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Abstract

Superconductors exhibit macroscopic quantum ordering that allows their unique
properties to emerge even at mesoscopic scales, enabling practical applications in elec-
tronics and quantum computing. This distinctive behavior makes superconductivity
one of the most studied topics in condensed matter physics, valued for both its theoret-
ical elegance and broad physical relevance. In this thesis, we investigate superconduc-
tivity at the nanoscale using Scanning Tunneling Microscopy and Ultra-High-Vacuum
(UHV) synthesis. By combining superconductors with atomic magnetism, normal
metals, and confinement near the pairing limit, we examine these systems’ unique
nanoscale behaviors both experimentally and theoretically.

The exchange interaction between magnetic adatoms and electrons in a supercon-
ductor induces Yu-Shiba-Rusinov (YSR) subgap states. Here, we develop a theory
based on a classical spin approximation to describe these states and demonstrate that
the shape of the superconductor’s Fermi contour significantly influences their spatial
extension and their interactions in multi-impurity structures. Scattering wavevector
nesting focuses the decay of these states in the directions perpendicular to the flat
regions of the Fermi contour, maximizing their extension in these orientations and
rendering direction-dependent impurity interactions. Our theoretical predictions are
compared with experimental measurements of single V adatoms and Mn structures on
the multiband �-Bi2Pdsuperconducting surface. Additionally, we analyze the quasi-
particle interference patterns around V adatoms to extract insights into the complex
formation of the condensate in this multiband superconductor.

Once the exchange coupling exceeds a critical threshold, the positive and negative
YSR states cross at zero energy and invert, marking the onset of a parity-changing
quantum phase transition. The classical spin approximation does not account for this
parity change nor the formation of a singlet state between the impurity and itiner-
ant electrons (Kondo singlet), thus overlooking any parity or spin e↵ects observable
by Scanning Tunneling Spectroscopy (STS). To address this, we develop a single-
site Hamiltonian that models the e↵ects of a magnetic impurity on a thin metallic
layer proximitized by a superconductor. This model is applied to explain STS mea-
surements performed on magnetic molecules on the proximitized Au(100)/V surface.
Furthermore, we describe a novel singlet-based spin qubit formed by two interacting
magnetic impurities, immune to decoherence from spin-orbit and hyperfine coupling,
demonstrating its potential for advanced quantum applications.

As the size of a superconductor shrinks, the separation between electronic energy
levels widens, lowering superconducting pairing until it vanishes at a critical size known
as the Anderson limit. Conversely, the Coulomb energy, the onset energy of single-
particle tunneling into a small metal, increases as size decreases. By growing Pb islands
on graphene under UHV conditions, we create an ideal platform to study superconduc-
tivity and Coulomb blockade phenomena in nanoscale metallic grains. Fitting STS
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data with e↵ective theory, we disentangle the combined e↵ect of superconductivity
and Coulomb blockade in the measured spectral gap, revealing their evolution with
grain size. Moreover, we demostrate that the paricle-hole (ph) symmetry of the sys-
tem can be controlled with bias pulses applied with the tip, which acts as an e↵ective
gate potential.

The zero-bias peak measured in low-resistance (R < 100 k⌦) tunneling junctions
between bulk superconductors—typically related to incoherent Cooper pair tunnel-
ing—appears split in Pb islands. The magnitude of this splitting follows a trend
similar to Coulomb energy as island size decreases, and the relative positions of the
positive and negative peaks can be adjusted with bias pulsing. Using a current-biased
setup, we measure the I-V characteristics and observe non-reciprocal behavior when
particle-hole symmetry is broken, resembling diode functionality. We verify this by
measuring AC rectification and microwave photon detection.
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List of symbols and abbreviations

The following list is a compilation of all acronyms and terminology used in the
thesis. the most common cases (e.g. the abreviation of the elements) are not listed.
For the hole work, we take ~ = 1.

• Theˆsymbol is used for operators.

• Theˇsymbol is used for matrices.

• H: ’Hamiltonian’

• S: ’Spin’

• E and ! are energy or frequency.
Equivalent due to ~ = 1.

• �: ’Superconducting gap’

• �: ’Superconducting phase’

• TC : ’Superconducting critical tem-
perature’

• BC : ’Superconducting critical mag-
netic field’

• � = (kBT )�1

• pF = kF : ’Fermi momentum’

• EC = e2/2C: ’Coulomb energy’

• Q, q: ’Charge’

• q0: ’Excess charge’

• Z: ’Partition function’

• ĉ† (ĉ): ’Momentum electron cre-
ation (annihilation) operator’

•  ̂† ( ̂): ’Real space electron cre-
ation (annihilation) operator’

• �̂† (�̂): ’Bogoliubovnic creation (an-
nihilation) operator’

• ⌧i, �i and ⌘i: ’Nambu, spin and
band Pauli matrices’

• ⌧ : ’Imaginary time’

• J : ’Exchange coupling’

• G: ’Green’s functions’

• ⇢: ’Density of states’

• C: ’Capacitance’

• R: ’Resistance’

• V : ’Voltage’

• I: ’Current’

• BCS: ’Bardeen-Cooper-Shrie↵er’

• STM: ’Scanning Tunneling Micro-
scope’

• STS: ’Scanning Tunneling Spec-
troscopy’

• JT-STM: ’Joule Thomson-STM’

• UHV: ’Ultra-High Vacuum’

• FC: ’Fermi Contour’

• YSR: ’Yu-Shiba-Rusinov

• GF: ’Green’s Function’

• QPI: ’Quasiparticle interference’

• SOC(I): ’Spin-Orbit Coupling (In-
teraction)’

• HI: ’Hyperfine Interaction’
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• QP: ’Quasiparticle’

• AFM: ’Antiferromagnetic’

• FM: ’Ferromagnetic’

• dGSJ: ’de Gennes Saint James’

• AR: ’Andreev Reflection’

• CPE: ’Cooper Pair Excitation’

• QPT: ’Quantum Phase Transitions’

• CB: ’Coulomb Blockade’

• (L)DoS: ’(Local) Density of States’

• SET: ’Single Electron Trnasistor’
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1
Introduction

The developments of the Scanning Tunneling Microscope (STM) [5] opened the
door to the study of many fundamental aspects of matter at the nanoscale, becoming
one of the pillars of surface science with ramifications to biology, chemistry, material
science, condensed matter physics and more. The STM is based on the tunneling
e↵ect between metals achieved by approaching a sharp, single-atom-ended, metallic
tip to a conducting substrate. The exponential dependence of the tunneling current
enables the atomic precision of its measurements; moreover, the dependence of the
current on the local density of states [6] facilitates access to the electronic properties
of the substrate.

The STM has significantly impacted the progress of the research on superconduc-
tivity. The superconducting gap �, first hypothesized by F. London [7] and formally
introduced by Bardeen, Cooper and Schrie↵er [8], was first measured in a tunneling
experiment [9, 10] proving that an energy separation between the ground state of the
superconductor and its single-particle excitations exits [8, 11]. The Bardeen-Cooper-
Schrie↵er (BCS) theory of superconductivity [8] describes this state of matter as a
condensate of Cooper pairs [12]: a state of paired electrons formed due to an attrac-
tive interaction between each other originated from the electron-phonon interaction
[13, 14]. The Cooper pairs generate an even parity ground state with a macroscopic
coherence length that repeals any external magnetic field [15] up to a critical value,
with a penetration length given by the London equations [16]. This condensate pre-
vents single electron tunneling into a superconductor with an energy E < �. The
tunneling spectroscopy shows two sharp peaks, the coherence peaks, at the onset of
energy of single-particle excitations.

A magnetic impurity exchange coupled to a superconductor acts as a local magnetic
field, distorting the superconducting order in its vicinity and lowering the minimum
energy required for single-particle excitations. This system was first described through
the Anderson impurity model [17] and later resolved under a classical spin approxima-
tion [18–20] using a Kondo Hamiltonian framework [21]. Both approaches are shown to
be equivalent [22] and predict a renormalization of the spectral weight from the super-
conducting coherence peaks into two subgap peaks, now known as Yu-Shiba-Rusinov
(YSR) states [18, 19, 23].

Although the first STMmeasurement of YSR states was performed in 1997 [24], the
research around it in the last decade has thrived due to several proposals utilizing these
states as the building block for topological quantum computing, based on Majorana
bound states [25, 26]. The capability of the STM to control the position of magnetic
adatoms with atomic scale opens the door to forming chains of magnetic impurities
on superconductors. These YSR bands have been proposed as a platform that can
host topological edge states [27, 28].

The study of YSR states also reveals fundamental aspects of atomic scale mag-
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1. Introduction

netism. Close to the adatoms, STM experiments reveal information about the shape
and hybridization of the d-shell orbitals of the impurities with the substrate [29].
Moreover, due to the long-range superconducting correlations, YSR states extend sev-
eral nanometers away from the impurity. The nature of this spatial distribution is
closely related to the superconductor’s Fermi Contour (FC). In Chapter 3, we develop
an e↵ective theory to compute the Green’s Function (GF) of a bare 2D superconductor
with an arbitrary Fermi contour (FC), applying this framework to analyze the e↵ects
of multiple impurities on the superconducting state. This approach is then used to
compare theoretical predictions with STM measurements obtained from Mn and V
adatoms on the �-Bi2Pdsuperconducting surface.

�-Bi2Pdis a 2D multiband superconductor with anisotropic square-shaped FCs [30,
31]. Vanadium impurities on this surface host YSR states with a long-range exten-
sion due to Fermi surface nesting [32, 33]. By calculating the Green’s function for
a square-shaped FC, we observe that the YSR state decay resembles that of a 1D
superconductor. The FC’s anisotropy and extended decay modify impurity coupling
in diluted atomic structures [34], which we experimentally probe by assembling Mn
adatom structures with atomic precision using the STM tip [1, 4]. Additionally, ana-
lyzing the quasiparticle interference pattern around V adatoms allows us to reconstruct
the FC shape [1] and gain insights into the multiband BCS ground state of �-Bi2Pd.

The classical spin approximation properly describes both V and Mn impurities
on �-Bi2Pd. Still, when more complex spin dynamics, such as magnetic anisotropy
and spin-flip tunneling, are combined with a high spin impurity, a quantum approach
is needed. Motivated by results on magnetic impurities on proximitized surfaces [2,
3, 35], in Chapter 4, we develop a single-site model [36] that captures the entangled
impurity and electron spin nature of YSR states. The model facilitates a phenomeno-
logical understanding of all possible single-particle excitations of impurities on ballis-
tic proximitized metals without any numerically costly approaches, such as numerical
renormalization group [37, 38] or continuous time Montecarlo [39].

We check the validity of the approximation within the Poor Man’s scaling method [40]
and apply the single-site model to disentangle the complex excitation spectrum of a
FeTPP-Cl molecule on top of the Au(100)/V proximitized surface [2]. We modify the
exchange coupling by approaching the STM tip to the molecule [41] and drive the
system through a parity-changing quantum phase transition [23, 42], shifting to an
odd-parity ground state. This transition enables two-particle (Cooper pair) excitations
[8], typically accessed only via microwaves in bulk superconductors [43]. Additionally,
we use the model to propose a singlet-based spin qubit architecture formed by two
interacting magnetic impurities, avoiding decoherence from spin-orbit and hyperfine
interactions [44].

This thesis is divided into two main topics, both regarding superconductivity. In
Chapters 3 and 4, we focus on the e↵ects of magnetic impurities on superconductors.
In contrast, in Chapters 5 and 6, we measure and analyze the e↵ects of the size of
superconductors in their properties.

When the size of a metal is reduced below an electron’s screening length (around
100 nm), and a charge is added to it, the other electrons do not have enough space to
screen the charge. This generates Coulomb repulsion between charges, and the single-
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particle excitation onset increases by an energy EC , known as the Coulomb energy [45].
In such small metallic grains, the charge tunnels sequentially [46], making this system
a very sensitive electrometer. When the grain is embedded in a three-terminal device
(source, drain, and gate), the system is known as a single electron transistor [46]. The
gate can control the excess charge of the island, which is e-periodic and follows a shape
known as Coulomb diamonds [45].

If the grain is a superconductor, the system is split into even and odd parity states,
and the periodicity of excess charge changes to 2e [47, 48]. Moreover, contrary to bulk
superconductors, having an odd parity ground state is possible when the Coulomb
interactions prevail over the superconducting pairing EC > �. In Chapter 5, we
perform spectroscopic measurements on small Pb islands suspended on graphene [4,
49] and observe a spectral gap larger than that of bulk Pb, attributed to Coulomb
interactions in the grain. By applying a magnetic field up to 2.5 T, superconductivity
is suppressed, and we can separate the contributions of EC and � to the gap. Addi-
tionally, size-dependent measurements reveal that the pairing energy decreases with
reduced island size due to increasing electronic level spacing [50], while the Coulomb
energy increases, following an inverse trend.

The islands’ excess charge can be controlled by applying bias pulses with the STM
tip, resembling a three-terminal device. This control breaks particle-hole symmetry,
which appears as an asymmetry in the spectral gap in the dI/dV measurements. In
Chapter 6, we further investigate this system by moving the STM tip closer to the is-
lands, turning on current terms that are second order in tunneling transmittance, e.g.,
the tunneling of Cooper pairs. We find that the zero bias Josephson peak, expected
in a low resistance (R < 100 k⌦) tunneling junctions between bulk superconductors
[45, 51], is split onto two finite voltage peaks. They arise from a resonant transport of
Cooper pairs [52, 53] mediated by the interaction with the environmental modes [45,
54].

The separation between peaks in the spectrum scales with the island’s size and
remains una↵ected when the excess charge of the island is changed. However, the
relative positive and negative positions of these peaks shift with excess charge, gene-
rating a non-reciprocal response to an applied voltage. To further explore this e↵ect,
we switch to a current-biased setup [55] and discover that the break in particle-hole
and inversion symmetry induces a diode e↵ect [56], with polarity controlled via bias
pulses. We demonstrate the system’s applicability as a rectifier and photodetector.
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2
Theoretical and experimental

methods

Finite memory comes with several drawbacks, not only for everyday things, but it
also shapes some societies’ beliefs and behaviors. One mistake we make as a society is
to remember only a few of the authors of a lengthy investigation; this simplification can
misrepresent the collaborative nature of scientific progress. It is expected to pinpoint
a few breakthroughs done by one or two people in a long line full of investigators and
forget many collaborators. We glorify these few names and slowly forget the rest,
but science has never been a single-handed job, and no one has ever started from
scratch [1]. This does not mean that the people we remember did not make said
breakthroughs in their investigation; it just means that we are inclined to forget the
predecessors. Even Newton, regarded as the father of calculus, modern physics, and
even modern science, had people like Kepler, Galileo, and sometimes the forgotten
Avicenna and Alhazen [2] before him. This section will be a historical introduction
and a state-of-the-art for the main topic of the thesis: Superconductivity.

It is always challenging to find the starting point of any scientific discovery. One
could always go back in time and find previous knowledge needed to give some steps
the researchers needed. Following these steps, one would have to start with Aristo-
tle to explain what a smartphone is, and as the thesis should be finite and focus on
superconductivity, I will start from Heike Kamerlingh Onnes. Onnes, working at Lei-
den’s University [3], was the first person to achieve the liquefaction of Helium at 4.5K.
He managed to do so by using the Joule-Thomson e↵ect, which we still use to lower
the temperature of our instruments to 1.3K. Once he had liquefied Helium, trying to
disprove the prevailing theories about electrical conductivity at low temperatures [4],
he checked the electrical conductivity of Hg, Li, and Pb to find out that Hg and Pb
had zero resistivity below a threshold temperature.

While Heike Kamerlingh Onnes initially theorized a quantum explanation for
superconductivity (inspired by Planck’s quantum theory), early superconductors were
still broadly classified as “perfect” conductors within the classical theory. During
World War I, research in the Netherlands paused due to the halt of cryogenics, even
though the country was neutral. After the war, research resumed, and by 1924, nine
superconducting elements had been identified. Early measurements of Uranium Lead
also hinted at the isotope e↵ect (later crucial to the microscopic theory) and measured
critical magnetic fields that disrupt superconductivity, with much of this foundational
work carried out at Leiden University.

It was not until 1933 that Walther Meissner and Robert Ochsenfeld’s research
proved that superconductors were perfect diamagnets, i.e., could repulse magnetic
fields perfectly while maintaining their superconducting state. This was a game-
changing discovery, as superconductivity was no longer a perfect conductor [5]. Two
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2. Theoretical and experimental methods

years after the discovery, the London brothers, who had actively worked in the theory
of superconductivity before this discovery, presented a theory to explain the experi-
mentally observed e↵ect. The theory can be condensed into the two London equations
[16]:

@j
s

@t
=

nse2

m
E r⇥ j

s
= �

nse2

m
B (2.1)

where j
s
is the superconducting current density, E and B are the electric and mag-

netic fields, respectively; m is the electron mass, e the electron charge and ns is a
phenomenological constant connected to the superconducting carrier density. This
density is introduced in the two-fluid model of Gorter and Casimir [43, 57]. From the
second equation, one can get the penetration depth of the superconductor, i.e., the

amount a magnetic field can penetrate the material, namely �s =
q

m

µ0nse
2 .

The first theoretical framework that could explain superconducting phenomena was
developed by Vitaly Ginzburg and Lev Landau in 1950 [58]. Their theory preceded
the microscopic BCS theory of superconductivity, introduced by Bardeen, Cooper,
and Schrie↵er seven years later. Building on Landau’s 1937 phase transition theory,
Ginzburg and Landau proposed that superconductivity involves an order parameter:
a measurable quantity that emerges during a phase transition, lowering the system’s
symmetry. The Cold War’s limited flow of information between the sides of the Iron
Curtain and the phenomenological foundation of theory hindered its spread [6].

2.1 BCS Formalism

On the other side of the Iron Curtain, in 1950, E. Maxwell [59] and C.A. Reynolds [60]
discovered that the superconducting transition temperature of mercury depends on its
isotopic mass, supporting an idea first suggested by Onnes during his work with ura-
nium lead [61]. This isotope e↵ect hinted at a phononic mechanism in superconduc-
tivity, as phonon behavior is tied to atomic mass. In the same year, H. Fröhlich [13]
and later J. Bardeen [62] independently proposed that superconductivity arises from
an electron pairing mediated by phonons. Then, in 1956, L. N. Cooper demonstrated
that an attractive electron-electron interaction can create a paired state of electrons
with opposite momentum and spin, now known as a Cooper pair [12]. This concept,
together with the established phonon-mediated origin of superconductivity, set the
stage for J. Bardeen, L. N. Cooper, and J. R. Schrie↵er to develop the BCS theory in
1957, forming the basis of our modern understanding of superconductivity [8]. The
BCS Hamiltonian, which they proposed, reads:

ĤBCS =
X

k�

⇠k ĉ
†
k� ĉk� �

�

V

X

k

ĉ†k"ĉ
†
�k#ĉ�k#ĉk" . (2.2)

⇠k = ✏k�µ is the electronic energy measured from the chemical potential and ĉ†k� (ĉk�)
is the creation (annihilation) operator of an electron with momentum k and spin �.
This theory considers electron-electron and electron-phonon interaction and finds that
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2.1. BCS Formalism

an attractive interaction can exist, modeled by the second term in Eq. (2.2), � > 0, so
the interaction is attractive. The theory also assumes a non-zero constant interaction
for all frequencies below the Debye frequency !D. This attractive force lowers the
system’s free energy by forming a new state of matter composed of Cooper pairs: the
superconducting condensate. The authors of the BCS theory (contrary to Frölich [13])
assumed infinite-range interaction for energies lower than the Debye frequency, !D,
consequently having an exact solution of the problem within a mean-field approach
[63]. Treating the interaction in terms of a mean-field approximation, the Hamiltonian
reads

ĤBCS =
X

~k�

⇠k ĉ
†
k� ĉk� +

X

~k

�kĉ
†
k"ĉ

†
�k# +�

⇤
kĉ�k#ĉk" . (2.3)

with
�k = |�k|e

i� = �
�

V

X

|✏k|<!D

hĉ†k"ĉ
†
�k#i , (2.4)

which is the order parameter, a complex parameter containing an amplitude and a
phase, and its fluctuations are negligible in the thermodynamic limit. This thesis only
focuses on s-wave isotropic superconductors, hence �k = �.

The ground state of Eq. (2.3) is a coherent superposition of Cooper pairs, which
reads

|BCSi =
Y

~k

(uk + vkĉ
†
k"ĉ

†
�k#) |0i . (2.5)

with

|uk|
2 =

1

2

 
1 +

⇠kp
|�|2 + ⇠2k

!
|vk|

2 =
1

2

 
1�

⇠kp
|�|2 + ⇠2k

!
(2.6)

A few months after the BCS theory was published, Bogoliubov found a canonical
transformation to the Hamiltonian (2.3) [11, 64]. This canonical transformation de-
fined a new basis formed from a combination of particles and holes that diagonalized
Eq. (2.3) [7],

�̂†k" = ukĉ
†
k" � vkĉ�k# �̂�k# = ukĉ�k# + vkĉ

†
k# , (2.7)

The �̂ operators define the Bogoliubov quasiparticles, linear combinations of particles
and holes, which are the single-particle excitations of the superconductor. The opera-
tors diagonalize the Hamiltonian (2.3) and describe the BCS ground state as the state
with no Bogoliubov quasiparticles, i.e., �̂k� |BCSi = 0.

The BCS theory quickly gained acceptance by successfully consolidating prior dis-
coveries about superconductivity: the phononic origin for electron pairing explained
the isotope e↵ect, while the condensate of Cooper pairs in the ground state confirmed
the existence of long-range order at the heart of the theory, a concept foreshadowed by
F. London and Pippard [8]. The BCS theory also aligned well with the phenomenologi-
cal London equations and the Meissner e↵ect, describing magnetic behavior accurately.
However, its prediction of a ground state that breaks particle-number symmetry, U(1),
initially met resistance.
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2. Theoretical and experimental methods

Due to the U(1) symmetry break, the BCS ground state breaks gauge invariance,
so although Eq. (2.2) is invariant under ĉ†k� ! ei�ĉ†k�, Hamiltonian (2.3) is not, see,
e.g., Ref. [63]. As a consequence, the phase and the particle number are conjugated
operators [9],

N̂ = �i
d

d�̂
[N̂ , �̂] = 2i . (2.8)

This relation is handy when considering the e↵ects of size in superconductors, see
Chp. 6.

A new formalism, equivalent to solving the Schrödinger equation with Hamilto-
nian (2.3), came from the works of Nambu [65] and Gor’kov [66], which employs
Green’s Functions (GF). This formalism is used in Chps. 3 and 4. The supercon-
ducting Hamiltonian can be expressed in a spinor basis  ̂k = (ĉk", ĉk#,�ĉ

†
�k#, ĉ

†
�k")

T

as

Ĥ =
X

k

Tr
h
 ̂†

kȞk ̂k

i
Ȟk = ⇠k⌧3�0 +�⌧1�0 , (2.9)

where � is the superconducting gap, obtained from the mean-field approximation as
expressed in Eq. (2.4), and ⌧ and � are Pauli matrices describing the particle-hole and
spin degrees of freedom, respectively. From now on, we use the .̌ symbol to represent
any matrix in the Nambu-Spinor basis or any higher dimensions. The GFs of the
system can be obtained from

Ǧk,k0(!) = (!1̌� Ȟk)
�1�k,k0 = �

�k,k0

|�|2 � !2 + ⇠2k
(! + ⇠k⌧3 +�ei�⌧3⌧1) , (2.10)

where the 0th Pauli matrices, i.e., the identity matrices, are implicit. The retarded
(advanced) GF is obtained by shifting the energy by an imaginary infinitesimal value
! ! ! + (�)i✏,

ǦR

k,k0 = Ǧk,k0(! � i✏) ǦA

k,k0 = Ǧk,k0(! + i✏) (2.11)

The GF formalism can be used to extract the spectrum of quasiparticle excitations
of a superconductor. In the following, we present a general formula to calculate the
Density of States (DoS) of a system and apply it to calculate the spectrum of a bare
superconductor.

2.1.1 Single-particle excitations.

The quasiparticle excitations are the lowest-lying excitations in a superconductor,
separated from the ground state by an energy�. Also known as Bogoliubov excitation,
they do not correspond to breaking a Cooper pair, which requires energy 2�, but
instead exist in a distinct Hilbert space, the odd-particle space. The quasiparticle
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2.2. Tunneling between Superconductors

excitation spectrum, related to DoS, is convenient to calculate using the GF formalism.
It reads

⇢(!) =
X

k

±
1

4⇡
Tr

h
Im ǦA,R

kk (!)
i
= ±

1

4⇡
Tr

⇥
Im ǦA,R(!)

⇤
, (2.12)

where ǦA,R(!) is the real-space GF at the origin, obtained as the Fourier transform
of Eq. (2.10). The real space GF at the origin reads

Ǧ(!) = ⌫0
! + |�|ei�⌧3⌧1p

|�|2 � !2
, (2.13)

The form of the DoS for single-particle excitations is given by

⇢(!) =
1

4⇡
Tr

⇥
Im Ǧ(! + i✏)

⇤
= ⌫0 Im

 
! + i✏p

|�|2 � (! + i✏)2

!
, (2.14)

where ⌫0 = mkF /⇡2 is the normal metal DoS. Figure 2.1(a) illustrates this spectrum,
showing a gap of 2�. The two van Hoove-like singularities at ! = ±� are called co-
herence peaks. At higher energies, the DoS plateaus at ⇢(! � �) = ⌫0, meaning that
at large energies, the superconductor behaves similarly to a normal metal. Moreover,
u(! � �) = 1 and v(! � �) = 0; consequently, at large energies, the Bogoliubov
excitations are equal to electronic excitation [see Fig. 2.1(b)]. The superconducting
phenomena happen in a small energy window around the Fermi energy.1

2.1.2 Two-particle excitations

As stated in the original BCS paper [8], there are two possible excitations from
the ground state of a superconductor: single-particle or Bogoliubov excitations, which
we already discussed and two-particle or Cooper Pair Excitations (CPE). The two-
particle excitation of a superconductor comes from a double Bogoliubov excitation
that can be represented as

�̂†k0"�̂
†
k0# |BCSi = (vk0 � uk0 ĉ

†
k0"ĉ

†
�k0#)

Y

k 6=k0

(uk + vkĉ
†
k"ĉ

†
�k#) |0i . (2.15)

which is orthogonal to the ground state. As two quasiparticles have to be excited, the
minimum energy for this excitation is 2�. The CPEs generated from operators with
the same momenta have the same excitation energy 2�, so the spectrum looks like
replicas of the coherence peaks starting at an energy 2� instead of �.

2.2 Tunneling between Superconductors

The first tunneling experiments between superconductors were conducted by I.
Giaever [9], followed by J. Nicol et al. [10], where they measured the current be-
tween superconductors separated by an oxide barrier. In both studies, the authors

1If it is not written explicitly, we assume � to be a real number.
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Figure 2.1: Spectrum of a superconductor. (a) The DoS of a superconductor,
as calculated from Eq. (2.14). The functions |u|2 and |v|2 superposed on top of the
spectrum represent the particle and hole components of the Bogoliubov excitations for
each energy. (b) The current between two superconductors in the tunneling regime,
as calculated from the Eq. (2.20). The red curve is the current expected for the
tunneling between normal metals with the same tunneling resistance.

suggested that the tunneling current depends on the single-particle DoS of the leads,
which J. Bardeen later formalized [6] with a microscopic theory based on the wave
function overlap between drain and source, now foundational in STM analysis. Based
on Bardeen’s theory, the Hamiltonian describing electron tunneling between two leads
is

Ĥtunel =
X

k,k0
,�,�0

ĉ†
Lk�T̂k,k0

,��0 ĉR,k0
�0 + h.c., (2.16)

where T̂k,k0
,��0 is the probability amplitude of one electron tunneling from the left

(L) to the right (R) electrode and ĉik� (ĉi) is the creation (annihilation) operator
of an electron with momentum k and spin � in the i = L or i = R electrode. For a
time-reversal symmetric system without any magnetic impurities T̂k,k0

,��0 = Tk,k0���0 .
In certain cases it is important to consider finite energy for charging the junction,

given by [45, 54, 67]

Ĥcharging =
e2

2C

 
X

k

ĉ†
Lk� ĉLk� � ĉ†

Rk� ĉRk�

2

!2

=
Q̂2

2C
. (2.17)

C is the capacitance of the junction, defined by the material’s geometry and properties
that act as the insulating barrier between superconductors. The tunneling current is
given by the average of the current operator, which reads

Î = e
d

dt
N̂L = ie

X

k,k0

ĉ†
Lk�Tk,k0 ĉR,k0

� � h.c., (2.18)

In the following, we simplify the calculation of hÎi by assuming that Tk,k0 = T , i.e.,
the transmittance is momentum independent. This approximation is valid for STM
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Figure 2.2: Single-particle tunneling. (a) Sketch of the tunneling between super-
conductors. When V = 2�/e, the negative coherence peak of the upper DoS aligns
with the positive peak of the lower one. (b), (c) Sketch of the single and two photon-
assisted tunneling processes. Only absorption is shown. The photons add an energy
equal to n⌦ to the tunneling electron. Similarly, the tunneling electron can emit a
photon with the same energy. The purple waves represent the photons. (d) Calcu-
lated dI/dV for tunneling between superconductors, the coherence peaks appear at
±2�/e. (e) Calculated evolution of the conductance between superconductors as a
function of the applied microwave field voltage. Calculated from Eq. (2.19).

experiments, where the main contribution for the tunneling arises from the last atom
in the apex of the tip [see Sec 2.5].

In the next sections, we discuss the expressions for the current due to quasiparticle
tunneling and Cooper pair tunneling when the two electrodes are superconductors.
The extended calculation of these two is shown in App. D.1.

2.2.1 Single Particle Tunneling.

The tunneling current when a DC as well as an AC bias voltage with frequency ⌦
is applied, i.e., V (t) = V + Vac cos(⌦t), reads

I =
1X

n=�1
Jn0

✓
eVac

⌦

◆2

4e⇡2
|T |

2

Z 1

�1
d!⇢L(!)⇢R(! + eV + ne⌦)

[f(!)� f(! + eV + ne⌦)] ,

(2.19)
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where ⇢i are the Local Density of States (LDoS) of the left and right electrodes on the
position of the tunneling, Jn(x) is the nth Bessel function, and f(!) is the Fermi-Dirac
distribution. When only a DC voltage is applied, the current response is equal to the
n=0 term in Eq. (2.19):

I = 4e⇡2
|T |

2

Z 1

�1
d!⇢L(!)⇢R(! + eV )[f(!)� f(! + eV )] . (2.20)

The calculated tunneling current between two superconductors with the same gap is
shown in Fig. 2.1(a). Figure 2.2 illustrates the phenomenology of Eq. (2.20). It
shows that the single-particle tunneling is a convolution between the DoS of the L
and R electrodes with an energy shift given by eV . For a symmetric junction between
two superconductors, the onset of single-particle tunneling is at V = 2�/e, where the
negative coherence peak of the left electrode aligns with the positive coherence peak of
the right electrode [43]. Figure 2.2(d) shows the calculated dI/dV of the same process,
which will come in handy when we describe the measurements performed by the STM
[see Sec. 2.5].

The terms with finite n in Eq. (2.19) are the corrections due to an applied AC
signal. This approach is known as the Tien-Gordon theory [68], and each term dis-
played in Eq. (2.19) can be regarded as a photon-assisted tunneling process of the
nth order. Figures 2.2(b) and (c) illustrate the first and second-order processes, res-
pectively. The AC field further shifts the left and right DoS in the convolution, so
for the nth photon-assisted tunneling, the onset voltage of single-particle tunneling is
V = 2�/e � n⌦/e. Figure 2.2(e) illustrates the evolution of the dI/dV as a function
of the applied AC voltage. Replicas of the coherence peaks with a separation of n⌦/e
appear. The larger the applied AC voltage, the more replicas are observed.

2.2.2 Josephson Current

A few years after the BCS theory was proposed, the British scientist Brian Joseph-
son proposed that when two superconductors are put in close contact, and a hopping
term (such as a tunneling Hamiltonian [Eq. (2.16)]) is added to the system, a zero
bias current of Cooper pair appears [69]. The most technical steps of the calculation
are shown in App. D.1. The tunneling of Cooper pairs for no applied voltage reads

I = Ic sin(�) , (2.21)

where

Ic =
⇡�

2eR
tanh

�

2kBT
(2.22)

is the critical current [70], and � = �L � �R is the phase di↵erence between super-
conductors, R is the junction’s resistance, and we assumed a symmetric junction, i.e.,
�L = �R = �. Equation (2.21) is known as the first Josephson relation [69] and
implies that, with a fixed phase di↵erence between superconductors, a zero-voltage
Cooper pair current, or supercurrent, is generated. The second Josephson relation
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2.2. Tunneling between Superconductors

relates the phase di↵erence with the applied voltage;

d�

dt
= 2eV (t). (2.23)

The phase in Eq. (2.21) is not an operator, which is the case for bulk supercon-
ductors when the particle number is not well-defined. When the particle number is
well-defined, the phase fluctuates, and we have to consider a quantum mechanical
operator. In Chp. 6, this is the case due to the small size of the superconducting
grains. In this scenario, we exploit the relation between phase and particle number in
Eq. (2.8) to describe exp{i�} as the translation operator of Cooper pairs. Then, the
current operator reads

Î = Ic sin
⇣
�̂
⌘
= i

Ic
2

X

2N

|2N + 2i h2N |� |2Ni h2N + 2| . (2.24)

and the Hamiltonian generating this current as

Ĥ = EJ cos
⇣
�̂
⌘
= �

EJ

2

X

2N

|2N + 2i h2N |+ |2Ni h2N + 2| . (2.25)

where EJ = IC
2e represents the Josephson energy. This Hamiltonian captures the

tunneling of a Cooper pair between the left and right electrodes.
In the most common STM tunneling configuration, a bias voltage is applied, and

the current response is measured. In this setup, the phase di↵erence remains unfixed,
leading Eq. (2.21) to vanish, yet incoherent Cooper pair tunneling remains measurable.
So far, we have omitted e↵ects from the charging Hamiltonian in Eq. (2.17) as well
as the e↵ects of the environment on the tunneling electrons. With finite junction
capacitance and a non-zero circuit impedance, Z, a second-order incoherent Cooper
pair tunneling current appears. This current is given by

I = ⇡eE2
J
(P 0(2eV )� P 0(�2eV )) , with P 0(!) =

Z
dte4J(t)+i!t

J(t) =
e2

⇡

Z 1

0
d!

ReZc(!)

!
[coth(!/2kBT )(cos(!t)� 1)� i sin(!t)] .

(2.26)

The P 0(!) is a distribution named Probability of Emission (PoE) function that des-
cribes the e↵ects of the environment on the tunneling Cooper pairs [45, 51, 71, 72].
The step-by-step calculation is extended in App. D.1.2. The current is proportional
to the square Josephson energy, E2

J
, which indicates that this formula corresponds to

a second-order tunneling transport mechanism.
The phenomenology of this equation is similar to the Tien-Gordon theory presented

in Sec. 2.1.1. The PoE accounts for the tunneling assisted by the bosonic modes
of the environment. As these modes do not have a defined frequency but rather a
distribution of frequencies given by the circuit impedance, we can not separate the
assisted tunneling in di↵erent contributions as in Eq. (2.19). The tunneling is then
given by a probability distribution.
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2.3 Double tunneling junctions and the Coulomb blockade.

In the following, we present the current response of a Double Tunneling Junction
(DBTJ) for ultrasmall tunnel junctions, i.e., the limit where the charging, Eq. (2.17),
has an essential role in tunneling electrons. We describe the working principle of the
Single Electron Transistor (SET), first described by D. V. Averin and K. K. Likharev in
1986 [46] and measured by T. Fulton and G. Dolan [73] two years later. In this device,
the charge does not flow continuously but in a quantized way, making it exceptionally
sensitive for electrometry applications. No superconductivity is considered in this
section. The e↵ects of finite pairing energy are considered in Chapters 5 and 6, as well
as in App. D.

The charging Hamiltonian for two junctions reads

Ĥcharging =
e2

2C1

 
X

k

ĉ†
Lk� ĉLk� � ĉ†

ck� ĉck�
2

!2

+
e2

2C2

 
X

k

ĉ†
ck� ĉck� � ĉ†

Rk� ĉRk�

2

!2

=
Q̂2

1

2C1
+

Q̂2
2

2C2
=

q̂2

2C
+

Q̂2

2C⌃
,

(2.27)

where, c refers to the central region, Q̂i is the charge in the ith junction, q̂ = Q̂1� Q̂2

is the excess charge in the island and Q̂ = 1Q̂1 + 2Q̂2 the excess charge in both
junctions, with C = C1+C2, C⌃ = C1C2

C
and 1 = C2

C
and 2 = C1

C
. When the central

region of the DBTJ is small enough and is isolated from the left and right electrodes,
charge fluctuations decrease. Then, the charge of the central grain is quantized, i.e.,
q̂ = n̂e.

Moreover, when a gate potential is added as a third terminal to the circuit, as
illustrated in Fig. 2.3(a), the tunneling through each junction has a directionality.
Adding or extracting a charge from the central grain costs di↵erent energy. For this
reason, the charge of the central grain transforms to q̂ = n̂e�VG/CG = n̂e�q0, i.e., it
can host an excess fractional charge q0, which can be controlled with the gate voltage.

The energy distribution of the di↵erent charge states on the island is described by
the first term in the last formula in Eq. (2.27):

Ĥ =
(n̂e� q0)2

2C
. (2.28)

the dispersion of the n = �1, 0, 1 states of the grains is illustrated in Fig. 2.4(a). We
note that the parabolas cross at q0 = ±0.5e. Moreover, the system is e periodic. Any
q0 value and q0 ± e have the same energy. The energy separation between the state
n = 0 and states n = ±1 at q0 = 0, depicted by the green arrow in 2.4(a), is the
Coulomb energy: EC = e2/2C.

Once a voltage is applied between the left and right electrodes, see Fig. 2.3(a),
tunneling in the first and second junctions turns on. This varies the population of each
charge state; consequently, a non-equilibrium problem must be solved to calculate the
populations, pn. This is done with a Master equation, which is described in App. C.1.
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Figure 2.3: The double tunneling junction. (a) Sketch of the circuit representing
the DBTJ. A voltage source, V , is applied to two junctions characterized by a resistor
Ri and a capacitance Ci in parallel. A third terminal is added to account for the
fractional excess charge (q0 = VG/CG). (b) Current through a DBTJ for R1 = R2

and C1 < C2 for zero and finite temperatures (top) and the population of each charge
state (bottom). (c) Same DBTJ in the tunneling limit (R1 � R2) for zero and finite
temperatures (top) and the population of each charge state (bottom). The Coulomb
gap and the charging steps can be distinguished.

Once the master equation is solved, the current through the DBTJ is a sum of the
transition probabilities for all possible charge states of the island weighted by the
population of the state. See Eq. (C.4).

The current for q0 = 0 on a DBTJ is shown in Figs. 2.3(b) and 2.3(c) (top). The
former is the current response of a junction with R1 = R2 and C2 > C1. We observe a
spectral gap of magnitude e/Cmax, where Cmax = max(C1, C2), i.e., the sepctral gap is
e/C2. This is known as the Coulomb gap. It represents the minimum voltage needed
for current to flow. Beyond this threshold, the DBTJ shows an approximately ohmic
response, with slight slope variations due to changes in the central grain’s population,
as illustrated in Fig. 2.3(b) (bottom).

On the other hand, Fig. 2.3(c) shows the current response of a junction with the
same parameters in the tunneling regime, i.e., R1 � R2. In this scenario, the Coulomb
gap is the same, but when a voltage equal to ±e/C1 is reached, the island’s population
changes to n = ±1 sharply. See Fig. 2.3(b) (bottom). This is observed in the current
as a step or as a peak in the dI/dV, known as a charging peak.

Finally, we examine the influence of gate voltage on the current. With an applied
gate voltage, the Coulomb gap and charging steps adjust. Figures 2.4(b) and 2.4(c)
show the dI/dV evolution relative to excess charge, displaying the expected e-periodic
behavior in a shape commonly referred to as Coulomb diamonds [45]. Both plots are
calculated in the tunneling regime, with Fig. 2.4(b) representing a symmetric junction
(C1 = C2) and Fig. 2.4(c) an asymmetric one (C1 6= C2).

For q0 = 0.5e, the Coulomb gap closes because the n = 0 and n = 1 grain
states intersect [Fig. 2.2(a)]. In the symmetric BDTJ, the Coulomb diamonds remain
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Figure 2.4: E↵ect of excess charge in the DBTJ. (a) Energy level dispersion as
a function of q0. The n = �1, 0, 1 levels are shown. The green arrow represents the
energy needed to add an electron at the charge neutrality point. (b) and (c) Depen-
dence of the dI/dV on the excess charge for a symmetric and asymmetric junction,
respectively.

symmetric, meaning dI/dV is identical for positive and negative voltages at all excess
charges. However, in the asymmetric case, a non-reciprocal response to applied current
is observed, where dI/dV asymmetrically responds to voltage inversion. This non-
reciprocity results from the simultaneous breaking of charge conjugation and inversion
symmetry, a necessary condition for a non-reciprocal current response [see Chapter 6].
In Chapter 5, we expand this formalism to consider superconducting electrodes and
central grain and use the formalism to fit the measured spectra.

2.4 Magnetic impurities on superconductors

One of the main topics of this thesis is the e↵ects of magnetic impurities on super-
conductors at the nanoscale. In this section, we shift gears and discuss these theoreti-
cally, foundational for the experimental findings discussed in Chapters 3 and 4.

The first e↵ects due to magnetic impurities on normal metals were first found in
the 1930s [15, 74] when an increase in the resistance of the material at low tempe-
ratures was measured. This e↵ect happened for several pure metals and alloys, so
its importance was immediately pointed out. The resistance was thought to lower
with temperature as the electron-phonon scattering decreased. It was not until 1964
that Sarachik et al. [75] comprehended the crucial role of magnetic impurities in such
a system. The theoretical microscopic theory modeling the phenomena was first in-
troduced by J. Kondo in the same year [21]. The lowering of the resistance due to
magnetic impurities is now called the Kondo e↵ect [Sec. 2.4.1], and the Hamiltonian
describing it reads

ĤKondo =
X

kk0
,��0

Jkk0 ĉ†k�Ŝ · s��0 ĉk0
�0 . (2.29)
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2.4. Magnetic impurities on superconductors

Jkk’ is the exchange coupling, Ŝ is the spin of the magnetic impurity, and š =
(�1,�2,�3). The model assumes an impurity scattering between any two momenta.
Note that this is a Heisenberg-like Hamiltonian between a localized spin and the spin
of the itinerant electrons.

Kondo was not the first researcher to point out the importance of magnetic impuri-
ties in metals, and certainly, his model is not the first microscopic theory describing the
adatoms. The work of Friedel [76], motivated by higher temperature experiments [77],
has to be mentioned here. He was the first to discuss the e↵ects of impurities (mag-
netic and non-magnetic) in metals in the context of scattering theory. He described
the perturbation of the charge around an impurity, later known as Friedel oscillations,
and gave a phenomenological description of a microscopic model that described the
interaction between the d-orbitals of an impurity and the substrate.

Following Friedel’s lead, Anderson was [17] the first to develop a microscopic Hamil-
tonian describing magnetic impurities on metals. Anderson described the model for
a superconductor, as he was motivated by the experimental work of B. T. Matthias
et al. [78], who proved that an ensemble of magnetic impurities lowered the critical
temperature of a superconductor.

2.4.1 The Kondo Hamiltonian and the Yu-Shiba-Rusinov States

Soon after Kondo proposed his model [21], Schrie↵er and Wol↵ proved that it was
equivalent to the Anderson model when the magnetic moment of the impurity was
well-defined [79] (see Ref. [80] for the superconducting case). Then, the Hamiltonian
describing a magnetic impurity on a superconductor reads

HKondo =
X

��0

 ̂†
�
(0)(J Ŝ · s��0 + U���0) ̂�0(0) , (2.30)

where we assumed a momentum-independent exchange coupling J and the position
of the impurity to be at r = 0. Moreover,  ̂†

�
(0) ( ̂�(0)) is the creation (annihilation)

operator of an electron with spin � at r = 0, and we added a scalar potential scattering
term U to account for particle-hole symmetry break, which is the case for most STM
experiments on magnetic impurities.

Three independent works from Yu, Shiba, and Rusinov [19, 23, 81] solved the
problem of a single magnetic impurity on top of a superconductor within a classical
spin approximation. These authors simplified the problem by assuming that the spin
was big enough not to consider quantum e↵ects from its fluctuations. The problem of
a magnetic impurity on a superconductor can be approached using the GF formalism
introduced in Sec. 2.1. One needs to calculate the exact GF of the superconductor
plus magnetic impurity system. This can be done using the Dyson equation, which
relates the bare GF of the superconductor to the exact GF of the system. The Dyson
equation for a Dirac-like local impurity can be written in the following simple form

Ǧ(!, r, r0) = Ǧ0(!, r, r
0) + Ǧ0(!, r, 0)V̌ Ǧ(!, 0, r0))

Ǧ(!, r, r0) = Ǧ0(!, r, r
0) + Ǧ0(!, r, 0)V̌

⇥
1̌� V̌ Ǧ(!, 0, 0)

⇤�1
Ǧ(!, 0, r0) ,

(2.31)
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Figure 2.5: Characterization of YSR states. (a) Spin-dependent DoS on a local
magnetic impurity on a superconducting surface calculated from Eq. (2.31). The
positive and negative YSR states have the opposite spin polarization. (b) Evolution
of the DoS of the YSR states away from the impurity for a 3D (blue), 2D (orange)
and 1D (green) superconductor. (c) Evolution of the YSR state energy as a function
of exchange coupling.

where Ǧ0(!, r, r0) =
P

k G0k,k(!)eikr�ik’r’ is the real space GF of a superconductor.
G0k,k0 is defined in Eq. (2.10). As explained before, we have assumed that the
impurity is located at r = 0. The matrix V̌ reads

V̌ = U⌧3 + JS · š . (2.32)

We are interested in the system’s Local Density of States (LDoS), which incorporates
information about distortions in the local charge distribution coming from the im-
purity. The LDoS is obtained by substituting the exact GF in Eq. (2.31) into the
expression (2.12). This is a magnitude we can access with STM.

The first term in Eq. (2.31) is the bare superconducting GF, the second gives the
correction due to the impurity. We note that the second term has two poles inside the
superconducting gap given by the solution of det

⇥
1̌� V̌ Ǧ(!, 0)

⇤
= 0, which read

✏± = ±�
1� ↵2 + �2

p
(1� ↵2 + �2)2 + 4↵2

�!0
���! ±�

1� ↵2

1 + ↵2
(2.33)

with ↵ = ⇡⌫0J and � = ⇡⌫0U . These energies correspond to two states that develop
inside the superconducting gap, localized around the impurity, known as the Yu-Shiba-
Rusinov (YSR) states [19, 23, 81]. The LDoS on top of the impurity calculated as
1
4⇡ Tr

⇥
Ǧ(!, 0, 0)

⇤
, with Ǧ given by Eq. (2.31), is shown in Fig. 2.5(a), where the colors

represent the spin-dependent DoS. We note two major features: (1) the DoS of the
superconducting coherence peaks is suppressed, and the spectral weight is transferred
to the YSR states. (2) the YSR states are spin-dependent, the positive and negative
states being oppositely polarized.

The first property reflects the conservation of total DoS,
R
d!⇢(!) = ⌫0. As two

new states are created inside the superconducting gap, the DoS of the coherence peaks
is redistributed to form the YSR states. The second feature arises from the chosen
approximation. In principle, Eq. (2.30) preserves time-reversal symmetry, no intrinsic
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2.4. Magnetic impurities on superconductors

spin-polarized states are generated. However, modeling the impurity spin as a vector
acts similarly to a Zeeman field, breaking this symmetry and producing spin-dependent
YSR states.

Equation (2.31) also describes the dependence of the LDoS on positions away from
the magnetic impurity (r 6= 0), which involves two length scales: a long-range scale
determined by the superconducting coherence length ⇠S , which provides an exponen-
tial decay, e�r/⇠S of the YSR wavefunction, and a short length equal to the inverse
of the Fermi momentum k�1

F
, over which the wave function oscillates and exhibits an

algebraic decay ⇠ (kF r)�1. This decay law is valid for three-dimensional systems. For
a general isotropic superconductor, the decay law depends on the dimensionality of
the superconducting band, namely the YSR amplitude decays as ⇠ (kF r)(1�d)/2 with
dimension d = 1, 2, 3 [32]. Summarizing, the LDoS is given by [23, 82]

⇢±(!) ⇠
1

(kF r)(d�1)/2
e�r/⇠S sin2(kF r + �±), (2.34)

where �± is the scattering phase, which considers the dephasing between the particle
and hole component, i.e., it can be di↵erent for the hole (-) or particle (+) component
of the YSR states. This evolution is depicted in Fig. 2.5(b). The exact evolution for a
2D superconductor is presented in Sec. A.1, and the discussion about their extension
is extended in Chapter 3

Figure 2.5(c) shows the evolution of the YSR energy as a function of the value ↵.
At ↵ =

p
1 + �2, the positive and negative YSR peaks cross. In the classical limit,

this is nothing more than a level crossing. As we explain in the following section
it represents a Quantum Phase Transition (QPT) [23, 42] from a free spin to the
strong coupling or Kondo-screened regime. As this approximation can not capture
the intricate evolution of the system’s ground state, we propose a single-site approach
that can better describe the QPT without any computationally costly methods [36].

2.4.2 Single-site model for a magnetic impurity on a superconduc-
tor

The simple solution of the classical approximation arises from disregarding any
quantum e↵ect due to the spin on a local impurity. Still, this method is a good
approximation for weak exchange couplings before the perturbative approach breaks
down [40]. Larger couplings require sophisticated but numerically costly methods such
as the numerical renormalization group [37, 38] or continuous time Montecarlo [39].
A simplified approach to consider the quantum nature of the impurity is reducing the
superconductor to a single superconducting atom (a single site), exchange coupled to
a quantum spin. The single-site model for a magnetic impurity on a superconductor
can be described with the following Hamiltonian [36],

Ĥ = �ĉ†"ĉ
†
# +�ĉ#ĉ" +

X

��0

ĉ†
�
(J Ŝ · s��0 + U���0)ĉ� , (2.35)
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2. Theoretical and experimental methods

where J is the exchange coupling between the impurity and the superconducting site,
U is a scattering potential, and � is the superconducting pairing energy. Without loss
of generality, we take U = 0 in the following discussion.

As discussed in sections Secs. 2.1.1 and 2.1.2, excitations of the superconductor
have a onset energy, � and 2�, for single- and two-particle excitations, respectively.
At these threshold energies, a sharp peak develops (coherence peaks). The first two
terms in Eq. (2.35) correspond to the single-site model for a superconductor without
magnetic impurities. This Hamiltonian considers a single superconducting atom, with
creation and annihilation operators ĉ†

�
and ĉ�. The eigenstates of Eq. (2.35) for

J = U = 0 read

⇢
|BCSi =

1
p
2
(|0i � |2i),

��BCS
↵
=

1
p
2
(|2i+ |0i), |"i , |#i

�
. (2.36)

|BCSi is the GS lying at �� energy,
��BCS

↵
is the Cooper pair excited state, with an

energy � and |"i and |#i are the two possible single-particle excitations, which lie at
0 energy. Here, |2i = |"#i represents a Cooper pair. The electron-induced excitations
from the ground state, |BCSi, into |"i and |#i amounts to � and represent the
coherence peaks of a superconductor. The higher energy continuum is disregarded.

Figure 2.6(a) plots the energy diagram for J = U = 0, which we compare with the
spectrum discussed in Secs. 2.1.1 and 2.1.2. This single-site Hamiltonian considers
only the onset of excitations (gets rid of the k-dependence of the ground state), which,
as discussed below, is handy when the e↵ects of magnetic impurities on superconduc-
tors are considered.

When the exchange coupling is turned on, the Hilbert space is doubled due to the

spin degrees of freedom. For a spin 1/2 and J <
4

3
� = Jcr one can show by exact
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Figure 2.6: Single-site model for a magnetic impurity on a superconductor.
(a) The blue and orange states correspond to the even and odd parity states, respec-
tively. At J = Jcr, we observe the crossing between the even BCS and the od singlet
YSr state. The shaded area represents the onset of the continuum of single-particle
excitations (orange) and the Cooper pair excitations (blue). (b), (c) Sketch of the
even and odd ground states, respectively
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diagonalization of Hamiltonian (2.35) that the ground state is given by

|GSiweak = |BCSi

����
1

2

�
or |BCSi

�����
1

2

�
, (2.37)

where
��± 1

2

↵
refer to the spin state of the impurity. The regime where J < Jcr is known

as the weak or free spin regime [36], where the interaction between spin and substrate
is not big enough to screen the impurity spin, so it is free, see Fig. 2.6(b). The
ground state has a total spin 1/2 and can be described as the product of two di↵erent
subspaces: one for the electronic degrees of freedom and another for the spin’s degrees
of freedom. Furthermore, the parity of the system is even, as the superconductor has
0 or 2 electrons.

When J > Jcr, the ground state changes to

|GSistrong =
1
p
2

✓����",�
1

2

�
�

����#,
1

2

�◆
. (2.38)

This is a singlet state formed between the spin of the itinerant electrons on the
substrate and the impurity spin, i.e., it has a total spin 0, see Fig. 2.6(c). The exchange
coupling term in Eq. (2.35) does not couple to even states, which are singlets, i.e.,
spin-0 states. Consequently, the energy of |BCSi |±1/2i, which represents the BCS
condensate with a free spin, does not depend on J . The QPT happens when the
singlet state in Eq. (2.38), formed between the impurity spin and a quasiparticle, has
a lower energy than the BCS condensate. As it is formed with a bound quasiparticle,
the parity in the strong coupling regime is odd.

In the weak coupling regime, the YSR state is the transition from the BCS ground
state to the Kondo singlet, and vice versa in the strong coupling regime. The single-
site model, contrary to the classical approximation, captures the change of total spin
and parity through the QPT. Notice that within the single-site model the spatial
dependence is lost.

In this thesis, we compare these approaches. In Chapter 3, we focus on the spatial
extension of the YSR states away from the impurity, so the classical approximation is
used. On the other hand, in Chapter 4, we are interested in identifying the origin of
the YSR states in a high-spin molecule, so the single-site model is used.

In the upcoming, we contextualize the theoretical concepts discussed thus far by
introducing the scanning tunneling microscope, the key experimental platform used
for the measurements in this thesis.

2.5 The Scanning Tunneling Microscope on superconductors

In 1972, R. Young et al. [83] took the initial step toward nanoscale topographical
measurements of metallic surfaces by developing a device capable of mapping surface
contours with submicrometer precision. This pioneering instrument, named the ”to-
pographiner”, worked on a principle akin to that of the modern Scanning Tunneling
Microscope, but with a key di↵erence: it utilized field emission current instead of
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Figure 2.7: Topography and Current measurements on Pb(111) (a) Constant
current topographic image of a large area of bulk Pb (V=1 V, I=100 pA). (b) Constant
height topographic image of a small area of bulk Pb. The atomic resolution is observed
(V=50 mV).

tunneling current for its measurements. In 1981, G. Binnig and H. Rohrer [5] intro-
duced the first STM, which revolutionized surface analysis by leveraging the tunneling
current between a sharp metallic tip and a conducting surface, the sample. The dis-
tance between the tip and sample was regulated using piezoelectric materials, which
adjust the z-position to maintain the tunneling current. Additional piezoelectric com-
ponents controlled the x and y movements, enabling the tip to scan the surface in a
raster pattern and generate a detailed topographical map.

The theoretical foundation of the tunneling current was introduced in Sec. 2.2.1
and is described, in the absence of inelastic processes, by Eq. (2.20). A key innovation
of the STM is its sharply pointed metallic probe, often fabricated by electrochemical
etching for tungsten tips or mechanical shearing for platinum-iridium tips, creating a
single-atom apex. The tunneling transmittance decays exponentially with distance,
expressed as |T |

2
/ e�|z| [6], where z is the distance between tip and sample. A slight

increase of 1 Å reduces |T |
2 by an order of magnitude. Due to the tip’s sharpness

and the transmittance’s exponential dependence, only the DoS at the outer atom at
the apex of the tip contributes to the tunneling current. Similarly, only the DoS at
the nearest surface point contributes to the current, allowing the STM’s raster scan
to resolve the sample’s topography at an atomic level.

The STM has evolved to enable measurements under increasingly optimal condi-
tions, enhancing resolution and precision [84]. The STM used in this thesis is a Joule-
Thomson STM (JT-STM), operated in Ultra-High Vacuum (UHV) at a pressure of
10�10 mbar. The Joule-Thomson cycle lowers the temperature from 4.2 K, the boil-
ing temperature of He at atmospheric pressure, to 1.3 K, where all measurements are
conducted. The low temperatures allow for the observation of superconducting phe-
nomena, as the critical temperature of most superconductors is a few Kelvin degrees,
enhancing the energy resolution.
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Figure 2.8: I-V characteristics of a superconducting tunneling junction.
(a) Current response of a Pb-Pb tunneling junction upon an applied voltage at
R = 1 M⌦ (blue) and R = 20 k⌦ (orange). (b) Sketch of the single particle-tunneling.
(c) Sketch of the first-order Andreev reflection. (c) Sketch of the second-order An-
dreev reflection. Applied voltages in the sketches is taken assuming �tip = �sample.

Figures 2.7(a) and 2.7(b) illustrate both a large-scale scan and atomic-resolution
images of bulk Pb. The large-scale scan in Fig. 2.7(a) is conducted in constant-current
mode, where a feedback loop maintains a steady current as the tip scans across the
sample in a raster pattern. The sample’s topography is mapped by recording changes
in the tip’s z-position, reflected in the adjustments of the piezo voltage required to
keep the current constant. For atomic-resolution imaging, shown in Fig. 2.7(b), the
constant-height mode is used. Here, the tip height remains fixed, and variations in
current, dependent on the tip-sample distance, are measured to reveal atomic-level
details.

Constant-current mode is ideal for large-area scans, where surface features like
step edges [see Fig. 2.7(a)] may exceed the typical tip-sample separation. For smaller,
high-resolution scans, constant-height mode provides optimal atomic-scale detail.

2.5.1 Scanning tunneling spectroscopy on superconductors

When two metallic electrodes are in contact, their chemical potential is fixed to be
equal, i.e., their Fermi energies are aligned [Sec. 2.2]. When a voltage between the tip
and sample is applied, the alignment of the chemical potentials changes. Measuring the
output current as the input voltage is swept, we measure the convolution between the
tip and sample DoS [Eq. (2.20)]. If the tip DoS is known, the DoS of the sample can
be inferred. Combining topographic information with the voltage sweeps, we obtain
the LDoS of the sample. Moreover, the system’s di↵erential conductance or dI/dV can
improve the current resolution. This is known as Scanning Tunneling Spectroscopy
(STS). In STS, a small AC signal is added to the DC voltage, and the output is
measured using a lock-in amplifier set at the AC frequency of choice.
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Quasiparticle tunneling

Figure 2.7(c) shows the I-V curve measured on a flat region of the superconducting
Pb(111) surface. For these measurements, a tungsten tip with its apex coated in Pb
is used, inducing superconductivity. Using a superconducting tip enhances the energy
resolution by reducing thermal broadening due to the superconducting gap, which is
larger than the thermal broadening at 1.3 K. At high junction resistances (R > 1 M⌦),
illustrated in the blue curve in Fig. 2.7(a), a voltage of ⇠ (�tip + �sample)/e must
be applied to overcome the two superconducting gaps, and initiate tunneling, where
�tip and �sample are the gap of the tip and sample, respectively. This is indicative
of single-particle tunneling [Sec. 2.2]. In this regime, no current can tunnel between
the two superconducting gaps, and the supercurrent is absent since there is no fixed
phase between the superconductors.

The quasiparticle tunneling mechanism is illustrated in Fig. (2.8)(b). The applied
voltage has to be enough for a quasiparticle to tunnel from the negative coherence peak
of the tip to the positive peak in the sample or vice versa. The dI/dV measurement
corresponding to the high resistance I-V curve is shown in Figs. 2.9(a). The onset of
quasiparticle tunneling is observed as a sharp peak, which enhances the resolution of
the measurement.

Andreev Tunneling

As the tip approaches the sample, the resistance is lowered, and higher-order
tunneling processes are activated. Figure 2.8(a) displays the I-V curve at R =
20 k⌦, compared with the high resistance measurement. Beyond the single-particle
tunneling onset at V = ±(�tip + �sample)/e = 2.7meV, two additional characte-
ristic jumps in the current appear at V = ±(�tip + �sample)/2e = 1.35meV and
V = ±(�tip +�sample)/3e = 0.9meV. Figure 2.9(b) is the corresponding di↵erential
conductance measurement where the current steps are observed as peaks at the same
energies. These steps correspond to the first- and second-order Andreev reflections
between the tip and sample [85–89].

An Andreev reflection is a scattering mechanism where an incident electron is
retroreflected as a hole. For E < �, no quasiparticle states exist in a superconductor,
only the condensate of Cooper pairs. Any incident electron with E < � sees an
infinite potential well and can not access it except by generating a Cooper pair in the
superconductor. If the incident electron generates a Cooper pair, a retroreflected hole
has to be formed for charge and momentum to be conserved.

The first-order Andreev tunneling process is depicted in Fig. 2.8(c). When the
onset voltage of V = (�tip+�sample)/2e is applied, an electron traveling from the left
electrode to the right generates a Cooper pair in the right electrode and is retroreflected
as a hole. The tunneling electron’s energy is (�tip +�sample)/2, matching the hole’s
energy, resulting in a total energy transfer of (�tip +�sample).

Following the same principle, the second-order Andreev tunneling process is shown
in Fig. 2.8(d). Here, an applied voltage of V = (�tip+�sample)/3e gives the tunneling
electron an energy of (�tip + �sample)/3. The electron creates a Cooper pair in the
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Figure 2.9: STS on a superconductor. (a) Spectra at R = 1 M⌦ in a Pb-Pb
tunneling junction. Equivalent to Fig. 2.7(c). (b) Spectra at R = 20 k⌦ in the same
junction, equivalent to Fig. 2.8(a) (c) STS on top of a Ti magnetic impurity on the
superconducting �-Bi2Pdsurface (V=5 mV, I=500 pA). The inset is a topographic
image of the adatom (V=100 mV, I=100 pA).

right electrode and is retroreflected as a hole. This hole lacks su�cient energy to
create a quasiparticle in the left electrode, leading to the formation of a Cooper pair
in the left electrode and the retroreflection of another electron. The total energy of
the tunneling quasiparticles again adds up to (�tip +�sample).

As the order of Andreev reflection increases, the required voltage decreases while
the order of transmittance increases. Single-particle tunneling is proportional to |T |

2,
while the first- and second-order Andreev reflections are proportional to |T |

4 and |T |
6,

respectively.

Cooper Pair tunneling

Another feature is visible in the low-resistance I-V curve shown in Fig. 2.8(a). Close
to zero applied voltage, two small peaks emerge. In the corresponding di↵erential
conductance measurement [Fig. 2.8(b)], these appear as a sharp peak at zero voltage,
referred to as the Josephson peak [45, 51, 71, 72, 86, 90, 91].

As discussed in Sec. 2.2.2, the STM tunneling junction lacks a fixed phase di↵erence
between superconductors, eliminating the DC Josephson current. However, due to the
finite interaction between environmental modes and the tunneling charge, incoherent
Cooper pair tunneling emerges. The zero-voltage peak corresponds to this process,
mediated by environmental modes.

The shape of the Josephson peak is determined by the PoE function, providing in-
formation about the distribution of environmental modes, which is further elaborated
in Chp. 6, where measuring the Josephson peak in small-sized superconductors, we
observe a large deviation from Fig. 2.8(b).
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Yu-Shiba-Rusinov states in STM

The STM’s subnanometer resolution and capability to access the sample spectrum
make it a perfect platform for probing superconductivity and its consequences at the
nanoscale. The YSR states are an ideal system to measure the e↵ects of a local magnet
on a superconductor. These subgap excitations arise from the interaction between the
magnetic moment of an impurity’s spin and the itinerant electron. Because they
lie within the band gap, these excitations are long-lived and, hence, appear as very
narrow resonances in tunneling experiments [29, 92]. YSR states are the elementary
states forming sub-gap bands in atomic chains of magnetic impurities [27, 28, 34, 93–
99]. Owing to its narrow line shape, the study of YSR states also reveals fundamental
aspects of atomic scale magnetism with high precision. For example, STM experiments
on superconductors with magnetic impurities revealed valuable information about
molecular [41, 100–108] and atomic properties, as hybridization of orbitals, anisotropy,
etc [39, 109–122].

An example of an STS measurement on a Ti adatom on the superconducting
�-Bi2Pdsurface is shown in Fig. 2.9(c), and the corresponding topographic image
of the adatom and its surroundings in the inset. Two peaks at symmetric positive
and negative voltages can be observed inside the superconducting gap. Their voltage
reads V = 1.40 mV. The energy of the YSR can be calculated by subtracting the
gap of the tip ✏± = ±(eV ��) = ±0.62 meV. We also measure some reminiscence of
the coherence peaks, probably due to a non-zero transmittance between the tip and
superconductor.

The YSR states are studied in Chps. 3 and 4. In the former, the classical approach,
introduced in Sec. 2.4.1, is used to understand the nanoscopic phenomena arising
from magnetic adatoms on �-Bi2Pd. In the latter, we generalize the single-site model,
described in Sec. 2.4.2, to comprehend the complex entangled states formed in a
magnetic molecule on a proximitized superconductor.
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3
Classical Impurities in s-wave

Superconductors

The microscopic behavior of metals is deeply connected to the Fermi Contour (FC)
of the material. For superconductors, the gap is created around a small energy window
near the FC. Consequently, the Yu-Shiba-Rusinov (YSR) states are created at low
energies. At shorter scales (O(1/kF ) ⇠ 1nm), the spatial distribution of their wave
function may reveal the shape of the atomic or molecular orbitals responsible for the
creation of the YSR states [97, 102, 107, 117, 123, 124]. In contrast, at longer scales,
due to the exponential decay of superconducting correlations, the distribution of the
YSR amplitude reflects the shape of the bands (at the FC) of the superconductor [32,
33, 103, 123, 125, 126].

As a consequence of the dependence of the decay of the YSR states on the FC,
their measurement can be used as a method to assess the shape of the FC, or vice
versa, knowing the FC of the sample can be used as a method to analyze the behavior
of these extensions. The STM is the perfect platform for these local measurements.
A well-studied method for obtaining k-space information is the analysis of Quasipar-
ticle Interference (QPI) patterns [127, 128]. Using local scatterers on the surface of a
sample, one can obtain all possible wave-vector shifts due to scattered quasiparticles;
the interference between the incoming and outgoing states creates standing waves that
perturb the Local Density of States (LDoS), which the STM can access. These exten-
sions are the superconducting equivalent of the Friedel oscillations of an impurity on
a metallic substrate. Contrary to QPI on a normal metal, the superconducting gap
protects the in-gap YSR states, which prolong for larger scales.

This chapter is structured into four sections. In Sec. 3.1, we introduce the system
under study: magnetic impurities (V and Mn) on the Bi-terminated surface of the
�-Bi2Pd superconductor. The intricate band structure of the superconductor and its
potential implications on the measurements are examined. In Sec. 3.2, an e↵ective
theory is proposed to account for the observed spatial extension of the YSR states.
This theory demonstrates that the decay of the YSR states and their spatial profile
are closely linked to the FC of the superconductor. Section 3.3 extends the e↵ective
theory to explore the interactions between multiple magnetic impurities and various
structural configurations, which we compare to experiments performed on Mn adatoms
on the �-Bi2Pd. Lastly, in Sec. 3.4, we investigate the e↵ects of spin-polarized bands
on QPI measurements. Analyzing the QPI patterns o↵ers deeper insights into the
intricate band structure of the �-Bi2Pd, a superconductor characterized by two surface
bands alongside two projected bulk bands, all with a square FC. A discussion of the
conclusions and future outlook follows this.
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3.1 The �-Bi2PdSuperconductor

The � phase of Bi2Pd is a layered s-wave multiband type-II superconductor with
a superconducting homogenous gap (same for all bands) of � = 0.78 meV [129], and
a critical temperature of TC = 5.4 K [130, 131]. Figure 3.1(a) shows the material’s
atomic structure. Upon cleavage, the Bi-terminated face becomes the surface, which is
shown in the topographic STM measurements in Fig. 3.1(b). The surface exhibits both
bright and dark spots. These could be Pb atoms from the last cleaved layer or regions
where Bi atoms are missing, likely due to the cleavage (or other unknown atomic
substitutional impurities in the topmost Bi layer). Additionally, some shadows can
also be observed, probably caused by impurities in the lower layers. Previous ARPES
measurements and DFT calculations [30, 31] suggest that the FC is composed of four
di↵erent bands: two projected bulk bands, ↵ and �, and two surface bands, S1 and
S2 [Fig. 3.1(c)].

All the bands crossing the Fermi level have a square-like shape; see the sketch in
Fig. 3.1(c) [1, 30, 31]. Extended FC regions with parallel flat portions suggest strong
vector nesting in this surface: the scattering is focused on the direction specified by
the FC. In this case, the nesting is on the (100) and (010) crystallographic directions,
orientations perpendicular to the parallel flat areas of the FC. Moreover, due to the
strong Rashba Spin-Orbit Coupling (SOC) of the material, the spin degeneracy at
the surface is broken, and the bands become spin-polarized [30, 31]. At the surface,
momentum and spin are locked so that the spin is reversed for each pair of opposing
faces of the square-like FC [Fig. 3.1(c)]. The FC’s shape and polarization a↵ects the
YSR states’ extensions, so their consideration is important when analyzing possible
scattering mechanisms from the impurities.

The non-circular shape of the FC and a multiband, spin-dependent nature of the
superconducting state characterizes �-Bi2Pd. These properties are not unique to �-
Bi2Pd; many superconducting materials exhibit significant e↵ects of a non-circular FC
on the properties of YSR states [32, 33]. Moreover, multiband superconductivity is a
common feature of many materials, such as Pb, NbSe2, and FeSe [93, 127, 132].

In the following, we first solve these problems with a generalist approach so that
our methods can be applied to any material; then, we focus on results for magnetic
impurities on the �-Bi2Pdsuperconducting surface.

3.2 Yu-Shiba-Rusinov states in Superconductors with arbitrary

Fermi Contour

Several STM experiments observe YSR decaying several nanometers in conven-
tional superconducting systems [32, 33, 123, 125], which were attributed to a com-
bination of two e↵ects, a reduced dimensionality of the superconducting bands [see
Eq. (2.34)] and the anisotropic character of their Fermi surfaces or contours. This last
e↵ect is connected with the accumulation of multiple scattering wavevectors along
specific substrate directions due to flat segments in the FC. These ”nesting vectors”
cause an ”electronic focusing” e↵ect along specific directions [133], propagating the
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3.2. Yu-Shiba-Rusinov states in Superconductors with arbitrary Fermi Contour

Figure 3.1: An overview of the characteristics of the �-Bi2Pd: (a) Structure
of the layered �-Bi2Pdsuperconductor. (b) STM topographic image of said surface: a
few bright and dark spots arising from imperfections can be distinguished (V=100 mV,
I=100 pA). (c) Sketch of the spin-dependent surface FC based on the calculations in
Refs. [30, 31]. The spin of the bands is illustrated by the blue and red arrows. Four
main bands are depicted, two surface bands (S1 and S2) and the surface projections
of two bulk bands (B1 and B2). All possible spin-conserving scattering vectors are
shown (qi).

wavefunction amplitude for larger distances. Due to the clear relevance of this e↵ect,
especially for highly anisotropic superconductors, we propose a detailed analytical
study on its role in the decay of superconducting quasiparticle states, which does not
rely on high-throughput numerical simulations to incorporate complex Fermi surfaces
and contours.

In what follows, we derive a compact expression for the Green’s Functions (GFs) in
real space to account for the e↵ect caused on the superconductor by multiple atomic
impurities.

3.2.1 General expression for the GF in the presence of multiple
impurities

To obtain the spectrum of the system, we introduce the equation of motion for the
4⇥4 matrix GF, the so-called Gor’kov equation [82] which, in real frequency ! space,
reads,

h
! � Ȟ0(r)�

NX

n=1

V̌n�(r� rn)
i
Ǧ(r, r0;!) = �(r� r0) . (3.1)

Ȟ0 is given by the Fourier transform of the Hamiltonian (2.9) and V̌n is the nth
impurity’s potential [see Eq. (2.32)]. The spectrum of a single impurity can be found
explicitly by solving Eq. (3.1) analytically [Sec. 2.4.1], as well as the case of multiple
impurities. In this subsection, we provide a useful expression to compute Ǧ(r, r) in
the presence of N impurities at arbitrary position ri. We start writing the solution of
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3. Classical Impurities in s-wave Superconductors

Eq. (3.1) in the form of a Dyson series:

Ǧ(r, r0) = Ǧ0(r� r0) +
X

n

Ǧ0(r� rn)V̌nǦ(rn, r
0), (3.2)

where Ǧ0(r� r0) is the GF of the 2D superconductor without impurities. To simplify
the notation, we drop the !-dependence of the GFs. We aim to write the right-hand
side of this equation only in terms of the unperturbed Ǧ0. For this, we write the N
equations for the matrices Ǧ(rn, r0), with n = 1, . . . , N in a compact form:

Ǧ(r0) = [1̌� M̌ ]�1Ǧ0(r
0) , (3.3)

where is 1 is the 4N ⇥ 4N identity matrix and we have introduced the shorthand
notation:

Ǧ(r0) =

0

BBBB@

Ǧ(r1, r0)

Ǧ(r2, r0)
...

Ǧ(rN , r0)

1

CCCCA
, Ǧ0(r

0) =

0

BBBB@

Ǧ0(r1 � r0)

Ǧ0(r2 � r0)
...

Ǧ0(rN � r0)

1

CCCCA
, (3.4)

and the 4N ⇥ 4N matrix

M̌ =

0

BBBB@

Ǧ0(0)V̌1 Ǧ0(r1 � r2)V̌2 · · · Ǧ0(r1 � rN )V̌N

Ǧ0(r2 � r1)V̌1 Ǧ0(0)V̌2 · · · Ǧ0(r2 � rN )V̌N

...
...

. . .
...

Ǧ0(rN � r1)V̌1 Ǧ0(rN � r2)V̌2 · · · Ǧ0(0)V̌N

1

CCCCA
. (3.5)

The matrix (1̌�M̌) contains information about the bound states of a system of N mag-
netic adatoms and their hybridization. In particular, the YSR states are determined
from the condition det(1̌� M̌) = 0.

By solving the set of equations (3.3), and after substitution into Eq. (3.2), one
can obtain the full GF in terms of G0, the GF in the absence of impurities. In
most previous works, superconductors with a spherical Fermi surface were considered.
In the next subsection we obtain Ǧ0(r � r0) for FCs with arbitrary shape that can
be approximated by a polygon. In section 3.3, we use Eqs. (3.2-3.5) to obtain the
spectrum of some multiimpurity structures.

3.2.2 Real space GF for superconductors with non-circular FC

In this subsection, we present the method to obtain the GF of a 2D superconductor
with an arbitrary FC, which we then apply to calculate Ǧ0(r � r0) in a M -sided
regular polygon centered at k = 0 [App. A.1]. We selected the 2D case because the
bands forming the superconducting state in �-Bi2Pdare either surface bands or surface
projections of bulk bands, i.e., they are 2D.
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Figure 3.2: Sketch of an arbitrary
Fermi Contour. Right panel: Sketch
of the quasiparticle energy versus two di-
mensional momentum k. The red curve, at
⇠ = 0, is the FC. Left panel: sketch of
the FC on the (kx, ky) plane. The vector
vF is parallel to rk⇠ and hence points in
the direction perpendicular to the curves of
equal energy.

The real space GF of the two-
dimensional clean superconductor reads,

Ǧ0(r� r0) =

Z
d2k

(2⇡)2
Ǧ0(k)e

ik·(r�r0),

(3.6)
where Ǧ0(k) is given by the Gor’kov
equations of the hosting media in mo-
mentum space [Eq. (3.1)]. We trans-
form the integral in Eq. (3.6) to an
integral over the quasiparticle energy ⇠
[see Eq. (2.13)] by writing d2k = dCdkn,
where dC is a di↵erential element on
a constant energy contour and kn the
perpendicular component of the momen-
tum, normal to such contour, with dkn =
d⇠/|@⇠/@k| [Fig. 3.2]. The relevant con-
tribution to the integral is around the
FC, where the GFs have poles. There-
fore, it is convenient to linearize ⇠ around
the FC.

⇠(k) ⇡ vF · (k� kF), (3.7)

where the Fermi velocity, vF ⌘ rk⇠
��
kF

, points in the direction perpendicular to the

constant energy contours [Fig. 3.2]. The integral over ⇠ goes from�µ to1. In metallic
systems, µ is usually the largest energy scale. Hence, we take the limit µ � � and
integrate it using the residue theorem.

The philosophy of this parametrization of the integral is the same as followed in
the isotropic FC case. All the information about the correlations of the quasiparticles
is enclosed in a small energy window around the FC. Consequently, the direction
perpendicular to the contour is ”straightforward” to calculate, giving the exponential
decay of the correlations. On the other hand, the integral around the FC depends on
its shape, i.e., all information about the origin and distribution of the QPI is present
in that integral. In the next section, we exemplify these by computing the integral
(3.6) for inscribed regular polygons and discussing some cases.

3.2.3 E↵ect of the dimensionality and shape of FC on the YSR
states spatial dependence

In a 2D superconductor with a circular FC, the decay of the GF, which determines
the correlations, obeys (kF r)�1/2e�r/⇠s [Eq. (A.9) in Appendix A.1]. Assuming that
the FC can be approximated by an M-sided regular polygon, we can determine the
GF without impurities (the bare GF of the superconductor) following the procedure
described in the previous subsection. We start by separating the integral in M sections
[Eq. (A.1)], on each polygon side. The integral for each side is given by a line integral
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Figure 3.3: The GF and YSR extension for di↵erent FC. (a)-(c) The spatial
dependence of the correlation function Tr

⇥
Im[Ǧ0(x, y;! + i✏)]

⇤
evaluated at ! = 2�

and normalized with respect to its value at (x, y) = (0, 0): (a) for a circular , (b)
for a square , and (c) for a hexagonal FC. (d)-(f) YSR calculated DoS for the three
di↵erent FCs and normalized with respect to its value at x = y = 0. (e) Radial cut
along the (100) direction of the LDoS of the YSR state in panels (d)-(f). (h) Conduc-
tance map recorded by STS for one YSR state of an isolated V adatom deposited on
��Bi2Pd [1]. Parameters: I=250 pA, V=0.93 mV. (i) YSR spatial dependence mea-
sured for magnetic impurities on La(1000) films grown on a Re(1000) crystal, adapted
from figure 1a in Ref. [33].

along the polygon plus the usual integral in energy (perpendicular direction to the
FC) [Eq. (A.2)]. The unperturbed GF we obtain is the sum over the M integrals [cf.
Eq. (A.3)]:

Ǧ0(x, y) =
MX

k=1

1

(2⇡)2

Z
n
k
/w

k+tan ⇡
M

nk/wk�tan ⇡
M

d�

Z
d⇠G0(⇠)e

�i(m⇠
k0
F
+k

0
F )�wk

. (3.8)
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Here, nk = x cos
�
2⇡k
M

�
+ y sin

�
2⇡k
M

�
, wk = �x sin

�
2⇡k
M

�
+ y cos

�
2⇡k
M

�
, and k0

F
=

kF cos
�
⇡

M

�
, with k = 1, 2, ...,M . In the limit M ! 1, we recover the result for

the circular FC [Eq. (A.4) and (A.5)].

We focus on three particular examples – the square (M = 4), hexagon (M = 6),
and circular (M !1) FCs – and compare the spatial decay of the states bounded to
the impurities in all cases. The exact expressions for the circular and square-shaped
GF are given in the Appendix [Eq. (A.5) and (A.10)]. To illustrate the anisotropic
spatial behavior of the GF, we compute G0 in two directions: y = 0 [Eq. (A.12)]
and x = y [Eq. (A.13)]. These equations show decaying behaviors that di↵er from
an isotropic 2D superconductor. The decay resembles a 3D superconductor along the
diagonal direction, while, along the y = 0 direction, one obtains a 1D-like decay.

In Figs. 3.3(a)-(c) we show the correlation function, Tr[Im ǦA

0 (r)] at an energy
! = 2�, for circular, square-shaped and hexagon-shaped FCs, respectively. The
square- and hexagon-shaped FCs resemble the Fermi surface of the �-Bi2Pd [31] and
La(0001) [33] superconducting surface. We approximate both cases by a single, square-
or hexagon-shaped FC. We observe a clear directionality in the correlation functions.
The nesting arising from the FCs maximizes the correlations in the directions perpen-
dicular to the parallel flat portions of the FC.

The correlation function can not be directly measured, as it is not an observable,
but the DoS of the YSR states, which can be written in terms of the unperturbed
Green’s functions (G0), encodes this information [see Eq. (2.31)]. The poles of the
second term on the right-hand side of Eq. (2.31) determines the energy of the YSR
bound states; all the spatial information is contained in the unperturbed GF, Ǧ0(r).
We use the same set of parameters throughout this section to compare the results.
Namely, for the superconducting gap � = 0.78 mV, e↵ective mass m = 6.67 me, Fermi
momentum kF = 0.274/a0 (a0 = 3.3 Å), and exchange coupling ↵2 = (⇡⌫0JS)2 =
0.156.

Next, we focus on the spatial distribution of the YSR states for the same three
examples. In Figs. 3.3(d)-(f), we show the spatial dependence of the DoS obtained
from the full GF [Eqs. (2.14) and (2.31)] evaluated at the energy of the YSR bound
state. Similar to Figs. 3.3(a)-(c), the shape of the FC is inscribed in the evolution of
the YSR states; furthermore, we see that the extension of these in-gap states is focused
even more than the bare GF along the crystallographic directions. This is because
the YSR depends on G2

0, making the focusing more extreme. In panel Fig. 3.3(g),
we show cuts of the DoS along the (100) direction. The spatial decay of the circular
FC is faster than the one along the symmetrical direction of the square-shaped FC,
which behaves as a lower dimensional case. The hexagon-shaped case lies in between.
As expected, the longer the parallel flat portions of the FC are, the slower the decay
along the nesting direction is, i.e., the decay of a square-shaped FC is the slowest.

Finally, in Figs. 3.3(h) and 3.3(i) we show STM measurements. Fig. 3.3(h)
shows the spatial dependence of a YSR state created by a V adatom on the surface
of ��Bi2Pd, which has square-shaped bands [Sec. 3.1]. Qualitatively, this is con-
firmed by comparing Fig. 3.3(h) and our predictions for a (single) square-shaped FC
[Fig. 3.3(e)]. In Fig. 3.3(h), we show an example of a hexagon-shaped FC. Namely,
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the spatial dependence of the YSR of magnetic impurities in the La(1000) films grown
on Re(1000) [33].

The good agreement between theoretical [Figs. 3.2(e)-(f)] and experimental
[Figs. 3.2(h)-(i)] results demonstrate the suitability of our model for a qualitative de-
scription of the ⇢(r,!) of superconductors with magnetic impurities. The results also
demonstrate how the low-symmetric square- and hexagon-shaped FCs lead to a slower
decay of the YSR states. Such a decay is similar to the 1D situation and suggests the
use of superconductors with a square-shaped FC for the realization of one-dimensional
Andreev crystals [134, 135] by placing chains of magnetic defects along the direction
parallel to the symmetry axis of the square.

3.3 Hybridization of YSR bound states from neighbouring im-

purities

Atomic manipulation using the tip of an STM has demonstrated a large potential
for fabricating atomic nanostructures of magnetic impurities on superconductor and
exploring the hybridization of their YSR wavefunction [103, 116, 117, 121, 122, 136–
140]. As predicted by Flatté and Reynolds [141], the hybridization between overlap-
ping YSR states depends on the relative alignment of the impurities’ spins. For the
case of parallel aligned spins, YSR hybridization leads to splitting the sub-gap fea-
tures into two new states with symmetric and antisymmetric spatial distribution. The
splitting oscillates with the separation between impurities (d) with periods compara-
ble with the Fermi wavelength of the substrate. In the presence of non-isotropic FCs,
the spatial distribution of the YSR splitting shows intriguing orientation dependence
for short inter-impurity distances [103, 141].

In this section, we combine the previously introduced theory and the experimental
results measured in Mn adatoms on �-Bi2Pdto explore the YSR hybridization and
study the role of the YSR-focusing e↵ect on the interaction between adatoms. We
analyze YSR hybridization on ensembles of classical impurities on a surface with a
squared FC as a function of their alignment on the substrate. In Sec. 3.3.1, we study
the YSR hybridization in atomic dimers by forming them in di↵erent crystallographic
orientations. We see that their relative spin orientations di↵er. In Sec. 3.3.2, we
then exploit this information to simulate the e↵ects on more complex ensembles of
impurities.

3.3.1 Mn dimers on the �-Bi2Pdsurface

We first assume that the impurities have a parallel spin and analyze the splitting of
their YSR states as a function of their alignment. The GF of the dimer can be obtained
by constructing the matrix in Eq. (3.5) with N=2. The resulting spectral function
shows that the YSR states are split by an amount E representing the hybridization
between YSR states. As shown in Fig. 3.4(a), the splitting energy oscillates as a
function of the distance between impurities. In Fig. 3.4(b) and 3.4(c), we show that
the oscillation amplitude of the YSR splitting is barely constant when the impurities
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Figure 3.4: The splitting of the YSR states on a dimer. (a) The YSR splitting
energy E(�), on an impurity as a function of the x� and y�position of a second
impurity on a 2D superconductor with a square-shaped FC. The anisotropy of the
band determines certain directions along which the splitting is larger. (b)-(c) YSR
subgap spectra on the impurity as a function of the position of the second impurity
along the (1,0) and (1,-1) lines of high symmetry (indicated with dashed lines in (a)).
(d) dI/dV STS measurements with a superconducting tip (coated with �-Bi2Pd) on a
Mn adatom on �-Bi2Pd before (blue) and after (coloured) formation of a Mn2 dimer
by bringing a second Mn adatom into three di↵erent substrate positions, with respect
to the probed adatom. From top to bottom: (2a,a), (2a,2a) and (0,2a), with a being
the lattice constant of �-Bi2Pd (i.e. d =

p
5a, 2

p
2a, and 2a, respectively). These

atomic sites are represented in panel (a) as colored dots. The bottom gray spectra
is the reference spectra measured on a bare substrate region (the gap of the �-Bi2Pd
substrate is 0.78 meV and the tip’s gap approaches close to this value).

are aligned along the (100) direction [Fig. 3.4(b)], while quickly decays along the (110)
direction [Fig. 3.4(c)]. This proves that the focusing e↵ect enhances the hybridization
when the atoms are aligned parallel to the direction of the nesting vectors.

To correlate these simulations with real systems, we compare them with experi-
mental results on pairs of manganese adatoms positioned with precision using atomic
manipulation on the �-Bi2Pdsuperconductor surface. The �-Bi2Pdsurface is a squared
lattice of Bismuth atoms with lattice parameter a = 3, 36 Å. Adatoms in neighbor-
ing sites frequently collapse in Mn2 dimers with no subgap features [137]. Therefore,
we explore the possible next-neighbor distances, namely Mn dimers aligned along the
(210), (110) and (100) crystallographic directions with spatial separation

p
5a, 2

p
2a

and 2a, respectively. In Fig. 3.4(c), we compare di↵erential conductance spectra mea-
sured on a reference adatom before (blue) and after placing a second adatom at the
position indicated in the insets. When the second adatom is located at the sites (2a,a)
or (2a,2a) the YSR state appears split by ⇠300 µeV and ⇠200 µeV, respectively. The
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Figure 3.5: Angle dependence of the
YSR states splitting. (a) Calculated de-
pendence of the YSR splitting on the mu-
tual spin orientation, from 0 (FM dimer) to
⇡ (AFM dimer). The two adatoms are on
a 2D superconductor with a square-shaped
FC, in three configurations along the (100),
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p
2a and

p
5a, res-

pectively. (b)-(e) Evolution of the YSR
spectral function with the dimer’s separa-
tion along the (100) direction for di↵erent
spin angles.

larger splitting for the former, as well as the range of the splitting energy, are quali-
tatively reproduced by the theory, thus suggesting that these dimers have their spin
with a close-to-parallel alignment.

For the third dimer, the YSR peaks are barely a↵ected by the addition of a Mn
adatom on the (0,2a) site, while our model in Fig. 3.4(a) predicts a larger splitting
than in the previous cases due to the focusing e↵ect. This suggests that in this
configuration, the Mn dimers are antiferromagnetically (AFM) aligned. As observed
in our previous results on this surface [137], the substrate-mediated exchange coupling
between adatoms also depends on their relative orientation, with a preference for AF
alignment along the high-symmetry (100) direction.

To account for di↵erent alignment between the classical spins, we apply our conti-
nuum model to obtain the spectral evolution of YSR states as a function of the relative
angle between impurities, as in Ref. [103], where the angle dependence of the spins
of a YSR dimer was studied using a tight-binding lattice. Figure 3.5(a) shows the
angular dependence of the energy splitting of hybridized YSR states for the three Mn
dimers of the experiment shown in Fig. 3.4(d). As mentioned above, the YSR splitting
of a (2a,0) dimer is expected to be the largest for parallel spins but quickly reduces
with the relative angle, vanishing for AFM spins. Figures 3.5(b) and 3.5(e) show the
evolution of the YSR states with dimer separation along the (100) direction for di↵e-
rent relative angles of the impurity spins. The oscillation amplitude of even and odd
states decreases when they are non-collinear and merge into a single peak for AFM
spins. These results suggest that Mn dimers built along (100) direction are antiferro-
magnetically aligned in contrast to the other dimers explored, whose YSR splitting is
consistent with a close to ferromagnetic alignment of their relative spins. We suggest
that, in addition to inducing a larger YSR wavefunction hybridization along the (100)
direction, the anisotropic FC also leads to stronger exchange interaction (mediated by
RKKY) between dimers [142], which at such close distances promotes their mutual
AFM alignment.
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3.3. Hybridization of YSR bound states from neighbouring impurities

Figure 3.6: Mn5 structures along di↵erent directions. (a), (c), (e) From bottom
to top are the topography of the manipulation sequence to construct Mn5 crosses along
(100) from 3a to 2a, (110) from 4

p
2a to 2

p
2a, and (120) from 2

p
5a to

p
5a with

a = 3.3 Å(V = -100 mV, I = 40 pA). (b), (e), (h) dI/dV spectra of the central
atom of the Mn structures after moving each lateral Mn atom, o↵set vertically for
clarity (V = 5 mV, I = 500 pA). In gray, the reference spectrum in �-Bi2Pd. The
spectrum for stage (110)-c0 is missing; we use the (120)-c0 as a reference. At 2

p
5a

and 3
p
2a the Mn atom are not interacting. (c), (f), (i) Model simulation of the

five impurity structures with the Green function approach. The spin orientation angle
is 90° for 2a-(100) while 0° for the other two configurations (simulation parameters
k100
F

= 0.32/a0, k110F
= 0.21/a0, k120F

= 0.28/a0,m⇤ = 5.85/me, ↵ = ⇡⌫0JS/2 = 0.030,
� = ⇡⌫0U = 0.011 where a0 is the Bohr radius and ⌫0 is the normal metal density of
states). Figure adapted from Ref. [143].

3.3.2 More complex structures

Now that we understand the relative spin orientations that impurities adopt along
di↵erent crystallographic directions, we can extend our simulations to more com-
plex structures built following the atomic manipulation technique introduced earlier.
Fig. 3.6(a), 3.6(c), and 3.6(e) illustrate the step-by-step formation of ”atomic crosses”
(cross-shaped atomic pentamers). These crosses are constructed along the same three
directions used for dimers, allowing us to predict the relative spin orientations within
these structures. It is important to note that we assume minimal to no interaction from
next-nearest neighbor adatoms and no SOC. If significant interactions were present,
the results from the dimers would not be applicable, as the interaction between next-
nearest neighbors would alter the relative spin orientations between adatoms. This
is due to the RKKY-like interaction between adatoms, which governs spin alignment
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3. Classical Impurities in s-wave Superconductors

and oscillates between AFM and FM spin alignment depending on the distance. Ex-
tracting the relative spin orientation for such a complex system -although possible-
would be very computationally demanding.

Figs. 3.6(a), 3.6(c), and 3.6(e) show the formation of the crosses. Starting from
a dimer, c0, we add one Mn each step, from c1 to c4, and take spectroscopic mea-
surements on top of the central adatom. Figs. 3.6(b), 3.6(d), and 3.6(f) present the
measured data for the stars formed in the (100), (110) and (120) directions, respecti-
vely, while Figs. 3.6(g), 3.6(h), and 3.6(i) are their corresponding simulations. From
c0 up to c4 we present the evolution of the spectra. We first notice that in the (100)
direction [Fig. 3.6(b)], the YSR state does not split but shifts slightly towards the
gap edge. In the other two directions, we see a clear split emerging in the YSR state
as more adatoms are approached to the central one [Fig. 3.6(d) and 3.6(f)]. This
agrees with our measurements on the dimers, the adatoms in the (100) direction are
antiferromagnetically coupled while the other two are ferromagnetically coupled. The
exchange coupling of the adatoms with the substrate used to perform the simulations
was calculated from the YSR of a single impurity. For each crystallographic direction,
we need to adjust the value of kF to account for the roundness of the edges of the
real �-Bi2PdFC [Figs. 3.1(c) and 3.1(d)]. There is no further parameter change for
the simulation in each direction to make them more robust.

Accounting for the roundness of the real FC, we can perfectly describe the evo-
lution of the YSR states as we built the crosses [Figs. 3.6(h) and 3.6(i)]. Moreover,
it is important to note that the strong SOC of the surface probably a↵ects the coli-
nearity of the adatom’s spins, which we are not considering in our calculations. In
the absence of SOC, the RKKY interaction favors the FM or AFM alignments but
no other configurations. For a finite SOC, however, a perfect alignment is probably
not the most realistic configuration. Any shift from a perfect alignment e↵ectively
decreases or increases the interaction between adatoms. This can be fixed by lowe-
ring or increasing kF , which has the same e↵ect. As we took realistic values of kF ,
and the simulations calculated for AFM or FM configuration fit the spectrum of the
multiimpurity systems well, we believe the spins are close to a perfect FM or AFM
alignment.

In conclusion, the data for the starts in the (110) and (120) directions [Figs. 3.6(b)
and 3.6(g)] indicate that these adatoms are ferromagnetically coupled, as when we
add Mn to the structures, the YSR states further split. The simulation supports this
[Figs. 3.6(h) and 3.6(i)], for which we assumed a FM coupling, and as we see, the
simulations follow the same trend as the measured data. Moreover, note that all data
and simulations show a single [Fig. 3.6(a)] or couple of YSR states [Figs. 3.6(b) and
3.6(g)]. This is due to the symmetry of the stars. As next-nearest-neighbor interaction
is not considered, a single-valued interaction term is used (all adatoms interact with
each other with the same RKKY interaction); furthermore, the exchange coupling of
each adatom is also the same. This allows for a single YSR state in the AFM case
and two YSR states (a split state) in the FM case.
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3.4. Multiband superconductivity and orbital selectivity

Figure 3.7: QPI pattern from the intrinsic impurities of �-Bi2Pd: (a)
60 nm⇥60 nm topographic image of the bare �-Bi2Pdsurface (V=50 mV, I=250p).
(b) dI/dV map at V=50 mV. (c) a 24 nm⇥24 nm zoom-in of the dI/dV map. The
oscillatory pattern arising from the impurities can be distinguished. (d) FFT of the
QPI pattern showing a square-shaped dispersion taken from Ref. [1]

3.4 Multiband superconductivity and orbital selectivity

At the beginning of this chapter, we have introduced the �-Bi2Pdas a multiband
superconductor with two surface and bulk bands [Fig. 3.1(c)]. Still, throughout the
chapter, we have omitted this fact and used a single band to explain the experimental
results. In the following, using Quasiparticle Interference (QPI) measurements, we an-
alyze how the extensions of the YSR states [Fig. 3.3(h)] can be used as a visualization
tool for understanding the band structure of a material.

Wavevec. (Å�1) Scattering Bands
qA 0.12 ± 0.03 S1-B1

qB 0.2 ± 0.04 S1-S2

qC 0.31 ± 0.03 S2-B1

qD 0.50 ± 0.04 B1-B2

qE 0.68 ± 0.03 S1-B2

qF 0.90 ± 0.02 S2-B2

Table 3.1: Scattering vectors. A list of
all scattering vectors measured from the FFT
and their corresponding bands.

Before introducing the QPI pattern
of in-gap states (arising from mag-
netic adatoms), it is essential to under-
stand the out-gap QPI patterns we see
in the bare �-Bi2Pdsubstrate coming
from intrinsic impurities (Bi adatoms
and Pd vacancies). Figure 3.7 shows
an 80 nm⇥80 nm scan of the bare
superconducting surface [Fig. 3.7(a)]
and its relative dI/dV map at V =
50 mV [Figs. 3.7(b) and 3.7(c)]. The
dI/dV map gives information about
the LDoS, which is proportional to the
local charges. As the QPI are charge

oscillations, the dI/dV is related to the electrons’ scattering at the selected voltage.
A FFT calculation of the image [Fig. 3.7(d)] represents the distribution of frequen-
cies associated with said scatterings. Note that from Fig. 3.7(d), one can extract six
prominent scattering vectors that form the FC’s square shape. The value of these
vectors is summarized in Table 3.1.

Comparing the vectors with the values taken from literature [30, 31], we can iden-
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3. Classical Impurities in s-wave Superconductors

tify the di↵erent bands taking part in the scattering processes, see Fig. 3.1(c). There
are no scattering vectors connecting the same band. The single band solution of the
magnetic impurity on a superconductor produces oscillations in the extension of the
YSR state due to scattering in the same band from kF to �kF . This produces, in
analogy to the Friedel oscillations, a 2kF oscillatory wavefunction, which can be seen
in the sin2(kF r) term in Eq. (2.34).

To understand why intraband scattering terms do not appear in the FFT, we
consider spin conservation in the scattering processes. ARPES [31] measurements
and DFT calculations [30] demonstrated a strong Rashba spin-orbit coupling on the
surface. Due to spin and momentum locking in a Rashba system, the direction of
momentum fixes the spin of the electrons [Fig. 3.1(c)]. Then, due to time-reversal
symmetry, spin is flipped for opposite momentum direction, e.g., if (k, ") are con-
nected, (�k,� ") will be connected. Hence, the strong SOC turns the bands with a
helical spin texture. In this scenario, as we show in our calculations in App. A.2, QPI
oscillations vanish because backscattering is forbidden between states with di↵erent
spin. The only possible source of the oscillatory behavior is the interband scattering.

Interband scattering, i.e., the interference of electrons from di↵erent bands induced
by an impurity, could explain the scattering vectors. However, it is essential to note
that if one takes two distinct bands, they are in two di↵erent Hilbert spaces, as the
bands are eigenstates of the crystal’s Hamiltonian. Although a single impurity can be
responsible for the scattering from one band to another, the initial and final electronic
states lie in two di↵erent subspaces. Note that the Friedel oscillations arise from
the constructive interference between an incoming and an outgoing wave. If the two
waves are in di↵erent Hilbert subspaces, the interference does not happen, as they
are both in orthogonal states. In conclusion, a single impurity with an interband
scattering term is not enough to ensure Fridel oscillations with the semi-sum of the
two bands’ Fermi vector; hybridization between di↵erent bands, which connects the
di↵erent subspaces and breaks orthogonality, is needed for this. This statement is also
proven in Appendix A.2.

In the following, we present the e↵ects of magnetic impurities on the QPI pa-
ttern. We note that, below the superconducting gap, as the YSR states arise from
the hybridization of the d-orbitals with a single band, some of the scattering vectors
in Table 3.1 are suppressed. Moreover, an e↵ective theoretical model that describes
the scattering processes for the magnetic as well as the non-magnetic impurities is
described. This model accounts for the polarization and hybridization of the bands.

3.4.1 QPI of V adatoms on �-Bi2Pd

Figure 3.8 depicts the QPI measurements done on V adatoms on top of �-Bi2Pd.
The experimental results are taken from Ref. [1]. The electronic configuration of a
free V atom is [Ar] 3d3 4s2, so its total spin is S = 3/2. Spectroscopic measurements
on top of the adatoms indicate that the V adatom hosts three distinct YSR states:
±↵, ±� and ±�, indicated by arrows in Fig. 3.8(a). The energies, extracted from
Fig. 3.8(a), read !↵ = ±0.22 meV, !� = ±0.63 meV and !� = ±0.72 meV (the tip’s
gap has been disregarded). This indicates that there are three distinct YSR channels
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3.4. Multiband superconductivity and orbital selectivity

Figure 3.8: Extension of the YSR states of V on �-Bi2Pd. (a) Spectroscopic
measurement (setpoint V=2 mV, I=500 pA) on the top of the V adatom (blue) in
the inset image compared to the spectra of the bare superconductor (grey). Three
YSR states are indicated with arrows. (b) dI/dV map of a 15 nm⇥15 nm area
containing several V adatoms at the ↵ YSR energy. (c) Line spectra along the (100)
crystallographic direction at the ↵ YSR energy. Figure adapted from Ref. [1].

associated with the three electrons of the d-shell. Thus, the spin 3/2 persists on the
surface.

A dI/dV map of a few V adatoms at the energy of peak ↵ reveals the nesting of the
YSR wavefunction along the crystallographic direction (100) and (010) [Fig. 3.8(b)],
similar to Fig. 3.3(h). A cut along the (100) direction of peaks ±↵ reveals a complex
oscillatory pattern of the extension of the YSR state, depicted in Figure 3.8(c). The
long extension of the YSR wavefunction (up to 15 nm) is measured, which is expected
[see Sec. 3.2] due to the focusing e↵ect of the square-shaped FC, resembling a 1D
system.

To disentangle the possible e↵ects responsible for the complex extensions of the
YSR states, as we did for normal scatterers (previous paragraphs), we calculate the
FFT of an ensemble of adatoms [1]. Fig. 3.9(a) shows a topographic image of an
ensemble of adatoms in a 80 nm⇥80 nm region, and Fig. 3.9(b) the corresponding
dI/dV map at V = !↵. The calculated FFT from 3.9(b) is shown in 3.9(c). Two
concentric squares can be spotted, each corresponding to a scattering vector. An
average of the FFT signal in a region close to the (100) direction, white rectangle in
Fig. 3.9(c), is plotted in Fig. 3.9(d) (cyan curve), along with the corresponding data
for Fig. 3.7(d) (red curve) for comparison.

The two plots in Fig. 3.9(d) refer to the scattering at energies higher than the
superconducting gap (red curve) and at the energy of the ↵ peak (cyan curve). Con-
sequently, the former is related to the normal scattering, while from the latter, we can
extract information about the superconducting condensate. Comparing both curves,
we observe that the cyan curve shows fewer scattering vectors. We can only see two
vectors, which we named q1 and q4. The values for these vectors read q1 = 0.20± 0.02
Å�1 and q4 = 0.90 ± 0.04 Å�1, which coincide with qA and qF in Table 3.1. These
two vectors correspond to scattering processes connecting the surface bands S2 with
other bands, namely to S1 and B2. In contrast, we do not see any scattering vector
connecting (for example) S1 with B1. The involvement of only those scattering pro-
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3. Classical Impurities in s-wave Superconductors

Figure 3.9: QPI measurements of V adatoms on �-Bi2Pd. (a) 80 nm⇥80 nm
topographic image of the �-Bi2Pdsurface with 1% coverage of V adatoms (V=100 mV,
I=100 pA). (b) dI/dV map of the same region at the voltage of the ↵ YSR state.
(c) FFT of panel (b), showing two main scattering square shaped contours depected
by q1 and q2. (d) Cut of the FFT along the �M direction (kx) compared to the QPI
of the normal scatterers measured at V=50 mV. Only two of the six scattering vectors
appear in the extension of the YSR state. Figure adapted from Ref. [1].

cesses related to one of the bands, namely S2, is a fingerprint of this band being part
of the YSR channel. This indicates that the d-orbitals of V are hybridized with the
S2 surface band.

In the following subsection, we present an e↵ective theory demonstrating the crucial
role of interband pairing in the superconducting state, the formation of the YSR
states, and how it modulates the QPI of single impurities. We start by describing
a general two-band Hamiltonian with spin-orbit coupling and slowly go through the
approximations that allow us to describe the QPI pattern with simple spin and band
index conservation rules.

3.4.2 Helical Spin-Polarized Bands

Since the �-Bi2Pdsubstrate has a square-shaped FC, the extension of the YSR
states in the (100) and (010) directions resemble that of a 1D crystal due to the
focusing e↵ect [Sec. 3.2]. As these are the directions where the maximal dI/dV signal
is, and they are essentially independent of each other1, we can center our attention on
one of the directions. Moreover, as the solution for a square-shaped FC is almost the
same as that from a 1D system, we implement an e↵ective 1D Hamiltonian, simplifying
solving a multiband problem by removing the angle integral in App. A.1.

We define a general multiband 1D Hamiltonian with Rashba SOC to describe the

1Appendix A.2 shows the exact calculations of the GF for a square-shaped FC. From there, we
can extract that the extension in the (100) direction ((010) direction) is due to the FC sides that are
parallel to the kx (ky) axis, i.e., these two extension can be calculated independently.
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b) Figure 3.10: QPI in multi-
band systems. (a) and (c)
1D band structure for a two-
band (three-band) model. We
plot the original bands and
the hybridized ones. (b) and
(d) Decay of the DoS at the
YSR energy for the two-band
(three-band) model without
(blue) and with (orange) in-
terband hopping. The vectors
corresponding to the observed
oscillations are marked as q1
and q2.
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(1� ⌘3)

2
+ t⌘1 .

(3.9)

Here, the �, ⌧ , and ⌘ are Pauli matrices that describe spin, particle-hole, and band
degrees of freedom, respectively, m1 and m2 describe the e↵ective mass of the bands,
and �1 and �2 their corresponding Rashba spin-orbit coupling. These two can be
positive or negative, depending on the relative spin orientation of the bands. As the
�-Bi2Pdhas an absolute superconducting gap, so we assume the two bands to have
the same superconducting coupling parameter �. Finally, the chemical potential is
described as µ, and we added the simplest interband coupling term as t. This interband
coupling is a constant, not spin-independent, hopping term. We disregarded any
anomalous interband coupling term as the coupling strength would be small compared
to a direct hopping term (�⌧ µ).

As mentioned above and demonstrated in App. A.2, a single impurity with an
interband scattering term does not host an oscillatory behavior in the extensions of
the YSR state. In contrast, when a hopping term, t, is added to hybridize the bands,
the interference of incoming and outgoing waves in di↵erent bands emerges. With
finite t, the incoming and outgoing waves are no longer in di↵erent bands but in new
bonding- and antibonding-like bands [Figs. 3.10(a) and 3.10(c)]. The hybridization
term mixes the original bands (S1, S2, B1, and B2) forming a new set hybridized
bands (S⇤

1 , S
⇤
2 , B

⇤
1 and B⇤

2), with renormalized wavevectors (k⇤
Fi

=
p
2m⇤

i
µ⇤
i
) distinct

to the original ones (kFi =
p
2miµi).

Figure 3.9 shows the QPI patterns for a two-band and a three-band model with
their respective band dispersion. Figure 3.10(b) shows the extension of the YSR
DoS, which oscillates with a period related to the renormalized Fermi momentum
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of the system [q1 in Fig. 3.10(a)]. In order to host two oscillations, the same as
measured in the V adatoms, we add a third band to the Hamiltonian [App. (A.21)].
In Sec. 3.4.1, we deduced that the d-orbitals of V are hybridized to a single band, S2;
therefore, when the adatom is added to the Hamiltonian, we assume the YSR channel
is only hybridized to one of the bands existing before turning on t. The colors in the
bands plotted in Figs. 3.10(a) and 3.10(c) represent the overlap between the original
bands and the hybridized ones. The YSR is connected to the blue band, which has
a maximal overlap with the normalized bands at the furthermost positive momenta.
See Fig. 3.10(c). The oscillatory pattern from a three-band Hamiltonian is depicted
in Fig. 3.10(d). A double oscillation is observed in the extension of the YSR state.
The period is connected to the renormalized Fermi momenta of the bands, q1 and q2
in Fig. 3.10(c), and their relative intensity to t12/t13: the hopping term between each
band. See App. A.2.

The renormalization of the Fermi momenta complicates comparing the observed
scattering vectors in Fig. 3.9(c) with ARPES measurements [31] and their respective
DFT calculations [30, 31]. If the hopping term is not an intrinsic property of the
substrate (it arises from our experimental setup), we can not compare it with the
ARPES measurements. Still, the DFT calculations [31] suggest that these bands are
connected at higher energies, thus providing the origin of the hybridization. Conse-
quently, as the bands are originally connected, the Fermi momenta obtained by DFT
and ARPES are related to the normalized momenta described previously. From our
analysis, we conclude that the �-Bi2Pdshould not be described with four unconnected
surface bands but with hybridized bands.

3.5 Conclusions

We have presented an analytical method to compute the GFs and the spectrum of a
two-dimensional superconductor with an arbitrary FC. We applied the technique to FCs
with the shape of a regular polygon. In the presence of magnetic impurities, we found
that the spatial dependence of the YSR subgap states reflects the symmetry of the FC
and that the characteristic decay length of such states strongly depends on the spatial
direction. Namely, Fermi surface nesting in low symmetry cases leads to a focusing
e↵ect of the YSR spectrum. We contrasted our model with STM measurements on
materials with di↵erent FC shapes and found a good agreement. The applicability of
the theory to multi-impurity structures was proven. This and the relation between
the extension of YSR states and FC opens the doors to finding materials where the
focusing e↵ect can help build atomic structures where the interaction between atoms is
maximized.

Furthermore, these quasi-1D decaying wave functions were used to analyze the
QPI of V adatoms on the surface of �-Bi2Pd. We found that the QPI patterns can
be used to extract information about the intricate multiband structure of the material
and to understand the formation of the Cooper Pair condensate. The analysis of the
QPI pattern proved the �-Bi2Pdis formed from several bands with a square-shaped
FC. Moreover, we found that the hybridization between bands and the strong Rashba-

54



3.5. Conclusions

type SOC is needed to describe the system, as seen by ARPES measurements and DFT
calculations [30, 31]. Finally, we proved that the formation of the YSR states is closely
linked to the hybridization of the magnetic impurity’s orbitals with a single band.
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4
Quantum Impurities in proximitized

Superconductors

In the previous Chapter, we used a classical approximation of the spin [19, 23,
81] to understand the STM measurements done on V and Mn adatoms on the �-
Bi2Pdsuperconducting surface. The advantage of this approximation is that the prob-
lem is analytically solvable, which allowed us to calculate the spatial extension of the
YSR states. Moreover, any system of interacting impurities can be exactly described,
without the need of employing e↵ective Hamiltonians. However, this approximation
does not take into account the quantum nature of the impurity’s spin, which can give
rise to many-particle e↵ects such as the Kondo e↵ect [21] and it is determinant when,
e.g., describing the spin carried by the YSR excitations [144].

A fully quantum-mechanical treatment of the problem can provide a comprehensive
description of experiments [107] but often requires the use of sophisticated but nume-
rically costly methods such as the numerical renormalization group (NRG) [37, 38] or
continuous time Montecarlo simulations [39]. Several models have emerged that treat
the quantum many-body aspects of YSR states that even allow the incorporation of
higher spin and anisotropic impurities into the problem with a↵ordable computational
e↵orts. These models use drastic approximations, representing the superconductor by
a single site [36, 145, 146] or considering an infinite gap superconductor [147, 148]
and have already been successfully used to explain some spectral features observed in
recent experiments [3, 34, 149, 150].

In this chapter, we study the interaction of single magnetic impurities with a thin
metallic film proximitized by a superconductor. Proximitized systems have been stu-
died mainly in the di↵usive limit using the Usadel formalism [151]. This approach
predicts the decay of the proximity e↵ect in the limit of electron mean free paths much
smaller than the superconducting coherence length and successfully describes spectros-
copic features such as the closing of the gap and the formation of a minigap in the
proximitized material [152, 153]. Experiments with di↵usive systems [153–156] have
clearly confirmed those predictions. However, the systems studied in this context are
mesoscopic in size, and the experimental probes employed cannot resolve the behav-
ior at local scales caused by, for example, a single magnetic impurity. On the other
hand, thanks to currently available molecular beam epitaxy techniques, it is possible
to grow epitaxial metallic overlayers with controlled thicknesses of just a few atomic
layers on top of superconductors [2, 3, 157, 158]. These novel hybrid systems open
the door to act as a host of complex molecular spin architectures engineered by on-
surface synthesis [159–163], not occurring naturally on bulk superconductors due to
their large reactivity, and explore the interaction of collective spin modes with pairing
correlations. Such thin crystalline layers are not within the di↵usive limit; instead,
they must be described using a ballistic approach.

57
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In this chapter, we introduce an experimental system comprising a magnetic molecule
on top of a proximitized superconductor [Sec. 4.1]. This system, reported in Refs. [4]
and [3], motivates us to introduce a single-site model for the superconductor that cap-
tures the quantum nature of a spin on top of a proximitized superconductor and proves
that it is a good approximation to treat the YSR problem [164] [Sec. 4.2]. In Sec. 4.3,
this model is used to interpret the results obtained on magnetic molecules on top of a
proximitized superconductor [3]. Finally, in Sec. 4.4, we apply the single-site model to
predict the many-body spectrum of a molecular spin chain on a superconductor. This
system is proposed as a prototype of a spin-singlet-based qubit that could potentially
enhance the lifetime of modern spin qubits.

4.1 Magnetic molecules on the proximitized Au/V(100) sur-

face.

The theoretical model introduced in Sec. 4.2 is motivated by experimental results
on Iron chlorinated-porphyrin (FeTPPCl) molecules on top of the novel Au/V(100)
surface [2, 3], which is extensively described in Refs. [4] and [3]. The molecule is a
S = 5/2 magnetic impurity with easy axis magnetic anisotropy, D = 0.75 meV [2,
165, 166]. The Au/V(100) substrate is formed by depositing a few layers of Au on
top of V(100) in UHV conditions. Vanadium is a s-type superconductor with a gap
� = 0.76 meV. Here, it proximitizes the epitaxial gold film grown on top, converting
it into an ideal platform to measure the interplay between molecular physics and
superconductibity [2, 3].

Although the interaction of similar molecules with superconducting surfaces has
already been studied [165, 166], the interaction with proximitized superconductors is
unknown. When a thin metallic layer proximitized by a superconductor is analyzed in
the ballistic limit, subgap bound states appear in the normal region and extend into
the superconductor over distances of the order of the coherence length. These states
arise from Andreev reflection (AR) processes at the superconductor/normal metal
interface and the vacuum side of the layer. Since they were predicted by de Gennes
and Saint James for the first time [167, 168], we named them de Gennes-Saint James
(dGSJ) states.

Figure 4.1(a) illustrates the Au/V(100) surface, with a constant height image show-
ing the atomic resolution of Au in the lower left inset. The surface appears flat and
has a square lattice. Figure 4.1(b) compares spectroscopic measurements on bare
Vanadium and the proximitized system. The bare Vanadium gap appears on the
metal film as narrow subgap resonances separated from the continuum of states [Fig.
4.1(b)]. These are dGSJ states. Due to their protection, the lifetime of spin excita-
tions in these molecules is increased [2]. The energy of these states can be controlled
with the thickness of the normal metal layer [2, 35, 169].

Deposition of FeTPPCl molecules onto the Au/V(100) surface results in four types
of molecular species: 4-fold FeTPPCl, 2-fold FeTPPCl, 4-fold FeTPP, and 2-fold
FeTPP, illustrated in Fig. 4.1(c). Some molecules lose their Cl during evaporation,
and the observed 2-fold or 4-fold symmetries result from distinct adsorption sites.
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Figure 4.1: Description of the experimental system. (a) Topographic STM
measurement of the Au/V(100) surface (V=10 mV, I=100 pA). The inset shows the
atomic resolution of Au (V=10 mV). (b) Comparison between the dI/dV in a seven
monolayer Au/V(100) surface and bare Vanadium. (c) STM image showing di↵erent
FeTPP and FeTPPCl species on the same substrate (V=300 mV, I=30 pA). Inset:
chemical structure of FeTPPCl

Notably, only one type of chlorinated species exhibits distinct spectral fingerprints,
revealing their magnetic state. The 2-fold FeTPPCl shows a single in-gap state with
two out-gap spin excitations [2], attributed to inelastic spin excitation. The 4-fold
FeTPPCl has multiple in-gap and out-gap excitations.

The protection derived from the dGSJ states, separated from the continuum of
states, on the YSR excitations measured on this system makes the classical approx-
imation of the spin [Sec. (2.4.1)] obsolete. For this reason, in Sec. 4.2, we present
a single-site model that captures the quantum nature of a single spin-1/2 magnetic
impurity on a thin metallic film in proximity to a superconductor. Then, in Sec. 4.3,
we extend the single-site model to account for a higher spin and magnetic anisotropy,
which we use to understand the complex spectra measured on the FeTPPCl molecules
on Au/V(100).

4.2 Quantum Spin Impurities on Proximitized Metals

The studied system is sketched in Fig. 4.2(a): a magnetic impurity exchange
coupled to a thin metallic layer proximitized by a bulk superconductor. In Sec. 4.2.1,
we first study the system treating the magnetic impurity as a classical spin in the
ballistic limit when a single dGSJ bound state exists in the gap [Fig. 4.2(b)]. Within
this approximation, we find that a YSR state is formed by redistributing the spectral
weight of the dGSJ bound state, i.e., a large overlap exists between the Bogoliubov-de
Gennes spinors of the dGSJ and YSR states [Sec. 4.2.2].

Motivated by this result, we propose that a single-site description is a relevant
simplified model for the complex system consisting of the magnetic impurity on the
proximitized thin film [Sec. 4.2.3]. This model can be solved exactly and provides a
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4. Quantum Impurities in proximitized Superconductors

computationally cheap way to treat the many-body e↵ects associated with the quan-
tum spin of the impurity. The adequacy of the single-site model is then assessed by
employing a ”poor man’s” scaling analysis [Sec. 4.2.4]. To this end, we introduce a
Hamiltonian consisting of a single-site model perturbed by an impurity-mediated cou-
pling to the continuum of other excitations. Under certain conditions, we find that,
as the high-energy continuum states are integrated out, the impurity remains most
strongly coupled to the single site describing the dGSJ state. These results are publi-
shed in Ref. [164], and the most technical details have been relegated to Appendix B.4.

4.2.1 System and Model

Figure 4.2(a) shows a schematic picture of the system studied in this section, which
is motivated by experiments reported in Sec. 4.3 and Refs. [2, 3, 158, 170]. The system
consists of a magnetic impurity on top of a thin, normal metal film (N) in proximity
to a superconductor (S). The superconductor occupies the half-space x > 0, while
the N film corresponds to �a < x < 0. The system is translationally invariant in
the (y, z)-plane, so it is convenient to describe the electron wave function as  (x,kk),
where kk is the component of the momentum vector parallel to the S/N interface at
x = 0. We assume a perfect S/N interface with no Fermi-level mismatch or potential
barrier. The e↵ect of a Fermi-level mismatch is to change the e↵ective thickness of
the metallic layer for di↵erent momentum directions, thus modifying the energy of the
bound dGSJ state. See Ref. [22] and Sec. B.2 for an extended discussion. This would
mainly a↵ect the non-normal propagation direction, which is disregarded due to the
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Figure 4.2: Representation of a magnetic impurity on a proximitized super-
conductor. (a) Representation of an impurity on a normal metal layer (darker) on a
superconductor (lighter) atoms. (b) and (c) LDoS in the thin proximitized metallic
film and the bulk of the superconductor, respectively. ⌫0 is the normal state DoS.
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4.2. Quantum Spin Impurities on Proximitized Metals

geometry and nature of the analyzed system (see below).
In the absence of mismatch, the N region acts as a cavity for electrons with energy

E < �: they undergo Andreev retro-reflections at the S/N interface and normal, spe-
cular reflections at the interface with the vacuum. According to the Bohr-Sommerfeld
quantization rule, the phase accumulated along a closed classical trajectory must be
a multiple of 2⇡. A closed trajectory in the N/S system under consideration consists
of two Andreev retro-reflections at the S/N interface and two normal reflections at
x = �a. Thus,

2a

⇠ cos'

E

�
� cos�1

✓
E

�

◆
= n⇡ (4.1)

where cos�1(E/�) is the phase shift associated to each AR, ⇠ = vF
� is the coherence

length of the superconductor and cos' = kk/kF . Equation (4.1), determines the
subgap dGSJ bound states [167].1 This solution is valid for clean N-layers with a
mean free path larger than its thickness a. When considering all angles of non-specular
directions, Eq. (4.1) describes a continuum of subgap states [167, 172].

In STM experiments [2, 3], this continuum is not observed, and the dGSJ states
appear as sharps subgap peaks. This happens for several reasons. The tunneling in
STM experiments is mainly specular [173], and the decay of the wavefunction of these
substrate excitations into vacuum is maximized for zero kk. Then, in the tunneling
regime, excitations with large |kk| are filtered out [173–175], and dGSJ states are
observed as narrow subgap resonances made of dGSJ quasiparticles with kk ⇡ 0 [2,
3]. See Figs. 4.2(c) and 4.1(b).

Additionally, small amounts of disorder tend to randomize trajectories, particularly
suppressing the coherence of non-specular directions. A magnetic impurity on top of
the proximitized film has compact and anisotropic orbitals that typically couple to
several scattering channels from the substrate. However, since the dGSJ quasiparticles
with kk ' 0 penetrate farther into the vacuum, they are also expected to contribute
substantially to the most strongly coupled scattering channel. Thus, one can e↵ectively
approximate the tunneling problem using a one-dimensional model which neglects the
motion parallel to the surface:

Ĥ = Ĥ0 + ĤJ , (4.2)

where

Ĥ0 =
X

�

Z 1

�a

dx  ̂†
�
(x)


�

~2
2m⇤ @

2
x
� EF

�
 ̂�(x

0)

+

Z 1

0
dx�  ̂†

"(x) ̂#(x) + h.c. ,

(4.3)

1The dGSJ states in S/N structures arise from the same phenomenon as the Andreev bound states
in SNS junctions, precisely the Andreev reflection at an S/N interface. This has been discussed, for
example, in Ref. [171] Equation (4.1), which describes the dGSJ states in an S/N structure, coincides
with the equation for the Andreev bound states in an SNS junction when the length of the normal
region N is twice the value of the film thickness a. The phase di↵erence between the superconductors
is zero.
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and
ĤJ =

X

��0

J ̂†
0�Ŝ · s��0  ̂0�0 . (4.4)

Here,  ̂�(x) ( ̂†
�
(x)) represents the annihilation (creation) operator for an electron

with spin � =", # in the metal-superconductor substrate. Ĥ0 describes a proximitized
thin film of thickness a > 0. The first term contains the kinetic energy and chemical
potential EF , and the second is the s-wave pairing potential. The pairing potential is
not self-consistently calculated. Corrections due to self-consistency result in a spatially
non-uniform pairing potential, �(x), but they have only a small e↵ect on the spectral
properties of the dGSJ states [174, 175], see Fig. 4.2(a). The magnetic exchange with
the impurity is described by ĤJ , with s denoting the electron-spin Pauli matrices and
Ŝ denoting the impurity spin operator. The operators  ̂0� ( ̂†

0�) annihilate (create)
electrons at the position of the impurity. For the one-dimensional model introduced
above,  ̂0� =  ̂�(x = �a). In the following section, we analyze this model using the
classical approximation approach, i.e., the impurity spin, Ŝ, is treated as a classical
vector.

4.2.2 YSR in Proximitized Thin Films

In the previous section, we have derived the equation that determines the spectrum
of subgap states [cf. Eq. (4.1)] using the Bohr-Sommerfeld semiclassical approxima-
tion. As explained above, we focus on the one-dimensional case, i.e., cos' = 1 in
Eq. (4.1). To deal with the coupling to the magnetic impurity, we solve the model
described by Eqs. (4.2)-(4.4). To this end, we use Green’s Functions (GFs) and follow
the approach outlined in Ref. [175], from which we can get the LDoS. The technical
details of the calculation are described in Sec. B.1.

Figure 4.3(a) shows the LDoS on the surface as a function of film thickness. As we
increase the thickness, new dGSJ states enter the gap. The GF also has poles with
a finite imaginary part outside the superconducting gap which correspond to states
in the continuum (i.e. above the superconductor gap), and give rise to McMillan-
Rowell-Tomasch oscillations [176, 177]. From here on, we focus our discussion on thin
films with a single subgap bound state, and we tackle the coupling to the magnetic
impurity.

Using the GFs obtained for the proximitized thin film in the Dyson equation,
Eq. (2.31), we get the YSR GFs:

ǦY SR(x, x
0) = Ǧ(x, x0) + Ǧ(x,�a)V̌ (1̌� V̌ Ǧ(�a,�a))�1Ǧ(�a, x0) . (4.5)

Figure 4.3(b) and 4.3(c) shows the evolution of the YSR state (for a = 0 and
a ⇠ 0.2⇠, respectively) as a function of the exchange coupling ↵ = ⌫0⇡JS [Eq. (2.33)],
with ⌫0 being the normal metal DoS. Note that the exchange coupling splits the dGSJ
state into two states (spin up and down), one of which shifts to higher energy while
the other shifts to lower energy, see Fig. 4.3(c). As J increases beyond a certain value,
the higher energy state disappears into the continuum. From this point on, the energy
of the remaining subgap state behaves similarly to a YSR in a bulk superconductor
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Figure 4.3: The YSR states on a proximitized superconductor. (a) Evolution
of the dGSJ states as a function of the thickness in units of the coherence length
(⇠ = vF /�) of the metallic layer. (b)-(c) Evolution of a YSR spectral density on
a pure superconductor (i.e., a = 0) and a proximitized superconductor for a fixed
metallic layer thickness (a ⇠ 0.2⇠) as a function of the exchange coupling, respectively.
(d) Particle component of the amplitude of the dGSJ and YSR states, as calculated
from the residue of the GF, averaged over distances � k�1

F
. (e) Zoom-in of the

evolution of the YSR state spectral density.

[19, 23, 81]. For thicker films with more than one dGSJ state, the behavior is similar:
each bound state splits in two, shifting in opposite directions depending on their
spin projection, with more excited states eventually merging in the continuum and
disappearing.

The transmutation of the dGSJ into the YSR state can be regarded as a result of
a spectral reorganization around |!| = � caused by ARs [Fig. 4.2(c)]. Using an anal-
ogy to semiconductor physics, YSR states appear in a superconductor because of the
coherence ”peak” behavior ⇠ (!2

��2)�1/2 [Fig. 4.2(b)] resembles that of a van Hove
singularity at the bottom (top) of the conduction (valence) band of a one-dimensional
insulator. Bound states appear due to the infinitesimal attraction provided by the
magnetic impurity Dirac-delta potential. However, in a proximitized film, AR reor-
ganizes the spectral weight by removing the van Hove-like singularity while shifting
most of its spectral weight to the dGSJ state [Fig. 4.2(c)]. The localization of the
dGSJ states at the surface enables the transmutation of one of the dGSJ states per
spin into a YSR. Thus, a large overlap of the wavefunctions of YSR and dGSJ states

63



4. Quantum Impurities in proximitized Superconductors

a) b) c)

O
ve

rl
ap

α
-2.0 -1.0 0.0 1.0 2.0

0.85

0.90

0.95

1.00

0.83
0.67
0.55
0.47
0.40

ε     /Δ:dGSJ

=500_
Δ
E F

α
-2.0 -1.0 0.0 1.0 2.0

=50_
Δ
E F

0.85

0.90

0.95

1.00

0.80

ε     /Δ:dGSJ

0.84
0.70
0.58
0.49
0.42

J/Jc

=12_
Δ
t 

0.85

0.90

0.95

1.00

0.80

-2.0 -1.0 0.0 1.0 2.0

ε     /Δ:dGSJ

0.80
0.72
0.65
0.55
0.32

Figure 4.4: Overlap between the YSR wavefunction and the dGSJ wave-
function. (a), (b) Calculation done from the continuous model for di↵erent dGSJ
bound state energies and values of EF /�. (c) The same calculation done with a
tight-binding model [see Sec B.2 for details about the latter].

is expected.
In the following, we compute the overlap of the YSR and the dGSJ states as a

function of the exchange coupling J . This can be achieved by using the GF ob-
tained from the scattering solution of the problem with and without magnetic impu-
rity [Eq. (B.10)]. The square of the overlap is computed from the following integral
involving the residue of the two GFs:

|⇥|2 =

Z
dx [udGSJ(x)u

⇤
Y SR

(x) + vdGSJ(x)v
⇤
Y SR

(x)]

=

Z
dxdx0 Tr

�
Res Ǧ(x, x0))Res ǦY SR(x

0, x)
 
.

(4.6)

Here Res ǦY RS (Res Ǧ) is the residue of the Nambu GF matrix at the YSR (dGSJ)
pole with spin up, related to the Nambu spinor amplitudes uY SR and vY SR (udGSJ

and vdGSJ) [Sec. B.1].
In Fig. 4.4(a) and 4.4(b), we show the behavior of the overlap ⇥ as a function of

exchange coupling J for di↵erent values of film thickness, which determines the dGSJ
state energy. To check our results beyond the leading order in �/EF , we also compute
the overlap by solving the Bogoliubov-de Gennes equations for a one-dimensional tight-
biding chain containing up to 1500 sites. The results are shown in Fig. 4.4(c) as a
function of J normalized to the critical value Jc where the system undergoes the
parity-changing QPT [19, 23, 42, 81]. The overlap between the YSR and dGSJ states
decreases as the exchange coupling increases, but it remains close to unity even across
the QPT. It is worth noting that the energy of the YSR excitation shifts away from
that of the dGSJ state as the exchange coupling is increased. The significant overlap
between the two states suggests that the YSR state primarily descends from the dGSJ
state, with a minor contribution from the continuum states of the proximitized film.
Therefore, in a first approximation, the coupling with the magnetic impurity can be
described by replacing the proximitized film with a single level representing the dGSJ
state.
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4.2.3 Single-site Model

From the previous section, we obtain that the YSR is mainly formed from the
dGSJ. Motivated by the results depicted in Fig. 4.4, we introduce a simplified model
that replaces the entire proximitized film with a single site representing the dGSJ
state. This model is useful for analyzing the coupling between the dGSJ state and a
quantum spin. The Hamiltonian of the single site is given by:

Ĥ0 =
X

�

Es

✓
�̂†
�
�̂� �

1

2

◆
, (4.7)

where �̂� (�̂†
�
) are the annihilation (creation) operators for a dGSJ quasiparticle with

spin � =", #, and Es is the eigenvalue of the Bogoliubov-de Gennes Hamiltonian (in
the absence of magnetic impurity). As explained in Sec. B.3, this Hamiltonian can be
recast in terms of electron operators d̂�, d̂†� as follows:

Ĥ0 = U
X

�

n̂� +
h
�sd̂#d̂" + h.c.

i
, (4.8)

where n̂� = d̂†
�
d̂�; U and �s are e↵ective scattering and pairing potentials, respecti-

vely. In terms of U and �s, Es =
p
U2 +�2

s
. Without loss of generality, below we

discuss the particle-hole (ph) symmetric case where U = 0 and therefore Es = �s.
Next, we introduce the coupling to the impurity. To make contact with the classical

description employed in the previous section, we first discuss the Ising limit of the
exchange coupling, i.e.

ĤIsing
J

= Jk
dd
Ŝz (n̂" � n̂#) , (4.9)

where Jk
dd

> 0 is the exchange coupling with the dGSJ quasiparticle. This model
reproduces the most salient features of the YSR states described above. To begin
with, note that, besides the fermion parity P̂ =

Q
�
(�1)n̂� = ±1, the impurity spin

operator Sz is also conserved in this limit, i.e.
h
Ŝz, Ĥ0 + ĤIsing

J

i
= 0. Thus, the

ground state is doubly degenerate, corresponding to the two possible orientations of
the classical vector S = ±S~̂z.

For Jdd < Jc = 2�s the ground state is one of the two following states {|BCSi ⌦
| ±

1
2 i} with P = +1 and �̂�|BCSi = 0 [Eq. (2.36)]. For Jdd > Jc, the ground

state is one in {| "i ⌦ | �
1
2 i, | #i ⌦ | + 1

2 i} with P = �1 and |�i = d̂†
�
|BCSi. The

YSR excitation is a transition between these two ground states of opposite parity with
excitation energy [3, 36] |�s�Jdd/2|. In addition, the odd parity sector of the Hilbert
space also contains the following two states: {| "i⌦ |+ 1

2 i, | #i⌦ |�
1
2 i} with excitation

energy equal to �s + Jdd/2. For small Jdd, a transition from the ground state with
P = +1 to these states corresponds to the second subgap peak in the LDoS of the
classical approach that shifts up in energy with increasing exchange and eventually
disappears into the continuum [Fig. 4.3(e)]

Next, we generalize Eq. (4.9) by adding the spin-flip term, which allows the impu-
rity spin to fluctuate:

Ĥd

J
= Jk

dd
Ŝz (n̂" � n̂#) + J?

dd
(Ŝ+d̂†#d̂" + h.c.) (4.10)
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As argued in Refs. [36, 146], the single-site model provides an economical and fully
quantum-mechanical description of YSR spectra in superconductors, which compares
well with the results obtained using sophisticated but computationally expensive me-
thods like the Numerical Renormalization Group (NRG) [38]. The accuracy of this
description in the present system is addressed in the following subsection.

The spin-flip term, / J?
dd

> 0, has important consequences for the spectrum of the

model. In the weak coupling limit, i.e., for Jk
dd

+ 2J?
dd

< 2�s, (assuming an unbiased
preparation of the system) the following density matrix describes the ground state:

⇢̂GS =
1

2

⇥
|BCS,+ 1

2 ihh+
1
2 , BCS|+ |BCS,� 1

2 ih�
1
2 , BCS|

⇤
, (4.11)

On the other hand, in the strong coupling limit where Jk
dd

+ 2J?
dd

> 2�s, the
ground state is a singlet:

|GSi =
1
p
2

�
| "i ⌦ |+ 1

2 i � | #i ⌦ |�
1
2 i
�
. (4.12)

That is a pure state resulting from the quantum superposition of the two ground
states of the Ising limit of the model. In weak and strong-coupling regimes, unlike the
conventional classical approach of YSR [19, 23, 81], the quantum model predicts that
YSR excitations carry no spin polarization [144].

Finally, since in the original model [Eq. (4.4)] the energy of the YSR does not grow
without bound as the exchange with the magnetic impurity J becomes arbitrarily

large, the couplings J?
dd
, Jk

dd
cannot be much larger than �s in the single-site model.

Note that, for large J?
dd
, Jk

dd
the energy of the YSR grows like max{J?

dd
, Jk

dd
}. Thus, for

the energy of the YSR to remain within the gap, the exchange couplings of the single-

site model must saturate to an upper bound so that max{J?
dd
, Jk

dd
} . �s. Therefore,

they must be regarded as renormalized exchange interactions, which are also the result
of the spectral reorganization and localization of excitations with energy ⇠ �s caused
by AR at the S/N interface.

4.2.4 Scaling Approach

To investigate the accuracy of the single-site model, we reintroduce the coupling
to the continuum of excitations as a perturbation. Whether this perturbation changes
the low-energy spectrum substantially or not can be assessed using the poor man’s
scaling method [40], as we describe in the following.

In the single-site model, the e↵ective exchange coupling of the impurity and dGSJ

quasiparticle is Jdd = J?
dd

= Jk
dd
, where, for the sake of simplicity, we assume an

isotropic coupling. Our conclusions also apply to the anisotropic case with minor
modifications. Through the exchange interaction with the magnetic impurity, the
dGSJ quasiparticles can also couple to the continuum of excitations of the proximitized
film. Let us introduce the following modified exchange coupling, which, besides the
coupling to the dGSJ, describes an impurity-mediated coupling of the dGSJ-site to
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the continuum and is treated below as a perturbation:

Ĥdc

J
=
X

��0

⇣
Jdd d̂

†
�
s��0 d̂�0 + J�� �̂

†
0�s��0�̂0�0

⌘
· Ŝ

+ Jd�
X

��0

⇣
d̂†
�
s��0�̂0�0 + �̂†

0�s��0 d̂�0

⌘
· Ŝ.

(4.13)

The operators �̂0�, �̂
†
0� are the annihilation and creation operators for electrons in

the continuum at the position of the magnetic impurity. Phenomenologically, we
have assumed di↵erent couplings for the various processes involving the scattering of
the dGSJ and the continuum excitations by the impurity. These couplings can be
calculated from first principles. However, they depend on microscopic details of the
matrix elements of the impurity orbitals and the continuum of both subgap and outer-
gap excitations, which are challenging to model. For this reason, we treat their bare
values as free parameters in the analysis below.

We carry out the poor man’s scaling analysis [40] of the model (4.13) by integrating
out the high energy degrees of freedom from the continuum with energies of the order
of the bandwidth D ⇠ EF . Since these band-edge modes exhibit vanishing supercon-
ducting correlations because their energies are well above the gap, the calculations do
not di↵er much from those of the standard Kondo scaling of a magnetic impurity [40].
Some details are provided in App. B.4. In what follows, we focus on the discussion of
the solutions to the scaling equations, which read

dg��

d`
= g2��, (4.14)

dgd�
d`

= gd�g��, (4.15)

dgdd
d`

= g2
d�. (4.16)

Here gdd = 2⌫0Jdd, gd� = 2⌫0Jd�, and g�� = 2⌫0J�� are dimensionless couplings,
⌫0 ⇠ 1/D being the mean density of continuum states. The scaling variable ` is defined
such that the bandwidth is reduced according to D(`) = De�` ! 0 as `! +1, where
D ⇠ EF .

As the bandwidth of the system is reduced, the above scaling equations imply that
the renormalization of gdd and gd� is driven by the growth of g��. Indeed, Eq. (4.14)
for g�� is mathematically identical to the scaling equation for the exchange coupling
of a magnetic impurity in a normal metal (Kondo scaling). The equations can be
readily solved by the ansatz g��(`) = (`⇤ � `)�1, where `⇤ = 1/g��(0). Like the
ordinary Kondo scaling, `⇤ corresponds to the logarithmic scale where g��(`) diverges
and the perturbative renormalization breaks down. This happens when the bandwidth
becomes of the order of a “Kondo temperature”, T�

K
, i.e. for `⇤ = log

�
D/T�

K

�
. Hence,

g��(`⇤) ⇠ 1 leads to T�
K

= De1/(2⌫0J��). Note that T�
K
� �s would imply that the

continuum states at energies much higher than the superconducting gap are strongly
coupled to the magnetic impurity. In this situation, the single-site description, as
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introduced above, breaks down. In the classical approach, such a strong coupling
to the continuum should result in substantial suppression of the overlap between the
YSR and dSGJ states.

Indeed, the wavefunction overlap ⇥, Fig. 4.4, can be used to obtain a rough es-
timate of the ratios of the bare couplings gd�(0)/gdd(0), and g��(0)/gdd(0). To this
end, we first notice that gdd ⇠ Jdd, gd� ⇠ Jd�, and g��(0) ⇠ J�� contain matrix
elements with zero, one, and two powers of the continuum orbitals, respectively. Re-
call that the exchange couplings are second order in the matrix element describing
the tunneling between the impurity magnetic orbital and the metallic host states. Let
� = 1 � |⇥| measure the degree of admixture of the YSR state with the continuum;
� is enhanced by quantum fluctuations relative to the estimates provided by the clas-
sical approach [Sec. 4.2.2]. Nonetheless, we expect � to remain much smaller than
one. Thus, gdd(0) ⇠ �0, gd� ⇠ � and g�� ⇠ �2, to leading order in �. Furthermore,
gdd(0) = 2⌫0Jdd ⇠ �s/D ⇠ �/D ⌧ 1 according to the discussion at the end of the
previous subsection.

Next, we proceed to obtain solutions to the scaling equations using the above
estimates for the initial conditions of the flow. Concerning the solutions of Eqs. (4.15)
and (4.16), we notice that Eq. (4.15) is solved by the ansatz gd�(`) = rd�/(`⇤ � `)
with rd� = gd�(0)/g��(0). Introducing this result into Eq. (4.14) and integrating, we
obtain the following renormalized coupling between the impurity and the dSGJ:

gdd(`) = gdd(0) +
g2
d�(0)

g��(0)

(`/`⇤)

1� (`/`⇤)
(4.17)

Using g2
d�(0)/g��(0) = �2g2

dd
(0)/[�2gdd(0)] ' �0gdd(0), the above expression simpli-

fies to:

gdd(`) '
gdd(0)

1� (`/`⇤)
. (4.18)

which needs to be compared with the behavior of the renormalized coupling to the
continuum after setting g��(0) ' �2gdd(0):

g��(`) '
�2gdd(0)

1� (`/`⇤)
. (4.19)

Note that both couplings diverge at `⇤ = log
�
D/T�

K

�
with T�

K
' De�1/2(⌫0�

2
Jdd) ⌧ �

if � ⌧ 1, which is consistent with what was discussed above. For instance, if we choose
� ⇡ 0.2 (corresponding to ⇥ ⇡ 0.8), then

g��(`)

gdd(`)
' �2 ⌧ 1. (4.20)

Thus, as the continuum states are integrated out, the impurity remains most strongly
coupled to the single site describing the dGSJ quasiparticle and therefore the single-site
model remains an accurate description of the magnetic impurity on the proximitized
thin film.
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4.3. Magnetic molecules on Au films proximitized by V

Let us close this section by pointing out some potential problems with the scaling
analysis described above. First of all, like the original poor man’s scaling [40], the
equations are obtained perturbatively. Therefore, the solutions to the scaling equa-
tions are valid, provided the couplings remain small compared to unity. This is not a
problem under the above assumptions because the scale where the couplings diverge
`⇤ is much smaller than the superconductor gap, and the scaling must be stopped at
the scale of �. As we get closer to the gap scale, the superconducting correlations
cannot be neglected, and taking them into account modifies the flows of the renor-
malized couplings. Nevertheless, we should interpret the above analysis as providing
information on the tendency of the high-energy continuum states to couple to the
impurity in the presence of the coupling to the dGSJ state.

4.3 Magnetic molecules on Au films proximitized by V

We now focus on the 4-fold FeTPPCl molecules on the Au/V(100) superconducting
surface described in Sec. 4.1, whose spectroscopic features are presented in Fig. 4.5,
indicating three in-gap states and two out-gap peaks. The outer peak, A, lies at the
same energy as the spin-flip excitation measured for the 2-fold FeTPPCl molecules [2].

The three sub-gap excitations are YSR states arising from the interaction between
molecular orbitals and the itinerant electrons. The asymmetry between positive and
negative peaks is due to a finite scattering potential on the molecule [107]. Moreover,
±�⇤ is a thermal peak, only visible due to the tunneling between a superconducting
tip and sample at finite temperatures.

The coexistence of the multiple subgap and out-gap features, as well as the high
spin and magnetic anisotropy of the molecule, makes it di�cult to assign each peak a
certain excitation. To interpret the complex spectrum observed in STMmeasurements,
in the upcoming section, we introduce an extended single-site Hamiltonian with a
high spin (S = 5/2) and an anisotropy term. This model for a quantum spin with
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Figure 4.5: Spectra of a 4-fold FeTTP-Cl molecule. Three sub-gap states named
↵, �, and � and two out-gap peaks, A and B (zoom-in in the inset), can be distin-
guished. In red, the spectrum of the bare surface is shown for comparison.
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4. Quantum Impurities in proximitized Superconductors

anisotropy finds that every subgap state in Fig. 4.5 arises from the excitation of an
entangled molecular spin with an electronic state in the substrate. We also show
that peak A arises from a spin-flip tunneling process, whereas peak B relates to a
novel two-particle or Cooper Pair Excitation (CPE), which is not observable in most
single-particle tunneling experiments.

4.3.1 Extended Single-Site Model

The full Hamiltonian, taking into account the tip, sample, and tunneling between
both, is written as

Ĥmodel = Ĥs + Ĥt + Ĥts , (4.21)

where Ĥs and Ĥt describe sample and tip, respectively, and Ĥts is the tunneling
Hamiltonian; Ĥs is a single-site superconductor coupled to a quantum impurity with
spin S = 5/2:

Ĥs = Ĥ0 + ĤM + ĤJ

Ĥ0 = �sĉ
†
"ĉ

†
# + h.c.

ĤM = DŜ2
z
+ E(Ŝ2

x
� Ŝ2

y
)

ĤJ =
X

��0

ĉ†
�

h
U���0 + JzŜzs

z

�,�0 + J?
⇣
Ŝ+s

�
��0 + Ŝ�s

+
��0

⌘i
ĉ�0 .

(4.22)

Here �s is the strength of the superconducting pairing in the substrate. As introduced
in Sec. 4.2.3, in a proximitized superconductor, �s corresponds to the energy of the
dGSJ state, D and E are the axial and transverse magnetic anisotropy of the molecule,
Jz and J? are the axial and transverse magnetic exchange couplings, and U is the
impurity scattering potential, which, without loss of generality, we assume to be U = 0.
Applying Ockham’s razor, the Hamiltonian (4.22) has a single exchange coupling
channel with magnetic anisotropy, presenting a simpler framework for capturing the
full range of excitations compared to a multi-channel model.

We also treat the Hamiltonian describing the superconducting tip, Ht, as a single-
site superconductor:

Ht = �tc
†
t"c

†
t# + h.c. . (4.23)

Finally, the tunneling between the tip and sample is described by

Ĥts =
X

�

T̂��0 ĉ†
t�
ĉ�0 + h.c. , (4.24)

with T̂��0 = T0 + T1Ŝ · s��0 , where T0 is related to the normal tunneling and T1 to
the spin-flip tunneling. As expected in the tunneling regime, we assume no Josephson
current or multiple Andreev reflections between the tip and the sample.

The complete analysis of the Hamiltonian is transferred to App. B.5, where the
di↵erent parameters are switched on independently to understand their e↵ects. Here,
we discuss the combined e↵ect of all terms in the model, i.e., the superconducting gap
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4.3. Magnetic molecules on Au films proximitized by V

Figure 4.6: Energy of the eigenstates as a function of D and J . For the left
square J = 0, so the e↵ects of the magnetic anisotropy can be observed. In the right
one J is switched o↵. The transverse magnetic anisotropy, E, is zero. Blue and orange
represent the parity of the state: even or odd, respectively. The solid lines are the
states accessible with tunneling electrons.

�s, the magnetic anisotropies, D and E, and the exchange coupling J . In Fig. 4.6,
we show the evolution of the eigenstates of Eq. (4.22) as the values of the di↵erent
couplings are turned on up to values compatible with the experimental ones.

The superconducting pairing separates the even and odd sample parity eigenstates
by 2�s, as introduced in Sec. 2.4.2. This is represented by the blue (even) and orange
(odd) lines in the figure. When a tunneling electron excites the system, the parity
of the sample changes, which forbids tunneling between states with the same parity;
e.g., if the sample’s ground state is even in parity (blue), only odd states (orange) are
accessible via tunneling.

On top of the parity change, we assume that spin-flip tunneling paths are available,
proportional to |T1|

2. This means that a tunneling electron can change the total spin
of the impurity/sample system by ±1. For example, the spin excitation measured in
the 2-fold molecules [2] is a transition from the lowest-lying |±1/2i state to |±3/2i,
which are split. Similarly, in the 4-fold molecules, the axial magnetic anisotropy splits
the states by spin-z projections. This is represented in the first square of Fig. 4.6.

The solid lines in the figure are the levels reachable by tunneling electrons con-
sidering the change of parity and the maximum total spin change of ±1. These are
calculated at 0th order in transverse magnetic anisotropy, E. The resulting terms are
of order |T0|2 and |T1|

2 in the tunneling current.2

The right square of Fig. 4.6 illustrates the evolution of the eigenstates when the
exchange coupling is considered. Three YSR states form from the combination of

2There is no term proportional to T0T ⇤
1 if TRS is preserved.
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4. Quantum Impurities in proximitized Superconductors

the molecule’s spin, and the superconductor’s Bogoliubov states. These states read:
|1/2i |"i � |�1/2i |#i, |1/2i |"i � |3/2i |#i and |�1/2i |#i � |�3/2i |"i. The first state
corresponds to the lowest-lying YSR state, ↵, a spin-0 state. When a critical value
of the exchange coupling, Jc, is surpassed, marked with a dotted line in Fig. 4.6, the
parity of the ground state changes, and state ↵ becomes the ground state. The other
two states are the � and � excitations, which are degenerate for E = 0, and have a
total spin 1.

Finally, we consider the e↵ect of a small transverse magnetic anisotropy E, which
the molecules can host due to the distortion of their 4-fold symmetry from the surface.
Unlike anisotropic exchange, transverse anisotropy breaks the Z2 symmetry. This does
not a↵ect even-parity states, where Kramers’ degeneracy keeps states with opposite
total spin z-projection degenerate. The Z2 breaking splits odd-parity states whose
degeneracy is not protected by TRS. This causes a separation between peaks � and
�.3

4.3.2 The Cooper Pair Excitation

We attributed the three subgap states to molecular and electronic spin entangled
states split by the axial and transverse magnetic anisotropies. To understand the origin
of the out-gap peaks A and B, Fig. 4.7 shows spectroscopic measurements of three
molecules on di↵erent regimes of the QPT. From top to bottom, these molecules are
in the weak coupling regime, QPT, and strong coupling regime. In the weak coupling
regime, i.e., J < Jc, we see three YSR states (↵, �, and �), representing excitations
from the even ground states to the previously introduced odd states. Moreover, the
two out-gap states, A and B, are observed. Peak A has a larger intensity than peak
B.

The middle curve in Fig. 4.7 illustrates the spectra measured on a molecule on
the QPT. At this point, peak ↵ appears at zero energy, representing the crossover
between the even and odd ground states. The relative height of the out-gap peaks
changes at the QPT. Peak B appears more prominent, while peak A’s intensity seems
unchanged.

The ground state is odd in the strong coupling regime (J > Jc), so tunneling elec-
trons cannot excite other odd states. The lowest curve in Fig. 4.7 shows the spectrum
of a molecule in this regime. Peaks � and � are absent, as they are not accessible
anymore. Moreover, the intensities of peaks A and B have reversed compared to the
weak coupling regime. Peak A is barely visible in this curve.

This analysis demonstrates that peak A, mainly observed in the weak coupling
regime, arises from the excitation of an odd state. On the other hand, peak B, observed

3The value of E used here is small (0.044 meV), so a minor splitting is expected. A first-order
perturbation calculation for degenerate states

�� 1
2 , "

↵
�
�� 3
2 , #

↵
and

��� 1
2 , #

↵
�
��� 3

2 , "
↵
yields �E ⇠ 3

p
2E,

accounting for a separation of ⇠ 0.2 meV. Other states’ splittings are negligible in this approximation.
Additionally, transverse anisotropy induces only slight mixing of states with di↵erent Sz,T , which
should not significantly alter the above analysis. Although a two-channel model could explain the
observed splitting, it would increase complexity and fitting parameters, validating our simpler one-
channel model choice.
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4.3. Magnetic molecules on Au films proximitized by V

Figure 4.7: Spectra on molecules with di↵erent exchange coupling with the
surface. Spectroscopic measurement of three di↵erent molecules in three di↵erent
positions of the diagram in Fig. 4.6. From top to bottom, the molecules are in the
weak coupling regime (J < Jc), in the QPT (J = Jc), and in the strong coupling
regime (J > Jc).

in the strong coupling regime, forms due to the transition to an even state. In the
QPT, both peaks can be observed because the two distinct parity ground states cross.
Moreover, a reminiscence of peak A (B) can be seen in the strong (weak) coupling
regime due to the finite thermal population of the even (odd) ground state.

As introduced earlier, peak A lies at the same energy of the spin excitations ob-
served in the 2-fold molecules [2]; moreover, the energy diagram in Fig. (4.6) shows an
odd state at the energies measured for peak A, namely the state |1/2i |"i+ |3/2i |#i.
We conclude that peak A is an excitation from the BCS even ground state to this
state, a spin excitation. On the other hand, peak B is an excitation from the odd
ground state, formed by the spin-0 ↵ state, to an even state. Following the energy
diagram in Fig. (4.6), the even state at the corresponding energy is (|0i� |2i) |±1/2i,
which we defined as a CPE in Sec. 2.4.2, an excitations that is not accessible with
single-particle tunneling in bulk superconductors.

To further prove that this is indeed a CPE, we note that moving through the QPT
in Fig. 4.7 not only changes the relative intensities of peaks A and B, but also their
excitation voltage. The orange dashed lines represent the evolution of these peaks.
We observe that peak B follows the same dispersion as ↵, and the separation between
both amounts to 2�s, pointing out that B is indeed a CPE.

The energy of the dGSJ state, �s, is controlled with the thickness of the Au layer
on top of the superconductor. Consequently, to further corroborate the identification
of peak B as a pair excitation, we study the evolution of peaks A and B on 15 molecules
lying on di↵erent regions and film thicknesses. Figure 4.8(a) shows the value of �s

in the surroundings of 15 molecules. For each one, we measure EA and EB , i.e., the
energy separation between the ↵ peak and peaks A and B, respectively. Plotting these
values against the energy of the dGSJ states, we see a clear correlation between �s

and EB [Fig. 4.8(c)], demonstrating that peak B arises from a CPE. On the other

73



4. Quantum Impurities in proximitized Superconductors

0.60 0.65 0.70
� (mV)S

0.60 0.65 0.70
� (mV)S

151
Molecule#

0.60

0.65

0.70

�
 (

m
V

)
S

a) b) c)

0.60

E
  /

2(
m

V
)

A

E
  /

2(
m

V
)

A

0.65

0.55

0.60

0.65

0.55

Figure 4.8: �S dependence of peak A and B (a) Measured superconducting
gap for 15 molecules in di↵erent preparations. (b) Energy di↵erence between the
YSR state and peak A for the 15 molecules. No clear correlation with �s can be
seen. (c) Energy di↵erence between the YSR state and peak B. A clear correlation
with the superconducting gap can be observed, it is almost a one-to-one correlation
(EB/2 ⇠ �s)

hand, there is no correlation between �s and EA [Fig. 4.8(b)], this is expected for
a spin excitation. The separation between ↵ and A depends on D, which can vary
slightly due to the adsorption site.

Usually, pair excited states [8] are measured from adsorption of microwaves [178,
179] photons or Andreev pairs [180]. Parity conservation forbids a single tunneling
electron from exciting a pair of Bogoliubov quasiparticles in a superconductor. Due to
the magnetic molecule and our setup’s capability to control the ground state parity,
we could observe a CPE as peak B [Fig. 4.8]. Even if this resonance appears outside
the spectral gap, the pair state in the proximitized film is a double population of a
subgap state. Hence, it is expected to have a larger lifetime, facilitating its detection.
Moreover, the measurement of peak B is a smoking gun to assess the local parity of
the system, which usually can not be determined due to the symmetry involved in the
QPT spectrum.

4.4 Spin-singlet based Qubit

To conclude this chapter, we apply the single-site model to describe a novel spin-
qubit platform based on a spin-1 chain. The on-surface synthesis technique [159, 181]
o↵ers precise engineering of carbon-based molecules, making it possible to engineer
their magnetic properties. The spin state of several nanographene structures can be
controlled with this method [182–184]. The authors in Ref. [162] show that a complex
spin-1 chain can be built using triangulenes (a triangular nanographene) as building
block [Fig. 4.9(a)]. These chains host topologically protected spin-1/2 fractional edge
states [162, 185], with the chain length controlling the exchange coupling between the
edge states. We start this section by presenting a single-site model that describes
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4.4. Spin-singlet based Qubit

the interacting spin-1/2 fractional edge states of a Heisenberg spin-1 chain. We show
that this system’s ground and excited states are singlet states and that it is possible
to implement a novel qubit platform, based on these singlet states, that is protected
against Spin-Orbit and Hyperfine interactions. We will finish proposing a device that
can be used as a singlet-based SQ.

Figures 4.9(a) and 4.9(b) show the sketch of a triangulene spin-1 chain on top of a
superconducting surface. These chains have been produced on Au(111) crystals, and
ongoing experiments show that they can also be formed on proximitized Ag(111) and
Au(111) films, which can be proximitized if grown on top of a superconductor [2, 3,
35, 169]. The fractional states of the chains are unpaired end spin-1/2 states. This
can be visualized by describing each spin-1 triangulene as composed of two strongly
interacting spin-1/2 [185], as shown in Fig. 4.9(b). The inner spins form a valence
bond solid, and the unpaired spins in the edges form the fractional end states. For
shorter chains, they interact [Fig. 4.9(a)], and their relative orientation depends on
the parity of the chain, i.e., even or odd amount of triangulenes. The strength of this
interaction decays exponentially with the length of the chain.

On a superconductor, these edge states can couple with the condensate via Kondo
coupling. This gives rise to in-gap YSR states at both end sites. Due to the finite
overlap between wave functions, there is a non-zero exchange coupling between the

Δ Δ Δ

...

...

J12

ΨEdge

a)

b)

J1 J2

Figure 4.9: Spin-1 chain on a superconductor (a) Sketch of the triangulene chain
and the wave function of the fractional edge states. An exchange coupling J12 describes
the overlap between wave functions. (b) Formation of the end states. Each spin-1 in
the chain can be described by two spin-1/2. These spins form a valence bond solid,
leaving two spins free in the edges, which interact with the itinerant electrons via the
exchange coupling.
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state (S, P)

Antiferromagnetic singlet(S0) (0, 1)

Kondo quartet(S2) (0,1)

Doublets(D1, D2) (1/2, -1)

AFM singlet,  S=0

Kondo singlet,  S=0

Doublets,  S=1/2

Triplet,  S=1

D1 D2

T

S0

S2

Doublet at each side

Singlet at each side

One Singlet, one Doublet

Doublet at each side

Sub-gap states

J12

J1 J2

Spin 1/2 Spin 1/2 SCSC

Table 4.1: Possible ground state for the zero hopping limit. Red and
green solid circles represent singlets and doublets formed at two sites, respectively.
Blue(orange) circles are impurity(conduction electron) sites. Parity 1 and -1 stand for
even and odd, respectively.

end spins, as shown in Fig. 4.9(a). The Hamiltonian describing the spin-1 chain plus
the superconducting bath reads

Ĥ = ĤSC + ĤQD. (4.25)

ĤQD =
X

�,�0

X

i=1,2

Ji ̂
†
�
(xi)Ŝi · s��0  ̂�0(xi) + J12Ŝ1 · Ŝ2 (4.26)

ĤSC =
X

k�

⇠kĉ
†
k� ĉk� +�

X

k

h
ĉ†k#ĉ

†
�k"i + ĉk#ĉ�k"

i
, (4.27)

where  ̂†
�
(xi) ( ̂�(xi)) is the creation (annihilation) operator of an electron with spin

� in the position xi, Ŝi and Ji are the spin-1/2 operator and the exchange coupling
with the substrate of the ith edge state, and J12 is the exchange coupling between
edge states.

This Hamiltonian has no interaction between the spins in the bulk of the chain
and the superconductor but considers that only the edges are exchange-coupled to the
superconductor. We assume that the exchange coupling between the spins forming
the valence bond solid is the largest energy scale of the system, so the inner spins are
in a spin-0 state and no exchange coupling is present.

4.4.1 Single-site model for the spin chain

In the following, we simplify Eq. (4.25) into a single-site model. The simplest
approach is to describe two S=1/2 impurities exchange coupled between them (J12)
and, each, also exchange coupled to two independent single-site superconductors:

Ĥ0 =
X

i��0

X

i

Jiĉ
†
i�
Ŝi · s��0 ĉi�0 +�ĉ†

i"ĉ
†
i# +�ĉi#ĉi" + J12Ŝ1 · Ŝ2, (4.28)

where ĉ†
i�

(ĉi�) is the creation (annihilation) operator of an electron with spin � in
the ith site.

This Hamiltonian has a 4⇥4⇥2⇥2=64-dimensional Hilbert space, so exact diago-
nalization is possible. The system’s parity and total spin are good quantum numbers,
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Figure 4.10: Phase diagram of the two impurity system for t=0. (a)-(e) Phase
diagram for J12/� = 0, 0.5, 1, 1.5, 2, respectively. The dashed and dotted lines in (c)
represent the non-local QPT and the common parity changing QPT, respectively.

as well as the local parity. Table 4.1 shows the four possible ground states of the
system for an antiferromagnetic coupling between the impurities, with their respec-
tive total spin, S, and parity, P. Two distinct singlet states are possible to form. The
first one, S0, is the ground state of the weak coupling regime. It is formed by the
antiferromagnetic singlet between the two impurities, with both superconducting sites
in the even (BCS) ground state. The other singlet, S2, is also even in total parity but
has a trapped quasiparticle in each site. This singlet is formed by the antiferromag-
netic interaction between the spins of the trapped superconducting quasiparticle and
the end states. In addition, there are two doublet states, D1 and D2, which are the
low-lying states accessible with tunneling electrons because they have opposite parity
than the ground state. These doublets have one of the two superconducting sites in
an even state and one trapped quasiparticle on the other, so the global parity is odd.

Figures. 4.10(a)-(e) show the phase diagram of the system in the J1, J2 space for
di↵erent values of J12 from 0 to 2�, i.e., for various values of spin-1 chain length. For
J12 = 0, we find that changing the exchanges J1 or J2 drives the system through the
QPT from the S0 to D1 or D2. These are similar to the QPT described for a single
impurity. The corresponding site traps a quasiparticle, and the parity of the system
changes from even to odd. To reach S2, both exchange constants have to be changed
across their respective QPT.

On the other hand, for J12 > 0, a new transition is present, namely the S0 ! S2

transition, marked with a black dashed line in Fig. 4.10(c). The evolution of the four
states in this line-cut is illustrated in Fig. 4.12(a), which shows the transition between
the S0 and the S2 state. The parity changing QPT, S0 ! Di can also be performed,
as marked by the dotted line in Fig. 4.10(c). The evolution of the states through the
dotted line is shown in Fig. 4.12(a), which illustrates the transition from S0 to D2.

The S0 ! S2 transition represents the simultaneous trapping of a quasiparticle
in each superconducting site, i.e., the parity of both sites changes; hence, the total
parity remains even. This transition happens similarly by fixing one of the exchange
couplings, J1 or J2, and increasing the other, as shown by the dashed line in Fig.
4.10(c) for constant J2. As the two sites are spatially separated and the transition
can be performed by acting in only one impurity, this is a Non-Local Quantum Phase
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Transition (NLQPT), i.e., an example of quantum teleportation.

J12

J1
t

J2
ΔΔ

Figure 4.11: Representation of
the spin Hamiltonian. Two
magnetic impurities exchange cou-
pled between each (J12) other and
a superconducting site (Ji). The
superconducting sites are coupled
via hopping, t.

Up to this point, we have considered that the
two superconducting sites are independent. How-
ever, the real system we simulate is a macroscopic
superconductor so it is inexact to treat the two
sites as independent. This means that due to the
long-range order of the superconductor, a cou-
pling term between superconducting sites must
be considered to describe the system adequately.
Following Ref. [186], we add a tunneling term be-
tween the superconducting sites so that the total
Hamiltonian now reads

Ĥ = Ĥ0 + ĤT (4.29)

with,

ĤT =
X

�

tĉ†1� ĉ2� + h.c. , (4.30)

where t is the hopping amplitude between the
sites. A discussion on the adequacy of this Hamil-
tonian is given in App. B.6.

This new term couples the two superconductors, as illustrated in Fig. 4.11, gene-
rating a finite matrix element between S0 and S2, so that two new states that are a
linear combination of S0 and S2 become the new eigenstates, namely S and S0. As a
consequence, the NLQPT is no longer accessible. Instead, an anticrossing is created
at the boundary of the NLQPT. This is depicted in Fig. 4.12(c), where a comparison
between the ground states of the Hamiltonian with and without the tunneling term is
shown.
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Figure 4.12: Excitations of the spin-singlet based Qubit. (a) and (b) Excitation
spectrum of the two impurity systems with t = 0 for the two black lines in Fig. 4.10(a).
In panel (a), the NLQPT is shown, with the states D1 and D2 lying at higher energies.
In panel (b), the QPT between S0 and D2 is represented. States D1 and S0 appear at
higher energies. (c) Comparison between the Hamiltonian without and with tunneling.
An anticrossing between the two lowest-lying levels develops.
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4.4. Spin-singlet based Qubit

Fine-tuning the system around the critical value of the exchange coupling for the
NLQPT, Jcr, states S and S0 can be used as the orthogonal states forming a qubit.
As the two states are a linear combination of two singlets, S0 and S2, themselves are
singlets. We finish the section by introducing a spin qubit based on these two states.
We also introduce the design of a plausible device to host this singlet-based spin qubit.

4.4.2 A Spin-singlet Qubit

Since the first proposal by Loss and DiVincenzo [187], numerous spin qubit plat-
forms have been proposed with increasingly better performance in terms of quantum
coherence and addressability [188–193]. The main decoherence e↵ects of these qubits
are the spin-orbit interaction (SOI) with the itinerant electronic cloud [194, 195] and
the hyperfine coupling (HC) with the nuclei in the quantum dot [196, 197]. The two
spin-singlet states hosted at the end of the spin chains are protected against decohe-
rence arising from SOI and HI due to their spin-0 nature.

Coupling a microwave with STM to induce the resonant state between the two
singlets can be a suitable proof-of-principle setup to check the validity of this spin
qubit [198]. However, beyond the proof of concept, the di�culty of a single-molecule
device will be part of any multiscale device. Therefore, we propose a nanofabricated
device with an engineered electromagnetic environment where the di↵erent parameters
of the system can be precisely controlled. Figure 4.13 shows a scheme of a possible
device structure enabling the implementation of the proposed singlet-qubit. This
mesoscopic system is built from two quantum dots (QD) connected to two distinct
superconducting baths [44], connected among them via tunneling; for example, two
parallel superconducting nanowires. The energy of the QD levels can be controlled
with gate voltages VG1 and VG2, which is equivalent to changing the exchange coupling
of an impurity [79]. Moreover, another gate, VG12, would control the tunneling between
QD, which we e↵ectively represent as an exchange coupling [148, 199]. Finally, the
hopping term between superconductors can be controlled with a thin oxide layer,
which would be fixed by details of the device nanofabrications, e.g., the width of the
oxide layer or its composition.

The qubit could be manipulated by adding an AC electrostatic potential to one of
the QD gates, e↵ectively controlling the exchange coupling of one of the impurities.

Figure 4.13: Device for a spin-single qubit. Schematic proposal of a device based
on two coupled Quantum Dots, each on top of a superconducting wire. The wires are
coupled via tunneling, with a strength tunable through a gate potential.
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4. Quantum Impurities in proximitized Superconductors

This perturbation can be used to control the qubit’s state coherently. The readout
mechanism could be performed by measuring the reflectance or absorption of the AC
signal in the gate line [178, 179]. Another control mechanism could be achieved by
putting the qubit in a superconducting cavity, similar to Ref. [44].4

4.5 Conclusions

We have studied the YSR excitations in a thin metal film proximitized by a su-
perconductor. This has been carried out by introducing a one-dimensional model of
the metal film/superconductor substrate [Sec. 4.2.1]. The spectrum of this model,
which consists of the dGSJ subgap bound states, arises from the Andreev reflection
at the metal/superconductor interface, leading to a substantial spectral reorganization
around and below the gap energy. Treating the impurity spin as a classical vector,
we have found a substantial overlap of the wavefunctions of the YSR and the dGSJ
states, which motivated us to use a single-site model [Sec. 4.2.3]. We have addressed
the accuracy of the single-site model by phenomenologically re-introducing the coupling
to the continuum of excitations of the proximitized film as a perturbation and using the
poor man’s scaling method [Sec. 4.2.4]. We have shown that the exchange coupling
with the site that describes the dGSJ quasiparticle excitation remains the dominant
coupling under scaling. Thus, the continuum of excitations of the proximitized film
can be neglected in a first approximation, and the YSR states can be regarded as re-
sulting from the exchange interaction of the magnetic (quantum) impurity with the
dGSJ quasiparticles.

This model replaces the complexity of the proximitized film with a single site with
a single level that represents the dGSJ quasiparticle excitation and is coupled to the
impurity with an e↵ective exchange coupling. The single-site model is exactly solvable
and allows us to go beyond the classical description of the impurity by treating its spin
quantum mechanically.

This approach has been afterward generalized to treat impurities with higher spin
and account for magnetic exchange anisotropies [Sec. 4.3.1]. With this, we were
able to rationalize the complex spectral features of the FeTPPCl molecules (S=5/2)
on top of the Au/V(100) proximitized surface [3]. Our findings properly describe the
formation of entangled states formed from the molecular and quasiparticle spins on
the system and reveal that in the strong coupling regime, a Cooper pair excitationcould
be measured: a smoking gun to detect the local parity of the system [Sec. 4.3.2].

Moreover, our findings are also relevant to superconductor/quantum dots [200–202]
hybrid systems. In particular, similar single-site models applied to describe the spec-
troscopic properties of quantum dot systems [147, 203–205], which can find potential
uses as qubits [Sec. 4.4.1]. As an example, after extending the model to describe a sys-
tem built from two coupled spin-1/2 impurities, we described a singlet-based qubit [44]
that is not a↵ected by SOC or HC, increasing its coherence time [Sec. 4.4.2].

4The details regarding the exact manipulation technique and NRG calculations of the qubit will
be published in a future work.
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5
Interplay between Coulomb

blockade and superconductivity

In the following two chapters, we investigate how confinement and size influence
superconductivity. Specifically, we examine electron tunneling into small Pb islands
suspended on graphene (Gr). When a metallic grain with dimensions smaller than the
electron’s screening length (� ⇠ 100 nm) is connected to two electrodes, an additional
energy must be supplied to allow an electron to tunnel. This energy, known as the
Coulomb energy, EC , arises from the Coulomb repulsion created by the tunneling elec-
tron: within the confined grain, the electron lacks su�cient space to move freely and
screen the added charge. Consequently, excess energy is required to initiate tunneling,
compelling electrons to tunnel sequentially, one at a time.

This sequential electron tunneling mechanism, or single-electron tunneling, is har-
nessed by Single Electron Transistors (SETs) [73, 206]. SETs play a crucial role in
the miniaturization of electronic devices, enhancing energy e�ciency and sensitivity,
particularly in applications like quantum metrology [207, 208].

Contrary to the Coulomb interactions, superconducting correlations create an attrac-
tive force between electrons and, hence, favor the formation of a ground state made
from Cooper Pairs [45, 46, 52, 208–210]. The competition between these two energy
scales modifies the usual response of the SET to an external gate potential. The e-
periodic system transforms into a 2e-periodic one [46, 47, 52, 211], where the ratio
EC/� describes the accessibility of the odd parity state of the island [46, 209]. Simi-
larly, size and Coulomb interactions modify superconductivity, reducing the supercon-
ducting gap and changing the response of the superconductor to magnetic fields.

In this chapter, we perform STM measurements on Lead (Pb) islands on Gr with
distinct sizes. We find that the spectral gap obtained from STS measurements is a
combination of the e↵ects of superconductivity and Coulomb Blockade (CB). By uti-
lizing an e↵ective theory based on single electron tunneling and the analysis of the
evolution of the spectral gap under an external magnetic field, we are able to disentan-
gle the contributions of each e↵ect. The localized measurements enabled by STM make
this experimental approach ideal for exploring the relationship between island size and
superconductivity.

We start the chapter by introducing the experimental system under study and
commenting on the main findings, mainly the spectroscopic measurements on top of
small-sized islands [Sec. 5.1]. We then propose a theoretical approach to explain
the spectroscopic measurements [Sec. 5.2, extended in App. C]. This theory, based
on a master equation approach, extends the theory of single-electron tunneling in a
SET [45], by including superconductivity. Next, we disentangle the combined e↵ects
of superconductivity and CB by measuring the evolution of the islands’ spectra under
a magnetic field up to 2.5T [Sec. 5.3]. The di↵erent impact of the magnetic field on
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5. Interplay between Coulomb blockade and superconductivity

the superconducting condensate and the electron-electron interactions is discussed and
exploited to obtain information about the values of � and EC . Finally, we present a
methodology to control the residual charge state of Pb islands with an STM setup [Sec.
5.4], using high voltage pulses we realize an e↵ective gating.

5.1 Pb islands on Graphene

The Pb islands are evaporated on Graphene (Gr) grown on the Si side of SiC(0001).
Silicon Carbide is a bipolar wide gap semiconducting crystal that can host Gr layers
in both terminations [213, 214] (Si and C). The C-terminated face hosts multilayer,
polycrystalline Gr. In contrast, the Si-terminated side hosts a monolayer or a bilayer
of monocrystalline Gr [Fig. 5.1(a)]. In both cases, the Gr is created by heating
the samples (either by resistive heating or e-beam heating), which makes the Si atoms
evaporate in the crystal, leaving the C atoms that produce the Gr. In this experiment,
we use the Si-terminated face, prepared by resistive heating of a SiC crystal up to
1400ºC in UHV conditions. The Gr formed on the SiC is flat and clean, as shown in
STM images like in Fig. 5.1(b).

In the Si-terminated face, the Gr layer lies on top of a bu↵er layer formed from
the collapse of the first two Gr layers [20, 215], which acts as a decoupling layer
between the SiC and graphene. The top Gr is closer to a freestanding Gr but still
has some n-doping [216, 217] that we detect from di↵erential conductance spectra
like in Fig. 5.1(c). This figure shows an STS measurement of bare Gr from -0.6 to
0.6 mV. The main spectroscopic features of the Gr on SiC(0001) can be observed:
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Figure 5.1: Gr on SiC(0001). (a) Sketch of the microscopic structure of the system.
A bu↵er layer made of C atoms separates the Si surface of SiC from a monolayer of
Gr. (b) 500 nm⇥500 nm scan of the bare Gr surface. Some step edges and a few
impurities can be recognized (V=1 V, I=30 pA). (c) STS measurement of bare Gr,
the insets depict the Dirac Point (left inset) and the phononic gap (right inset) of Gr
[212] (V=1 V, I=500 pA). (d) Atomic resolution image of Gr (V=50 mV, I=1 nA).
Panel (b) and (c) are adapted from Ref. [4].
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5.1. Pb islands on Graphene

the insets show the phononic gap of Gr [212] as a U-shaped minima (right) and the
Dirac point at around V = �0.25 mV (left), consistent with n-doping. Moreover,
the superconducting gap of the tip can also be observed in a small energy window
around V = 0 as a V-shaped minima. The atomic resolution of the Gr is depicted in
Fig. 5.1(d), exhibiting its well-known hexagonal pattern.1

To form the superconducting clusters used in this experiment, we evaporated lead
on top of the SiC(0001) substrate at room temperature with a rate of ⇠0.1 A/s for
30s. In Fig. 5.2(a), we show an STM image of a Pb-covered graphene region. The
islands are generally 3-fold symmetric [218], with lateral sizes ranging from 10 to 200
nm and height from 3 to 12 nm. Using the STM tip, these islands can be manipulated,
and they always align within the last Gr layer’s crystallographic direction [4, 219].

E↵ects due to the size of the grains start appearing for islands with vol.1/3 . 35 nm.
Di↵erential conductance spectra of larger islands show an absolute superconducting
gap of �/e ⇠ 1.35 mV, the same as the bulk Pb. See the blue curve in Fig. 5.2(b)
(top). Compared to bulk Pb spectra, the red curve in Fig. 5.2(b) (top), the coherence
peaks in the Pb islands appear wider. We can exclude thermal broadening since, as
in bulk lead, a SC tip is used here. Several factors can a↵ect the broadening of the
spectra, among them the inverse proximity e↵ect and the e↵ects on the environmental
modes.

The former is a consequence of Gr having a finite DoS at the voltages around the
island’s coherence peaks, broadening the spectra. On the other hand, the latter is
due to the change of the circuit. As introduced in Sec. 2.2 and extended in App.
D.1, the e↵ects of environmental modes have to be considered when we calculate the
tunneling current, which is related to the impedance of the electrical circuit of the
STM [45, 54, 156, 220, 221]. The di↵erence between bulk Pb and Pb islands is that
the double tunneling junction changes the circuit, mainly the capacitance, adjusting
the environmental modes and increasing the spectral broadening [see App. D.1].

To characterize the double tunneling barrier, Fig. 5.2(d) plots the change in resis-
tance as we approach the STM tip onto an island on a logarithmic scale. A change in
the slope of the curve can be detected around the -50 pm relative distance point. This
represents a transition from the tunneling exponential current dependence (I / e�z)
to the contact regime. Once the tip touches the sample, the current no longer has an
exponential dependence on the distance. Previous reports show that break-junctions
between Pb tips and Pb surfaces exhibit a broad distribution of contact conductances
between G0 and 5G0 [222], i.e., resistances between 2.58 and 12.9 k⌦. As we measure
R ⇠ 12 k⌦ for the point contact resistance, the resistance between the island and Gr
should range between 0 and 10 k⌦.

In the following, we present a theoretical framework to understand the STS mea-
surements on the Pb islands. We apply the double tunneling barrier tunneling for-
malism presented in Sec. 2.3 and add superconductivity to describe the tunneling to
Pb island on Gr.

1Technically, the dark spots in the atomic resolution are six-member carbon rings.

83



5. Interplay between Coulomb blockade and superconductivity

Figure 5.2: Pb islands on Gr. (a) 1µm⇥1µm image of the sample formed by Pb
islands on top of Gr (I=20 pA, V=200 mV). (b) Comparison between STS on a big is-
land (vol.1/3 ⇠38 nm) and bulk Pb (top), and between a small island (vol.1/3 ⇠20 nm)
and the same big island (bottom). Some spectra are scaled by a factor of 0.5 (V=5 mV,
I=500 pA). (c) STM image of the three islands measured in panel (b) (V=500 mV,
I=30 pA). (d) Measurement of the resistance resistance approaching the STM tip to
a Pb island (V=50 mV), R= ⇠ 13 k⌦. The fitting lines are the best-fitting linear
regression of the resistance.

5.2 Interplay between superconductivity and Coulomb inter-

actions on Pb islands

We now focus on the spectroscopic features of smaller islands (vol.1/3 .35 nm).
The lower panel in Fig. 5.2(b) shows the spectra of two small islands (orange and green
curves) with vol.1/3=20 nm compared to that of the large island discussed above (blue
curve). We observe a larger spectral gap in the dI/dV of the smaller islands.2

To explain the origin of the bigger gap, we note that the onset energy of single-
particle excitations on a superconductor is � [Sec. 2.1.1]. As introduced before,
when a metallic grain is small enough, extra energy must be paid when adding an
electron to overcome the Coulomb interactions. The measurements are performed
at T=1.3 K< TPb

C
, so the islands should still be superconducting, even if the size

of the islands can decrease the critical temperature [50, 218, 225, 226], see Sec. 5.3.
Consequently, we attribute the larger spectral gap of the small islands to the combined
e↵ect of superconductivity and the CB in the islands.

To describe the competition of Coulomb correlations and superconducting corre-
lations deduced from STS spectra of smaller islands, we describe the possible single-
particle excitations the superconducting grains can host. The simplest approach is

2For higher voltages, after the coherence peaks, we measure a flat conductance corresponding to
the normal metal one [App. C.3]. Small wiggling or peaks that are not reproducible can be observed,
but not a clear peak corresponding to the charging of the island [45, 223, 224].
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5.2. Interplay between superconductivity and Coulomb interactions on Pb islands

to start with the orthodox model for the Double Tunneling Junction (DBTJ) [45,
208, 210], introduced in Sec. 2.3, which describes the single-electron tunneling, and
incorporate superconducting correlations into it. The orthodox model considers the
Coulomb interactions by adding a Coulomb energy, EC , to the single-particle excita-
tions.

Equal to Sec. 2.3, we describe the DBTJ with an equivalent lumped circuit, see
Fig. 5.3(a) [45, 54, 156, 220]. The circuit comprises two junctions characterized by a
resistor and a capacitor in parallel: the Pb island is connected to the tip (substrate)
by a resistor R1 (R2) and a capacitor C1 (C2). A potential from a third terminal (the
gate) is added (described by a bias voltage VG and a capacitor CG). The gate potential
breaks particle-hole symmetry (ph symmetry), which is essential to understand the
asymmetric spectra we measure [green plot in Fig. 5.2(b)]. The gate electrode causes
the gain of a residual fractional charge q0 = en0 in the island [cf. Eq. (5.3)], as already
reported in similar systems [120, 218, 224, 227–229]. A justification for the origin of
the excess charge on the island is given in Sec. 5.4

To describe our system, we must also consider superconducting correlations in the
islands. Although adding superconductivity can be as easy as splitting the system
into even and odd parity states separated by an energy � (superconducting gap), we
must take a small hiatus to discuss size e↵ects on superconductors.

The BCS ground state [8] is a U(1) gauge breaking wavefunction [50, 79]. This
means that, as the theory is built on a grand canonical ensemble, this ground state
does not conserve particle number, i.e., it is formed from a product of states containing
di↵erent particle numbers. As the size of a superconductor shrinks and Coulomb
interactions grow, fluctuations in particle number are reduced. In this scenario, the
BCS formulation of the ground state starts to be inadequate, as fluctuations from the
mean-field approximation have to be considered. A possible fix for this problem is to
project the BCS ground state into a particle-conserving state [50, 79, 230], equivalent
to the BCS ground state in the bulk limit [see Sec. 2.1].

A more sophisticated method to calculate the wavefunction of a superconducting
grain was introduced by Richardson [231, 232], who found a method to calculate the
wavefunction exactly. Other methods to do this calculation exist, such as the Density
Matrix Renormalization Group [233, 234], the parity projected BCS method [235–
237], etc. Reference [50] provides a comprehensive review of all these methods.

The main conclusion from these methods is that the BCS approach breaks down
when the mean level separation, �, of the superconducting nanoparticle is comparable
to the superconducting gap. Consequently, the usual methodology (BCS approxima-
tion) can be used for �/� . 0.5 [50, 230], with the exact distribution of the energy
levels of the grains not being too important [238]. The mean energy separation in a
grain is give by [50, 226, 239]

� =
2⇡2~2

mkFvol.
⇠

179

vol
meV nm�3,

103

vol
meV nm�3 . (5.1)

The two solutions correspond to the Fermi momentum of each band forming the
superconducting condensate in bulk Pb [226, 240] (Pb is a multiband superconductor).
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For the smallest islands measured in our samples (vol⇠1000 nm3), the level separation
is �/� . 0.1. With these sizes, we can apply the BCS formalism with minimal
corrections due to the level spacing.3 Then, the tunneling rates can be calculated
using the BCS DoS.

With these considerations in mind, we can write the Hamiltonian of the system,

Ĥ = Ĥ0 + ĤS (5.2)

with the charging energy as [45, 208, 210]

Ĥ0 =
(n̂� q0/e)2

2(C1 + C2)
e2 = EC(n̂� q0/e)

2 . (5.3)

n̂ is the excess charge in the island, defined as n̂ = n̂1 � n̂2, where n̂i is the charge
in the ith junction, and q0 = VG/CG is an e↵ective fractional charge arising from the

electrostatic potential of a gate electrode. The charging energy is EC = e
2

2C , with
C = C1 + C2. This Hamiltonian describes parabolic bands separated by an island’s
charge e [Fig. 5.3 (c)]. We add the superconducting correlations by breaking the
even-odd symmetry [47, 52, 206, 211, 241, 242]:

ĤS =
(1� (�1)n̂)

2
� . (5.4)

The periodicity of the bands change from e to 2e. Moreover, we can now distinguish
two distinct regions: EC < � [Fig. 5.3(d)] and EC > � [Fig. 5.3(e)]. Notice that
for T = 0, the population of the odd states is always zero for EC < �, while for
EC > �, a gate potential (or excess charge) can change the ground state from even to

3The � used for the calculation is � = 1.35 meV, which is the value for the bulk superconducting
gap. Next section [Sec. 5.3] shows that the gap decreases up to 0.5 meV for the smallest islands.
Even in this scenario, �/� < 0.5, i.e., the BCS formalism can still be applied.
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5.2. Interplay between superconductivity and Coulomb interactions on Pb islands

odd, populating the odd states. As we measure at T=1.3 K, we must consider a finite
population of the excited states [50, 211], which we do following the master equation
described in App. C.1 [see Eq. (C.3)]. The only functions to be calculated are the
tunneling rates:

�!
� 1(V, q) =

e

R1

Z
d!⇢tip(!)f(!)⇢isl,n(! + E1(V, q))f(�! � E1(V, q))

�!
� 2(V, q) =

e

R2

Z
d!⇢isl,n(!)f(!)⇢Gr(! + E2(V, q))f(�! � E2(V, q))

(5.5)

where ⇢i are the DoS of the tip, island, and sample, f is the Fermi-Dirac distribution,
and Ei/e is the voltage drop from a single electron tunneling in the ith junction,
defined in Eq. (C.1), and ⇢i (i = tip, isl, Gr) are the DoS. The island’s DoS reads

⇢isl,n(!) =

8
><

>:

N0 Im
! + i✏p

�2 � (! + i✏)2
, if n is even

N0 , if n is odd.

(5.6)

Equation Eq. (5.5) does not consider the minimum required energy to add an electron
into a superconductor: �. This is considered by the DoS, which has a spectral gap for
the even parity states. Furthermore, the DoS has no gap for the odd states, as adding
an electron to a superconductor that already has one is a gapless excitation. When
�1 ⌧ �2, we consider we are in the tunneling limit [see Sec. 2.3], greatly simplifying
the problem. For our system, one can verify that solving the full Master equation [Eq.
C.3] or applying the tunneling limit [Sec. 2.3] has the same outcome.4 The current in
the tunneling limit reads

I =
X

n

pn
h
�!
� 1(V, q)�

 �
� 1(V, q)

i

=
X

n

e��En(q0)

Z

h
�!
� 1(V, ne� q0)�

�!
� 1(�V,�ne+ q0)

i
,

(5.7)

where Z =
P

i
exp{��Ei} is the partition function and Ei(q0) are the eigenvalues

of Ĥ = Ĥ0 + ĤS .5 In the rest of the chapter, we use Eq. (5.7) to simulate and fit
the measurements. In the next section, this model is used to extract EC and � for
several islands by fitting dI/dV spectra using an external magnetic field. On the other
hand, in Sec. 5.4, we study theoretically the e↵ect of changing the residual charge on
the islands, simulating the e↵ects of a gating potential. This is then compared with
experiments where the excess charge is controlled with the STM.

4The solution of the full master equation changes the shape of the spectra and the positions of
the peaks a little, but this change is smaller than the resolution of our experiments.

5This approximation is valid only if C1 ⌧ C2, i.e., we do not consider the charging peaks on the
current. Within this approximation, EC ⇠ e2/2C2, so the Coulomn gap is given by 2EC .
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5. Interplay between Coulomb blockade and superconductivity

5.3 Disentangling the e↵ects of Superconductivity and Coulomb

Blockade: Magnetic field dependence

The interplay between superconductivity and Coulomb interactions can be com-
plex to disentangle from measured spectra since both e↵ects produce gaps around
zero bias. Furthermore, the measurements are done using superconducting tips. The
tunneling spectra only resolve a spectral gap that is the combination of EC , and the
superconducting gap of the tip, �tip, and island, �isl. The superconducting gap of
the islands is unknown, as it can di↵er from the bulk Pb gap due to its reduced di-
mensions [50, 218, 225, 226]. On the other hand, the Coulomb interactions follow the
opposite trend: the smaller the island, the bigger the energy cost to add an electron
into it. Moreover, the fractional charge measured in most islands makes the calcula-
tion more complex, as the gap is not equal for all charge states. This is a well-studied
phenomenon: the dependence of the spectral gap on the excess charge follows a shape
known as Coulomb Diamonds [45]. See Sec. 2.3.

Consequently, although Eq. (5.7) can fit the data, it requires too many param-
eters. Therefore a single measurement on an island can not disentangle the relative
contributions from CB and superconductivity. To this end, we present a method to
disentangle these two contributions based on the evolution of the spectroscopy with
an external out-of-plane magnetic field up to 2.5T. With this method, we extract the
values of the zero-field Coulomb and superconducting gaps by fitting the evolution of
the total spectral gap for di↵erent fields. The e↵ects of varying temperatures, which
can also be used for the same end, are discussed elsewhere [App. C.2].

Although the consequence of a magnetic field on s-wave bulk superconductors is
well known [243–245], magnetic field e↵ects on granular superconductivity are more
complex. Not only does the critical magnetic field increase considerably [172, 239,
246] (the magnetic flux enclosed by the islands is smaller), but the evolution for odd
and even parity states is di↵erent [50, 246], meaning that knowing the ground state of
the island is necessary for the analysis. Moreover, one needs to consider the reduction
of the superconducting gap due to size e↵ects [50, 218, 225, 226]. On top of these, the
e↵ect of the B-field on the superconducting state of the tip needs to be considered.

Similar to small-sized superconductors, which have a higher critical field than the
bulk, the Pb-coated W tips we use also have a higher critical field with respect to
the bulk [99]. The same superconducting tip is used for all measurements, the apex
can vary from island to island, which does not a↵ect the tip gap. We can obtain its
characteristic behavior with a magnetic field by measuring spectra on Gr at various
fields. An example of such behavior is plotted in Fig. 5.4(a) (blue dots). The values
of the superconducting gaps for each field shown in Fig. 5.4(b) (blue and green dots)
were extracted by fitting the data with a convolution between two BCS DoS with
a changing Dynes parameter [244, 247], ✏, in Eq. (5.6). The obtained evolution of
the spectral gap is the one expected for a bulk superconductor with a critical field of
BC=750 mT with some slight variation at low fields. These are probably caused by
the fast-closing proximitized gap of graphene with small fields

Once the evolution of the tip’s gap with the field is characterized, we use it to
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Figure 5.4: Evolution of the superconducting gap under a magnetic field.
(a) Fitted evolution of the Gr plus tip (blue) and big island plus tip (orange) super-
conducting gaps. The fit was done using Eq. (C.5) (Btip

C
= 750 mT, Bisl

C
= 1 T).

(b) Values of the superconducting gap of the tip (blue), a big island (orange), and Gr
(green). Extracted from panel (a).

extract the critical field of the islands. For a big island (i.e., negligible Coulomb gap),
the measured gaps show a non-monotonous evolution with the B field, depicted in
Fig. 5.5(a) and as the orange dots in Fig. 5.4(a). Subtracting from these data the
values of the tip’s gap results in the evolution of the island‘s superconducting gap,
shown in Fig. 5.4(b) (orange dots). Fitting the evolutions [solid lines in Fig. 5.5(a)]
with the expression �(B) = �0(1 � B2/B2

C
)1/2 [43], we extract a critical field of

BC=1 T for the big island. This is an order of magnitude larger than the critical field
of the bulk crystal (Bbulk

C
=80 mT). The spectral gap of the large island closes at the

critical field, consistent with its negligible Coulomb energy.

For smaller islands, the spectral map in Fig. 5.5(b) reveals a dependence on the
magnetic field that can not be explained with the previous formula. In this case, we
use the Orthodox model [Sec. 5.2] to study the evolution of the spectral gap. This
model requires seven fitting parameters: R1, R2, C1, C2, �tip, �isl and q0 (a Dynes
parameter is also used to account for the width of the coherence peaks). To simplify
the fitting procedure, we note that in an STM junction C1 ⌧ C2 [156] and, in the
tunneling regime, R1 � R2, which simplifies the fitting [Sec. 5.2].

Since the evolution of the superconducting gap of the tip is extracted as detailed
above, we are left with three parameters: C2, �isl, and q0. Focusing on islands with
a symmetric (or close to symmetric) spectrum, q0 has a small e↵ect on the spectra,
simplifying the fitting process.

The fitting process is as follows: we first start by fitting a global gap for each
magnetic field value to obtain a plot similar to the one in Fig. 5.5(c) (blue dots). Then,
the following equation is used to fit the evolution of the spectral gap [see App. C.3]:

�E/2 = �tip(B) +�isl(B) + EC � EZ(B) , (5.8)
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Figure 5.5: Magnetic field dependence of the spectra on the Pb islands. (a)
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gap extracted from (b) as a function of the applied magnetic field. The fit using
Eq. (5.8) is superposed (Btip

C
= 750 mT, Bisl

C
= 1.6 T, EC = 0.6 meV).

This equation has four di↵erent contributions. The first is the evolution of the tip’s
gap. The second is the evolution of the superconducting gap of the island, which is
supposed to follow the same evolution as an s-wave superconductor but with a higher
critical field [50, 172, 239]. We assume no change in EC and add an extra Zeeman
splitting term, which in our case gives a small 80 µeV correction [see App C.3].

Assuming that the island’s superconducting gap is closed for the highest magnetic
field values, we obtain EC (C2). The asymmetry of the spectra is also extracted to
find the value of q0 ⇠ 0. This fit is similar to that of Fig. 5.5(c) (solid orange curve).

We use the parameters obtained from fitting the spectral evolution with Eq. (5.8)
as the starting values to fit each STS measurement with Eq. (5.7) and extract the
best fitting values for �isl, C2, and q0 [see Fig. C.2 in the appendix]. Finally, we
plot �tip +�isl + EC [blue dots in Fig. 5.5(c)], obtained from the fit, which ignores
the e↵ects of any asymmetry arising from a fractional charge, and fit it one last time
with Eq. (5.8). Figure 5.5(c) shows the fitting of the evolution of the gap following
Eq. (5.8). As expected, for small islands, the gap of the tip is the first to close at
Btip

c
⇠ 0.75 T, and then the one of the island at Bisl

c
= 1.6± 0.1 T. For larger B, the

spectral gap remains equal to EC = 0.6± 0.1 meV.
We repeat this procedure for several islands with di↵erent sizes. Figure 5.6(a)

shows the dependence of the superconducting gap of the islands and the Coulomb
energy as a function of the size of the islands, depicted by the parameter vol.1/3.
We find that � = EC at vol.1/3=15 nm. Above this size, superconductivity and CB
coexist, the former being larger and susceptible to acquiring residual charges [see Sec.
5.4]. Below this size, Coulomb e↵ects dominate, and odd states become accessible
[Fig. 5.3(d) and 5.3(e)]. In this regime, we find that the reduction of the island’s
superconducting gap with size is more pronounced than in previously reported systems
[225, 226], and theoretical calculations [50, 248]. We theorize that this e↵ect is due to
the graphene. The previous reports (and theoretical calculations) do not consider any
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(b) Critical field as a function of vol.1/3 (blue dots) and area.1/3(orange dots). The
dashed lines in both panels do not represent a fitting of the data, they are hand-made
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interaction between substrate and islands, as they used insulating layers as substrates.
In our case, we use graphene as the substrate, which has electronic states within the
energy windows of interest (|E| . 3 meV), so the inverse proximity e↵ect might be
contributing to closing the island’s superconducting gap.6

This fitting procedure also allowed us to obtain the critical magnetic field of each
island, shown in Fig. 5.6(b). The blue dots represent the critical field as a function
of the island’s volume (vol.1/3). Surprisingly, the dependence of Bc with size does
not follow a clear trend: the points are very dispersed. This is probably caused by
the di↵erent shapes of the islands in terms of volume, i.e., their volume/area ratio.
The main factor defining the critical field is the enclosed magnetic flux in the island,
which is proportional to the area rather than the volume. In fact, in Fig. 5.6(b), we
plot instead, as orange dots, the same critical fields as a function of the island’s area
(area1/2). The critical field increases as island sizes become smaller. BC can get up
to a few Teslas for the smallest islands, 30 times larger than the bulk’s critical field
[249, 250].

In this section, we have analyzed the spectra of several islands with an excess charge
close to q0 = 0 and described the evolution of the spectral gap with the magnetic field
with Eq. (5.8). The evolution under a magnetic field for q0 = e can di↵er greatly
depending on the ratio EC/�. For the smallest islands (EC > �), the odd states can
be accessed at q0 = e, for which the evolution of the spectral gap under a magnetic

6Kim et al. [225] showed that for vol.1/3 ⇠ 15 nm, the gap was 80% of the original. We calculate
50% in our system. Then, the metallic substrate is responsible for a little more than half of the
measured lowering.
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dI/dV calculated theoretically for an island (C1 << C2=480 aF) as a function of
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q0 2 [�1.2, 0.8] e, respectively. (c), (e) Sketch of the transitions forming the dI/dV
in the previous regions. Panel (c) is centered around q=0; it illustrates two possible
excitations with the vertical lines. The dashed line depicts negative voltage transi-
tions, and the solid line is the positive one. Panel (e) is centered around q=e,so four
transitions are possible, depicted by the vertical lines.

field is di↵erent from Eq. (5.8) [246]. Instead of lowering the spectral gap, it increases.
This is easy to rationalize by looking at Fig. 5.3(e). The energy of the odd states
lowers with the magnetic field (�isl decreases), so the transition between the state
n = 1 and n = 0, 2 increases, increasing the gap. The odd state cannot be accessed
for bigger islands (EC < �); in these cases, when q0 = e, the spectral gap is much
smaller than the one expected for an island that size. As the evolution for q0 = e is
more complex, we only measured islands with q0 = 0. In the following section, we
focus on islands with an asymmetric dI/dV, i.e., finite excess charge, and present a
method to control q0.

5.4 Controlling the Ground State properties of the Pb islands

Controlling any system’s electronic properties is vital for possible future applica-
tions. Although the local assessment of every island is possible in the STM, three-
terminal geometries, where the excess charge of the island can be controlled with a
gate potential, are challenging to implement. In the following, we present a mecha-
nism to modify the spectral properties of the superconducting islands by controlling
their residual charge. Combining this capability with the locality of our measurements
and the possible determination of the islands’ superconducting and Coulomb gaps, we
demonstrate that this system is an ideal platform for characterizing future electronic
applications of granular superconductors.
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gated between 0.8e and 1.2e. For both islands, vol.1/3 ⇠28 nm (V=5 mV, I=500 pA).
The approximate values of q0 in the y-axis are calculated from the position of the
coherence peaks.

The spectrum of a large BCS superconductor is particle-hole symmetric. Coulomb
blockade frequently shows asymmetries in the dI/dV owing to electrostatic potentials
of the confining nanoparticle [45, 218, 226], generating the typical Coulomb diamond
structure. In Fig. 5.7(a), we use the orthodox model introduced in Sec. 5.2 to
calculate the dI/dV of a double tunneling junction with C1 << C2 = 480 aF varying
the excess charge q0 for a finite temperature (T = 1.3 K). The coherence peaks shift
linearly with q0, and the dI/dV shows the expected 2e periodicity in q0 [45]. In the
central region, illustrated in Fig. 5.7(b) and sketched in Fig. 5.7(c), the ground state
is mainly the parabola q=0 and the model predicts two excitations, namely the 0!e
transition at positive bias and the 0!-e at negative bias. Away from q=0, spectra
is asymmetric, as we frequently observe for islands with lateral sizes between 20 and
50 nm. Figure 5.8(a) (top) is an example of an island with asymmetric dI/dV. The
blue and orange dI/dV measurements show the opposite symmetry. In both cases,
one of the coherence peaks appears more intense than the other.

We noticed that the shape of the STS taken on a single island can be changed
by applying bias pulses of a few milliseconds with values ±3 V [229]. This process
always keeps almost the same gap width but changes the position of the peaks and
their intensity accordingly, what is interpreted as a changing the excess charge of the
islands. Applying a sequence of pulses with increasing magnitude allows us to modify
the excess charge gradually in q0 2 [�0.6, 0.6]e. In Fig. 5.8(a), we show a stack of
sequential spectra obtained after bias pulses of increasing voltage showing a continuous
shift of the 0!e and 0!-e transitions, which are reminiscent of the coherent peaks of
the bare superconductor [see Fig. 5.7(c)].

Focusing on a region close to q = ±e, Figure 5.7(d) shows four quasiparticle peaks.
For residual charge close to e, both q=0 and q=2e have a finite population due to
thermal e↵ects, and the single-particle excitations are duplicated, namely 2e!e and

93



5. Interplay between Coulomb blockade and superconductivity

0 30-30
x (nm)

x 
(n

m
)

0

30

-30

-4 -2 0 2 4
0.0

1.5

Bias (mV)

0

15

30

d
I/

d
V

 (
G

 ) N
x 

(n
m

) 2.0

1.0

0.0

d
I/d

V
a)

c) f)d) e)

b)

V=-2.40 mV

0 -e

2.0

1.0

0.0

d
I/d

V

V=-1.75 mV

2e e

1.0

0.0

d
I/d

V

d
I/d

V

V=1.75 mV

0 e

2.0

1.0

0.0
V=2.40 mV

2e 3e

d
I/d

V

1.0

0.0

Figure 5.9: Excess charge fluctuation within an island. (a) Topographic image
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of panel (a). The spectra show four peaks highlighted with colors. (c)-(f) Evolution
of a triangular dI/dV grid at the voltages of the four peaks, representing four distinct
transitions. The dashed black lines are a visual representation of the evolution of the
peaks.

2e!3e [Fig. 5.7(e)]. Crossing the q0=e point, the ground state population shifts
from 0e to 2e; therefore, the q=0 ground state excitations vanish, and the q=2e
ground state excitations intensify. In Fig. 5.8(b), we present data for a Pb island
with excess charge around q = ±e. We observe the presence of the four excitations
described above, symmetric in energy but with asymmetric intensity. Increasing the
excess charge by voltage pulses as described above, we indeed observe variations in
the intensity of the peaks while their energy is slightly shifted, as predicted by the
model [Sec. 5.2].

5.4.1 The origin of the gate

A direct measurement of the element responsible for the gating e↵ect that pro-
vides some hint of its microscopic origin is complex in the STM geometry. Still, our
experiments suggest that local variations of the work function on Gr can explain the
variations in residual charge caused, for example, by charged paddles induced at the
interface with the bulk SiC crystal. Note that moving islands with the help of the
STM tip around the Gr surface can also change the symmetry of the dI/dV [4, 219].
It is known that these charge puddles exist in graphene on insulating substrates (e.g.,
BN [251]) and that they can be created, removed, or reversed by applying voltage
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pulses with an STM, similarly as we do here. These charge puddles are static in the
insulating substrate and induce local work function variation. A gate potential is
nothing more than an electrostatic field applied to the central region of the double
tunneling barrier, which changes its work function and gives rise to the ph asymmetry.
This is probably the e↵ect caused by a charged puddle close to an island.

To corroborate the previous assumption with the measurements, Fig. 5.9(a) shows
an island with 1333 nm2 area and size around vol.1/3 ⇠28 nm. Spectra taken on the
island [Fig. 5.9(b) bottom] shows two peaks at positive and negative bias, indicating
that its residual charge is q0 ⇠e, as in Fig. 5.7(d) and (e). Probing the dI/dV along the
line on top of the island shown in Fig. 5.9(a), we note that the intensity and energy
of the peaks gradually changes [Fig. 5.9(b) top], resembling the spectral evolution
with changes of residual charge plotted in Fig. 5.8(b), i.e., from 0.8e to 1.2e. Here, no
voltage pulse was applied.

To understand the mechanism for this, we plot in Figs. 5.9(c)-(f) distribution of the
four spectral peaks [Fig. 5.9(b) bottom] obtained by measuring STS on a triangular
grid of points on top of the island. We note the transitions 0 ! e and 0 ! �e
[Fig. 5.9(c) and 5.9(e)] have their maxima in the upper right corner of the island and
slowly decay towards the left. The opposite behavior is measured for the 2e! e and
2e! 3e transitions [Fig. 5.9(d) and 5.9(f)], which are weaker on the right corner but
stronger around the left edge of the island. We conclude that the q=0 state is mainly
populated in the upper right corner. Its population decays towards the left side of the
island. Vice versa for the q=2e state.

The circular dashed lines added to Figs. 5.9(c)-(f) represent contours of the pro-
gression of the transitions. The circular shape of these contours suggests that an
intrinsic charged puddle is the most probable cause of the spectra distortion. We
believe that when bias pulses are applied to the islands, the charge of one or a few
puddles is perturbed, modifying the electrostatic environment beneath the island and
perturbing the spectra. The localized puddles gradually change the e↵ective excess
charge of the islands as an e↵ective gating (or electrostatic potential) with the shape
depicted by the dashed lines. For this island, a positively charged puddles in the upper
left corner explains the experimental results.

5.5 Conclusions

We observed that small Pb islands exhibit an energy gap larger than the intrinsic
superconducting gap, arising from the interplay between superconducting and Coulomb
e↵ects [Sec. 5.2]. By applying a magnetic field to sequentially suppress superconduc-
tivity in the STM tip and Pb island, we determined the Coulomb energy, EC , and its
dependence on island size. Using a double tunneling barrier model, we further disen-
tangled the superconducting gap �isl and critical field BC , revealing a size threshold
around vol1/3 = 15nm, below which Coulomb interactions dominate over supercon-
ducting pairing [Sec. 5.3].

Our measurements revealed that the Coulomb gap increases as island volume de-
creases, consistent with enhanced Coulomb interactions in smaller islands where elec-
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trons have limited space to screen incoming charges. Additionally, we observed a reduc-
tion in the superconducting gap by up to 50% from the bulk value, which we attribute
to the inverse proximity e↵ect from graphene.

We also observed spectral asymmetries in many islands, indicative of fractional
excess charges, which we were able to control through bias pulses applied with the
STM tip, similar to a gate electrode in a three-terminal device [Sec. 5.4]. We linked
this gating e↵ect to charged impurities between the graphene and insulating substrate,
allowing for fine-tuning of the electronic properties of small islands even without a
conventional three-terminal geometry.

Furthermore, we found an increase in the critical magnetic field of Pb islands up
to 2.5 T—over 30 times the bulk value. The stability and flatness of these islands, as
shown in STM topographic images, make them ideal candidates for qubit characteriza-
tion, as they can host single adatoms or molecules for use as qubits. This platform’s
ability to sustain high out-of-plane magnetic fields while preserving the superconducting
gap presents a novel environment for qubit studies.
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6
The Cooper Pair Diode

Non-reciprocity is a general property of nature that appears when the symmetry of
a system is broken. In electronic circuits, non-reciprocal current and the consequent
rectification are essential for computational purposes. In conventional diodes, in a p-n
junction, the non-reciprocal current comes from a combined break of the inversion (or
parity) and charge symmetries, i.e., a CP symmetry break [252]. These devices have
low resistances in one current direction and a larger resistance in the other, so they
are essential components in modern electronics, used as rectifiers and photodetectors
[253].

A current goal in modern low-temperature electronics is the use of superconduct-
ing materials for low-power electronics; for this purpose, mechanisms that create a
non-reciprocal response or diode e↵ect on superconducting devices are important. Like
classical diodes, a broken symmetry is needed for the superconducting or Josephson
diode e↵ect to arise. For the superconducting case, inversion and Time-Reversal
Symmetry (TRS) must be broken (PT-symmetry break) [254, 255] to create finite
momentum Cooper pairs [254], which have a non-reciprocal response to an applied
current. Once PT symmetry is broken, the superconductor’s positive and negative
critical currents di↵er: I+

c
6= I�

c
. Most proposals of Josephson diodes [256–259] focus

on non-centrosymmetric superconductors or superconducting structures, which show
a nonreciprocal current upon applying an external magnetic field due to the magne-
tochiral e↵ect. Others exploit asymmetric Josephson Junction (JJ) structures [260,
261]. The main inconvenience for device applications is that these methods need an
external magnetic field to break the time-reversal symmetry, which is problematic for
fast computation and memory recording.

In this chapter, we explore a superconducting structure that exhibits a non-reciprocal
(diode) e↵ect in the tunneling of Cooper pairs based on the system described previously
(small Pb islands on Gr). In this platform, we investigate the e↵ects of Coulomb corre-
lations when we shift from the tunneling regime to the Josephson regime, i.e., from
RT ⇠ 1 M⌦ to RT < 100 k⌦. The Coulomb correlations split the conventional Joseph-
son zero bias peak into two peaks in the I-V Characteristics (IVC) measurements,
which we associate with a Resonant Cooper pair Tunneling (RCT) mechanism. The
RCT voltage depends on the island’s size, and its relative position can be controlled by
gating the excess charge on the island, following the process described in Chapter 5.
This asymmetry induces non-reciprocal transport in the V-I Characteristics (VIC),
resulting in a diode e↵ect. The interaction with the environment modulates the RCT
peaks, i.e., they arise from an incoherent transport mechanism, which we simulate
considering the environmental modes in calculating the current. On the other hand,
although we consider that the charge of each junction is not well defined, the charge of
the island is, which we exploit to describe the VIC within the theory of Bloch oscilla-
tion in JJs [262]. Finally, we demonstrate that this e↵ect can be used in typical diode
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applications, such as tunable rectification of Cooper pairs current and photodetection
of microwave radiation.

The Chapter starts with the description of the two measurement modes used in
our experiments: voltage-bias and current-bias [Sec. 6.1]. We first use measurements
on bulk Pb(111) crystal as an example of the di↵erent modes and explain the relation
between them. Then, we describe the Josephson regime in the Pb/Gr system. Next,
we show the main results of the voltage-biased measurements on small islands and ra-
tionalize them with an e↵ective theory [Sec. 6.2] extended in App. D. We continue by
presenting the VIC, which we interpret following the Bloch oscillation theory for JJs
[Sec. 6.3]. Finally, we introduce the Cooper Pair Diode [Sec. 6.4] - a superconducting-
based diode arising from the combined inversion and ph symmetry break- and provide
examples of a diode’s two main applications: rectification [Sec. 6.4.1] and photodetec-
tion [Sec. 6.4.2].

6.1 Voltage and Current biasing in STS

In the tunneling regime, i.e., the most common regime in STM, we measure the
current through a system under an applied bias voltage, so the circuit comprises
a voltage source and an amperometer, see Fig. 6.1(a). A divider is added to the
voltage input to improve resolution around the superconducting gap in the mV range.
Moreover, RC or LC filters in the voltage line are added to block external radiation and
further enhance the energy precision of the biasing voltage. In this setup, di↵erential
conductance measurements at the bias voltage value are obtained using a lock-in
amplifier: a low frequency (< 1 k⌦) AC signal is added to the DC voltage, and the
output current in response to the bias modulation is measured.

In this chapter, we use a current-biased setup to characterize our system further,
inspired by the approach in Ref. [55]. This circuit, illustrated in Fig. 6.1(b), includes
a 1 M⌦ resistor at room temperature, connected in series with the voltage source.
Rather than measuring the current directly, we record the voltage drop across the
STM junction with a voltmeter in parallel. When the added resistor significantly
exceeds the tunneling resistance, the combined resistor and voltage source function as
an e↵ective current source. The current for an applied voltage V reads

I =
V

R+ r +RT

=
V

R

1

1 + (r +RT )/R
⇠

V

R
+O

✓
RT

R

◆
. (6.1)

R is the 1 M⌦ resistor added in series with the voltage source, RT is the tunneling
resistance, and r is the resistance of the rest of the circuit, which is small compared to
the other two: r ⇠ 100 ⌦⌧ R,RT . An ideal current source is obtained when RT ! 0.
This value is controlled by the tip-sample distance. The current-bias measurements
were mainly done in the 20 to 100 k⌦ tunneling resistance regime, i.e., a 2 to 10%
shift from the ideal current source is expected. We simultaneously measure the voltage
drop and the current across the STM junction with the voltmeter and amperometer
in Fig. 6.1(b). Comparing the expected current, I = V R, with the measured one,
we calculate the shift from the ideal current source and fix any errors in the posterior
analysis.
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Figure 6.1: Voltage- and Current-biased setups (a) Sketch of the electrical circuit
used for the IVC. It comprises a voltage source, a divider (1/100), an RC filter (fcuto↵ ⇠
44 kHz), the junction, and an amperometer. (b) Sketch of the electrical circuit used
for the VIC. It comprises a voltage source in series with a big resistor (1 M⌦), which we
use as a current source, an RC filter (fcuto↵ ⇠ 50 Hz), the junction and an amperometer
and voltmeter. The voltmeter is in parallel to the STM junction.

The simplicity of the current source has a major throwback. The added resistor
generates a larger noise source than more complex setups where operational amplifiers
are used [263]. The thermal noise arising from a resistor is known as the Johnson-
Nyquist noise, which amounts to 12.5 µV/

p
Hz for our 1 M⌦ room-temperature resis-

tor. For this reason, no larger resistors are used in the current-bias setup, as the noise
would become too big. A second problem of this setup is that the extra resistor lowers
the cuto↵ frequency of the RC filter in the current-bias mode, forcing this mode to
be very slow and impeding that we perform di↵erential resistance measurements with
a locking. To solve this, we select an RC filter that works in both measuring modes.
The capacitance of the RC filter is CRC = 3 nF, with a 100 ⌦ resistor in the line. With
this value, the voltage-bias circuit has a cuto↵ frequency at fcuto↵ ⇠ 44 kHz, which
suppresses higher frequency noise, while the current-bias setup has a fcuto↵ ⇠ 50 Hz
cuto↵ frequency. This is large enough to meet our measurements.

As the two modes are complementary for the measurements, we add a solid-state
relay to switch between measuring modes while maintaining the tip-sample distance
constant. Controlling the STM tip in a static position is essential to compare the IVC
and VIC at the same setpoint. The STM tip must be left stabilizing for around two
hours to reduce the creep to a minimum. Following Ref. [55], we also perform the
Josephson spectroscopy on Pb adatoms, this o↵ers improved stability compared to
performing the measuremnt directly on Pb.

6.1.1 Comparing voltage and current biased measurements in bulk
Pb

In the following, we introduce measurements in the Josephson regime (R < 100 k⌦)
in bulk Pb. Figure 6.2(b) shows the dI/dV measured in a junction between a Pb-coated
tip and a Pb(100) sample at RT = 20 k⌦. The red arrow points to five characteristic
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6. The Cooper Pair Diode

peaks, introduced in Sec. 2.5.
This section focuses on the sharp peak around V = 0: the Josephson peak [45,

51, 71, 72, 86, 90, 91]. In a voltage-biased STM circuit, the phase di↵erence between
superconductors in the tunneling junction is not fixed. With no phase di↵erence, the
DC component of the Josephson current is zero [264, 265]; nevertheless, we observe a
peak in conductance and a net current around zero in the corresponding I-V curve,
depicted in Fig. 6.2(b). Ivanchenko and Zil’Berman [266] (see also Ref. [70]) were the
first to explain the origin of the zero-bias peak observed in tunneling junctions. By
introducing a fluctuating voltage, modeled as a thermal, frequency-independent white
noise from a resistor, they showed that this noise causes a fluctuating phase di↵erence
that adds to the static phase. This fluctuating phase results in a DC component of the
supercurrent, with a characteristic width of kBTR(2e)2, which diminishes at higher
applied voltages. For a more advanced noise model, see, e.g., Ref. [56].

A more sophisticated approach, considering the e↵ects of the circuit on the tunnel-
ing current, was given by Averin et al. [71], who considered that due to the e↵ects
of the environment, incoherent tunneling of Cooper pairs is possible [45, 51, 71, 72].
This calculation is shown in Sec. D.1.2. The main result of Refs. [45, 51, 71, 72] can
be summarized in the following expression for the incoherent current of Cooper pairs

IS = ⇡eE2
J
(P 0(2eV )� P 0(�2eV )) (6.2)

The function P 0(!) is defined in Eq. (2.26). The P 0(!) is a distribution function
named PoE function that describes the e↵ects of the environment on the tunneling
Cooper pairs [45, 51, 71, 72]. The current is proportional to the square Josephson
energy, E2

J
, which indicates that this formula corresponds to a second-order tunneling

transport mechanism. The current is zero when the interaction with the environment
is not considered, i.e., it arises from tunneling assisted by the bosonic modes of the
environment, similar to the Tien-Gordon theory introduced in Sec. 2.1.1. In this case,
we say that Eq. (6.2) describes an incoherent tunneling of Cooper pairs. This approach
does not consider the JJ as a part of the circuit when the PoE is calculated, i.e., the
inductance of the JJ is not considered [267]. When the JJ is considered, a divergence
is generated close to V = 0. Still, this approach is valid for small environmental
interactions and away from the strict V = 0.1

We now introduce the current biased measurements in bulk Pb. The setup is
switched from voltage- to current-bias while the sample-tip distance is kept constant
at a specific tunneling resistance RT=20 k⌦. With this, we measure the junction’s
response to an applied current and voltage under the same conditions. Figure 6.2(c)
shows the voltage drop through the Pb-Pb junction when a bias current is applied in
forward (blue) and backward (orange) directions. We observe a hysteretic behavior
in the voltage response, characteristic of an underdamped JJ [56, 265], whose origin
we describe in the following with the Resistively and Capacitively Shunted Junction
(RCSJ) theory [43, 265].

1For a low impedance circuit, this approach is valid as long as EJ ⌧ EC , while, for a high
impedance circuit, EJ ⌧ EC(RK/Z)1/2 has to be fulfilled [45]. In both cases, the approach breaks
down at V = 0.
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6.1. Voltage and Current biasing in STS
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Figure 6.2: Comparison between IVC and VIC. (a) dI/dV measurement between
a Pb-coated tip and a Pb(100) sample. (b) IVC of the same junction in a small window
around V=0. (c) VIC at the same setpoint. All measurements are done at a constant
resistance that amounts to R = 20 k⌦.

In the RCSJ theory, the voltage response of a Josephson junction, in parallel with
a resistor and a capacitor, illustrated in Fig. 6.3(a), maps to an analogous classical
dynamic system. This system models a particle, called the ”phase particle,” moving
in a washboard potential U(�), illustrated in Fig. 6.3(a) and 6.3(c). The particle’s
position is given by the phase di↵erence � between the superconductors, creating
a periodic potential. When a current is applied, an additional term, I�, tilts the
potential. The voltage drop across the junction follows from the second Josephson
relation [Eq. (2.23)].

As the current is ramped from negative to positive, a plateau emerges at posi-
tive currents, as shown by the blue curve in Fig. 6.2(c). This plateau corresponds
to the phase-particle trapped in the potential, as indicated in the shaded sketch in
Fig. 6.3(b). The measured finite voltage arises from thermal quasiparticle tunneling
[265], represented by the resistor parallel to the junction. Upon reaching a threshold
current Is+ = 18 nA, the tilt in the potential allows the phase particle to escape,
illustrated in Fig. 6.3(b). The phase change, related to the voltage via the second
Josephson relation, results in a voltage jump at this threshold.

During the downward ramp, the current required to retrap the phase particle is
lower, Ir+ = 6 nA< Is+, depicted in Fig. 6.3(c). This phenomenon is attributed to
the inertia of the phase particle, characteristic of an underdumped JJ [56, 265]. It
results in a retrapping current that depends on the measurement’s ramping speed. We
minimize variations in retrapping current by selecting a slow ramping speed, e↵ectively
fixing it to thermal fluctuations.

In Fig. 6.2(b), we show the IV curve in a small voltage range around V=0. The
arrows represent the response of the junction when a monotonously increasing bias
current is applied. The incoherent tunneling of Copper pairs rises linearly with a very
small voltage change until it reaches the cusp of the current peak. At this point, the
current switches to the quasiparticle regime, with a sudden increase in the voltage
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Figure 6.3: The RCSJ model (a) Sketch of the circuit representing the Josephson
junction. (b) and (c) Drawings of the phase-particle in the potential well, U(�), as
a function of the applied current in the forward and backward directions, respecti-
vely. (d) Switching and retrapping currents as a function of the junction resistance,
controlled with the distance between tip and sample.

drop across the JJ, represented by an orange dashed line in Fig. 6.2(b). Note that,
contrary to an ideal system, this jump is not to the continuum of normal states, i.e.,
the voltage we measure in Fig. 6.2(c) for I > Is+ (and I < �Is� ) is not arising from
the normal conduction of electron but from Andreev reflections.

As the current is lowered back, we observe bistability, marked by a dashed blue
line, where the current switches from the Andreev reflection branch back to the super-
conducting branch, causing a voltage drop back to V = 0 at the retrapping current.
The response for negative current can be explained similarly. In di↵erential con-
ductance measurements, these bistabilities appear as regions of negative di↵erential
conductance, as observed in Fig. 6.2(a). Thus, any measured negative di↵erential
conductance corresponds to a hysteretic behavior in the VIC.

Both Is and Ir are modified by the environment. As a consequence, the value of
the switching current is always smaller than the theoretical critical current, given by
[51, 70]

IC =
⇡�

2eR
tanh

�

2kBT
. (6.3)

According to Eq. (6.3), the critical current for the measured Pb-Pb junction is
IC = 85 nA. However, in our experiments, the measured switching current only
reaches Is = 18 nA, see Fig. 6.2(c). The switching current is influenced by the
height of the incoherent Copper pair tunneling peaks in Fig. 6.2(b), which depends
on the PoE function [Eq. (6.2)]. When environmental e↵ects lower the Josephson
peak height below the normal conduction onset, ⇠ �

2eR , there is no transition to the
normal conduction branch but rather to the Andreev reflection branch. Consequently,
the switching current relates to Andreev reflections instead of normal quasiparticle
tunneling, meaning that Is < IC .

Figure 6.3(d) shows the dependence of the switching and retrapping currents on
the relative resistance of the junction, starting from RT = 25 k⌦. The switching
current follows a 1/R trend, expected from Eq. (6.3).
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Figure 6.4: Proximity e↵ect on Graphene. (a) dI/dV measurements in the tip-Gr
junction for resistances from 1 M⌦ (blue) to 125 k⌦. (b) The same measurements in
a small voltage window around V=0. The Josephson peak at V=0 starts to develop.
(c) Deconvolution of the blue spectrum in panel (a). A pseudogap that amounts to
600 µeV is observed, arising from a proximitized gap of �Gr ⇠ 300 µeV

6.2 Interplay between Cooper Pair tunneling and Coulomb

blockade.

In the Pb tip-Pb island-Gr system, the junction between the tip and the Pb island
can be described with the circuit depicted in Fig. 6.3(a). However, now we also
need to describe the junction between the Pb island and Gr junction. Graphene
is a normal metal, but as discussed in the previous chapter [Sec. 5.3], Gr becomes
superconducting due to the proximity e↵ect induced by the ensemble of Pb islands.
This is further proved by observing a zero-bias peak in the low-resistance tunneling
between the Pb tip and Gr. Figure 6.4 shows the di↵erential conductance recorded
as we approach the tip to the sample, up to RT = 125 k⌦. At zero bias, a peak
starts to develop in the IVC, which we attribute to the onset of a Josephson peak. In
fact, our measurements on this system find that Gr develops a superconducting gap
that amounts to �Gr ⇠ 300 µeV [4], as illustrated in the deconvoluted spectrum in
Fig. 6.4(c).

The measured proximitized gap is much smaller than the Pb bulk gap, �Gr ⇠

0.25�Pb, a consequence of the finite resistance between the Pb islands and Gr, which
can get up to several k⌦ [Sec. 5.1]. As the proximitized gap is much smaller than the
Pb bulk gap, the extension of the proximity e↵ect, which depends inversely on the
energy,2 is more significant. As the extension of the proximity e↵ect is larger than
the average separation between Pb islands, we observe a homogeneous gap in Gr. See
Ref. [3] for a detailed discussion. In the following, we introduce the possible tunneling
mechanism in a DBTJ made of superconductors, acknowledging the interplay between
the tunneling of Cooper pairs and the Coulomb blockade.

First, we present the IVC in the double junction. A comparison between the
dI/dV of a big (blue) and a small (orange) island in a narrow voltage range around

2The coherence length related to a proximitized gap of energy �p reads ⇠p =
p

D/�p, where D
is the di↵usion coe�cient of the proximitized material.
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Figure 6.5: Resonant Cooper Pair Tunneling (RCT) in small islands. (a)
Topographic image of some islands (V=200 mV, I=20 pA) (b) dI/dV measurement
of a small voltage range at Rn = 25 k⌦ of the two islands depicted in panel (a) and
a third asymmetric dI/dV spectra on a di↵erent island. (c) Island size dependence of
the separation between the RCT peaks (measured in several islands).

V=0 at R = 25 k⌦ is plotted in Fig. 6.5(b). The blue and orange crosses in Fig.
6.5(a) represent the island on which the measurements were taken. For the large
island, at zero energy, we detect the conventional Josephson peak due to the inelastic
tunneling of Cooper pairs mediated by the environment [45, 51, 71, 72], similar to
that in Fig. 6.2(a). In contrast, on the small island, this peak is split into two. This
is a general trend for the smaller islands where the energy separation between peaks
decreases with island size, as shown in Fig. 6.5(c). This plot resembles Fig. 5.6(a),
where the charging energy of several islands is depicted. Note that the separation
between peaks has been identified as 4EC = 2e2/(C1 + C2). This is proven in the
following text.

In the next section, we explore a model that explains how the peaks move as we
change the gate and what defines the separation between peaks.

6.2.1 Resonant Cooper Pair Tunneling

Transport mechanisms between superconductors with a strong Coulomb blockade
energy have been studied in several works [45, 47, 52, 53, 211, 268]. In Chapter 5, we
have only considered sequential single-particle tunneling events [Sec. 5.2], consistent
with large resistances. Once the Josephson coupling between the two junctions is
substantial, the simple scheme depicted in Fig. 5.3 breaks down, and coupling between
bands with di↵erent particle numbers has to be considered. Adding this new energy
scale, EJ , the Hamiltonian of the system reads;

Ĥ =
Q̂2

1

2C1
+

Q̂2
2

2C2
+ Ej1 cos �̂1 + Ej2 cos �̂2 , (6.4)

where Q̂i, �̂i, Ci, and EJi are the excess charge, phase di↵erence, capacitance, and
Josephson coupling energy of the ith junction, respectively. In the following discussion,
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6.2. Interplay between Cooper Pair tunneling and Coulomb blockade.

we assume that the excess charge of each junction is quantified by the amount of
Cooper pairs tunneling: Q̂i = 2en̂i. We will discard odd parity levels, as we only work
with islands with EC . �. We add the following voltage drop to each junction: Vi =
iV , with 1 = C2/C and 2 = C1/C, where C = C1 + C2. Then, the Hamiltonian
reads,

Ĥ = EC1n̂
2
1 + EC2n̂

2
2 + EJ1 cos �̂1 + EJ2 cos �̂2 � 2e(1n̂1 + 2n̂2)V . (6.5)

The voltage drop of the junction shifts the energy as a function of the total charge
tunneling e(1n̂1 + 2n̂2). The phase and number operator commute [n̂k, �̂j ] = 2i�kj ,

so the two cosine terms can be understood as translation operators. Taking 2k̂ =
n̂1 + n̂2 and 2n̂� 2n0 = n̂1 � n̂2, Eq. (6.4) reads [see Sec. 2.2.2]

Ĥ =EC1(k̂ + n̂+ n0)
2 + EC2(k̂ � n̂� n0)

2
� 2e(1(n̂+ k̂ + n0) + 2(k̂ � n̂� n0)V

+
1

2
EJ1

X

n,k

|n+ 1, k + 1i hn, k|+ h.c. +
1

2
EJ2

X

n,k

|n+ 1, k � 1i hn, k|+ h.c. .

(6.6)

k and n are now the number of Cooper pairs tunneling through the junctions and
the excess Cooper pairs in the island, respectively, and n0 2 [�1, 1]. The Josephson
couplings connect the states |n, ki with |n± 1, k ± 1i. Starting from n = k = 0 (the
ground state for zero voltage), for EJ1 = EJ2 = 0, the crossing between levels |n, ki
with |n± 1, k ± 1i happens when

(0, 0)$ (1, 1); eV = (EC1 + EC2)(1 + n0)

(0, 0)$ (�1,�1); eV = (EC1 + EC2)(n0 � 1)

(0, 0)$ (1,�1); eV = (EC1 + EC2)(n0 � 1)

(0, 0)$ (�1, 1); eV = (EC1 + EC2)(1 + n0) .

(6.7)

When the EJi are turned on, an anticrossing between levels is generated. As an
example, we take the doublet |0, 0i and |1, 1i close to the resonant voltage point,

Ȟ{0,0},{1,1} =

=

0

B@
EC1(2 + n0)2 + EC2n2

0 �
2eV (C2(2+n0)�C1n0)

C1+C2

EJ1

2
EJ1

2
EC1n2

0 + EC2n2
0 �

2eV (C2�C1)n0

C1+C2

1

CA

(6.8)

The energy separation between the doublets reads !01 =p
4((EC1 + EC2)(1 + n0)� eV )2 + E2

J1. Fermi golden rule dictates that the
intra-doublet transition rate is (see Ref. [52])

�ij = | hj| Î |ii |2
SV (!ij)

(!ij)2
, (6.9)
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where SV is the spectrum density of the fluctuations of the applied voltage and !ij is
the energy separation between levels. The current operator reads

Î = 2ei
EJ1

4

X

n,k

|n+ 1, k + 1i hn, k|� h.c. + 2ei
EJ2

4

X

n,k

|n+ 1, k � 1i hn, k|� h.c. ,

(6.10)
so the rates of such Resonant Cooper Pair Tunneling (RCT) mechanism, according
to Eq. (6.9), are second order in EJ . As they are second order in EJ and activated
by the environment, they are an incoherent tunneling mechanism. Consequently, the
width of the resonance peaks is related to the environment via a fluctuation spectrum
density function, SV , which is directly associated with the PoE function [52, 267].
Note that when the voltage is added to the Hamiltonian [Eq. (6.6)], the spectrum
becomes unbounded; the larger the k value, the lower the energy. Therefore, for large
enough values of Josephson coupling, a cascade of transition to lower energy doublets
occurs [52], which appear at lower energies than the first RCT, defined in Eq. (6.7).

In Eq. (6.5), we assumed each junction’s excess charge to be well-defined and found
an expression for the intra-doublet transitions. These transitions depend on both
junctions’ charging energy and the island’s excess charge.3 Moreover, we discussed
the existence of inter-doublet cascade transitions, which lay at lower voltages than the
intra-doublet transitions and can have high transition rates [52], i.e., this mechanism
can not be discarded in our system. The experimental measurements in Fig. 6.5(b)
only show two peaks, one at positive and one at negative voltages, with a thickness
comparable (but wider) to the bulk Pb Josephson peak in Fig. 6.2(b).

As no extra peak connected to inter-doublet transitions is observed, we conclude
that the charge of each junction is not well defined due to the environmental e↵ects.
Then, the Hamiltonian (6.5) can not be applied to our double JJ.

In the following, and extended in App. D.2, we present an e↵ective theory that
considers all possible transitions within the PoE theory. For this, we will consider
that the island’s excess charge is well defined, which is possible because the island
is isolated from the tip and Gr, but not the excess charge for each junction, which
fluctuates due to the applied voltage. Taking k̃ = 1q1 + 2q2, equation (6.4) reads

Ĥ = EC(n̂+n0)
2 + ẼC

ˆ̃k2 +EJ1 cos
⇣
 ̂ + 2�̂

⌘
+EJ2 cos

⇣
 ̂ + 1�̂

⌘
� 2eˆ̃kV , (6.11)

with ẼC = e2C1+C2
C1C2

,  = 2�̂1 � 1�̂2, �̂ = �̂1 + �̂2, and the commutators [ˆ̃k, �̂] =

[n̂, �̂] = 2i are fulfilled. Assuming that n is well defined but not k̃, we follow the
approach of Refs. [71, 72] and find that the current in the ith junction can be written
as [Eq. (D.35)]

Ij =
e

2
E2

Jj
Im

⇢Z
d⌧heij(�(⌧)��(⌧ 0)

ihei( (⌧)� (⌧
0)
i

�
. (6.12)

3Note that, due to the tip’s geometry, C1 ⌧ C2, i.e, EC1 � EC2. Consequently, the intra-doublet
transition energy can reach high voltages V > �/e.
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Figure 6.6: Evolution of the RCT peaks. (a) and (b) dI/dV measurement of a
small voltage range (-1 to 1 mV) from 100 to 20 k⌦ in two islands. (a) shows the
evolution of symmetric RCT peaks, and (b) shows the same evolution for asymmetric
RCT peaks. (c) Evolution of the RCT peaks on the same islands as we change the
excess charge with pulses (R=25 k⌦). (d) Same evolution in a shorter voltage range.

The two factors in the integral have the shape of the average of a translation operator,
e.g., ei (⌧) is the imaginary time function related to the translation operator of one
Cooper pair in the island. Whereas the first term is the PoE function, which describes
the e↵ects of the environment on the tunneling of Cooper pairs, the second term
considers the energy needed to add (or subtract) a CP into the island. The latter can
be straightforwardly calculated in the limit of EJ ⌧ EC , the limit we consider here
[see Eq. (D.36)]. For T=0, the second term adds an energy shift to the PoE function,
so the current reads

Ii = ⇡eE2
Ji

[P 0
i
(2eV � 4Ec(1 + n0))� P 0

i
(�2eV + 4Ec(n0 � 1))] (6.13)

We do not expect the P 0 to change drastically for the smallest island compared to
the big one presented in the blue curve in Fig. 6.5(b). The di↵erential conductance
of the big island, similar to bulk Pb, can be described with two Gaussian-shaped
functions, as described in Fig. D.2. Consequently, Eq. (6.13) describes two Gaussian-
shaped peaks separated by a voltage 4EC . We are not considering the e↵ects of
the Coulomb Blockade and environment on the value of EJi, which would make it
a function of EC and n0. EJi is maximized when n0 ⇠ ±1 and for larger EC (see
Ref. [52, 211]), then, we expect the peaks to maximize when they are closer to
zero voltage, i.e., n0 ⇠ ±1. Once the transition rates for each junction are known,
a master equation considering both junctions should be developed to calculate the
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current flowing through the two junctions. When EJ1 ⌧ EJ2, the current can be
approximated to I1, given by Eq. (6.13), which is the tunneling limit we employed in
Sec. 5.2.

To prove that in our system EJ1 ⌧ EJ2, Fig. 6.6(a) and 6.6(b) show the evolution
of the RCT peaks as we approach the tip to an island in a symmetric and asymme-
tric charge configuration. The intensity of the peaks increases as the tip approaches
the island, rising EJ1, proving the dependence between the transition rate and the
Josephson coupling. We assume no change in the second junction’s coupling. More-
over, neither the voltage of the peaks nor their shape changes. If the relative change
between EJ1 and EJ2 in the approach was significant, we would expect an evolution in
the position and shape of the peaks. The absence of any evolution proves that similar
to Sec. 5.2, the current is fixed by the junction with the lowest rate.

On the other hand, Fig. 6.6(c) and 6.6(d) show the evolution of the RCT peaks
as a function of the island’s excess charge, controlled with pulses [Sec. 5.4]. The
voltage of each peak is extracted in Fig. 6.8(b) (dots). We observe two peaks with a
constant valued separation �V = 1.5± 0.03 meV. The variance is around 0.03 meV⇠
�/40e. The small variance indicates that the separation between peaks is constant
as a function of the excess charge, which proves that the position of the positive and
negative RCT should have the opposite trend. In Eq. (6.13), we proposed that the
peak voltage is given by eV± = 2EC(n0 ± 1). This function fulfills the requirements
measured in the experiments.

Summarizing, we proposed an e↵ective theory where the charge tunneling through
the junctions fluctuates and interacts with the environment. This led us to Eq. (6.13).
This formula describes two RCT peaks at eV± = 2Ec(n0± 1) with a thickness defined
by the PoE function, i.e., by the environmental fluctuations.

6.3 VIC of small Pb islands.

Using the two measuring modes of STS, we can compare the response of a double
JJ to an applied voltage and current at the same setpoint. Fig. 6.7(a) illustrates the
VIC corresponding measurements in Fig. 6.5(b). The blue curve depicts the VIC on
the big island. The switching from Cooper pair tunneling to Andreev tunneling and
retrapping back to the former regime is present at symmetric positive and negative
current values. The orange curve, measured in the small island, also shows symmet-
ric switching and retrapping currents at values similar to the large island but with a
smaller hysteresis. Nevertheless, close to the zero applied current, two finite voltage
jumps can be detected, indicated as Vc in Fig. 6.7(a) with red dashed lines. These
voltage steps are larger than the voltage expected from thermal quasiparticle tunnel-
ing. Since the only change between voltage- and current-bias circuits is the addition
of a resistor in series to the voltage source, the voltage step in the current-bias plot
should be related to the two peaks observed in the voltage-biased dI/dV plot.

In the tunneling between the tip and bulk Pb, we measure no voltage drop when
a finite current is applied. On the other hand, the circuit instantly causes a voltage
increase with a small current in the small islands because the RCT peaks lie at finite
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Figure 6.7: VIC vs IVC (a) VIC measured on a big island (blue) and a small island
(orange and green). The measurements are taken at R=20 k⌦ in the same islands
as Fig. 6.5. (b) IVC of the orange curve in (a) in a short voltage range from 0 to
1.2 mV. The dashed lines represent some of the main features of the curve. The RCT
peak’s position is pointed out in red, and the bistability points are in blue and green.
(c) VIC corresponding to (b). The dashed lines are added to compare both curves,
and the arrows represent the directionality of the applied current.

voltages. Figures 6.7(b) and 6.7(c) show a comparison between both measuring modes.
The red dashed lines lie at the RCT peak voltage. When the current corresponding
to the maximum value of the RCT peak is reached, depicted by a green dashed line
in Fig. 6.7(b), the junction switches to a di↵erent conduction mechanism, causing
a voltage jump. This is represented by the green dashed line in Fig. 6.7(c). In
the backward direction, the IVC has another bistability. This is connected to the
retrapping, which happens at a di↵erent value (Is 6= Ir), depicted with a purple
dashed line in Fig. 6.7(c). This is consistent with the negative di↵erential conductance
measured in the orange curve of Fig. 6.5(b).

The evolution of the VIC depending on the excess charge of the island is shown in
Fig. 6.8(a). The VICs are measured at the same setpoint as the IVCs at R = 25 k⌦.
They are shifted in current as we gradually change the island’s excess charge. We
observe that the hysteretic behavior shifts from the positive bias current (blue curve)
to the negative one (brown curve). Moreover, the voltage jumps arising from the RCT
also evolve. In the blue curve, the negative voltage jump is the largest, the red curve is
symmetric, and in the brown curve, the positive voltage jump is the most prominent.
Figure 6.8(b) illustrates the position of the voltage jumps (starts) compared to the
position of the RCT peaks in the IVC corresponding to each measurement (dots).
The excess charge corresponding to each curve was calculated from Eq. (6.13). As
expected, the voltages coincide for all gatings. This confirms that the RTC is the
mechanism generating the voltage jumps in the VIC.

6.3.1 Bloch oscillations in double JJs

In the following, we further rationalize the VIC by returning to Hamiltonian (6.4).
In this case, we are interested in the response of the junctions to an applied current,

109



6. The Cooper Pair Diode

a)

Current (a.u.)

0

-1.5

1.5

-10 0 10 20 30 40

V
o

lt
ag

e 
(m

V
)

b)

I/V

0.0

-0.5

1.0

0.5

V
o

lt
ag

e 
(m

V
)

V/I

-1.0

0.0-0.5
n0

Figure 6.8: VIC dependence on the excess charge. (a) Evolution of the VI
characteristics as we apply bias pulses (R=20 k⌦). (b) Data extracted from (a) and
Fig. 6.6(d). The colors represent the polarity of the RCT (blue for positive and orange
for negative). The dots are the energy of the RCT peaks in the IV curves, and the
stars are the value of the voltage jumps in (a).

which we assume to be smaller than the switching current: I < Is. For I = 0,
Hamiltonian (6.5) is periodic with respect to �i ! �i + 2⇡. This periodicity makes
it possible to describe the eigenvector following Bloch’s theorem [262], analogous to a
2D crystal. The eigenvectors read,

 (�1,�2) =
X

N,M

Z 1

�1
dk1dk2C(k1+N, k2+N)u(�1,�2)e

i(k1+N)�1+i(k2+M)�2 , (6.14)

where the C are constants, u(�1 + 2⇡,�2 + 2⇡) = u(�1,�2) and ki is defined inside
the first Brillouin zone, with q1 = 2ek1 and q2 = 2ek2. These two can be regarded as
a quasicharge, analogous to the quasimomentum in a crystal. The energy dispersion,
E(k1, k2), is defined with the following equation:

✓
(q1 + 2en)2

2C1
+

(q2 + 2em)2

2C1
� E

◆
C(q1 + 2en, q2 + 2em)

+
X

n,m

Un,mC(q1 + 2en, q2 + 2em) = 0 ,
(6.15)

with n,m = 0, 1, 2, 3... and Un,m = �EJ1
2 �n,m+1 �

EJ2
2 �n,m�1. In the following, we

solve Eq. (6.15) in the case of symmetric and asymmetric junctions.

Symmetric Junctions

The gating fixes the di↵erence between junction charges as Q1 � Q2 = q0. This
transforms the problem from 2D to 1D. Taking q0 2 [�1, 1]e, we truncate Eq. (6.15)
to nine states: {n,m}={0,0}, {1,0}, {0,1}, {-1,0}, {0,-1}, {1,1}, {-1,1}, {1,-1} and
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Figure 6.9: Bloch Oscillations in a symmetric double JJ. (a) Dispersion of the
lowest lying four bands. The second and third bands are degenerate. (b) Derivative
of the first two bands.(c) Voltage response of a double JJ when the charge-particle is
in the first (blue) and second (orange) bands.

{-1,-1}. In the following, we solve the matrix equation (6.15) for a symmetric system;
we get nine bands, Es(k). The first four are depicted in Fig. 6.9(a), and the derivative

of the first two bands, dE
(s)

dq
, in Fig. 6.9(b). The derivatives have the same absolute

maximum and minimum slope |max{dE
(s)

dq
}| = |min{dE

(s)

dq
}|.
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Figure 6.10: Diagram of the charge-
particle on the first energy band.
Point A represents the equilibrium position
for no applied current. For small applied
currents the particle evolves to B. The sys-
tem has an ohmic response here. C is the
critical point for the supercurrent to flow.

At T = 0, the basic equation defin-
ing the response of the double JJ to an
applied current is similar to that of a
periodic crystal with an applied electro-
static field [262]. Hence, it is described
by

dq

dt
= I(t)�G

dE(0)

dq
� Ĩ(t) . (6.16)

Here, Ĩ(t) is the current arising from
noise and fluctuations, and G is the con-
ductance of the resistor parallel to the
JJ. The derivative of the band respect to
the quasicharge is related to the voltage.

In what follows, we assume no cu-
rrent fluctuations Ĩ(t) = 0.4 Figure 6.10
illustrates the charge-particle in the 0th
band. When the applied current is zero,
the charge-particle is in position A, and as the current is increased, it slowly moves
towards point B and later to C. If the current is ramped slowly, and there is no
AC component, the derivative of the quasicharge is zero, dq

dt
= 0, for any current

I < |max{dE
(s)

dq
}|/R. This is the value of the current needed to move the charge-

particle to C.

4The analysis made from this point on is a work in progress and will be published in the future
considering non-zero temperatures and fluctuations.
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6. The Cooper Pair Diode

This can be understood from Eq. (6.16). For small values of the current and Ĩ = 0,

there is always a value of q where I � GdE
(s)

dq
= 0 = dq

dt
, i.e., a static solution of the

problem exists. For these currents, the response of the system is ohmnic:

V =
dE(0)

dq
= IR (6.17)

When the current surpasses this critical value, the charge-particle gains enough
energy to continuously transition from the position C to equivalent positions in higher
Brillouin zones. Moving to a higher Brillouin zone is equivalent to tunneling one
Cooper pair through the two junctions, as the system’s reciprocal lattice constant is
q = 2e. Consequently, the time derivative of the quasicharge now oscillates, corres-
ponding to the charging and discharging of the capacitor in parallel with the JJ.

This process reopens the channel for Cooper pair tunneling, which had previously
been blocked. As a result, the junction’s response changes dramatically from ohmic
to shunted. The response of a symmetric junction with the charge-particle initially
in the first band is shown in Fig. 6.9(c) (blue). To calculate the response of the

second band, we substitute dE
(0)

dq
with dE

(1)

dq
in Eq. (6.16). This is also illustrated

in Fig. 6.9(c) (orange). For both cureves, at low applied current, the response of the
system is linear until the crtical value of the current is applied. Then the voltage
response drops to zero. Note that the critical current di↵ers from the 0th to the 1st
band. It is larger in the 1st band.

Asymmetric Junctions

We now consider an asymmetric junction with a finite excess charge in the island,
breaking inversion and ph symmetries. The first four bands for such a system are
shown in Fig. 6.11(a). Due to the breaking of the two symmetries, the bands are no
longer symmetric with respect to quasicharge inversion. Additionally, the derivatives
of the first two bands, depicted in Fig. 6.11(b), show di↵erent maximum and minimum

values, i.e., |max{dE
(s)

dq
}| 6= |min{dE

(s)

dq
}|.
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Figure 6.11: Bloch Oscillations in a asymmetric double JJ. (a) Dispersion of the
lowest lying four bands. (b) Derivative of the first two bands.(c) Voltage response of
a double JJ when the charge-particle is in the first (blue) and second (orange) bands.
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Following a similar reasoning as for the symmetric case, we now distinguish between
positive and negative applied currents. For positive current, the system responds

ohmically until I < |max{dE
(s)

dq
}|/R is reached. However, for negative current, the

ohmic response lasts while I > |min{dE
(s)

dq
}|/R. This disparity means that Cooper

pair tunneling has di↵erent onset currents for positive and negative bias currents, as
illustrated in Fig. 6.11(c) for the first (blue) and second (orange) bands. Thus, non-
reciprocity emerges from the system’s ohmic response. Similar to the symmetric case,
the critical current onset of the tunneling of Cooper pair is larger in the 1st band than
in the 0th band.

To understand the voltage response to an applied bias current, we conclude by
discussing the influence of temperature.

E↵ects of temperature and comparison with the experiments

Figure 6.12 is a sketch of the di↵erent contributions that can add up to describe
the voltage response of the system to an applied current. When the temperature is
considered, two new e↵ects emerge: the finite population of higher-order bands and
the Landau-Zener tunneling between bands. The former depends on the energy of the
bands, and the latter depends on the applied current, i.e., the position of the charged
particle, and on the separation between bands [262]. We suggest that the system’s
response to a small applied current arises from the combined e↵ect of the first two
thermally populated bands. This is represented by the linear section for I < IC0 in
Fig. 6.12. Once the critical current of the first band is surpassed, the tunneling of
Cooper pairs starts to flow. This changes the slope at I = IC0. At this point, the
particle in the first band is shunted, so it makes no contribution to the voltage. The
voltage in this region is mainly given by the second band, which has a higher critical
current IC1 > IC2. At this point, the Zener tunneling is large enough to populate
higher energy bands. High Zener tunneling rates change the system’s response close
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Figure 6.13: Resistance of the double JJ as a function of the excess charge
in the island. (a) R-I characteristic of an island for distinct values of the excess
charge. The colors refer to the VIC in Fig. 6.8(a). (b) Extracted resistance values for
the voltage jumps in the VIC.

to ohmic as the highest energy bands start to be populated. At I = IS , we reach the
switching current of the system, and the approach we use breaks down.

The previous discussion was primarily focused on positive currents. For negative
currents, as shown in Figs. 6.11, non-reciprocity emerges due to a direction-dependent
ohmic response when inversion and ph symmetry are broken. The same analysis
applies, but the voltage jump values di↵er, which explains the non-reciprocal response
observed in the VIC.

The exact resistance of the slope between IC0 and Is varies depending on the
relative population of the bands. The resistance measured in a small island depending
on the excess charge is depicted in Fig. 6.13(a). From these curves, we extract the
resistance on the voltage jumps, depicted in Fig. 6.13(b). We observe that the higher
the energy of the voltage jump, the larger the resistance. These values change as
the excess charge of the island is controlled. This is because Zener tunneling and
band population depend on the system’s response to the applied current, which di↵ers
between positive and negative currents when an excess charge is present in the islands.

In summary, the combined e↵ects of several bands must be considered to under-
stand the shape of the measured VIC fully. Nevertheless, a single-band analysis su�ces
to explain the non-reciprocal response in the double Josephson junction. Future works
will address the e↵ects of temperature and fluctuations in the current source.

6.4 The Cooper Pair Diode

Throughout this chapter, we have proved that the RCT is a transport mechanism
severely modulated by the environment that can be controlled with a gate electrode.
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Figure 6.14: Rectification of the current. (a) and (c) RI characteristics of an
island in (almost) opposite charge states (R=25 k⌦). (b) and (d) rectification of an
applied Ipp = 6 nA and f = 1Hz current for the two charge states. The output voltage
(orange) is superposed on top of the input current (blue).

Although we do not have a three-terminal geometry, as introduced in Sec 5.4 and
further used in the previous section, pulses applied with the tip can e↵ectively be used
as a gate potential.

The control of the islands’ charge state has been proven useful in modifying the
transport reciprocity in the IVC and VIC. The tip pulses are used to change the in-
tensity and directionality of the asymmetries measured in the system. The system’s
non-reciprocal response is an example of a diode. As the diode is based on the tunnel-
ing of Cooper pairs, we name it Cooper Pair Diode (CPD). In the following, we exploit
the system for the main two applications of a diode: the rectification of an AC current
and the photodetection of microwave radiation.

6.4.1 Rectification

When the position of an RCT is close to zero (q0 ! ±e), we find a high asymmetry
in the R-I characteristics. These extremes show a high resistance peak above or below
zero current, a typical characteristic of oppositely polarized diodes. Figs. 6.14(b) and
6.14(d) show the rectification of a sinusoidal current input with f=1 Hz, Ipp=6 nA
(peak to peak current) for an island gated into distinct charge states illustrated by
Figs. 6.14(a) and 6.14(c). They show oppositely signed rectification in the voltage
output, which can be expected from the R-I curves. Moreover, the e↵ectiveness of
the rectification depends on the applied signal, with a maximum at Ipp ⇠ ±6 nA,
corresponding to the maxima of resistance in Fig. 6.14(a) and (c).
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In Josephson diodes, the TSR breaking induces an asymmetry in the positive and
negative switching currents (Is+ 6= Is�) so that it can only rectify signals for values
of the current between Is+ and Is�. The CPD conserves TRS, so Is+ = Is�, but
breaks the ph symmetry instead. This generates a non-reciprocal current before the
switching currents; consequently, arbitrarily small signals can be rectified. A diode
always presents a finite leakage current that, in our system, manifests as a finite voltage
drop on the low resistance side. A gate electrode can fine-tune one of the RCT peaks
close to zero bias and the other far away, reducing the diode’s leakage current.

6.4.2 Photodetection

In a second application, we analyze the e↵ect of a microwave field on the tunneling
current through the CPD. The most direct method to calculate such an e↵ect is as-
suming that the microwave field can be simplified to a classical oscillating electric field.
This method, known as Tien-Gordon theory [68], assumes that microwave radiation
a↵ects the junction by shifting the chemical potential in an oscillatory manner, with
the same frequency as the field; i.e., it assumes an instantaneous (no inertia) response
of the electron in the source and drains to the applied field. This has been explained
in the introduction [Sec. 2.1], where the photon-assisted current is split into the e↵ect
of di↵erent photon-number processes.

I(V ) =
X

n

(Jn(VRF /⌦))
2I0(V + n⌦) , (6.18)

where Jn(x) is the n-th Bessel function, VRF is the potential related to the intensity of
the field (see below), ⌦ = 2e/!RF and I0(V ) stands for the current without any applied
microwave field. This model has successfully been used in several STM measurements
with microwaves, see Refs. [269–271].

Note that, in the definition of ⌦ we have used the charge of a Cooper pair, 2e
[269–271], because in the voltage range we are working in, the main contribution to
the current is the tunneling of Cooper pairs. Finally, VRF is the magnitude of the AC
field created in the junction related to the microwave field. This is an e↵ective value
that accounts for the coupling of the applied field and the junction.

The fraction of the applied microwave power absorbed by the tip-sample junction
is not possible to calculate, as many circuit variables are unknown. For this reason, we
assume that the tip-substrate junction detects an unknown field, which changes the
IVC following Eq. (6.18), then we progressively change the input power of the field for
several radiation frequencies. We record the evolution of the IVC upon these changes
and fit it with the best potential, VRF , for each power and frequency. From this
calculation, we estimate the transfer function of the system: a function that connects
the input power and frequency with a potential drop, VRF , in the tip-sample junction.

The dotted lines in Fig. 6.15(a) are the IVC of an island in two distinct almost
opposite charge states in a narrow bias voltage range around V=0. The finite excess
charge induces an asymmetric I-V curve. The solid lines are the theoretical evolution
of these two curves under a microwave field as calculated from Eq. (6.18) for di↵erent
potential, VRF . Due to the IV curve’s non-reciprocity, a finite current at zero voltage
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Figure 6.15: Detection of a microwave signal. (a) IV characteristics of an island
in two (almost) opposite charge states (orange and blue dots) in a small voltage range
at R = 20 k⌦. The solid lines, shifted with respect to the experimental measurement
to better see the evolution, are the theoretical calculations of the system’s response to
an increasing intensity external microwave field. (b) Photon-assisted current at zero
applied voltage for an island with positive charging for several microwave frequencies.
(c) Theoretical calculation (solid lines) and experimental measurement (dots) of the
photon-assisted current at zero applied voltage for an island in two distinct charge
states (blue and orange). Same states as in panel (a).

develops. At this voltage range, the current due to the radiation arises from Cooper
pair tunneling. Then, the calculations suggest that a photon-assisted tunneling current
develops a zero bias from the tunneling of Cooper pairs. This is a supercurrent that
develops without any external magnetic field to fix the phase.

Figure 6.15(b) shows the measured current with no applied voltage when the sam-
ple is irradiated with a radiofrequency signal with a varying frequency from 10GHz
to 20GHz as a function of VRF . We observe that the detected supercurrent on the
CPD weakly depends on the frequency of the input radiation. The maxima is always
around VRF = 0.5 meV, which defines the maximum e�ciency point. The signal de-
cays afterward. This current can be calculated from the following equation [Eq. (6.18)
for V = 0]:

I(V = 0) =
X

n>0

(Jn(VRF /⌦))
2 [I(n⌦) + I(�n⌦)] . (6.19)

Figure 6.15(c) shows the zero bias current as a function of applied microwave voltage

117



6. The Cooper Pair Diode

for two gatings (blue and orange) for f = 10 GHz. The theoretically calculated
current (solid lines) is superposed, which shows almost the same distribution. Similar
to Fig. 6.8(b), the maximum e�ciency point is around VRF=0.4 meV; after that, the
VI characteristic flattens, and the zero bias signal is suppressed.5 These results suggest
that the diode can detect photons, and its directionality can be controlled with the
e↵ective gating mechanism introduced in Sec. 5.4. Moreover, this detection is given
without any externally applied voltage, meaning the CPD is a passive device. Only a
gate electrode is needed. Moreover, the signal arises from a supercurrent, i.e., there is
no dissipation.

6.5 Conclusions

In this chapter, we have proved that the control of the excess charge can manipulate
the reciprocity of the current of Cooper pairs. In the IVC, we noted that the Joseph-
son peak splits into two RCT peaks, which energy we could manipulate [Sec. 6.2].
Moreover, the VIC showed that the asymmetric position of these peaks generates a
non-reciprocal response to the applied bias current [Sec. 6.3]. Summarizing, the Pb is-
lands deposited on Gr have proven to be an ideal platform for studying the interaction
between superconductivity and Coulomb interactions. Utilizing the STM, the excess
charge of the islands and the Josephson coupling can be controlled. Moreover, islands
of di↵erent sizes can be measured, which helps us understanding the system’s response
to an applied voltage or current [Sec. 6.1].

By approaching the superconducting tip to the small Pb islands, we measured the
split of the Josephson peak due to the Coulomb interactions, which we described as a
resonant tunneling of Cooper pairs [Sec. 6.2]. We proved that the position of these
peaks can be changed with the excess charge and developed an e↵ective theory based on
the PoE function to describe this transport mechanism [Sec. 6.2.1]. Simultaneously,
exploiting the dual STM modes, we measured the response of the double JJ to a current
bias. We explained the results within the Bloch oscillations theory for JJs [Sec. 6.3]
and proved that the system’s output is non-reciprocal due to the break of inversion and
ph symmetry.

This non-reciprocity is controlled with the gate and can be exploited to use the
system as a diode, which we named Cooper Pair Diode [Sec. 6.4]. This diode, similar
to a classical p-n diode, has a non-reciprocal resistance, which we exploit to implement
the two main applications of the diode: rectification [Sec. 6.4.1] and photodetection
[Sec. 6.4.2]. We first proved that the rectification of the current can be controlled
with the gating so that with fine-tuning, one could always look for the most e↵ective
rectification. Moreover, the double junction was used as a microwave detector for
frequencies from 10 to 20 GHz.

5We do not measure at higher power for two reasons. The first is that the STM chamber starts
to heat up for high powers, making these measurements complex to perform. The second is that if
we want to ensure the zero-bias current is a Cooper pair current, we can not have a large potential in
the junction. At high enough powers, we start having photon-assisted single-electron tunneling from
the coherence peaks.
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7
Conclusions

In this thesis, we have investigated novel superconducting phenomena arising from
interactions between magnetic nanostructures and superconductors, as well as the ef-
fects of reducing superconductor size to nanoscale dimensions. We used UHV growth
techniques to fabricate atomic and molecular magnetic systems on superconducting
surfaces and Scanning Tunneling Microscopy (STM) methods to investigate and ma-
nipulate their properties, enabling precise control and exploration of subgap states
like YSR states. Moreover, we have grown small-sized superconductors to understand
how Coulomb interactions influence superconductivity. Additionally, we developed
theoretical models to simulate and interpret the behavior of complex superconduct-
ing states under various conditions. By bridging theory and experiment, this thesis
reveals new insights into superconductivity.

In Chapter 3, we studied the “focusing” along certain surface directions of the
Yu-Shiba-Rusinov (YSR) state decay with STM measurements on V adatoms on �-
Bi2Pd. We introduced an analytical method to calculate the Green’s Functions (GFs)
and spectral properties of a two-dimensional superconductor with an arbitrary Fermi
Contour (FC). By examining superconductors with polygonal-shaped FCs, our study
reveals that the spatial characteristics of the YSR Density of States (DoS) reflect the
FC symmetry and reproduce the direction-dependent decay lengths along the direc-
tions with flat FC edges. The extension of YSR states hosted by single V impurities
agrees with the theoretical prediction on square-shaped FCs. The model is further
exploited to analyze QPI from V adatoms on the �-Bi2Pdsurface. QPI analysis shows
the need for band hybridization and strong Rashba-type spin-orbit coupling to describe
this material accurately, explaining the formation of the multiband BCS ground state
of �-Bi2Pd. The GF approach is also applied to simulate the DOS of structures
formed by multiple Mn impurities fabricated by atomically precise manipulation with
the STM tip, suggesting ways to optimize atomic interactions through focused YSR
state extensions.

Motivated by the observation of complex spectroscopic features on the magnetic
FeTPP-Cl molecules on the proximitized Au/V(100) surface, in Chapter 4, we studied
the origin of YSR excitations in a thin metal film proximitized by a superconductor.
We found a significant overlap between the wavefunction of YSR states formed on the
proximitized metal and dGSJ states formed from the Andreev reflections on the thin,
normal metal. This led to a simplified, exactly solvable single-site model that cap-
tures the quantum nature of the magnetic impurity. We extended the model for high
spins and magnetic anisotropies to understand the STS measurements on FeTPP-Cl
molecules on the proximitized Au/V(100) surface. Utilizing the tip-molecule interac-
tion to modify the exchange coupling between FeTPP-Cl and surface, we move the
system through the parity-changing quantum phase transition and find that the two-
particle excitation, elusive in the even parity ground state is now accessible, thus being
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7. Conclusions

a measure of the local parity of the system.

Extending the single-site model to account for two impurity systems, we proved
that two magnetic impurities exchange coupled with each other and the surface gen-
erate an ideal platform for a singlet-based qubit. This configuration is robust against
decoherence from spin-orbit and hyperfine interactions. Additionally, we proposed
a more realistic device model featuring two superconducting rods and two quantum
dots, o↵ering potential applications for quantum computing in future technologies.

In the second part of this thesis, we investigated nanoscale superconducting Pd
islands grown on graphene and the interplay between the Coulomb blockade and su-
perconducting phenomena.

In Chapter 5, we have shown that small Pb islands exhibit an energy gap larger
than the intrinsic superconducting gap due to the interplay between superconductivity
and Coulomb e↵ects. We determined the Coulomb energy and its dependence on island
size by applying a magnetic field. We identified a size threshold around vol1/3=15
nm, below which Coulomb interactions dominate over the superconducting pairing.
The Coulomb gap increases as island volume decreases, while the superconducting
gap reduces by up to 50% from the bulk value, a result of the larger electronic level
separation on the small islands and the inverse proximity e↵ect from graphene.

We also found that the islands exhibit spectral asymmetries linked to fractional
excess charge on the Pb grains. Interstingly, STM bias pulses can control the excess
charge, mimicking the e↵ect of a gate voltage on a tree-terminal device. We described
this e↵ect with charged paddles between graphene and the SiC, which we charge or
discharge by bias pulsing. This was simulated with a double tunneling junction theory
containing the e↵ects of the superconducting pairing and the Coulomb blockade.

In Chapter 6, we studied the e↵ect of Coulomb charging in Josephson junctions.
The zero voltage Josephson peak, appearing in the I-V characteristics of STM tunnel-
ing junctions between bulk superconductors, splits into two peaks in small islands.
Varying the excess charge of the islands with bias pulses with the STM tip, we found
that although the separation between peaks is constant, their position depends on
the excess charge of the island. We described the process generating these peaks as
resonant tunneling of Cooper pairs mediated by the interaction with the environment,
i.e., an incoherent tunneling mechanism. The developed e↵ective theory corroborates
the experimentally measured dependence of the peaks with the excess charge of the
islands.

The experiments in the Josephson regime justified the change to a di↵erent mea-
surement strategy based on biasing the current rather than the voltage. The im-
plemented current-biased setup is based on a switchable resistor in series with the
voltage supply. We measured the e↵ect of the Coulomb blockade on the V-I charac-
teristics. In the islands, the Coulomb blockade appeared as finite voltage steps around
zero current, which is a direct consequence of the resonant tunneling of Cooper pairs.
Based on the theory of Bloch oscillation of a JJ, we explain the finite voltage jumps
with the evolution of the charge-particle. We found that the combined break of in-
version and charge-conjugation symmetries generates a non-reciprocal response of the
charge-particle to the applied current.
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For finite excess charge in the grain, a non-reciprocal response to the applied
current is measured: a diode e↵ect. We introduced the concept of a Cooper Pair Diode,
which can be used for rectification and photodetection and has potential applications
as a microwave detector. The gate-controlled non-reciprocity in this system opens up
possibilities for controlling current rectification and fine-tuning diode performance.

The experimental results of this thesis, combined with the theoretical models,
provide new insights into nanoscale phenomena related to superconductivity utilizing
various experimental and theoretical tools. A better understanding of the interplay
between superconductivity and magnetic impurities, classical and quantum, and the
Coulomb blockade is developed. I believe that the experimental results and their
corresponding theoretical description will promote further investigation into nanoscale
superconducting phenomena, an exciting field with many potential applications in
future technologies.
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A
Calculation of the exact GF

A.1 Integration of several FCs.

In this appendix, we present the result of the integral Eq. (3.6) for a M-sided
regular polygon. We then use the solution to calculate the integral for the square-
shaped contour and the M !1 limit which corresponds to the circular case.

We define the basis vectors (ûx, ûy) ! (n̂, ŵ), where n̂ is a vector normal to a
polygon’s side and ŵ its perpendicular vector. The vertices of the polygon are at the
points
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It is also convenient to define k0
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Defining ✓p = 2⇡k
M

, in the limit M !1 we get that
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Note that u(✓p) = x cos(✓p) + y sin(✓p) = r[cos(✓p) cos(✓r) + sin(✓p) sin(✓r)] =
r cos(✓p � ✓r), so;
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d⇠Ǧ0(⇠,!)e

�i(m⇠
kF

+kF )r cos(✓p�✓r) (A.5)
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A. Calculation of the exact GF

Integral (A.5) corresponds to the circular FC, which can be analytically solved.
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where ⇢̌BCS(!) = !⌧0+�⌧1
⌦ , with ⌦ =

p
�2 � ✏2. The integral is easier to evaluate

after making the change ✓0 = ✓p � ✓r. Noticing that
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where J0(x) is the zero Bessel function of the first type and H0(x) is the zero Struve
function, we finally obtain:

Ǧ0(r) = ⇡N0 {⇢̌BCS(!) [Re{J0(u) + iH0(u)}] + i⌧3 [Im{J0(u) + iH0(u)}]} , (A.8)
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s
)r and N0 is the normal metal DoS. In the limit

r ! 0 this expression reduces to the BCS Green’s function. In the asymptotic limit
kF r � 1 we obtain [272]:
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We now calculate the integral for a square-shaped FC. Taking M = 4 in Eq. (A.3)
one can straightforwardly check that:
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All these integrals are analytically solvable. We focus here on the region x + y > 0
and x � y > 0 (due to the symmetry of the system, results for the other regions are
obtained similarly). In leading order in m⌦/k2
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A.2. Helical multi-band superconductor

In the main text we discuss the GF over the lines y = 0 and x = y:
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A.2 Helical multi-band superconductor

This section is used to get the GF of Eq. (3.9). We will start by adding the
di↵erent terms contributing to the full Hamiltonian and understanding their e↵ects.
We start by considering two independent bands (so that it is enough to solve for one),
and we will take the Rashba coupling to be strong to take helical band approximation,
i.e., t = 0 and �i � 1. In the following, we solve for one of the spin directions (taking
vF ! �vF flips the spin):

Ȟk = (vF k � µ)⌧3 +�⌧1 (A.14)

then,
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we get the real space GF from the FT of this equation. In a 1D system, one can
always solve the integral by finding the poles in the positive or negative imaginary
plane. The poles read kvF = ±i⌦+ µ. For x > 0, we look in the positive plane, and
for x < 0, in the negative. The real space GF reads:
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with ⌦ =
p
�2 � !2. The GF describing the YSR state can be found using the same

formula as in Eq. (2.31). Note that as the YSR potential (in the classical limit) does
not connect bands with di↵erent spin indexes, there will be no oscillatory behavior in
the extension of the YSR states.1

Let us add a second independent band and assume that the impurity responsible
for the YSR state has an interband scattering term:
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1ǦY SR(x) = Ǧ(0) + Ǧ(x)[1̌ � Ǧ(0) · V̌ ]Ǧ(�x). Then, Ǧ(x)Ǧ(�x) cancels out the oscillations.
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A. Calculation of the exact GF

The GF of the bare superconductor will be block diagonal, and each block will have
the same form as Eq. (A.15), where vF is exchanged by vi. Taking the Dyson equation
for one of the bands, we get

Ǧii(x, x) =Ǧii(0) + Ǧij(x)[1̌�G(0)V ]jkǦki(�x)

=Ǧii(0) + Ǧii(x)[1̌�G(0)V ]iiǦii(�x) ,
(A.18)

where we used Ǧij = Ǧii�ij . We again note that the only terms that will oscillate are
the nondiagonal terms of Ǧij , but these terms do not contribute to the LDoS, defined
as ⇢ / Tr Ǧ(x). Then, a single impurity - even with an interband scattering term -
will not produce any oscillatory behavior in a multiband helical system.

Finally, we will solve the full Hamiltonian, adding the hopping term t. The poles
of the GF now read,
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(A.19)

with ṽ = v1 + v2 and v = v1 � v2. Depending on the relative spin orientation of the
bands, ṽ and v can be either positive or negative. We notice that the GF coming from
these poles reads
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We note that, when the Dyson equation is applied, checking the diagonal terms, we
will have an oscillation arising from the scattering between the two original bands:
exp{ixµ(1/v1 + 1/v2 +O(t/µ))} = exp{ix(kF1 + kF2 +O(t/µ))}. The intensity of
these oscillations is O(t/µ)2. As the oscillations have a significant contribution to the
DoS, t ⇠ µ. This results in the renormalization of the Fermi momenta and of the
bands [Sec. 3.4.1].

A third band has to be added to Hamiltonian (3.9) to reproduce the two oscilla-
tions measured in the extension of the YSR states hosted by the V adatoms. This
Hamiltonian reads;
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0 �t13 0 0 � �vF3k + µ

1

CCCCCCA
,

(A.21)
where vFi is the Fermi velocity of the ith band and t12 and t13 are the hopping terms
between the 1st and 2nd and 1st and 3rd bands, respectively. No hopping term is
added between the 2nd and 3rd bands. We only couple the impurity to the 1st band.
In this case, hybridizing the other two bands only renormalizes the oscillations, but
no new scattering vector would appear. The results obtained from this Hamiltonian
(solved numerically) are summarized in Fig. 3.10(c) and 3.10(d).
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B
Single-Site model

B.1 Two-layer Green’s Functions

As discussed in Ref. [273], the GFs of a composite system (4.3) can be obtained
from the GFs of the constituent subsystems. We denote the GFs of each subsystem
as ǧi(x, x0), with i = N,S. Next, we impose the following boundary conditions:

dǧi(x, x0)

dx
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We assume a zero derivative at the vacuum interface, except for the semi-infinite
superconductor at x, x0

!1, for which the GFs are assumed to vanish.

Using the above boundary conditions and assuming continuity of the full GF and
its derivative at the N/S interface, we obtain the following relations:

Ǧ(x, x0) =
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(B.5)

The GFs for the isolated system are easy to calculate from the Bogoliubov-de Gennes
equation [173]. After that, one can get the dressed GF from Eq. (B.5), see Ref. [175].
The GF shows a pole with the following energy distribution:
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Note that by expanding the tangent around zero to the first order, we arrive at the
same solution as obtained from a semi-classical argument Eq. (4.1).

From the knowledge of the GFs we can calculate the Nambu spinors from the
residue of the corresponding pole, as follows from the spectral representation of the
GFs:
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In the case of a continuum eigenbasis, we have:
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However, in our case, the eigenbasis can be divided into a continuum part (! > �)
and a discrete part corresponding to the dGSJ or YSR states (for ! < �). Thus,
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Hence,
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B.2 Tight-binding model

To carry out some of the calculations of Sec. 4.2.2 beyond the leading order in
�/EF and to investigate the e↵ect of a mismatch in the Fermi level, we use a one-
dimensional tight-binding model which describes a short normal chain coupled to a
longer superconducting chain. The exchange potential describing a classical magnetic
impurity acts on the first site of the (normal) chain. The Hamiltonian reads:

ĤTB = Ĥ0 + ĤJ , (B.11)

where
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Here, ti = tmetal✓(Nmetal� i)+ tSC✓(i�Nmetal), µi = µmetal✓(Nmetal� i)+µSC✓(i�
Nmetal) and�i = �✓(i�Nmetal). The interaction the chain and the magnetic impurity
is described by

ĤJ = J(ĉ†0"ĉ0" � ĉ†0#ĉ0#) (B.13)

We diagonalize this Hamiltonian for a chain of 1500 sites and calculate the overlap
between the Nambu spinors of the lowest-lying level of Ĥ0 and ĤTB for di↵erent
values of J . The results are shown in Fig. 4.4, where the calculation was performed
for µmetal = µSC , i.e., no Fermi-level mismatch at the interface. Fig. B.1 shows the
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B.3. Single site Hamiltonian for a proximitized superconductor

overlap between the dGSJ and YSR states for a larger parameter space of the tight-
binding model. Some particular values of Fermi-level mismatch, such as, µSC/µmetal =
20�, 40� are shown. Comparing this figure with Fig. 4.4(c), we note a small reduction
of the overlap due to the mismatch. Nevertheless, the values of the overlap are still
fairly close to unity, and in line with what was discussed in Sec. 4.2.2 we do not expect
substantial modifications to our results concerning the applicability of the single-site
model.
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Figure B.1: Exploration of the overlap between dGSJ and YSR eigenstates
for varying exchange coupling on a larger parameter space of the tight-
binding model. (a) and (b) Calculation of the overlap for t = 1.0 and t = 2.5,
respectively. We set the hopping between superconducting sites to tSC = 1 and the
superconducting gap to � = 0.05 and change the hopping in the normal metal and
the Fermi-level mismatch. The two panels show the overlap for di↵erent values of the
mismatch of the Fermi energy and two di↵erent dGSJ energies, one closer to Fermi
energy and the other closer to the superconducting gap.

B.3 Single site Hamiltonian for a proximitized superconductor

By solving the Bogoliubov-de Gennes equations for the proximitized thin film, the
electron field operator at the position of the magnetic impurity,�̂0�, can be written as
follows:

 ̂0� = u0�̂� + �v⇤0 �̂
†
�� +

p
1� Z �̂o�. (B.14)

We start by changing the basis on the unperturbed Hamiltonian (4.3), where first
two terms described the dGSJ quasi-particle and �̌0� describes the modes in the
continuum. We now introduce a rotation for the operators creating the discrete state:

✓
d̂�
d̂†��

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�̂0�
�̂†0��

◆
. (B.15)

This rotation leads to (4.8), where U = Es cos 2✓ and �s = Es sin 2✓. Furthermore,
requiring that

 ̂" =
p

Zd̂" +
p
1� Z�̂0" = u0�̂� + �v⇤0 �̂

†
�� +

p
1� Z�̂0" . (B.16)

Hence, tan ✓ = �v0/u0 and Z = u2
0 + v20 , where U = Es(u2

0 � v20) and �s = 2Esu0v0.
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B. Single-Site model

B.4 Calculation of the scaling equations

In order to perturbatively obtain the scaling equations of the model introduced in
Sec. 4.2.4, we consider an expansion of the partition function of the system, i.e.

Z(D) = Z0(D)
⌦
T exp

"
�

Z
�

0
Ĥdc

J
(⌧)

#
↵
0
, (B.17)

in powers of the couplings Jdd, Jd� and J
�̌�̌

. In the above expression for Z(D)

Z0(D) = Tr e�Ĥ0 is the partition function of the system without magnetic impu-
rity at inverse absolute temperature � = (kBT )�1; h. . .i0 is the expectation value
over the non-interacting grand canonical ensemble defined by Ĥ0. The operator
ĤJ(⌧) = eĤ0⌧ ĤJe�Ĥ0⌧ , where ĤJ is given in Eq. (4.13), describes the magnetic
exchange with the impurity in the interaction representation and T is the imaginary
time-ordering symbol. We have also introduced a parameter, DF , which is the band-
width of the composite thin film and superconductor system.

Following Anderson [40], we shall use perturbation theory to obtain a map onto a
system with smaller bandwidth D0 = D � �D < D. Associated with the bandwidths
D and D0, there are also the following characteristic (imaginary) time scale (in units
where ~ = 1) ⌧c = D�1 and ⌧ 0

c
= (D0)�1 > ⌧c. The lowest order terms of the

perturbation series for the system with bandwidth D read:

Z(D) = Z0(D) {1�

Z
d⌧ hĤdc

J
(⌧)i0

+
1

2!

Z

|⌧�⌧ 0|>⌧c=D�1

d⌧d⌧ 0 hT
h
Ĥdc

J
(⌧)Ĥdc

J
(⌧ 0)

i
i0 + · · ·

9
>=

>;
,

(B.18)

where we have made explicit the constraints on ⌧ imposed by the finite bandwidth of
the continuum of states described by �̂� and �̂†

�
.

Next, let us integrate out the high energy degrees of freedom contained �̂0� and �̂†0�
(recall that the d̂�, d̂†� describe a low-energy subgap state and it cannot be integrated
out). Such degrees of freedom involve excitations with energies ⇠ D above the ground
state and, therefore, determine the short imaginary time behavior of the Green’s
functions for �̂�. Note that, since at excitation energies ⇠ D Bogoliubov quasi-
particles either behave as electrons or holes (in other words, either u ! 0 or v ! 0),

the anomalous GFs involving the operator �̂0, i.e., hT
h
�̂0"(⌧)�̂0#(⌧ 0)

i
i0, etc, vanish

for |⌧ � ⌧ 0| ' ⌧�1
c

. Thus, in the above perturbation series, for |⌧ � ⌧ 0| ⇠ ⌧c, we need
to consider only normal correlations, which take the familiar Fermi liquid form:

hT

h
�̂0�(⌧)�̂

†
0�0(⌧ 0)

i
i0 '

⌫0���0

(⌧ � ⌧ 0)
(B.19)

for |⌧ 0 � ⌧ | ' ⌧�1
c

, where ⌫0 is the (mean) density of states of the normal state.
Thus, the first non-constant contribution to the scaling of the couplings stems from
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B.4. Calculation of the scaling equations

the second-order term. We first split the integrals over ⌧, ⌧ 0 according to:

Z

|⌧�⌧ 0|>⌧c=D�1

d⌧d⌧ 0 . . . =

Z

|⌧�⌧ 0|>⌧ 0
c=(D0)�1

d⌧d⌧ 0 . . .+

Z

⌧ 0
c=(D0)�1>|⌧�⌧ 0|>⌧c=D�1

d⌧d⌧ 0 . . .

(B.20)
and consider the terms in the second term for which ⌧ 0

c
> |⌧ �⌧ 0| > ⌧c. Expanding the

second order term in powers, corrections to the couplings contained in the first order
term are generated at O(J2

d�
), O(Jd�J��) and O(J2

��
). We explicity evaluate below the

O(J2
d�
) term. The calculations for the remaining terms are similar and not reproduced

here. Einstein’s convention of repeated index summation is used throughout:
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Ŝa(⌧)Ŝb(⌧ 0)

i
i0

�
sa
��

sb
��0

�

(⌧ � ⌧ 0)
hT

h
d̂†
�
(⌧)d̂�0(⌧ 0)

i
i0

+ hT
h
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(B.21)

In the above derivation we have used the following results: ✏abc✏abd = 2�cd and

T

h
Ŝa(⌧)Ŝb(⌧ 0)

i
= ✓(⌧ � ⌧ 0)ŜaŜb + ✓(⌧ 0 � ⌧)ŜbŜa

=
1

2
(ŜaŜb

� ŜbŜa) [✓(⌧ � ⌧ 0)� ✓(⌧ 0 � ⌧)] +
1

2
(ŜaŜb + ŜbŜa)

=
i

2
✏abcŜcsgn(⌧ � ⌧ 0) +

n
Ŝa, Ŝb

o

(B.22)
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B. Single-Site model

because Ŝa(⌧) = eĤ0⌧ Ŝae�Ĥ0⌧ = Ŝa. As noted above, the operators describing the
dGSJ quasi-particle have time dynamics varying on the scale of ��1

⌧ ⌧ 0
c
, which is

very slow compared to the fast degrees of freedom being integrated out from �̂0c and
�̂†
c
. Introducing ⌧� = ⌧ � ⌧ 0 and ⌧+ = (⌧ + ⌧ 0)/2. Thus, the term proportional to

{Ŝa, Ŝb
} drops because it is multiplied by ⌧�1

� rather than |⌧�|�1 and the integral over
⌧� of former vanishes to leading order. Thus, to leading order in ⌧�, we are left with

O(J2
d�
) = �J2
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h
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i
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(B.23)

In the last expression, we have evaluated the integral over ⌧� using
Z

⌧ 0
c>|⌧�|>⌧c

d⌧�
|⌧�|

= 2 log
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⌧ 0
c
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= 2 log
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= �2 log
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D

◆
'

2�D

D
, (B.24)

and replaced ⌧+ ! ⌧ . Notice that the resulting expression in Eq. (B.23) takes the
same form as the contribution / Jdd in the first order term of (B.18). This leads to
the following recursion relation:

Jdd(D � �D) = Jdd(D) + 2⌫0J
2
d�
(D)

�D

D
(B.25)

(B.26)

Assuming the couplings are continuous functions of the cut-o↵ D, the recursion rela-
tion becomes a di↵erential equation:

D
dJdd(D)

dD
= �2⌫0J

2
d�
, (B.27)

which implies that Jcc increases with decreasing bandwdith D.
Similarly, we can tackle the terms at O(Jd�J��) and O(J��) (note the latter one

is the only one present in the standard poor man’s scaling treatment of the Kondo
model). From those terms, the following di↵erential equations are obtained:

D
dJd�(D)

dD
= �2⌫0Jd�J��, (B.28)

D
dJdd(D)

dD
= �2⌫0J

2
��

. (B.29)

It is convenient to introduce a new scaling variable defined by the di↵erential equation:

dD

D
= d`) D(`) = D0e

�`. (B.30)

Thus, as ` ! +1 D(`) ! 0. Furthermore, if we define the dimensionless couplings
ǧdd = 2⌫0Jdd, ǧd� = 2⌫0Jd�, and ǧ�� = 2⌫0J��, we finally arrive at the scaling
equations (4.14) to (4.16) discussed in Sec. 4.2.4.
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B.5. S=5/2 Single-Site model

B.5 S=5/2 Single-Site model

In the upcoming, we will introduce the di↵erent terms in Eq. (4.22) gradually. The
first term, Ĥ0, is introduced in Sec. 2.4.2. Let us consider now the tunneling between
the tip and the sample at zero temperature when both the tip and the sample are in
their respective ground states: |GSi = 1

2 (|2it + |0i
t
)(|2i

s
+ |0i

s
) = |BCSit|BCSis.

When e.g. a spin-up electron tunnels from sample to tip [see Fig. B.2 (a)], we have

ĉ†
t"ĉ" |GSi =

1

2
|"i

t
|#i

s
. (B.31)

This corresponds to a transition of energy �s +�t, whilst the process in the opposite
direction (from tip to sample) involves an energy �(�t + �s). This translates into
two peaks at ±(�t+�s) in the tunneling spectrum, which mimic the coherence peaks
observed in the tunneling between two s-wave superconductors.

Spin-5/2 impurity with zero exchange coupling

The Hamiltonian (4.21) is invariant under time-reversal symmetry (TRS) and com-

mutes with the parity operator of combined the tip+sample system, P̂T = (�1)N̂T ,
where N̂T = N̂t+ N̂s is the total electron number operator. Notice that the tunneling
Hamiltonian Ĥts does not commute with the sample (tip) parity operator P̂s = (�1)N̂s

(P̂t = (�1)N̂t). However, P̂s is still a good quantum number when considering the
diagonalization of Ĥ alone, as we shall do below. Thus, the Hilbert space of the sam-
ple can be separated into two parity sectors: even parity with Ps = 1 and odd parity
with Ps = �1. In addition to TRS and parity, Eq.(4.21) exhibits other symmetries
in certain limiting cases. For example, in the limit where the transverse magnetic
anisotropic E vanishes, the Hamiltonian is invariant under the Z2 symmetry that
maps ŜT,z ! �ŜT,z and interchanges ŜT,x $ ŜT,y, where ŜT = Ŝ+ 1

2 ĉ
†
�
s��0 ĉ�0 is the

total spin operator. This symmetry is generated by the rotation Û = ei⇡ŜT,yei⇡ŜT,z/2.
In addition, we neglect the scattering potential V in Eq. (4.22). This potential breaks
particle-hole symmetry (PHS) and would modify the spectral weights of the peaks,
as mentioned in the main text. However, it does not modify the overall structure of
the spectrum. Therefore, for the sake of simplicity, it can be taken to be zero, which
renders the model invariant under PHS. Next, we consider how the excitation of the
molecular spin reflects on the tunneling spectra. Since D is a large energy scale, we
will first neglect the exchange coupling and set Jz = J? = 0. This limit is expected to
capture some of the physics on the weak coupling side of the quantum phase transition
(QPT, see below) [105, 274]. Now the Hamiltonian of the sample is Ĥs = Ĥ0 + ĤM ,
where the spin Hamiltonian ĤM accounts for the intrinsic magnetic anisotropy of the
molecular spin:

ĤM = DŜ2
z

(B.32)

We assume easy-plane anisotropy (D > 0) and, for the sake of simplicity, zero trans-
verse magnetic anisotropy E = 0. The e↵ect of the latter will be discussed in the last
subsection, where the spectrum of full Hamiltonian is described.

133



B. Single-Site model

Since in this limit there is no exchange coupling, the Hilbert space of the sample is
the tensor product of the Hilbert space of the superconducting site and the molecular
spin (see Supplementary Fig. B.2 (b)). We use the basis {(|2i , |0i , |"i , |#i) |Mi},
where M is the eigenvalue of z-projection of the impurity spin, Sz. In the even parity
sector ST,z = Sz = M , which is half-integer (recall that S = 5/2) and therefore, by
TRS the eigenstates {|BCSi |Mi (

��BCS
↵
|Mi}) with the ST,z = ±M are Kramers

pairs and therefore degenerate in energy. In the odd parity sector, the Z2 discussed
above ensures the same for the eigenstates |�i |Mi. Since D > 0, the ground state is
the doublet ST,z in the even parity sector, i.e. |GSi = |BCSi

��± 1
2

↵
. The eigenstates

in the odd parity sector, describe a single (quasi-) particle excitations and, in this
limit, have higher energy (see Supplementary Fig. B.2).

Let us consider the tunneling of a single electron between the tip and the sample in
this limit. The tunneling Hamiltonian, Eq. (4.24), contains spin-independent and spin-
dependent terms with amplitude T0 and T1, respectively. Since the tunneling current
is second order in the tunneling amplitude, there are three di↵erent contributions. The
term of order |T0|

2 yields a spectrum identical to the one described in the previous
subsection. The term of order T0T ⇤

1 and its complex conjugate vanish due to TRS
(but they would not in an external magnetic field that breaks TRS). Finally, the term
of order |T1|

2 accounts for the spin-flip processes which we discuss in the following.
One of the possible tunneling processes is:

ĉ†
t#ĉs"Ŝ+ |GSi = ĉ†

t#ĉs"Ŝ+

⇥
|BCSi

t
|BCSi

s

�� 1
2

↵⇤
/ |#i

t
|#i

s

�� 3
2

↵
. (B.33)

This process involves an excitation of the molecular spin and costs an energy ±(�s +
�t + 2D), the minus sign corresponding to tunneling in the opposite direction (i.e.
from tip to sample). Transitions (Fig. B.2 (b)) to higher spin states are enabled by
spin pumping [165].

Spin-5/2 impurity with finite exchange coupling

Next, we account for the exchange coupling between the impurity and the substrate
in the single-site approximation and explain how the parity-changing QPT takes place.
The sample Hamiltonian is given in Eq. (4.22), where HJ is the exchange term. We
begin by investigating the isotropic limit where Jz = J? = J and D = E = 0, i.e.
ĤM = 0. The situation is not quite realistic but makes the discussion of the QPT
particularly clear.

Given the significant molecular axial anisotropy D, in the main text, we assume
an anisotropic exchange coupling, Jz 6= J?, with an optimized ratio p = J?/Jz = 3.
This value is close to that found by projecting an S = 5/2 spin onto an S = 1/2
pseudo-spin representing the lowest-energy doublet in a quantum impurity with D >
0 [275]. However, the anisotropic exchange may generally result from several di↵erent
mechanisms [275].

In the isotropic limit, the total spin of the superconductor plus impurity ŜT is
conserved. Therefore, the eigenstates are organized into multiplets of 0 ⌦ 5

2 = 5
2 , for

the even parity sector with Ps = +1, and 1
2 ⌦

5
2 = 2�3, for the odd parity sector with
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Figure B.2: Eigenstates dependence on the di↵erent parameters. (a) Spec-
trum of a single-site superconductor with states labeled by fermion parity: even (blue)
and odd (orange) parity. When adding a spin S = 5/2 quantum impurity with easy-
axis magnetic anisotropy D but negligible exchange each eigenvalue is split into three
components. (b) E↵ect of a finite exchange coupling together with axial magnetic
anisotropy on eigenvalues and eigenvectors. The parity changing QPT occurs for ex-
change greater than a critical value. To simplify the notation, the coe�cients of the
linear combinations have been suppressed.

Ps = �1. In the latter sector, the lowest energy state belongs to the multiplet with
the smallest total spin, i.e., ST = 2. Note that, by introducing a new energy scale
J > 0, the ground state is no longer uniquely determined by �s [see Fig. B.2 (c)]. In
particular, the parity eigenvalue Ps of the ground state can change from even to odd
by tuning J , resulting in a QPT [42, 276]. The transition occurs when the energies
of the lowest energy states in the even and odd parity sectors cross as J increases.
For a S = 5/2 quantum impurity in the isotropic exchange limit, the critical value is
JC = 4�/7.

Regarding the overall structure of the spectrum, in the even parity sector, the spin
of the single-site superconductor is zero; therefore, the exchange coupling has no e↵ect.
The eigenstates take the form {|BCSi |Mi ,

��BCS
↵
|Mi}, i.e, there are two eigenstates

per impurity spin Sz = M projection. The states with the same superconductor
component are Kramers pairs for Sz = ±M and, therefore, degenerate in energy.

On the other hand, in the odd parity sector, the exchange coupling is e↵ective,
and the total spin of the eigenstates is an integer, as discussed above. In the mul-
tiplet with ST = 2, the eigenstate (

�� 1
2

↵
|#i �

��� 1
2

↵
|"i)/

p
2 with zero ST,z eigenvalue

becomes the lowest energy state. Indeed, for D > 0 both multiplets of ŜT split, re-
sulting in the states with the smallest ST,z eigenvalue from both multiplets having the
smallest energy. The Z2 symmetry implies that the eigenstates with the opposite ST,z
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B. Single-Site model

Symmetries of Nº of non-degenerate states.
the system Weak Coupling Strong Coupling

J < JC J > JC

D = E = 0 TRS, Z2, 2 1
J = 0 FSRsub, FSRmol

D > 0, TRS, Z2, 6 3
E = J = 0 FSRsub

D, J > 0, TRS, Z2 6 7
E = 0

D, J,E > 0 TRS 6 12

Table B.1: Symmetries of the model in various limiting cases. The acronyms and sym-
bols stand for TRS = time-reversal symmetry, FSRsub = full spin rotation symmetry
for substrate electrons, FSRmol = full spin rotation symmetry for molecular spin, Z2=
180º rotation around the y-axis followed by a 90º rotation around the z-axis, .

eigenvalue are degenerate.

B.6 Two impurity single site model

In this section, we will describe how to form the single-site model used for the
calculation of the singlet-based qubit. For this, we will follow Ref. [277], where the
full calculation is properly done. The starting point is Eq. (4.25). We introduce the
following operators:

âi� =
1p
⇢(⇠)

Z
dk

(2⇡)3
eikRi ĉk��(⇠ � ⇠k̂) , (B.34)

where Ri is the position of theith impurity and {â†
i�
, âi�0} = ���0�(⇠ � ⇠0) and

{â†1�, â2�0} = S(⇠)���0�(⇠ � ⇠0). S(⇠) is an overlap function, showing that the ĉ~k�
operators all lie within the same superconductor. If each impurity was in a di↵e-
rent superconductor {â†1�, â2�0} = 0. As these two do not commute, the authors in
Ref. [277] define a new set of operators ĉe/o = (â1 + â2)/

p
2(1± S). After mapping

to a Wilson chain, the authors prove that the system has the structure shown in
Fig. B.3(a).1

This structure di↵ers from that proposed in Sec. 4.4. The Hamiltonian described
in Eq. (4.29) couples two superconducting sites in distinct Hilbert spaces, generating a
coupled state where Cooper pairs are formed with an electron on each site. Suppose the
coherence length of the superconductor (⇠) is larger than the separation between the
edge states. In that case, the non-locality of the BCS condensate should be considered,
i.e., Cooper pairs have a spatial extension, so they can be formed from electrons in
di↵erent positions. This is represented by the Wilson chain in Fig. B.3(b).

1This is an original idea of Chen-How Huang
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B.6. Two impurity single site model
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Figure B.3: Structure of the Wilson chain, visualization of the logarithmic
discretization of the band. (a) For two impurities in the same superconductor and
(b), for two impurities on di↵erent superconductors with a tunneling Hamiltonian.
The Dashed squares show the minimal single-site model for each case.

This reasoning presents a problem. The tunneling term would only be valid if each
impurity’s superconductor were independent; however, these impurities lie within the
same superconductor, so the simple tunneling term is insu�cient. The minimal single-
site Hamiltonian for Fig. B.3(b), depicted by the dashed square, reads

Ĥ =
X

i��0

X

i=1,2

Jiĉ
†
i�
Ŝi · s��0 ĉi�0 +�ĉ†

i"ĉ
†
i# + J12Ŝ1 · Ŝ2

+
X

�

t1ĉ
†
1� ĉ3�0 + t1ĉ

†
2� ĉ4�0 + t12ĉ

†
1� ĉ4�0 + t12ĉ

†
2� ĉ3�0 + h.c. .

(B.35)

Contrary to two independent superconductors with an added tunneling Hamiltonian,
we need four sites in the superconductor to generate the single-site model. Using the
proper single-site Hamiltonian for the two-impurity system states S0 and S2 are not
mixed, and the NLQPT survives. In this case, parity and particle-hole symmetry have
to be broken to mix the two singlets [277]. Once this happens, Eq. (4.28) and (4.30)
can be used to describe the system. Parity symmetry is straightforward to break by
fixing J1 6= J2. Particle-hole symmetry, on the other hand, is usually broken due to a
finite scattering potential on the impurities in STM experiments. For a device, it can
be controlled by the gate potential. Then, Eq. (4.29) is adequate for the description
of our system.
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C
Granular superconductivity

C.1 Rate equations for a DBTJ

This section introduces the model we use to do the fittings in Chapter 5. Most
of the calculations were done in Refs. [45, 223, 224], so we will only summarize the
results and add superconductivity to the model, which the previous works do not
do. We describe the system as the lumped circuit depicted in Fig. 5.3(a). Solving
the circuit’s electrostatics (Kirchho↵’s law) we get the energy change arising from a
tunneling electron in the ith junction

E1(V, q) = 1V + e
(ne� q0 � e/2)

C

E2(V, q) = 2V � e
(ne+ q0 + e/2)

C

(C.1)

with 1 = C2/C and 2 = C1/C. The tunneling rates for each junction read[45]

�!
� 1(2)(V, q) =

e

R1(2)

Z
d!⇢L(c)(!)f(!)⇢c(R)(! + E1(2)(V, q))f(�!

0
� E1(2)(V, q)).

(C.2)
Here, f(!) is the Fermi-Dirac distribution and ⇢i is the DoS for L=tip, c=Pb island,
and R=Gr. The e↵ects arising from the environmental modes have been disregarded as
they can be considered with a Dynes parameter in the DoS of the superconductor[247].
We are only interested in the position of the peaks in the dI/dV measurements, so we
do not use the PoE function here.

Using these rates, one can define the following master equation for the population
of each charge state pn:

ṗn(V ) = [
�!
� 1(V, ne+ e� q0) +

 �
� 2(V, ne+ e� q0)pn+1

+ [
 �
� 1(V, ne� e� q0) +

�!
� 2(V, ne� e� q0)pn�1

� [
�!
� 1(V, ne� q0) +

 �
� 2(V, ne� q0)

+
 �
� 1(V, ne� q0) +

�!
� 2(V, ne� q0)pn .

(C.3)

The first term on the right-hand side describes the tunneling from the (n+1) to the n
state through the two junctions. The second, from the (n-1) to the n. The last term
describes the tunneling from n to (n-1) and (n+1), so it has a negative contribution.
Taking ṗn(V ) = 0, one can solve for the stationary population of each state (pn).
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C. Granular superconductivity

Once the population of each junction is known, the current reads

I =
X

n

pn
h
�!
� 1(V, ne� q0)�

 �
� 1(V, ne� q0)

i

X

n

pn
h
�!
� 2(V, ne� q0)�

 �
� 2(V, ne� q0)

i
.

(C.4)

This equation was used to obtain Figs. 2.3 and 2.4 considering a normal metal for the
left and right electrode and the central grain.

C.2 Temperature dependence of small islands

The temperature dependence (from 1.3 K to 8 K) of three islands with varying sizes
is plotted in Fig. C.1(a)-(c). We selected islands with a close to symmetric dI/dV,
i.e., q0 =⇠. Increasing the temperature, the spectra broaden, and the gaps slowly
close. When we use the model introduced in Sec. 5.2 to fit these spectra for several
islands, we obtain Fig. C.1(d). This figure shows the calculated charging energy for
each island using the data taken at T=7 K and T=8 K. The critical temperature of
bulk Pb is TC =7.19 K, so we expect no contribution from either the tip’s or sample’s
gap. We note that the values obtained for the two temperatures are not equal; the
values of EC for the lower temperature appear to be shifted downwards by around 1
meV.

Even if at 7 K, there was a small contribution from the not fully closed supercon-
ducting gap, it can not be 1 meV, which is almost as big as the bulk superconducting
gap. As the charging energy that we measure changes with temperature, we conclude
that either (1) the charging energy has a temperature dependence that we do not know
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Figure C.1:
Temperature
dependence of the
island’s spectra.
(a)-(c) Evolution of
the dI/dV of three
di↵erent islands from
T=1.3 K to T=8
K. All islands are
close to q0 = 0. (d)
Calculation of the
charging energy of
several islands using
the model introduced
in Sec. D.1 for
T = 7K and T = 8K
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C.3. Magnetic field dependence of small islands
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field dependent spectral evo-
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following the model presented in
Sec. 5.2. The dI/dV measure-
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visualize it better.

or (2) the charging energy does not change with temperature, but our fitting model
has two big of an error when temperature increases. It is known that quasiparticle
tunneling (which depends on temperature) can change the e↵ective capacitance of a
junction [67]; on the other hand, we are not considering any e↵ect of the environ-
ment when we calculate the current because we could always assimilate this e↵ect in
the Dynes parameter of the superconducting DoS. Once superconductivity is broken,
the e↵ects of the environment should be considered as a temperature-dependent fac-
tor [218]. Consequently, we can not use the temperature dependence as a probe to
calculate EC and �.

C.3 Magnetic field dependence of small islands

Figure C.2 shows all the spectra measured (blue dots) in an island with an applied
out-of-plane magnetic field up to 2.5 T. On top of the measured conductance, we plot
a fitted curve using the model introduced in Sec. 5.2. The fitting is precise for all
spectra from 0 to 2.5 T, and from it, we can extract the values of EC and � for each
magnetic field and do a plot similar to Fig. 5.5(c). This plot is later fitted applying
Eq. (5.8).

In the following, we discuss the formulas used for each term in Eq. (5.8). The first
term refers to the evolution of the tip’s gap. As stated in Sec. 5.3,

�tip(B) = �0

s

1�

✓
B2

BC

◆2

: �0 = 1.35 meV, and BC = 750 mT. (C.5)

As the tip’s apex can vary from island to island, we assume that the critical field’s
error is �BC ⇠ 100 mT, which we adjust to get the best fit. The second term is the
charging energy (EC), which we assume to be field-independent. The last is a Zeeman
term that considers the split of the odd states in up and down spin states

Ez = �
gisl
2

µBB , (C.6)
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C. Granular superconductivity

where µB is the Bohr magneton and gisl is the island’s g-factor, which can di↵er from
the single-electron value. This term is small; it gives a correction smaller than 100
µeV at 2.5. We take gisl = 2 for the calculations.

The second term, �isl(B), considers the evolution of the island’s superconducting
gap. When the islands are tiny, the trapped flux by the islands starts to be insignifi-
cant, and the superconducting state is broken due to the spin paramagnetism (Pauli
limit) [43, 50, 248, 278]. Our islands are not that small, so the superconductivity is
suppressed due to the more common orbital paramagnetism. We simulate the gap of
the islands following Ref. [239]. The authors claim that for small islands where the
superconductivity is broken due to the orbital paramagnetism, the same formula as in
Eq. (C.5) can be used with a slight change. The gap is independent of the magnetic
field until the field B1 = 2�0/µBpF d is reached, where d is the e↵ective diameter of
the island. This value is a few hundred mT in our islands:

�isl(B) =

8
><

>:

�0 if B  B1

�0

s

1�

✓
(B �B1)2

BC

◆2

if B > B1

. (C.7)

More sophisticated evolution functions could be used (such as Ref. [279]), but we find
Eq. (C.7) to work well for the evolutions we measure.
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D
PoE calculation

This appendix extends the discussion started in Chapter 5 and calculates the e↵ects
of the environment in normal and Cooper Pair tunneling. We begin by solving the
problem of a single junction with the interaction of an environment; we will end up
with a tunneling formula for normal and Cooper pair currents with environmental
e↵ect. Next, the double junction problem will be solved. Again, we will get a normal
and Cooper Pair tunneling formula and present a master equation that considers every
possible charge state of the central region.

D.1 Junction between superconductor with environment

The circuit for which we have to calculate the current is depicted in Fig. D.1(a),
which represents a single JJ. The impedance (Z) considers the e↵ects of the environ-
ment [280]. The Hamiltonian of the system without environment is given by Eqs. (2.2),
(2.16) and (2.17).

Ĥ = ĤL + ĤR + ĤT + ĤC (D.1)

Ĥi =
X

k�

⇠ikĉ
†
ik� ĉik� �

�i
V

X

kk0

ĉ†
ik"ĉ

†
i�k#ĉi�k0#ĉik" (D.2)

ĤT =
X

kq

Tkqĉ
†
Lk� ĉRq� + h.c. (D.3)

ĤC =
1

2C

 
X

k

ĉ†
Lk� ĉLk� � ĉ†

Rk� ĉRk�

2

!2

(D.4)

Hi describes both the superconducting source and drain: ⇠ik = ✏ik � µi is the energy
dispersion and �i is the superconducting coupling, V the volume, C the capacitance
of the junction and ĉ†

ik� (ĉik�) the creation (annihilation) operator of an electron
with momentum k and spin � in the ith electrode. HT is the tunneling Hamiltonian,
where T is tuhe tunneling amplitude [Eq. (2.16)], and HC is the charging energy of
the junction [Eq. (2.17)]. The partition function of the system reads

Z =

Z
D[cL, cL]D[cR, cR]e

�S[cL,cL,cR,cR] . (D.5)

where ci and ci are the Grassman fields related to the annihilation and creation oper-
ators of electrons in the ith electrode, which we take in imaginary times. To integrate
the electronic degrees of freedom, we perform three Hubbard-Stratonovich decou-
plings. Two are for the superconducting correlations of each lead. The other one
(see Ref. [67]) for the charging energy: Vi = e

P
k�hĉ

†
ik� ĉik�i/C. These two fields are

143



D. PoE calculation

C

R

EJ

V

ϕV

Z

ϕ ϕ ϕ
C

R

EJ

C

C

R

EJ

V
ϕV

Z

V

1

1

1

1
G

G

2

2

2

2
a) b)

ϕZ ϕZ

Figure D.1: Equivalent lumped circuits. (a) Circuit for a single JJ. (b) Circuit
for a double JJ. The Z refers to the impedance of the circuit.

connected to the applied voltage as VL � VR = Vx. Where Vx is the voltage drop in
the junction.

Using these fields, the electronic degrees of freedom can be integrated out, leaving
the following partition function;

Z =

Z
D[�L,�L]D[�R,�R]D[V ]e�G[�L,�R,�R,�L,Vx] (D.6)

with, �G[�L,�R,�R,�L, Vx] =
P

k Tr
n
lnG�1

k,k

o
�
P

ik
|�i|2
�i
�
R
�

0 d⌧ CV
2
x

2~ , where,

Ǧ�1
k,k0 =

 
Ǧ�1

Lk,k0 �Ťk,k0

�Ť
†
k,k0 Ǧ�1

Rk,k0

!
, with

Ǧ�1
L(R),kk0 =

⇢
�@⌧ +

✓
⇠L(R) � (+)

ieVX

2

◆
⌧3 � �̌L(R)

�
�kk0�(⌧ � ⌧ 0)

(D.7)

and

�̌L,R =

✓
0 |�L,R|ei�L,R

|�L,R|e�i�L,R 0

◆
Ť =

✓
Ťk,k0 0
0 �Ť

⇤
k,k0

◆
.

ǦL(R),kk’ are the bare superconducting GFs as defined in Eq. (2.10) with a slight
di↵erence. The energy dispersion is shifted by eVX/2, resulting from the potential
drop in the junction.

We neglect any fluctuations from the average values for�i, so only the integral over
Vx has to be performed in Eq. (D.6). We also assume no k-dependence on the tunnel-
ing term, Tkk’ = T . Applying the following gauge, Ǔ = diag

�
ei�L⌧3/2, ei�R⌧3/2

 
, we

144



D.1. Junction between superconductor with environment

get rid of the � dependence on the superconducting gap. The GF after the transfor-
mation reads

Ǧ�1
L(R),kk0 =

⇢
�@⌧ +

✓
⇠L,R ± i


@⌧�L(R)

2
⌥

eVX

2

�◆
⌧3 � |�L(R)|⌧1

�
�kk0�(⌧ � ⌧ 0)

(D.8)

and

Ť = T ⌧3e
i�⌧3/2, with � = �L � �R . (D.9)

Without a loss of generality, we assumed T to be real. The action-minimizing path
respect to the phase reads

@⌧� = 2eVX . (D.10)

This is known as Josephson’s second relation [69]. Considering this, the partition
function can be written as

Z =

Z
D[�]e�G[�] . (D.11)

We expand the GF on the exponent to first order in tunneling: �G[�] = Tr
�
ln Ǧ

 
⇠

Tr
�
ln Ǧ0

 
+ 1

2 Tr
�
Ǧ0Ť Ǧ0Ť

 
. We sumed over momentum, so Ǧ and Ǧ0 are the dressed

and bare GF of the system projected into the position of the tunneling, respectively.
The partition function reads,

Z =

Z
D[�] exp

⇢Z Z
↵(⌧ � ⌧ 0) cos

✓
�(⌧)� �(⌧ 0)

2

◆
� �(⌧ � ⌧ 0) cos

✓
�(⌧) + �(⌧ 0)

2

◆�

+

Z
d⌧

C

8e2
(@⌧�)

2 .

(D.12)

with

↵(⌧) = �2|T |2gL(⌧)gR(�⌧)]/2 �(⌧) = �|T |2fL(⌧)fR(�⌧)]/2 , (D.13)

where gi(⌧)⌧3 + fi(⌧)⌧1 =
P

k Gik. In imaginary times, the current reads,

I =e Im

⇢Z
d⌧ 0↵(⌧ � ⌧ 0)hei�(⌧)/2e�i�(⌧ 0)/2

i+

Z
d⌧ 0�(⌧ � ⌧ 0)hei�(⌧)/2ei�(⌧

0)/2
i

�

(D.14)

We need to calculate the averages hei�(⌧)/2e±i�(⌧ 0)/2
i over phase fluctuations. To

consider the e↵ect of the circuit modes, one adds an environment made of harmonic
oscillators that interact with the tunneling electrons. The action attributed to these
oscillators can be encoded in a new phase with an e↵ective action (see Ref. [280])

Sz[�z] =
1

2�

X

!

|!|

4e2
Z(�i|!|)�z(!)�z(�!) . (D.15)
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D. PoE calculation

We add this new phase to the partition function (D.12) and calculate the averages.
From energy conservation, we get that �+ �z + �V = 0 [Fig. D.1], with @⌧�V = 2eV .
We assume that the partition function can be written as

Z =

Z
D[�] exp

⇢
�

Z
d⌧EJ cos(�(⌧)) +

Z Z
d⌧d⌧ 0↵(⌧ � ⌧ 0) cos

✓
�(⌧)� �(⌧ 0)

2

◆�

+

Z
d⌧

C

8e2
(@⌧�)

2Sz[�z]; .

(D.16)

Seemingly, the current can be simplified to

hIi = EJhsin�(⌧)i+

Z
↵(⌧ � ⌧ 0)hsin

�(⌧)� �(⌧ 0)

2
i . (D.17)

In these steps, we have disregarded the term in the supercurrent with a ⌧ + ⌧ 0 depen-
dence (exp{�(⌧) + �(⌧)}). A discussion about the implications of this term can be
found in Ref. [267].

When the phase-phase correlation is calculated, we will assume that EJ ,↵ �
Z�1. This disregards any crossed interaction between the environment and tunneling
current: the environment a↵ects the tunneling current but not vice versa. Within this
approximation, we get

hei�(⌧)e�i�(⌧ 0)
i =Z

�1

Z
D[�] exp

(
i

2�

X

!

�(!)(ei!⌧ � ei!⌧
0
)�

X

!

C!2

8�e2
�(!)�(�!)

X

!

|!|

8e2�Z(�i|!|)
(�(!) + �V (!))(�(�!) + �V (�!))

)

(D.18)

This is a Gaussian integral, hence, it can be performed exactly. After integration, we
get

hei�(⌧)/2e�i�(⌧ 0)/2
i

= exp

(
�

X

!

1� cos(!(⌧ � ⌧ 0))

�
D�1
!

+ i
X

!

|!|

8e2�Z(�i|!|)
D�1
!
�V (!)(e

�i!⌧
� e�i!

0
⌧
0
)

)

(D.19)

with

D�1
!!0 = D�1

!
�!,�!0 =

8e2��!,�!0

�C!2 + |!|Z�1(�i|!|)
(D.20)

This equation can be written in a more familiar way by calculating h�(⌧)�(⌧ 0)ieq,
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D.1. Junction between superconductor with environment

where, eq means equilibrium, i.e., no applied voltage (�V = 0),

h�(!)�(!0)i = Z
�1

Z
D[�]�(!)�(!0)e�

P
⌫⌫0 �(⌫)D⌫⌫0�(⌫0)

= lim
⌘,�!0

Z
�1@⌘@�

Z
D[�]e�

P
⌫⌫0 �(⌫)D⌫⌫0�(⌫0)+⌘�(!)+��(!0)

= lim
⌘,�!0

@µ@� exp
�
⌘D�1

!
��!,�!0

 
= D�1

!
�!,�!0 =

8e2��!,�!0

�C!2 + |!|Z�1(�i|!|)

(D.21)

then, h�(⌧)�(⌧ 0)ieq = h�(⌧ � ⌧ 0)�(0)ieq =
P
!
e�i!(⌧�⌧ 0) 8e2�

�C!2+|!|Z�1(�i|!|) . With

this, we can rewrite the second term in Eq. (D.17) as

hsin
�(⌧)� �(⌧ 0)

2
ieq =sin

(
X

!

|!|

Z�1(�i!)(�C!2 + |!|Z�1(�i!))

⇣
ei!⌧ � ei!⌧

0
⌘
�V (!)

)

⇥ exp

⇢
�
1

8
h[�(⌧)� �(⌧ 0)]2ieq

�

(D.22)

Finally, we note that Z(!)Vz(!) = I(!)) I(!) = �Z(!)
i!

(�(!)+�V (!)) =
Zc(!)
i!

�(!),

with Zc(!) = 1/(C! + Z�1(!)), so that �V (!) = �
Zc
Z
(1 + �(!)). Then,

hsin
�(⌧)� �(⌧ 0)

2
i = sin

⇢Z
⌧

⌧ 0
eV (s)ds

�
exp

⇢
�
1

8
h[�(⌧)� �(⌧ 0)]2ieq

�
(D.23)

Here the second Josephson relation have been applied to write �V (⌧) =
R
⌧
dseV (s)

D.1.1 The single particle tunneling

The single-particle tunneling for a DC applied voltage reads [see Eq. (D.14)]

I = e

Z
d⌧ 0↵(⌧ � ⌧ 0) sin (eV (⌧ � ⌧ 0)) exp

⇢
�
1

8
h[�(⌧)� �(⌧ 0)]2ieq

�
(D.24)

The analytical continuation of this equation brings the tunneling current modified by
the PoE function [45, 54, 71, 72, 156], which reads,

I = 4e

Z
t

�1
dt0 sin(eV (t� t0)) Im

⇣
↵>(t� t0)eJ(t�t

0)
⌘
, (D.25)

with

J(t) =
1

4
h[�(t)� �(0)]�(t)ieq

=
e2

⇡

Z 1

0
d!

ReZc(!)

!
[coth(�!/2)(cos(!t)� 1)� i sin(!t)]

(D.26)
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D. PoE calculation

the > sign means that we are taking the ’greater’ term of ↵(t) in the Keldish contour
[63]. By noting that J⇤(t� t0) = J(t0 � t), the current simplifies to (see Ref. [45])

I = 4|T 2
|e

Z
d!d!0g>

L
(!)g<

R
(!0)P (!0

� ! � eV )� g<
L
(!)g>

R
(!0)P (! � !0 + eV )

= 4|T 2
|⇡2e

Z
d!d!0⇢L(!)⇢R(!

0)f(!)f(�!)P (!0
� ! � eV )

�⇢L(!)⇢R(!
0)f(�!)f(!0)P (! � !0 + eV ) .

(D.27)

g< and g> are the ’lesser’ and ’greater’ GFs, which we connect with the DoS via
fluctuation-dissipation theorem: g<(!) = 2i⇡⇢(!)f(!) and g>(!) = �2i⇡⇢(!)f(�!).
Moreover, P (!) =

R
exp(J(t) + i!t) is the PoE function. For no environmental e↵ects,

we take P (!) = �(!) and obtain Eq. (2.20).

D.1.2 The Cooper Pair (Josephson) tunneling

We now focus on the tunneling of Cooper pairs. In Sec. 2.2, we deduced a for-
mula for the Josephson current in a tunneling junction and found that for an applied
DC voltage, only an AC current develops. Moreover, if the phase between the su-
perconductors is not fixed, there is no Josephson current for zero voltage. In the
following, we prove that when the e↵ects of the environment are considered, there
is a nonzero current response of Cooper pair to a DC applied voltage that is second
order in transmittance. For this, we must calculate the average in the first term in
Eq. (D.17): hsin�(⌧)i. Assuming a small applied voltage (V . �/e) ↵ << EJ , Z�1,
and expanding the partition function to first order in EJ ,

�EJhsin�(⌧)i = Z
�1

Z
d⌧ 0

Z
D sin�(⌧) cos�(⌧ 0)e�S0[�V ,�]

⇠
E2

J

2

Z
d⌧ 0hsin(�(⌧)� �(⌧ 0))i

(D.28)

from eq. (D.23) we easily get that

IS = �EJhsin�(⌧)i =

Z
d⌧ 0 sin

⇢Z
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⌧ 0
2eV (s)ds

�
exp
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1
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h[�(⌧)� �(⌧ 0)]2ieq
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(D.29)
The analytical continuation reveals the solution obtained in Refs. [45, 46, 72].

I = ⇡eE2
J
(P 0(2eV )� P 0(�2eV )) , with P 0(!) =

Z
dte4J(t)+i!t (D.30)

Using this equation, we can extract the PoE of our system from the IVC in a small
window around V = 0, as the one shown in Fig. D.2(a). Applying Eq. (D.30) to fit
the measurements of the incoherent current or Cooper pair in an atomic-scale junc-
tion, we can extract the shape of the PoE function for our circuit [51]. This is shown
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Figure D.2: PoE of the STM circuit. (a)IVC in a small window around V=0 at
R = 20 k⌦. (b) Extracted PoE and a fir with a Gaussian distribution.

in Fig. D.2(b). The PoE has a Gaussian shape peaked at 0.15 meV and a thickness of
⇠ 100 µeV. In the limit of low environmental coupling, the PoE function approaches

P (!) ! �(!). For strong coupling, it becomes P (!) ! exp
h
�C (!�e

2
/2C)2

2kBT

i
, rep-

resenting a Gaussian centered at e2/2C. Our extracted distribution is shifted to
0.15meV, indicating that we are not in the very weak coupling limit. Moreover, a
Gaussian fit (orange curve) is not perfect, as the distribution if nos completelly sim-
metric around the maxima. The tip-sample capacitance is generally low [156], so we
expect EC � 0.15 meV. The obtained distribution suggests we are in an intermediate
regime between weak and strong coupling.

D.2 Double Josephson Junction with environment

The approach to a double tunneling barrier it similar to the single tunneling barrier
case. The action has now a new variable, connected to the island’s degrees of freedom.
In this case, the Josephson relation (D.10) is a little more complex,

@⌧�L(x) = eV1

@⌧�C(x) = eV2 � eV1(+eVG)

@⌧�R(x) = �eV2,

(D.31)

where Vi is the voltage drop in the ith junction, �j is the phase in j = L, j = C and
j = R, and VG is the gate voltage, see Fig. D.1(b). We will omit the gate voltage for
now. To get the proper Josephson relation, one has to apply a gauge to the potential:
� = V1�V2

2a xt + V1�V2
2 t, where 2a is the thickness of the island. With this gauge, we

get the following;

@⌧ (�L(�a)� �C(�a)) = @⌧�1 = 2eV1

@⌧ (�C(a)� �R(a)) = @⌧�2 = 2eV2
(D.32)

where ±a are the positions of the junctions. After the mean field is applied to the
charging of each junction, the following e↵ective action is obtained from the charging
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Hamiltonian Eq. (2.27);
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(D.33)

where two new phases were defined: � = �1 + �2 and  = 2�1 � 1�2, with 1 =
C2/C⌃, 2 = C1/C⌃, C = C1 + C2 and C⌃ = C1C2/C. These are the same as the
ones used in Eq. (2.27). � is related to the charge transfer through the whole system,
while  is related to the charge of the island, i.e., [�̂, Q̂] = ie and [ ̂, q̂] = ie. We can
now write the total action in the tunneling limit as
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(D.34)

where EJi is the Josephson couplin of the ith junction and ↵i(⌧) is defined as in Eq.
(D.13) for each junction. We again neglected any term that is a function of ⌧ + ⌧ 0.
Calculating the tunneling of Cooper pairs in each junction separately reads

I1
S
= 2eEJ1hsin�1(⌧)i ⇠ 2eE2

J1

Z
d⌧ Im

n
hei1(�(⌧)��(⌧ 0))ei( (⌧)� (⌧

0))
i

o
. (D.35)

Here, we applied the same expansion in EJ as in Eq. (D.28). Note that at first order
in the EJ , a term connecting the two junctions would also appear, proportional to
EJ1EJ2. We disregard this term for now. For small voltages and ↵⌧ EJ ⌧ Z�1, both
� and  are separated in the action, so we can calculate their averages independently.
The ei is the 2e translator operator for the charge of the island. Then, its average
reads

hei( (⌧)� (⌧
0))
i =

X

n,n0

pn hn| e
i (⌧)

|n0
i hn0

| e�i (⌧ 0)
|ni =

X

n

pne
i(En�En�2)(⌧�⌧ 0)

(D.36)
The pn should be calculated using a rate equation (see below), as we are looking at a
dynamic problem. To get to Eq. (D.36), we have assumed that n, the charge state of
the island, is a good quantum number. This is only true for EJ ⌧ EC . Within this
approximation, it is straightforward to solve the remaining problem, as we can follow
the same steps we took in the single junction case. The current for the first junction
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in real times for a DC drive reads
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(D.37)

with P̃i(!) =
R
dt exp(4iJ(t) + i!t). To properly calculate the populations pn, a

master equation should be employed. For this, we define the rate of tunneling as

�!
� 1,n = ⇡eE2

J1P̃1(2eV � 4Ec(n+ 1� q0/e))
 �
� 1,n = ⇡eE2

J1P̃1(2eV � 4Ec(1� n� q0/e)).
(D.38)

The rates for the second junction are similar. Then Eq. (C.3) is used with the defined
rates to calculate pn, with even n. For the limit where �1 ⌧ �2, equal to the single-
particle tunneling case in Chp. 5, the Cooper pair tunneling will be fixed by the rates
of the first junction. Note that EJi depend on EC and q0 [47], so a more careful
calculation should be done.
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A few facts to enliven your reading

1. Few people being remembered for the works of many does not apply only to
science but to any history-related event and has been discussed by historians
and philosophers. An example of this fact that I very much like is the concept
of ”intrahistoria,” coined by Miguel de Unamuno.

2. Both Alhazen (Ibn Al-Haytham) and Avicenna (Ibn Sina) were intellectuals in
the Islamic golden era. Alhazen is regarded as the creator of the scientific method
as well as the first to propose that light always follows an extremal path (also
known as the Fermat law). Both proposed the inertia law, and Avicenna even
proposed an idea similar to Newton’s second law, which was more than 500 years
before Newton’s era. Galileo gave credit to these two intellectuals in his work
proposing the inertia law. The inertia law has had a long trip before current
days. Even in ancient China, in the Warring States period (⇠ 300 BC), Mozi,
a philosopher and founder of Mohism, wrote, ’The cessation of motion is due to
the opposing force... If there is no opposing force... the motion will never stop.
This is as true as that an ox is not a horse.’

3. Leiden University was founded as a gift for the city of Leiden because they helped
in the independence war against Spain. It has always had a remarkable indepen-
dence related to their teaching. Due to this special regime, it is one of the three
universities that defined for the first time the concept of Academic Liberty: the
idea that the universities should be able to select their teaching independently
to any social or political change in their countries. Thus, this university has
been at the center of many scientific discoveries, including superconductivity.

4. Note that Superconductivity was found in 1911, only a decade after Drude pro-
posed his model for electrical conductivity. From Drude’s formula one concludes
that conductivity should fall down to zero at T = 0, something that was highly
believed (William Thomson was a defender of this idea) and only theoretically
disproven with the rise of quantum theory (Pauli’s exclusion principle)

5. How is a superconductor di↵erent from a perfect metal due to the Meissner
e↵ect? Let us take a metal in a magnetic field and suddenly make the metal
to be perfect. The field inside the metal will remain the same before maki it
perfect. This does not happen with superconductivity. Independently to the
field the metal had before becoming a superconductor, the field inside the metal
will always be zero when it transitions into a superconductor.

6. Gor’kov was one of the most important scientists to unite Soviet and Western
research in this area. Two years after the BCS discovery, he published a paper
in Russian and English, proving that one can derive the Ginzburg-Landau free
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energy from the newborn microscopic theory. This and Abrikosov’s finding on
the vortices in type II superconductors were the two main findings that gave
popularity to the theory.

7. Interestingly, the original Bogoliuvob paper defining his transformation[64] -later
known as the bogoliubov transformation- was submitted a few months before
the BCS theory was published[8]. In this work, Bogoliuvob cites Frölich’s paper
on superconductivity[13] and a short letter published by Bardeen, Cooper, and
Schi↵er [14] discussing the microscopic reasoning for the formation of Cooper
Pairs. Although he does not write down the BCS GS, it is inherent from his
equations that the BCS GS is indeed the solution to the problem and is more
than a simple variational solution.

8. We do not get credit for how advanced London’s notion of superconductivity was.
In a meeting of the Royal Society in 1935, Fritz London discussed the quantum
origin of his electromagnetic equations for superconductivity. He claimed that
superconductors act as a ”single big diamagnetic atom”. He even claimed that
some force should couple electrons, so a finite energy gap between GS and ex-
cited states should exist.[7] London suggested that a rigid enough GS would
have a linear response on the magnetic vector potential, explaining the Meissner
e↵ect.[281] Pippard later stated that the response of the superconductor is not
directly proportional to the magnetic vector potential but to its integral in a
region around the point in question, defining the coherence length.

9. The BCS ground state (2.5) can be rewritten in the following way:

|BCSi =
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where ⇤̂† is the creation operator of Cooper pairs. Then, the ground state is a
coherent combination of even states
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The BCS ground state breaks gauge invariance, so although the transformation

ĉ†k� ! ei�̂ĉ†k� does not change the ground state energy, |BCSi develops a phase:
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The states |BCS,�i, form a family of degenerate broken-symmetry GS. Applying
the number operator to this ket
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i.e., N̂ = �id/d�̂, so
[N̂ , �̂] = i or [n̂, �̂] = 2i . (E.5)

Phase and number are conjugate operators. An inverse Fourier transform of Eq.
(E.3) projects the ground state to a particle-conserving state:

|NBCSi =
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2⇡|AN |

Z 2⇡

0
d�e�i�N

|BCS,�i (E.6)
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�
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Where, |AN | is a probability distribution peaked around hBCS| N̂ |BCSi.

10. Although Bardeen, Brattain and Shockley are regarded as the creators of the
transistor, 20 years before their invention, Julius Edgar Lilienfeld had already
patented the field-e↵ect transistor in Canada. He could not patent it in the USA,
so it was forgotten with time. Bardeen, Brattain, and Shockley proposed the
point-contact transistor. It is also said that Shockley tried to take full credit for
the invention of the transistor; for this reason, Bardeen and Brattain published
Ref. [282] by themselves.

155





Bibliography

[1] J. Zaldivar. “Magnetic-impurity-induce bound stats in -Bi2Pd”. PhD thesis.
University of the Basque Country, 2020.

[2] K. Vaxevani et al. “Extending the spin excitation lifetime of a magnetic molecule
on a proximitized superconductor”. In: Nano Letters 22 (2022), pp. 6075–6082.
doi: 10.1021/acs.nanolett.2c00924.

[3] S. Trivini et al. “Cooper pair excitation mediated by a molecular quantum spin
on a superconducting proximitized gold film”. In: Physical Review Letters 130
(2023). Number of pages: 6 Publisher: American Physical Society, p. 136004.
doi: 10.1103/PhysRevLett.130.136004.

[4] S. Trivini. “Manipulating superconductivity at the nanoscale through mag-
netism and proximity e↵ects”. PhD thesis. University of the Basque Country,
2023.

[5] G. Binnig and H. Rohrer. “Scanning tunneling microscopy”. In: Surface Science
126 (1983), pp. 236–244. doi: 10.1016/0039-6028(83)90716-1.

[6] J. Bardeen. “Tunnelling from a Many-Particle Point of View”. In: Physical
Review Letters 6 (1961), pp. 57–59. doi: 10.1103/PhysRevLett.6.57.

[7] J. Bardeen. “Developments of concepts in superconductivity”. In: Physics To-
day 16 (1963), pp. 19–28. doi: 10.1063/1.3050710.

[8] J. Bardeen, L. N. Cooper, and J. R. Schrie↵er. “Theory of Superconductivity”.
In: Physical Review 108 (1957), pp. 1175–1204. doi: 10.1103/PhysRev.108.
1175.

[9] I. Giaever. “Electron Tunneling Between Two Superconductors”. In: Physical
Review Letters 5 (1960), pp. 464–466. doi: 10.1103/PhysRevLett.5.464.

[10] J. Nicol, S. Shapiro, and P. H. Smith. “Direct Measurement of the Supercon-
ducting Energy Gap”. In: Physical Review Letters 5 (1960), pp. 461–464. doi:
10.1103/PhysRevLett.5.461.

[11] N. N. Bogoljubov, V. V. Tolmachov, and D. V. Širkov. “A New Method in the
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Alfredo Levy Yeyati, José Ignacio Pascual, and F. Sebastian Bergeret. ”Yu-
Shiba-Rusinov states in two-dimensional superconductors with arbitrary Fermi
contours.” Phys. Rev. B, 105(24), 245403 (2022). doi: 10.1103/PhysRevB.
105.245403

• Stefano Trivini, Jon Ortuzar, Katerina Vaxevani, Jingchen Li, F. Sebastian
Bergeret, Miguel A. Cazalilla, and Jose Ignacio Pascual. ”Cooper pair exci-
tation mediated by a molecular quantum spin on a superconducting proxim-
itized gold film.” Phys. Rev. Lett., 130(13), 136004 (2023). 10.1103/Phys-
RevLett.130.136004

• Jon Ortuzar, Jose Ignacio Pascual, F. Sebastian Bergeret, and Miguel A.
Cazalilla. ”Theory of a single magnetic impurity on a thin metal film in proxim-
ity to a superconductor.” Phys. Rev. B, 108(2), 024511 (2023). doi: 10.1103/Phys-
RevB.108.024511

• Stefano Trivini, Jon Ortuzar, Javier Zaldivar, Edwin Herrera, Isabel Guil-
lamón, Hermann Suderow, F. Sebastian Bergeret, Jose Ignacio Pascual. ”Diluted
Yu-Shiba-Rusinov arrays on the �-Bi2Pdanisotropic superconductor.” Phys. Rev.
B, 110(23), 235405 (2024). doi: 10.1103/PhysRevB.110.235405

Further publications

• Katerina Vaxevani, Jingcheng Li, Stefano Trivini, Jon Ortuzar, Danilo Longo,
Dongfei Wang, and Jose Ignacio Pascual. ”Extending the spin excitation lifetime
of a magnetic molecule on a proximitized superconductor.” Nano Letters, 22(15),
6075-6082 (2022). doi: 10.1021/acs.nanolett.2c00924

• Anastasiia Skurativska, Jon Ortuzar, Dario Bercioux, F. Sebastian Bergeret,
and Miguel A. Cazalilla. ”Robust spin polarization of Yu-Shiba-Rusinov states
in superconductor/ferromagnetic insulator heterostructures.” Phys. Rev. B,
107(22), 224507 (2023). doi: 10.1103/PhysRevB.107.224507

179



Bibliography
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• III International Conference on Novel 2D Materials Explored Via
Scanning Probe Microscopy & Spectroscopy (2DSPM2024). UPV/EHU,
Donostia/San Sebastián, 24-28 Jun (2024). ”Control of the Superconducting
Diode E↵ect on Pb Islands Mediated by the Coulomb Blockade.”

7.0.1 Doctoral Trainings

• Doctoral Training: Frontiers of Condensed Matter. École de Physique,
Des Houches, 10-21 November (2023).
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