island in Fig. 6.1b, reproduced
from [43], was interpreted as caused by the sign change of the excess charge trapped
in the island.

Following these observations, we developed a simple model to describe asym-
metric BCS features caused by the change of excess charge in the island. The latter
shifts the Coulomb blockade gap with respect to zero energy and translates into the
suppression of either particle or hole character of the quasiparticle excitation spec-
trum.

Figure 6.1: Coulomb blockade gap and excess charge. a) a) Volume-dependent Coulomb
blockade gap observed on Pb islands on HOPG, reproduced from [38]. b) Asymmetric dI/dV
on Pb islands on NaCl/Ag111. The asymmetry is tuned is tuned by bias pulsing, which
changes the excess charge trapped on the island, data reproduced from [43].

6.2 Coulomb blockade gap in small Pb islands on graphene

Pb islands with thickness 3-7 nm and lateral size l > 100 nm can be easily grown
on graphene, as shown in chapter 5. These Pb islands present a superconducting gap
of the same size as the bulk Pb crystal gap and a BCS line shape. In Gr/SiC samples
with a higher density of defects, we observe more poly-disperse growth of clusters,
as shown in Fig. 6.2a, with the presence of small crystalline islands (l < 10 nm).
Remarkably, in these small Pb islands we measure a larger absolute gap, for example
as in Fig. 6.2b for an island of l ∼ 18 nm, compared with a large island of l ∼> 50
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Figure 6.2: Large and small Pb islands limits. a) Topography image of Pb islands on Gr/SiC
C-face, highlighting a large and a small Pb island (V = 1 V, I = 100 pA). b) dI/dV spectroscopy
on the two islands in a) (V = 5 mV, I = 500 pA). c) Deconvolution of the spectra in b) showing
BCS-like coherence peaks for the big island and steps for the small island.

nm. Note that the gap lineshape in the former case is different than a BCS line shape,
as one can check by exploring the deconvolution spectra in Fig. 6.2c. In fact, in
the deconvoluted spectrum, the gap edges are visible as bare step features with no
coherence peaks. This gap shape is analogous to the one reported by Brun et. al [38]
[Fig. 6.1a], interpreted as a Coulomb blockade gap. In our case, the particularly sharp
and absolute gap feature is caused by the superconducting tip, which at T = 1.3K is
unaffected by Fermi-Dirac broadening (see section 2.5).

To test the nature of the observed gap, we apply a magnetic field out of the
plane, comparing the behavior of the small and large islands of Fig. 6.2a. Coulomb
blockade coexisting with superconductivity results in the shift of coherence peaks at
E = EC+2∆. Since the superconductivity is suppressed by the magnetic field, the 2∆
contribution to the gap is expected to vanish [73, 257]. In Fig. 6.3a we plot a stacked
color plot with an increasing magnetic field on the large reference island. Both tip
and sample gap close completely at 1.2 T, leaving a depression typical of dynamical

Figure 6.3: Magnetic field dependence of small and large Pb islands. a-b) Stacked dI/dV
spectra at increasing out-of-plane magnetic field for the large and small Pb island of Fig. 6.2
(V = 5 mV, I = 500 pA). c) Energy gap plotted in function of the magnetic field showing the
closing of the gap: ∆ for the small island and 2∆ for the big island.
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Coulomb blockade effects [74, 199]. Sweeping the magnetic field and measuring on
the small island in 6.3a, we also observe an initial gap closing, that saturates at 1.2 T.
In Fig. 6.3c we quantify the gap closing, resulting 2∆Pb for the large island and only
∆Pb for the small island. For the measurements, we used the same superconducting
tip, and in the small island, only the tip gap is contributing to the gap closing while
the sample gap remains unchanged. This suggests that the observed gap in this small
island has pure Coulomb origin, and, thus, Coulomb blockade competes in these
with superconducting pairing.

To probe the presence of superconducting correlations in the islands we perform
point spectroscopy approaching the superconducting tip to each island of Fig. 6.2a.
When the tunneling resistance between two superconductors, tip, and island, is be-
low 1MΩ, a dissipation-less Josephson current flows between the two leads. To have
this effect both the tip and the sample must be superconducting. For the two islands
of Fig. 6.2a we approached the tip reaching the Josephson tunneling regime up to
600 kΩ. In Fig. 6.4 we compare two z-approach experiments with the same resistance
ranges. On the large island, used as a reference, we have a supercurrent while on
the small one, we do not observe any. A possible explanation is that the Josephson
current is Coulomb blocked since it is a 2-electron transfer process for which EC has
to be paid. In contrast to this, Averin et. al [73] predicted that charge fluctuations can
induce Cooper pair tunneling without changing the net charge of the central elec-
trode only if the system is fully particle-hole symmetric. Nevertheless, the absence
of Josephson current in the small islands suggests that at these very small sizes, no
superconductivity survives to Coulomb repulsion.

Figure 6.4: Josephson spectroscopy on big and small Pb islands. a) dI/dV spectroscopy
approaching the STM tip from 2 to 0.6 MΩ on the small where the Josephson peak is visible.
b) At the same tunneling resistance no Josephson tunneling is observed for the small island (V
= 5 mV).
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6.3 Energy gap size dependence and gap asymmetry for intermediate
sizes Pb islands

The large and small island limits are well understood in the framework of BCS
and Coulomb blockade regimes, respectively. Regarding the islands with intermedi-
ate sizes between 20 and 50 nm, the behavior is strikingly different. Here, we explore
the regime of EC ∼ ∆ by measuring the energy gap of many islands and studying
how it scales with the size of the island. In Fig. 6.5a we plot the measured gap against
the lateral size of the islands for around 30 islands. We see that below the critical size
l < 20 nm, the gap opens, as described in the previous section. In Fig. 6.5a we also
see a trend of gap suppression with respect to the ∆Pb line. This is explained by fi-
nite mean energy level spacing, which can be estimated using random matrix theory
[259]:

Espac =
π2ℏ3

e(1.2me)2vFV
, (6.1)

where vF (Pb) ∼ 1.83 · 106 m/s. In Fig. 6.5b we plot eq. 6.1 against the volume and
see that Espac(eV ) ≪ ∆Pb for our smallest island (∼ 400 nm). This allows us to as-
sume a level spacing (Kubo gap) smaller than the superconducting gap. This means
that in the size regime of the islands studied, we are still well above the Anderson
limit (Espac < ∆), and the presence of a finite level spacing results in a slight weak-
ening of ∆. This phenomenon was studied for Pb islands in silicon [44, 260, 261] and
is understood within the BCS framework incorporating the minimum level spacing
[260].

In this intermediate-size regime, we also observe a recurring strong asymmetry
in the coherence peaks. The recurrent line shape of the asymmetric gaps in Fig. 6.5c
show a pronounced coherence peak and broadened conductance step on opposite

Figure 6.5: Statistics of gap size and gap asymmetry. a) Superconducting gap for different
size islands showing a decreasing trend and a sudden opening at the critical size value when
EC ∼ ∆. b) Energy level spacing in a metal estimated from eq. 6.1, the dashed line indicates
our smallest island. c) Asymmetry of positive and negative gap edge conductance shifted ver-
tically (V = 5mV, I = 500 pA). d) Two examples of asymmetric dI/dV with opposite asymmetry.
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bias values. In Fig. 6.5d we show that this asymmetry reaches the maximum close to
the critical size, with both large positive or negative asymmetries.

The spectral asymmetry does not depend on the thickness of the islands or a par-
ticular shape, but only on the size. To test if it is dependent on the island’s position on
the substrate, we perform an island manipulation experiment. We selected the island
in Fig. 6.6a. Which shows an asymmetric spectrum in Fig. 6.6c, and laterally moved
it with the STM tip to another position on the same graphene [Fig. 6.6b]. Upon the
manipulation process the dI/dV spectrum on the island, Fig. 6.6d, remarkably in-
verts its asymmetry, showing reversed features. Removing the effect of the tip with a
deconvolution [Fig. 6.6e], we obtain spectra that show a coherence peak a BCS coher-
ence peak only on one bias polarity, and a step feature on the other side. It has been
predicted that the presence of an excess charge can induce a bias asymmetry between
the coherence peaks at different polarities [251, 255]. Together with the asymmetry
switch, we observe also a slight asymmetry in the bias position of the positive and
negative coherence peak, which also switches upon island manipulation. This type
of switching of spectral asymmetry was also observed in Coulomb-gapped metallic
islands and interpreted as local work function difference on several positions of the
substrate [258] or charging of the islands induced by bias pulsing [43]. In the same
way, we interpret this effect as resulting from an excess charge located on the island,
that act as a local potential gating. This can shift the Coulomb blockade gap that sup-
presses one quasiparticle excitation peak depending on the sign of the excess charge
and produces bias asymmetries.

Figure 6.6: Asymmetry switch upon island manipulation. a-b) A Pb island is manipulated
on the surface of graphene using the island manipulation technique. c-d) The dI/dV spectrum
inverts its asymmetry upon manipulation (V = 5 mV, I = 500 pA). e) Deconvolution shows the
presence of a BCS-like coherence peak and a step typical of the Coulomb blockade gap.

104



6.4. Discussion and conclusions

6.4 Discussion and conclusions

One approach for treating weakly coupled metallic grains like the Pb islands
on graphene is the double barrier tunnel junction (DBTJ) model. This formalism de-
scribes a series of two tunnel junctions: tip-island (1), characterized by resistance RT

and capacitance CT and island-substrate (2) with resistance R and capacitance C, as
sketched in Fig. 6.7a. As introduced in chapter 2.4, the rich phenomenology that this
framework can describe comprehends the Coulomb blockade and the Coulomb stair-
case. A didactic limit considered in [41] is when R << RT , here the position of the
Coulomb gap is EC = e/2C and the first Coulomb staircase step is at Es = e/2CT .
In the limit of small CT , the DBTJ reproduces the Coulomb blockade gap [Fig. 6.7a]
which can be shifted by the presence of an excess charge in the island Q0. As ex-
plained in chapter 2.4, the same result can be obtained in the dynamical Coulomb
blockade (DCB) framework where the capacitance effect enters the P(E) function
through the circuit impedance [38, 74, 262]. Also, a dissipative component of the P(E)
function is present in tunneling experiments, resulting in a gap only visible at mil-
likelvin temperatures [76]. It was recently demonstrated that tuning the tip-sample
distance can lead to a transition from a double junction to a system where one single
junction dominates [39, 258]. While the island-graphene resistance is probably in the
order of the quantum of resistance (12 kΩ), we estimate the typical values of island-
substrate capacitance by fitting the Coulomb gap in the absence of superconductivity
in Fig. 6.7b. This results in a Coulomb gap onset at 1.78 mV bias and a capacitance
C = 350 aF, two orders of magnitudes larger than the typical tunnel capacitances
CT ≤ 1 aF [38, 74], justifying the choice of C >> CT .

To describe the asymmetry raising in the spectroscopy, we consider supercon-

Figure 6.7: Double junction framework and charging energy. a) Scheme of a double tunnel-
ing junction between tip-island-sample. In the graph below, the Coulomb blockade gap (eq.
2.41 for different values of the excess charge Q0. b) Fit of the Coulomb gap of the small Pb
island of Fig. 6.2. c) BCS spectrum dependence on the excess charge Q0 resulting from eq. 6.2.
d) The dashed line are the excitation of a superconductor with Ec = 0, the solid parabolas for
Ec > 0. In black the ground state, in blue the negative bias excitation (∆−/e), and in red the
positive bias excitations (∆+/e) [73].
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Figure 6.8: Fit of the asymmetric gap dI/dV and fit with eq. 6.2. a-b) Island in Fig. 6.6 before
the manipulation (Vshift = 50 µV, ∆+/e = 2.86 mV, ∆−/e = 2.76 mV, (∆+/e+∆−/e)/2 = 2.81
mV) c-d) Fit of the same island of a) after manipulation (Vshift = 90 µV, ∆+/e = 2.70 mV,
∆−/e = 2.88 mV, (∆+/e+∆−/e)/2 = 2.79 mV). The inset shows the shift of the Coulomb gap
caused by Q0, where * stands for multiplication. e-f) Island with a volume of 2123 nm3 shows
a stronger asymmetry with a remanent peak that is reproduced by the fit (Vshift = 170 µV,
∆+/e = 2.83 mV, ∆−/e = 2.49 mV, (∆+/e + ∆−/e)/2 = 2.66 mV). g-h) dI/dV spectrum
on a Pb island of 3202 nm3 showing positive asymmetry (Vshift = 160 µV, ∆+/e = 2.41 mV,
∆−/e = 2.57 mV, (∆+/e+∆−/e)/2 = 2.49 mV). (for all spectra V = 5 mV, I = 500 pA), (for all
topography V = 1V, I = 100 pA)

ductivity and the Coulomb blockade gap as two parallel effects. The Coulomb block-
ade modifies the transmission function of the junction, T (Q0, E), giving a dip in the
density of states even in the absence of superconductivity. This can be written in
terms of a simple tunneling current as:

I(V ) =

∫ ∞
−∞

T (E,Q0, EC)ρs(E,∆s,Γs, Vshift)ρt(E − V,∆t,Γt)[f(E − V )− f(E)]dE,

(6.2)
where ρs and ρt are the tip and sample density of states (described with Dynes func-
tions eq. 2.1). We calculate the T (E,Q0, EC) with the DBTJ model (eq. 2.41, and
convolute it with Fermi-Dirac distribution to add thermal smearing (T = 1.3 K). In
Fig. 6.7c, we plot dI/dv spectra simulated from eq. 6.2 for different excess charges
Q0 and we see that an asymmetry is induced for positive and negative excess charges,
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with suppression of one of the quasiparticle excitation peaks. In this effective model,
what produces the suppression is the position of the Coulomb gap edge with respect
to the coherence peak, while the absolute value of EC is not important since once the
onset of the Coulomb gap is inside the BCS gap stops affecting the coherence line-
shape (as is the case for the large Pb islands). Using this simple model, we fit in Fig.
6.8 the asymmetric spectra for three representative islands. Is interesting to prove
that on the smaller island [Figs. 6.8e-g] the quasiparticle peak suppression is more
pronounced, due to the larger Coulomb gap. We can see this effect comparing the
gaps measured for the islands in Fig. 6.8. In Figs. 6.8a-b the same island is manipu-
lated and the only change we observe is the asymmetry switch with no modification
of the island gap. Instead, for the two islands in Figs. 6.8e-h we observe a lower bulk
gap with a different value for the two islands, due to the different island volumes.

In islands like in Figs. 6.8e-h we observe a remanent peak, visible in the graphs
insets. Comparing the energy of the remanent peak and the coherence peak we find a
bias asymmetry where the intense peak is at lower energy compared to the faint peak.
We interpret this asymmetry on the basis of a gating-dependent bias asymmetry. This
phenomenology is described in Fig. 6.7d where the parabolas are the ground BCS
ground state energy (black) and quasiparticle excited states for N+1 (positive) and
N-1 (negative) excited states [73]. The presence of the charging energy results in
a parabolic dependence on Q0, introducing a gating-dependent bias asymmetry of
the excitations. To account for this we introduce a phenomenological asymmetry
parameter Vshift. The offset is Vshift = 50 µV for the islands in Figs. 6.8a-d and, as
expected, larger for the islands with smaller volume in Figs. 6.8e-h that shows Vshift =
170 µV. In this framework, one of the coherence peaks is partially suppressed by the
Coulomb blockade gap. In Fig. 6.9 we show that the negative bias coherence peak can
be entirely suppressed in a smaller island. The remanent coherence peak at positive
voltage is well described by a BCS lineshape, while the Coulomb edge is located at

Figure 6.9: a) Topography of an island with volume 1780 nm3, (V = 1 V, I = 100 pA). b) dI/dV
spectrum on the island shows a pronounced asymmetry with the coherence peak at 2.98 mV,
the bias offset cannot be estimated since there is no remanent coherence peak (V = 5mV, I = 500
pA).
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high energy due to the large EC . Remarkably the coherence peak at positive is at
3 mV, indicating an expected prominent gating-dependent position of the coherence
peak.

In conclusion, we tune the ratio between the positive and negative quasiparti-
cle excitations by laterally manipulating the island. This is achieved in islands with
EC ∼ ∆ where superconductivity coexists with Coulomb blockade effects. We in-
terpret the asymmetry as induced by local work function modulations of graphene
that induce an arbitrary excess charge (gating) on the island, where the island ma-
nipulation can remarkably allow switching between two asymmetry extremes. The
control of the charge by external gating would allow tuning arbitrarily the particle-
hole weight, which possibly can modulate the supercurrent through the junction.
The understanding of how the charging energy affects superconductivity paves the
way for exploring how other types of quasiparticle excitations e.g. Yu-Shiba-Rusinov
states can interplay with charging effects.
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In this Thesis, I use a set of experimental tools manipulating magnetic atoms,
molecules, and superconducting islands to advance the understanding of supercon-
ducting excitations at the atomic scale. The controlled conditions achieved by STM
allow the use of relatively simple theoretical frameworks that give insights into sys-
tem phenomenology.

In chapter 3, we show how we can control and simulate the YSR states in atom-
ically precise Mn lattices on β-Bi2Pd . Although the system is not suitable for topo-
logical superconductivity, we can apply a simple model to describe the coupling in
2D extended structures. The anisotropic character of the Fermi surface and the sym-
metry breaking due to the rotation with respect to the β-Bi2Pd lattice of the 5-Mn
structure changes the splitting of the particle-hole asymmetry. This is captured by
the multi-impurity Green function approach that incorporates the anisotropic Fermi
surface. In a 25 Mn atom lattice, we observe the emergence of three YSR modes
that arise due to the YSR coupling. Our multi-impurity model allows us to simulate
the structure, and by comparing them with experimental results, we identify 3 YSR
modes with different spatial distributions.

In chapter 4 we study the rich many-body excitation spectrum of magnetic im-
purities on a proximitized gold film, deposited on vanadium. The magnetic molecule
FeTPPCl interacting with the substrate electrons hosts subgap YSR states and spin ex-
citations outside the gap that are readily described by a superposition of Bogoliubov
quasiparticles and impurity spin states using a zero-bandwidth model. Our research
uncovered an interesting Cooper pair-breaking excitation on molecules in the Kondo-
screened regime, which scales with the induced gap of the proximitized film. This
is an excitation that remains hidden from tunneling electrons and becomes available
for magnetic impurities that bind a quasi-particle, thus behaving as a detector of the
parity of the ground state.

In the last study, we used a bulk superconductor to induce superconductivity in
Au by the proximity effect. In the reversed configuration, superconducting correla-
tion can be induced in a bulk material like graphene grown in SiC, in proximity of Pb
islands deposited on the surface. We investigated locally this phenomenon using a
technique that enables the smooth sliding of Pb islands on graphene. In this Thesis,
we studied how graphene domain boundaries on graphene act as mirrors for corre-
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lated quasiparticles and how the presence of a twisting angle strongly suppresses the
coherence. Using the manipulation we built a tunable SNS junction where we can see
a transition between an asymmetric diffusive junction to a homogeneous ballistic-like
junction.

The confinement of superconductivity by Pb islands allows the creation of a ro-
bust superconducting state that calls for a fundamental study of Andreev reflections
and Josephson currents in graphene. Measuring at high conductance we unravel
Andreev reflection processes in proximitized graphene observing different processes
depending on the size of the induced gap. In a confined Pb corral, we map the spa-
tial dependence of the Andreev reflections and the Josephson supercurrent. We find
that the confinement induces the formation of quantum-well states that influence the
quasiparticle excitation. We correlate this with the Josephson current map, which
is proportional to the Cooper pair density. In this measurement, we find that the
Cooper pair density is modulated presenting a maximum in the center of the corral.
This experiment paves the way for engineering the pair density texture by confine-
ment of the proximity effect.

Until here the substrate employed is Gr/SiC grown on the C-side of SiC where
the Fermi level is at charge neutrality. The graphene is grown on the Si-face of the
SiC polar crystal and presents a strong n-doping that radically changes the proxim-
ity effect. With STM capabilities we map the induced proximity gap and find that
it is extended homogeneously in graphene. The effect is emerging from the Joseph-
son coupling of the dispersed array of Pb islands, which induces a macroscopic 2D
superconducting state. This study brings fundamental advances in probing locally
the induced collective superconductivity. Finally, the substrate constitutes a novel
platform to study superconductivity and magnetism at the atomic scale with all the
advantages of graphene.

The Pb islands on graphene of the precedent studies are large enough to show
bulk BCS properties. For small islands l < 50 nm we observe Coulomb blockade
phenomena and study their interplay with superconductivity. Below a critical size,
the islands show no sign of coherence, Josephson tunneling, or magnetic field de-
pendence. For intermediate sizes, we see strong modifications of the superconduct-
ing gap with remarkable coherence peak asymmetry that becomes more accentuated
at lower sizes. With the island manipulation technique, we switch the asymmetry
changing the island’s position on graphene. This is modeled via a phenomenological
model that describes how the observed asymmetry switch is due to a change in the
local work function of graphene that modifies the excess charge on the island. This
joint with the manipulation can be used as a probe for the local work function of
graphene.

The results and analysis presented in this Thesis provide comprehensive re-
search on superconducting excitations at the atomic scale using a variety of exper-
imental tools and theoretical frameworks. The platforms employed offer powerful
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insight toward a deeper understanding of superconductivity and its interactions with
magnetism, proximity effects, and Coulomb blockade. This work contains meaning-
ful steps forward in our understanding of superconductivity and related phenomena,
and its insights will inform and inspire further research in this exciting and rapidly
evolving area of condensed matter physics.
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Resumen extendido

La superconductividad es un fenómeno que nos ha entretenido en la investi-
gación para mas de 100 anos y al dia de hoy siguen muchos descubrimientos y retos
abiertos en el tema. El estudio de estos sistemas esta muy correlacionado con la es-
pectroscopia de túnel, que nos perite visualizar y modificar el estado superconductor
mediante excitaciones. Esto incorporado, en un microscopio a barrido túnel, nos da
herramienta muy variada y potente para medir, manipular, y mapear las propiedades
de los superconductores. En esta tesis primero estudiamos la superconductividad
por medio de interacción con impurezas magnéticas, que dan acceso a nuevos es-
tados cuánticos y excitaciones superconductoras. El espectro de un superconductor
puede ser modificado también través del efecto de proximidad, donde un metal nor-
mal, en este caso grafeno, adquiere las propiedades del superconductor por proxim-
idad. Con una nuevo método de manipulación de islas de plomo en grafeno somos
capaces explorar como la proximidad depende de confinamiento, campos magnéti-
cos, posición de la isla en grafeno y tamaño de las islas mismas. Estas herramienta
de manipulación juntas a colaboraciones teoricas abren muchas posibilidades para
modificar la superconductividad a nivel microscópico.

Conceptos de teoría y métodos experimentales

En esta tesis investigo sobre el fenómenos de superconductividad usando varios
modelos para describir los experimentos. La teoría BCS describe a nivel microscópico
la atracción electrón-electrón que resulta en la formación de pares llamados pares de
Cooper que condensan en el estado macroscópico fundamental de BCS (BCS ground-
state). Este estado tiene diferentes posibles excitaciones que podemos acceder con el
STM por medio de tuneleo de electrones. Para un superconductor limpio la mín-
ima energía de excitación es ∆ para la creación de una cuasiparticula (quasiparticle).
Estas excitaciones pueden ser modificadas significativamente, por ejemplo cuando
cuando una impureza magnética se encuentra en la superficie del superconductor
y tiene interacción de canje con las cuasiparticulas del superconductor. Esto fenó-
meno esta descrito por la teoría de Yu-Shiba-Rusinov, donde se trata el espín de la
impureza de manera clásica, análogo a un vector con dirección fija. Esta teoría fun-
ciona bien cuando describimos átomos aislados sin anisótropo magnética y puede
ser extendida para describir interacciones entre átomos. Una descripción cuántica
del espín consiste en el considerar que un espín 1/2 es isótropo en el espacio y per-
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mite de describir espines con S>1/2 en presencia de anisotropia magnética. En esta
tesis estudiamos el efecto conjunto de esta anisotropia magnética y del canje en una
molécula magnética en interacción con un superconductor.

Hay otras maneras para modificar el espectro de un superconductor. En la in-
terfase de un superconductor y un metal normal los procesos de reflexión de An-
dreev hacen que los pares de Cooper y la coherencia se trasmita en el metal normal,
dando lugar al efecto de la proximidad superconductora (superconducting proximity
effect). Esto esta descrito con dos clases de modelos. La diferencia es en el consid-
erar el movimiento de los electrones balísticos, donde el camino libre medio de los
electrones es mas largo del tamaño del sistema, o difusivos, donde los procesos de
scattering definen un camino libre medio del electron y se pierde la información ge-
ométrica del sistema. Solucionando las ecuaciones de Bogoliubov de Gennes con
condiciones al contorno (balístico) o de Usadel (difusivo) es posible calcular el espec-
tro de excitaciones que comparamos con experimentos donde podemos modificar la
geometría del sistema superconductor-normal.

En esta tesis investigamos también sobre el efecto dramático que las interac-
ciones de Coulomb pueden tener sobre el espectro de un superconductor. Los elec-
trones en un superconductor interaccionan por medio de interacción mediada por
fonones (vibraciones del cristal), que gana sobre la una fuerza de repulsión de Coulomb
a baja temperatura y energía. Para ver como estas interacciones afectan a la super-
conductividad hay que reducir el tamaño del superconductor. En esta tesis investig-
amos como en islas pequeñas (<30 nm) de Pb (superconductor) efectos de Coulomb
blockade interaccionan con la superconductividad. Para describirlo damos una in-
terpretación fenomenológica basada sobre los modelos ortodoxos para describir el
tuneleo de electrones traves de junciones de tuneling dobles (double tunnel junc-
tions, DBTJ).

Retículos Yu-Shiba-Rusinov 2D de Mn en β-Bi2Pd modelado por fun-
ciones de green

En esta tesis estudio retículos de espines asemblados por medio de manipu-
lación atómica en el superconductor β-Bi2Pd . En este sistema los estados de Yu-
Shiba-Rusinov (YSR) se extienden lejos de la impureza y están afectado de la anisotropia
de la superficie de Fermi. La interacción entre estados de YSR es caracterizada de
un splitting que depende de como las impurezas alineen sus espines. Mapeamos
esto en estructuras de manganeso en 1D y 2D viendo como son afectadas de manera
diferente según el alineamiento con red del substrato. Cadenas de átomos magnéti-
cos en superconductores son muy investigados para la posible presencia de estados
topológicos a los bordes. Aquí no tenemos evidencias de estados de bordes en cade-
nas hasta 18 atomos, donde vemos una interacción colectiva de los estados que pero
satura a 5-6 átomos de longitud.
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Mas interesante son las estructuras a forma de cruz de 5 átomos donde cambi-
amos la orientación en respecto la red atómica del substrato. Con el STM podemos
construir átomo por átomo las estructura y seguir la evolución de el espectro de ex-
citaciones. El splitting inducido por interacción aumenta de manera monotónica por
cada átomo añadido a la estructura. El fenómeno esta capturado con el modelo de-
sarrollado en nuestro grupo para describir N impurezas magnéticas en β-Bi2Pd . Esto
nos permite simular un retículo de 25 átomos construido con manipulación atómica.
Donde identificamos modos colectivos de YSR con una distribución espacial esta re-
flejada en la simulación.

Excitación de pares de Cooper promediada por un espín cuántico molec-
ular en un film proximitizado de Oro

Aquí analizamos el espectro a baja energía de un espín molecular acoplado con
un superconductor, identificando una excitación de ruptura de pares de Cooper que
no ha sido observada en STM hasta ahora. La molécula es la porfirina de hierro
FeTPPCl que tiene un átomo de cloro pegado al hierro. Esta molécula tiene un espín
total S=5/2 que interacciona con el superconductor dando lugar a estados de Yu-
Shiba-Rusinov dentro del gap superconductor, que están separados en varias com-
ponientes, que describimos con un modelo de impureza cuántica. Además observa-
mos picos de excitaciones fuera del gap, típicamente asociados a cambios de espín,
debido a la anisotropia magnética que separa entre estados de espín con diferente
proyección en z, favoreciendo un estado ground Sz=1/2.

En este trabajo damos mucha importancia a la paridad del superconductor (nu-
mero de partículas par o impar), siendo que algunas excitaciones como la de ruptura
de pares de Cooper no son accesibles con electrones cuando el sistema se encuen-
tra en el estado fundamental de BCS (par). La flexibilidad de la molécula debido
a la fuerte interacción del atomo de cloro con la punta permite la modificación del
acoplo entre espín y superconductor. Esto induce un cambio en las energía de excita-
ciones que nos permite ver una transición de fase cuántica, donde hay un cambio del
estado fundamental del sistema molécula-superconductor. Esto ha sido observado
muchas veces y se entiende como un estado BCS con una cuasiparticula pegada a la
impureza dando un estado impar. Al cambio de ground state vemos como aparece la
nueva excitación de rupturas de pares de Cooper. La clave para confirmar la natura
de esta excitación es la posibilidad de modificar el tamaño del gap superconductor
depositando oro en cima del vanadio, comprobando que su energía cambie con 2∆
del superconductor.

Modificar el efecto de proximidad superconductora en grafeno usando
la manipulación de islas de Pb

Hasta ahora, en grafeno en su forma aislada, no ha sido observada supercon-
ductividad. Una manera utilizada para inducir la superconductividad en grafeno
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es por medio de el efecto de proximidad, donde el superconductor esta depositado
en cima del grafeno. En esta tesis usamos grafeno depositado en cima de carburo
de silicio (SiC), que siendo polar tienes dos posibles superficies una terminada por
carbono y la otra por silicio. En la cara carbono el grafeno es multi-capa, donde la
orientación de las ultimas dos capas define sus propiedades electrónicas, que cam-
bian en los varios dominios visualizado por STM. Gracias a la posibilidad de mover
islas podemos estudiar como la misma proximidad esta afectada en diferentes do-
minios o como penetra entre un dominio a el otro. También construimos estructuras
de tipo superconductor-normal-superconductor donde vemos un cambio radical del
espectro al modificar el tamaño de la parte normal, empujando las islas para cerrar
la estructura. Las estructuras cerradas que llamamos corrales tienen son interesantes
en general para inducir superconductividad de manera localizada y reproducible en
cuanto se pueden mover en la superficie. Dentro de estas zonas confinadas medimos
el efecto de un campo magnético, que induce estados dentro del gap correlacionados
con una diferencia de fase finita que se desarrolla a lo largo del corral.

En la cara carbono del SiC el grafeno tiene el nivel de Fermi en el punto de
neutralidad y la superconductividad decae lejos de las islas en la longitud de co-
herencia (∼ 90 nm). Esto cambia para la cara silicio, donde el grafeno esta dopado n
y entonces tiene una mayor densidad electrónica al nivel de Fermi. Con un recubrim-
iento parcial (20-30% Pb) de la superficie del grafeno el material se comporta como
un superconductor con un gap homogéneo, que depende débilmente de la estruc-
tura local. Este tipo de transición metal-superconductor ha sido descripto en trabajos
teóricos y medido en transporte, pero nunca visualizado localmente.

Bloqueo de Coulomb y superconductividad

La superconductividad es debida a la atracción microscópica entre electrones
promediada por fonones. Cuando la dimensión del superconductor es reducida las
interacciones de Coulomb pueden competir con el estado superconductor. Bajo un
tamaño critico, hypotizado por Anderson la superconductividad deja de existir. La
repulsión de Coulomb también afecta el transporte de carga través de uniones túnel,
como la que constituye la punta de STM acoplado a una isla de superconductor. Re-
duciendo el tamaño de la isla añadir un electron al sistema cuesta mas energía, dando
lugar a fenómenos de bloqueo de Coulomb. Una física muy interesante esta en la
interacción de estos fenómenos con la superconductividad, que todavía no esta com-
pletamente entendido y investigado experimentalmente.

En nuestro experimento tenemos dos tamaños limites, islas grandes (d>50 nm)
que se comportan como superconductores bulk, y islas pequeñas (d<20 nm) en las
cual vemos un Coulomb gap sin efectos de superconductividad. En los tamaños
intermedios se ve como el espectro del superconductor esta modificado fuertemente
con la presencia constante de una asimetría en los picos de coherencia. En estas islas
hay un gap de bloqueo de Coulomb de tamaño parecido al gap superconductor. El
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Coulomb gap además puede ser asimétrico en energía, a causa de una posible exceso
de carga en la isla que cambia dependiendo de cambios en la función de trabajo local.
Para confirmar esta interpretación movemos la isla por medio de manipulación y
invertimos entre dos extremos de asimetría de manera reproducible.

Conclusiones

En esta tesis uso un conjunto de herramienta experimental, como manipulación
atómica, molecular y de islas superconductoras para avanzar en el entendimiento
de las excitaciones de superconductores a la escala atómica. Las condiciones con-
troladas de un STM permiten la implementación de modelos teóricos relativamente
simples que dan una idea clara de la fenomenología del sistema. El control de las
excitaciones many-body en impurezas magnéticas manipuladas establece la impor-
tancia de la descripción cuántica del espín. La herramienta de manipulación de islas
de Pb proporciona una plataforma potente hacia una comprensión más profunda de
la superconductividad y los efectos de proximidad.
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