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The position-dependent exact-exchange energy per particle &,(z) (defined as the interaction between a given
electron at z and its exact-exchange hole) at metal surfaces is investigated, by using either jellium slabs or the
semi-infinite (SI) jellium model. For jellium slabs, we prove analytically and numerically that in the vacuum
region far away from the surface sflab(z—>°°)—>—e2/2z, independent of the bulk electron density, which is
exactly half the corresponding exact-exchange potential V,(z— ©)— —e?/z [Horowitz ef al., Phys. Rev. Lett.
97, 026802 (2006)] of density-functional theory, as occurs in the case of finite systems. The fitting of sflab(z)
to a physically motivated imagelike expression is feasible but the resulting location of the image plane shows
strong finite-size oscillations every time a slab discrete energy level becomes occupied. For a semi-infinite
jellium, the asymptotic behavior of sfl(z) is somehow different. As in the case of jellium slabs sfl(z—mo) has
an imagelike behavior of the form x—¢?/z but now with a density-dependent coefficient that, in general, differs
from the slab-universal coefficient 1/2. Our numerical estimates for this coefficient agree with two previous
analytical estimates for the same. For an arbitrary finite thickness of a jellium slab, we find that the asymptotic
limits of aflab(z) and sfl(z) only coincide in the low-density limit (r;—0), where the density-dependent

coefficient of the semi-infinite jellium approaches the slab-universal coefficient 1/2.

DOI: 10.1103/PhysRevB.80.235101

I. INTRODUCTION

The jellium model of a metal surface, introduced by
Bardeen in 1936, is the simplest model which reproduces
qualitatively, and sometimes quantitatively, the physical
properties of real-metal surfaces.”? While in his work Bardeen
applied an approximated Hartree-Fock (HF) theory for the
study of the electronic structure since the seminal work of
Lang and Kohn? the standard theoretical tool applied to the
study of the electronic structure of metal surfaces has been
density-functional theory (DFT).* As in the original work of
Lang and Kohn, most of the subsequent investigations have
applied the local-density approximation (LDA) of DFT or
some of its semilocal variants [generalized gradient approxi-
mation (GGA), meta-GGA, etc.]. This approach has been
highly successful and routinely yields good results for
global-surface properties such as work functions, surface en-
ergies, crystal-structure relaxation, and reconstruction, etc.)

At a more basic level, however, some problems still re-
main to be solved, concerning for instance the asymptotic
behavior of the exchange-correlation (xc) potential of the
widely used Kohn-Sham (KS) approach to DFT. In the LDA,
this potential decays exponentially when evaluated in the
vacuum region, instead of the expected imagelike «—e?/z
behavior.® This qualitative failure of the LDA xc potential
translates to a similar failure of the position-dependent xc
energy per particle, &,.(r), which is defined through’
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E.[n]= f n(r)e . (r)dr (1)

with E, [n] being the xc-energy contribution to the universal
energy functional of DFT and n(r) representing the electron
density. Three aspects of Eq. (1) are worth emphasizing: (i) it
represents the basic expression for the LDA, in which the
exact &,.(r) of an arbitrary inhomogeneous electron system
is replaced at each point r by that of a homogeneous electron
gas at the local density n(r) and for a plethora of generali-
zations of the LDA,? (ii) since E, [n] can be split as the sum
of exchange (E,[n]) and correlation (E.[n]) contributions,
one can write &,.(r)=g,(r)+e.(r), and (iii) the position-
dependent xc energy per particle &,.(r) entering Eq. (1) is
not unique. One can always add to &,.(r) an arbitrary func-
tion &(r) with the condition that weighted by the electron
density n(r) integrates to zero. Here we have chosen &,.(r)
to represent the interaction between a given electron at r and
its xc hole.

The goal of this work is to provide exact analytical and
numerical calculations of the exact exchange &,(r) for jel-
lium slabs and the semi-infinite (SI) jellium. In particular, we
analyze the asymptotic behavior of the exact £,(r) in the
vacuum region far away from the surface, and we find that
there is a qualitative difference between eflab(z—WO) and
sfl(z—wo): both exhibit an imagelike behavior of the form
—ae?/z(a>0) but with a coefficient a that while in the case
of jellium slabs is universal and equal to 1/2 in the case of a
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semi-infinite jellium depends on the density of the bulk ma-
terial and only approaches 1/2 in the low-density limit. The
results reported here should help to settle the still controver-
sial issue of the asymptotic behavior of the position-
dependent xc energy per particle and KS xc potential at
metal surfaces.”!!

Besides, being the results presented here exact at the ex-
change level, they should also serve as a benchmark against
to which DFT xc calculations could be confronted, and hope-
fully improved, once reduced to their exchange-only version.
In this context, very recently Luo et al.'? have used a HF
scheme to report self-consistent calculations of the surface
energy and work function of jellium slabs.

The rest of the paper is organized as follows: in Sec. II we
present the general theoretical background for both jellium
slabs and the semi-infinite jellium, and we derive exact ana-
Iytical expressions for the position-dependent exchange en-
ergy per particle in the vacuum region far away from the
surface. Numerical calculations that are valid at all positions,
from the bulk region to the vacuum, are reported in Sec. III.
Section IV is devoted to the conclusions.

II. JELLIUM SLABS AND THE SEMI-INFINITE JELLIUM:
THE EXACT ASYMPTOTIC BEHAVIOR

A. Jellium slabs

In the case of jellium slabs, with the discrete character of
the positive ions inside the slab being replaced by a uniform
distribution of positive charge (the jellium background), the
positive jellium density is

nS(2) = T0(= 2) 0(d + 2), (2)

which describes a slab of width d, number density 7,'3 and
jellium edges at z=—d and z=0. 6(z) represents the Heavi-
side step function: €#(z)=1 if z>0 and 6(z)=0 if z<<0. The
size of the slab is infinite in the x-y plane. The jellium slab is
taken to be invariant under translations in the x-y plane so
the KS eigenfunctions can be rigorously factorized as fol-
lows:
eik-p
‘Pi,k(l') = ?fi(z), (3)
VA

where p and k are the in-plane coordinate and wave vector,
respectively, and A represents a normalization area in the x-y
plane. &(z) are normalized spin-degenerate eigenfunctions
for electrons in slab-discrete levels (SDL) i(i=1,2,...) with
energies ¢;; they are the solutions of the effective one-
dimensional KS equation

. A
hys(2)€(2) = | = -5+ Vks(2) —&; |&(z) =0 (4)

2m, 7
with m, being the electron mass. It is important to remark
here that the factorization of the three-dimensional (3D)
wave function as proposed in Eq. (3) is only valid for the
case of a local potential as is the case of the KS implemen-
tation of DFT. On the other hand, in the HF approximation
the nonlocality of the Fock potential introduces a coupling
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between k and i quantum numbers.'? As a consequence, HF
numerical calculations are more time consuming than the
ones presented here, either LDA, KLL'* or OEP."

The local KS potential Vis(z) entering Eq. (4) is the sum
of two distinct contributions

VKS(Z) = VH(Z) + ch(Z) 5 (5)
where Vy(z) is the classical (electrostatic) Hartree potential,
given by!'®

Vi(2) = 2782 f i’z =2/ [ - m ()], (6)

Here, n3'%°(z) is the electron number density!”

occ.

nSib(z) = ZLE KYIEG)P. )
™

where ki.=\2m,(e;—e;)/h and ep=gp(i1,d) is the Fermi en-
ergy or chemical potential, which in turn is determined from
the neutrality condition for the whole system by the condi-
tion Ef“"'(k})2:277dﬁ . V..(2) is the nonclassical xc potential,
which is obtained as the functional derivative of the
xc-energy functional E, [n(z)] (Ref. 18)

_ 1 6E,[n(2)]
A on(z)
Both for the slab and semi-infinite [d — o limit of Eq. (2)]

geometries, and as a consequence of the translational sym-
metry in the x-y plane, Eq. (1) simplifies to

Ve(2) (®)

E.[n]=A J dzn(z)€,.(2), )

—o0

where &,.(z) is the position-dependent xc energy per particle
at plane z. In the case of jellium slabs, the exchange-only
contribution to E,[n] (which is originated in the Pauli ex-
change hole with all other correlation effects excluded) is
known to be given by the following expression:'®

E)S(lab[ n]
occ.

=—2e’A, k}kjpf dzf dz' ¢i(z,2") @iz, 2)Fij(z,2),
i’j —00 —00
(10)

where ¢;(z,2")=¢§(z)"§(z') and
1 (7 dpJi(pki)J,(pk})
Fi(z,2") = —f — (11)
! 4wty p Np*+(z-2')?
with J;(x) being the cylindrical Bessel function of first
order.?
Comparison of Egs. (9) and (10) yields the following ex-
pression for the exchange-only contribution to sf.iab(z):
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occ.

8§1ab(2) == Sldb( )2 kaFJ dZ’@i(Z,Z,)(Pj(Z,aZ)Fij(Z,Z,)s

(12)

which can be interpreted as the energy due to the interaction
of an electron at z and its exchange-only Pauli hole. In order
to demonstrate that the exact-exchange energy per particle
&'%"(z) of Eq. (12) represents indeed the interaction between
an electron at z and its exact-exchange hole, we appeal to the
following expression for the exchange hole for our slab
geometry?!

occ.

h(r;r+R) = E Kkl 1 (PK()T 1 (pk)

2(’7Tp)2 Slab( )
XE&(z+2)" ()€ (z+ 2)é(2)", (13)

which represents the density of the exchange hole at point
r+R (observational point) due to the presence of an electron
located at r. Owing to the translational symmetry in the x-y
plane without loss of generality we have choose r=(0,z), r
+R=(p,z+Z). Using Eq. (13), and defining z'=z+Z, Eq.
(12) may be rewritten as

smb , hzs _n\Zp2) )
— dz , 14
(0)= f f e

which justifies the physical interpretation of £3'*(z) as the
interaction energy of an electron located at z and the “charge
distribution” given by h.(z;p,z’). Equations (13) and (14)
can also be used as a sort of alternative definition of the

£3%(7) investigated in this work as they solve the nonu-
niqueness of 8SIab(z) which results from its definition through
the exchange-only version of Eq. (9).2%2

1. Single-occupied slab-discrete level

In order to obtain the asymptotic behavior of () at

z— o, we first restrict our analysis to the case where there is
one single-occupied SDL.?* In this special case, in which i
=j=1, Eq. (12) yields [see also Egs. (7) and (11)]

” “dp [J,(pkh)T?
Sldb( )=- 2]_ dZ,|§1(Z,)|2f0 * /[2l(p F)],_z,

P Np +(z-2")
(15)
or, equivalently (see Appendix)
g5l e |§1(Z )P 1 Qkp|z-7'))
1 (@)= - =
— | <=z | kF|Z_Z |
L(2kpz -7’
+—1( 1 i i D] (16
kplz—2'|

with 7, and L, being the modified Bessel and Struve func-
tions, respectively.?’

We note that Eq. (16) is valid for all z, both inside and
outside the jellium slab. Also, the cancellation of 15%°(z)
which occurs in passing from Egs. (12)—(15) allows for the
numerical calculation of sSlab( ) for arbitrarily large values
of z.
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Asymptotic behavior.. For the slab geometry, it is permis-
sible (and rigorous) to take the asymptotic limit kh|z—z']
2zk}p>1 although the integral over z’ runs from — to +.
This is due to the fact that for a given z the main contribution
to the integral in Eq. (16) comes from values of 7 inside the
slab (-d=<z'=0), as £,(z) decays exponentially one or two
Ap’s from each jellium edge.

At this point, we define F(x)=1-1,(2x)/x+L,;(2x)/x and
use the asymptotic expansions of /; and L; in the limit x
> 1. We obtain?®

2 1
F(x>l)—>1——+—3—'“. (17)
T 22X

Hence, as zk;,> 1, Eq. (16) yields the following asymptotic
behavior:

2
s‘ab(z—>oo)—>—ZZ<1+%+§+--->, (18)

where  B,(d, r) Zd,ry) - 2/[7Tk (d,r)] and  y(d,ry)
=22Y(d,r,)-47'/ [ka(d r,)], mean values being defined here

as 0'=[¢(2)*0(2)&(z)dz. The r, dependence of Z'(d, r,) and
2'(d ,r,) comes from the self-consistent KS wave functions
£&(z), which for a given d are different for different values of
the slab density dictated by r,. For details on the derivation
of Eq. (18) from Eq. (16), we refer to the Appendix.

2. General situation

For the general situation where more than one SDL is
occupied, we obtain the asymptotic limit of Eq. (12) by using
the fact that for z— o (i) the electron density is dominated by
the slowest decaying KS orbital, which corresponds to the
highest occupied SDL (i=m) and (ii) the numerator of Eq.
(12) is dominated by the term i=j=m since all &(z) with i
# m decay exponentially two or three Az’s from each jellium
edge. Hence, in the vacuum region far away from the surface
we find
(k ’”)2

nSIab(Z_>oo)_>

|§m( ) (19)

and

Q. 2
|€n(2)?

Sl'clb(Z OO) .

J dz' ©,(2,2") (2" D) Fp(2,2")
(20)
or, equivalently [see Eq. (11)]

” “dp [J,(pkM7T?
e N "’ZJ dZ’Ifm(Z')|2J _p,—[lp—F],z-
o 0o Pp +(z-2")

(21)

Finally, following the same procedure as in the case of a
single-occupied SDL, we find
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£, "(z — ) =~

2
e—(l B In . ) (22)
2z z 2

where - B,(d,r)=2"(d,r,)-2/[mk}(d,r,)]
=72"(d,r,)—47"(d,r,) | [7k}(d,r)]. 5

This result represents a straightforward generalization of
the result presented above [Eq. (18)] for the case of one
single-occupied SDL. At this point, it is interesting to note
that the leading contribution to sflab(z—wO) ——e?/27 can be
easily obtained directly from Eq. (15) or (21), by approxi-
mating the argument inside the square root by z (in the large
z limit), and using the normalization of the KS orbitals &(z)
and the identity [{dxJ(x)*/x=1/2.

By considering a slab of thickness sufficiently large to
make the energy spectrum continuous, Solamatin and
Sahni'® reached the conclusion that far away from the slab
the so-called Slater potential V(z) [which is twice the ex-
change energy per particle: V(z)=2¢,(z)] decays as —e?/z2,
in contrast with the asymptotic structure dictated by Eq. (22).
This result is, however, not correct due to the fact that for a
finite jellium slab (no matter how thick it is) the slab intrinsic
discrete spectrum [corresponding to the eigenvalues &; enter-
ing Eq. (4)] can never be replaced by a continuous one.

Equation (22) leads us to the conclusion that in the
vacuum region of a finite jellium slab and at distances from
the surface that are large compared to 1/k% (which is typi-
cally larger than the slab thickness d) Slab(z —00) —
—e?/2z, which is exactly half the corresponding KS exact-
exchange potential V, (z— %) ——e?/z.20 Hence, as in the
case of finite systems,?’ the Slater potential V(z) of jellium
slabs [or, equivalently, twice the exchange energy per par-
ticle &,(z)] embodies the asymptotics of the KS exchange
potential V,(z).

In contrast, Solamatin and Sahni*!? concluded that in the
case of a semi-infinite jellium only half the Slater potential
embodies the asymptotics of the KS exchange potential, i.e.,
V. (z—*)=¢g,(z—0) but Nastos'! claimed that V, (z— )
=2g,(z— ) so there is still something remaining to be clari-
fied on this issue. Work along these lines is now in
progress.”®

and v,,(d,ry)

B. Two-dimensional electron gas

The exchange energy of a strict two-dimensional (2D)
electron gas can be obtained from that of a jellium slab with
a single-occupied SDL [Eq. (10) with i=j=1], by first per-
forming the one-dimensional nonuniform scaling?

Slab(z) )\HSIab()\Z) (23)

and then taking the limit as N — . The scaling above pre-
serves the total number of electrons. Noting that for a single-
occupied SDL the jellium-slab exchange energy takes the
following form:
2me’A
(k)
Slab Slab

Z)n>(z

f dz J dz nZ@nE) (24)

VpP + (z - 2)2’

] = - f LI
p

where

PHYSICAL REVIEW B 80, 235101 (2009)

(k;r)2

n*(z) = (25)

—lé

we find

EX = lim ES[n"] =~ N;ezk};, (26)

where N =A(k})2/(27r) represents the total number of elec-
trons. Previously, this scaling limit had been formulated in a
different way, resulting in the much generous constraint that
the exchange energy per particle in the 2D (A—<0) limit
should be greater than —.2%73! It is interesting to note that
the exchange-energy functional as given by Eq. (24) is an
explicit functional of the density, which is only possible in
this single-occupied SDL case, due to the simple (invertible)
relation between density and wave function, as given by Eq.
(25). In the general, many SDL occupied case, Eq. (25) is
replaced by Eq. (7), the direct inversion from wave functions
to density is not feasible anymore, and the exchange-energy
functional is an explicit functional of the KS orbitals, but an
implicit functional of the density, as in Eq. (10).

We note at this point that the exchange energy of a strict
2D electron gas can also be obtained directly from Eq. (15)
through the replacement &,(z') —\'8(z'), with &(z') being the
Dirac delta function, and taking z=0

“d
EiDz—Nezf ap
o P

4
S[ (pkp) 2= - N;Tezk;. (27)

Either from Eq. (26) or (27), we find for the exchange energy
per particle of the strict 2D homogeneous electron gas the
well-known result £2°=FE?°/ N=—(4/3m)e’k}.

C. Semi-infinite jellium

In the case of a semi-infinite jellium, a half space filled
with a uniform distribution of positive charge (the jellium
background), the jellium density is

nil(z) =n6(-2z) (28)

with the jellium edge at z=0 defining the surface of a metal.
As in the case of jellium slabs, the semi-infinite jellium is
invariant under translations in the x-y plane so the KS eigen-
functions can be factorized as follows:

© A sz(Z) 29)
r)=—7——"F— y
Pk V/Z VL

where p and k are the in-plane coordinate and wave vector,
respectively, and A(L) represents a normalization area
(length). & (z) are spin-degenerate eigenfunctions for elec-
trons with a continuous energy spectrum g =Vis(—%)
+(hk,)*/2m, (k, is a continuum quantum number). They are
the solutions of the effective one-dimensional KS equation
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. ﬁ2 s
hlffs(z)sz(z) = { . E 5+ Vks(2) — & }fk (z)=0.

(30)
The KS potential Vgg(z) is given by Eq. (5), as in the case of
a jellium slab but with the slab electron density of Eq. (7)
being replaced by the SI electron density

(k2 (@)dk.. (31)

SI
(z)= 1 ﬂz

In the case of a semi-infinite jellium, the position-
dependent exchange energy per particle at plane z is given by
the following expression:

e)lz) = - 5 ﬂl Sl( ) f dk f dk. (k2= k2)'"2

X(k%__kéZ)l/Zf

—00

dz' @y (2.2") @ (2" D) Fipr(2.2'),

(32)

where ¢;_ (z,2)=4 ()" & (z'), and Fiy 1(z,z') is of the form
of Eq. (11) but with kL(k}) belng replaced by [k2
—k?]llz([kz kZIZ]l/Z).

Asymptotic behavior.. The derivation of the asymptotic
limit of sfl(z) is more delicate than in the case of jellium
slabs due to the fact that in the present case we have a con-
tinuous energy spectra. Hence, the crucial argument that we
have used to derive the asymptotic behavior for jellium
slabs, concerning the fact that in that case the highest occu-
pied SDL dominates in the vacuum region far away from the
surface is not so transparent when the spectrum is continu-
ous. Stated in other words, contributions to the asymptotic
position-dependent exchange energy of Eq. (32) come indeed
from values of k, and k. that approach k. but not necessarily
only from the highest occupied value, i.e., from kzzsz =kp.

The asymptotic behavior of Eq. (32) was analyzed by
Nastos'! by assuming that at z— o the KS potential Vig(z)
takes the imagelike form Vig(z— %) — —agse?/z with agg
positive but otherwise arbitrary. One finds that in the vacuum
region far away from the surface (z— ) the KS orbitals &
can be expanded with respect to the KS orbital at k,=ky as
follows:!133

bz — ) — & (z — oe)emlr ™) (33)
with
ko(Z N oo) o e—z\““‘2meW/ﬁ2(22V,W/)QKS/\@’2t71eaéW/ﬁ2’ (34)

a standing for the square root of the ratio between the Fermi
energy and the work function W(a?=g,/W). By introducing
Egs. (33) and (34) into Eqgs. (31) and (32), one finds''33

nSI(z — ) —

Tk, )2|§kF<ze =P (35)

and
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7+ 2a In(a) 6_2

2m(l+a%) z° (36)

S)SCI(Z — OO) —_— -
Furthermore, the asymptote of Eq. (36) does not depend on
the actual form of ko(z—WO). This is due to a cancellation,
when z is large, of the orbitals ko(z—WO) entering the nu-
merator and denominator of Eq. (32). This is the reason why
the leading term in the expansion of sil(z—mo) is indepen-
dent of akg. That means that the result remains valid also in
the absence of this imagelike contribution, i.e., even assum-
ing that the KS potential Vg(z) entering Eq. (4) decays ex-
ponentially as z— .

The asymptotic behavior dictated by Eq. (36) was ob-
tained independently by Solamatin and Sahni using a some-
how less general but otherwise quite different approach.”!%-3
They approximated the KS potential Vkg(z) entering Eq. (30)
by a finite-linear-potential model at the interface region and
used the corresponding orbitals in each of the three regions
where the model was defined: trigonometric functions (in the
bulk region), Airy functions (near the surface), and exponen-
tial decaying functions (in the vacuum). As the only thing
that matters in obtaining the asymptote of Eq. (36) is the
correct expansion of the KS orbitals with respect to the KS
orbital at k.=k, [as given by Eq. (33)] and with this general
expansion being fulfilled also within the finite-linear-model
potential used in Refs. 9 and 10, Solamatin and Sahni ob-
tained Eq. (36) which is valid in general. It is also worth of
address the fact that the result of Eq. (36) is in contrast with
the asymptotic behavior & (z— %) — —e?/4z that one obtains
for the exchange energy per particle in the case of the Airy
edge electron gas.®® This is due to the fact that the
asymptotic behavior of the solutions of the Airy edge gas is
different from the one given by Eq. (33) as for this model the
potential increases linearly with distance in the vacuum re-
gion, instead of approaching a constant value. An analysis of
the so-called Pauli and lowest-order correlation-kinetic com-
ponents of the exchange energy per particle €,(z— ) can be
found in Ref. 33.

III. NUMERICAL RESULTS

All the numerical calculations presented below have been
carried out by ignoring all correlation effects (beyond the
Pauli exchange). By this we mean that the xc potential V. (z)
entering Eq. (4) has been replaced by the exchange-only con-
tribution V,(z), disregarding V.(z), both for jellium slabs and
for the semi-infinite jellium. In the case of jellium slabs,
V(z) and the corresponding KS orbitals of Eq. (4) can be
obtained through the solution of the discrete version of the
x-only optimized effective potential (OEP) method, as given
for example by Eq. (14) or (20) of Ref. 36. This code is
feasible and we have at our disposal these self-consistent
exact-exchange (OEP) KS orbitals and exchange
potentials.’®3¢ Alternatively, an approximate way to obtain
V.(z) and the corresponding KS orbitals (the exchange-only
LDA orbitals) is to replace the actual exchange potential
V.(z) by the exchange potential of a uniform electron gas at
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F|— €’ @ (x-LDA orbitals)

e,”""(2) (x-OEP orbitals)

— &, pa(®) (x-LDA density)

ees € (z) (x-OEP density)

“x, LDA'

-0.1
-0.22

(z) [hartrees]

slab

<013 20222

024 1L
-1

|
-0.2 2 .10 8 6 -4 2 0

| | b
0 20
z [ao]

FIG. 1. &¥(z) for r,=2.07 and slab width d=4.3\;. The
curves-denoted “slab” have been evaluated from Eq. (12), by using
exchange-only LDA orbitals (solid line) and exact-exchange (OEP)
orbitals (dotted line). The curves denoted “LDA” have been evalu-
ated from the well-known LDA formula &,1pa(2)=
—(3/4m)[37n(z)]"? (hartrees) with n(z) being the exchange-only
self-consistent electron density obtained with the use of exchange-
only LDA orbitals (wide solid line) and exact-exchange (OEP) or-
bitals (wide dotted line). Inset: enlarged view of the bulk region
near the surface. The bulk value of &, for this electron density is
-0.22134(e*/ ay).

the local electron density n(z), i.e., V:P*(z)=—[6n(z)/ 7]
(hartrees).

Fig. 1 shows a comparison of (i) the well-known LDA
exchange energy per particle e.1pal2)=
—(3/4m[37n(z)]"? (hartrees) with n(z) being the self-
consistent electron density obtained with the use of either
exchange-only LDA orbitals (wide solid line) or exact-
exchange (OEP) orbitals (wide dotted line) with (ii) the
exact-exchange energy per particle £5°(z) of Eq. (12) ob-
tained by using, as before, either exchange-only LDA orbit-
als (solid line) or exact-exchange (OEP) orbitals (dotted
line). It is important to note that while both alternative evalu-
ations of &, pa(z) fail badly in the vacuum region where the
actual exchange energy per particle exhibits an imagelike
asymptotic behavior, the use of LDA orbitals in Eq. (12)
results in an exchange energy per particle (solid line) that on
the scale of the figure is nearly identical to the exact fully
self-consistent result (dotted line). Small differences intro-
duced by the use of LDA orbitals (see the inset) are mostly
localized in the bulk region near the surface, where Friedel-
type oscillations appear to be too weak in this approxima-
tion.

The numerical methods that we have used to obtain exact-
exchange (OEP) orbitals and exchange-only LDA orbitals
suffer from instabilities in the vacuum region far from the
surface. As in this region exchange-only LDA orbitals are
stabler than their OEP counterparts and the results presented
in this work do not depend significantly on whether exact-
exchange (OEP) or exchange-only LDA orbitals are used in
Eq. (12) (see Fig. 1), all the calculations presented below
have been obtained with the use of exchange-only LDA or-
bitals. We emphasize, however, that this is not a crucial ap-
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proximation and that the magnitude of the error that it intro-
duces is given by the almost indistinguishable difference
between the full and dotted lines in Fig. 1.

The numerical self-consistent calculations presented in
Fig. 1 and in the remaining of this section (which are all
obtained from either Eq. (12) or Eq. (32) with the use of
exchange-only LDA orbitals) have been performed as fol-
lows. For jellium slabs, two infinite barriers have been lo-
cated in the vacuum region far enough away from the two
surfaces, in such a way that all the numerical results be in-
dependent of their precise location,>” and the KS equations
have been solved through a straightforward discretization in
real space along the one-dimensional coordinate z. In the
case of the semi-infinite jellium, the KS equations have been
solved by following the general procedure introduced by
Lang and Kohn.? This consists of defining three regions for
the solution of the KS equation: far left (bulk region), central
(a few Ap’s to the left and to the right of the jellium edge)
and far right (vacuum region). In the bulk region, the KS
eigenfunctions are taken to be of the form &(z)=sin(kz
—v.), where 7, are phase shifts, and this fixes an overall
normalization constant. In the central region, we define a
mesh of N points between z; and zy(z; <zy), the first point z;
being chosen far enough from the jellium edge in the bulk so
that the Friedel oscillations can be neglected, and the outer
point z, being chosen to be far enough from the jellium edge
into the vacuum so that the effective one-electron potential is
negligibly small. Since Vgg(z) ~0 for z=zy, the orbitals can
be approximated as §k(z1\,)=ae‘k*Z where a is a constant and
k*=(-2m,e; /#?)"?. The KS orbitals at the mesh points are
calculated by using the Numerov integration procedure.®® As
in the vacuum region the orbitals follow exponential form, it
is numerically most stable to integrate them inward, so the
Numerov integration procedure in this case is given by

2+ 10 Vis(z)) — & ]
1= h[Vis(zi1) — 8¢ ]

1 = h[Vis(zie1) - SkZ]
1= [ Vigs(ziny) - SkZ]

where h=(z;,;—2z;)*/12. Finally, matching the KS orbitals in
the central region with the corresponding analytical expres-
sion in the bulk region [&(z)=sin(kz—v,)] determines the
constant a.

&(z)

&lzimy) =

&lziv1) s (37)

A. Jellium slabs

In Fig. 2, we consider a thin jellium slab with r;=2.07
(corresponding to the average electron density of Al) and d
=0.3\;. This slab contains one single-occupied SDL so that
we compare our full numerical calculation of Eq. (12) (solid
line) with the asymptote of Eq. (18) (dashed-dotted line). We
see that £7'®°(z) reaches Eq. (18) at about one N\ from the
jellium edge and reaches the asymptote —e?/2z at a few
Fermi wavelengths (~5-6\;) from the surface.

In Fig. 3, we consider a jellium slab with r,=2.07 and d
=4\ . For this particular case, nine SDL’s are occupied, i.e.,
g9<ep<egjp so we compare our full numerical calculation
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-0.05 r=2.07 e (z) (x-LDA orbitals)
s -1/(22)
- Q1 +B,/2)
g d=03 7»F D+, 124,17
g
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=
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)
«

w

0.15

02{ ; \ \ \ ‘ | ‘ \ !
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FIG. 2. Position-dependent exchange energy per particle for a
thin jellium slab with 7;=2.07 and d=0.3\p=2a,. Solid line: full
numerical calculation of Eq. (12). Dashed-dotted lines: asymptote
of Eq. (18); the dashed (dotted) lines represent the asymptote of Eq.
(18) with the last term (last two terms) neglected. Inset: enlarged
view of the asymptotic region.

of Eq. (12) (solid line) with the asymptote of Eq. (22)
(dashed-dotted line). The main message of this figure is that
(i) in the vacuum region far away from the surface £5°°(z) is
dominated by the term i=j=m (dashed-double dotted line)
and (ii) 3*(z) reaches the asymptote —e?/2z only at a dis-
tance from the jellium edge of several Fermi wavelengths
(~8\p). We remind here that point (i) above was our main
assumption in the derivation of the slab asymptotic limit of
Eq. (22). This assumption is fully justified after the numeri-
cal results shown in Fig. 3.

At this point, with a few algebraic manipulations, we re-
write the asymptote of Eq. (22) in the physically motivated
imagelike form

— i<9 orj<9
i=9 j=9
S‘db (z) (x-LDA orbitals)
1/(24)
- U2+ B /2)

< QD +B, 2+, 7))

€ (z) [hartrees]

z [aO]

FIG. 3. Same as Fig. 2 but for a slab with d=4\y, with nine
SDL occupied. Full thick line, aflab(z) from Eq. (12); dotted,
dashed, and dashed-dotted lines, asymptotic expansions from Eq.
(22). The contribution from each pair (i, ;) of occupied SDL to the
total sflab(z) are represented with thin full lines, except for the last
contribution (i=j=9). Inset: enlarged view of the asymptotic
region.
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i r—207

AUk

([5 )z
fit Eq. 38

d A,

FIG. 4. Parameter zilab(d,rs=2.07,z) from Eq. (38), as a func-
tion of d, in several approximations. Full line, zfl"b(d ,rs=2.07,z
— o) +d/2==2/mki(d,r;=2.07); squares, Eq. (40); circles, fit to
Eq. (38). Upper panel, k7 (d) as a function of d.

2
Slab Slab €
(z—= ) —=-a; . (38)
[2-20"(d,r2)]

where
™ =1/2 (39)

and Z)sclab(d ,r,2), which represents the location of the so-
called image plane, results in

2
’}/m(d,rs) _Z[ﬁm(d’rs)] +0(l)

Zjlab(dv rx’Z) = Bm(d’ rs) + 2

z
(40)

As 7— 0, zflab(d ,rs,2) reaches a finite value, given by
Zjlab(d’ reZ — oo) — Bm(d, rs) = Zm(d, rs) - Z/Wkl]?;l(d, I"s)
=—d/2 -2/ 7k} d,ry). (41)

In Fig. 4, we plot a comparison of Eq. (41) (solid line) with
the image-plane position that we obtain by fitting our full
numerical calculation of Eq. (12) with the imagelike Eq. (38)
and asmb— 1/2 (empty circles). For this, we have used a fit
region of width 2\, centered at 6\ from the jellium edge in
the vacuum. Differences between Eq. (41) (solid line) and
our numerical estimate (empty circles), which in the case of
very thin films are negligible, are entirely due to the fact that
the fitting of the numerical calculation must be carried out in
a vacuum region that extends very far away from the surface.
Empty squares correspond to the result of Eq. (40), including
the correction to the leading term and taking z=6\j (which
is the average value of the fit region indicated above). Ac-
cording to Eq. (41), 25*(d) +d/2 is inversely proportional to
kr(d), which exhibits an oscillatory behavior as a function of
the slab width d (see the solid line in the upper part of Fig. 4)
going to zero every time a SDL becomes occupied. Hence,
the location of the image plane becomes infinitely negative
every time a SDL becomes occupied, which results in the
strong finite-size oscillations shown in Fig. 4.
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-~ Slab d=4%, I
- Slab d=64,
- Slab d=82,

-0.05|— Slab d=122

SI geometry

r = 2.07

-0.1—

(z) [hartrees]

€
X
S
[

-0.2

z [Al

FIG. 5. £3%(z) for r;=2.07, slabs with d=4, 6, 8, and 12 \.
Dotted line, sil(z) for the semi-infinite case, from Eq. (32). Upper
inset: enlarged view of the bulk region. Lower inset: asymptotic
region.

B. Semi-infinite jellium

Now we focus on a comparison between our full numeri-
cal jellium-slab and semi-infinite-jellium calculations of the
position-dependent exchange energy per particle (see Fig. 5).
In the bulk, as d increases the slab calculations converge
with the semi-infinite calculation (see the inset at the upper
part of Fig. 5) and both slab and semi-infinite calculations
approach in the bulk region far away from the surface the
exchange energy per particle of a 3D homogeneous electron
gas, °/(e*/ag)=—(3/4m)(9m/4)"3/r;~-0.22134. In the
vacuum, however, there is always a region far enough away
from the surface where the jellium slab and the semi-infinite
jellium behave differently: while all slab calculations con-
verge to an imagelike behavior of the form of Eq. (38) with
a3®=1/2, the semi-infinite &}'(z— ) exhibits an imagelike
behavior in agreement with Eq. (36) (see Fig. 6). Figure 5
also shows that as the width d increases the slab s}sclab(z)
coincides with the semi-infinite s)S(I(z) in a wider vacuum
region near the surface (see the lower inset of Fig. 5).

Figure 6 shows a comparison of our full numerical calcu-
lation of Eq. (32) with the asymptote of Eq. (36) (solid and

T T T
o -

00 r = 2.07

— Semi-infinite jellium
--—-- -0.186/z (Eq.36) _
-1/(22)

-0.04

€ (z) [hartrees]

X

-0.06

-0.08{~

| |
20 40 60 80

z [aO]

FIG. 6. Asymptotic behavior of ail(z) for the semi-infinite case,
and comparison with Eq. (36) and the asymptote form of Eq. (22).
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FIG. 7. a(r,)=Vep(r,)/W(r,) versus r,, for the semi-infinite
case. Inset, the coefficient —[ 7+2a In(a)]/[27(1+a?)] of Eq. (36)
VETSUS 7.

dashed lines, respectively) for r,=2.07. In this case, «
=vVep/W=2.048 (as obtained from our exchange-only LDA
self-consistent calculation of the work function W) and Eq.
(36) yields &5'(z— ) ——0.18622¢%/z (dashed line), which
is in contrast with the asymptote of Eq. (22) (dotted line) that
holds in the case of jellium slabs. The same comparison has
been done for other values of r, and we have found that our
full numerical calculation is always very close (as in Fig. 6)
to the asymptote of Eq. (36).

Finally, we display in Fig. 7 our exchange-only LDA self-
consistent calculation of the coefficient a=vey/W in a wide
range of electron densities. It is important to note that the
corresponding coefficient [7+2a In(a)]/[27(1+a?)] (see
the inset to Fig. 7) entering Eq. (36) is close to 1/4 at metallic
densities (r,=2-6). Fig. 7 also shows that only at extremely
low densities the coefficient « approaches zero thereby the
coefficient [ 7+2a In(a)]/[27(1+a?)] of Eq. (36) approach-
ing 1/2. Hence, the asymptotic limits of silab(z) and sfl(z)
only coincide in the low-density limit (r,— ).

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of the position-
dependent exchange energy per particle €,(z) at jellium slabs
and the semi-infinite jellium. For jellium slabs, we have
found that in the vacuum region far away from the surface
e31%(7 —0) ——¢?/(2z), independent of the bulk electron
density. This is the equivalent to the well-known result
g, (r— o) ——¢?/(2r), which holds in the case of localized
finite systems such as atoms and molecules.* The equiva-
lence between these results is however not straightforward
since slabs have an extended character in the x-y plane, being
“localized” only along the z coordinate. In the vacuum side
of the surface there is a region where s)sclab(z) coincides with
sfl(z) and this region increases as d increases. The fitting of
our numerical calculations of silab(z) to a physically moti-
vated imagelike expression is feasible but the resulting loca-
tion of the image plane [23*(d,r,,z)] shows strong finite-
size oscillations. In particular, we have shown analytically
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that 23°(d, ry,z—®)=—d/2 -2/ mk(d,r,), Kp(d,r,) being a
signature of the energy of the highest occupied SDL with
respect to the Fermi level.

For a semi-infinite jellium, we have found that our nu-
merical calculations agree well with the analytical asymptote
[see Eq. (36)] obtained in Refs. 9—11 and 33, which ap-
proaches the slab asymptote —e?/2z only in the extreme low-
density limit (r,— o). We attribute the qualitatively different
behavior of &7'""(z— o) and £>'(z— ) to the fact that these
asymptotes are approached in different ranges. While in the
case of the semi-infinite jellium the asymptote is reached at
distances z from the surface that are large compared to the
Fermi wavelength (the only existing length scale in this
model), for slabs the asymptote is reached at distances z from
the surface that are large compared to 1/k% (which is typi-
cally larger than the slab thickness d). For thick slabs with
d>\p (\y being the Fermi wavelength), £5*°(z) first coin-
cides with SSI(Z) [dictated by Eq. (36) at z>M\g] in the
vacuum region near the surface (see Fig. 5) but at distances
from the surface that are large compared to 1/ky, £3%(z)
turns to the slab imagelike behavior of the form of Eq. (22)
[or, equivalently, Eq. (38) with «’®=1/2]; in the limit as
d— (i.e., when the jellium slab becomes semi-infinite),
s)srlab(z—wO) coincides with 8§I(z—>00) everywhere. In the
low-density limit, where Ap—cc, the condition d>\p is
never fulfilled and £5*°(z) reaches (at z>1/k) one single
asymptote: the slab imagelike behavior of the form of Eq.
(22) [or, equivalently, Eq. (38) with a)sclabz 1/2], which turns
out to coincide with the semi-infinite-jellium asymptotic be-
havior dictated by Eq. (36).

Finally, we note that as &,.(z) =¢,(z) +&.(z), the same con-
clusion is expected to be valid for the exchange contribution
to the position-dependent xc energy per particle. Recent de-
velopments concerning the asymptotic behavior of the corre-
lation contribution to the KS exchange-correlation potential
V,.(z) of a semi-infinite jellium can be found in Ref. 33.
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APPENDIX: DERIVATION OF ASYMPTOTIC
EXPRESSIONS

Here we will shown in detail how to go through Egs.
(15)—(18) in the text. Starting from Eq. (15), one first notice
that>®

PHYSICAL REVIEW B 80, 235101 (2009)

f “dx Blax) 1 {1_11(2a|y|) L,(2aly))
0 X \xP+y? 2]yl aly| aly|

(A1)

with /; and L, being the modified Bessel and Struve func-
tions, respectively. Substitution of Eq. (A1) in Eq. (15) yields
at once Eq. (16). Now, in the asymptotic limit*°

2 2
Ll(x>1)—>11(x>1)_—+—2_..., (AZ)
T X

which inserted in the definition of the function F(x) yields
Eq. (17). Substitution of this expansion for F(x) in Eq. (16)
leads to the expression

Slab(zg)oo)*)__‘] |§1(Z/)|2{1_3 1

lz-2'| mkiz -2/
2(kp|z—z D ] (A9
__ _f J&GED? )? 6_2 J&a@)P
|z 7| ﬂ-k}p o |22
- 4(2;3 f_i dz’ ||§1EZZ,,)|E (A4)

Expanding the denominators of Eq. (A4) in the large z limit,
the different contributions in Eq. (18) arise. For instance, the
leading contribution —e2/(2z) comes from the first term on
the rhs in Eq. (A4) with |z—z'| approximated by z. It is
interesting to note that one important feature of this result, as
is its material and slab-size independence, is consequence (in
this context) of the normalization of the SDL wave functions.
On more general grounds, and returning to the alternative
definition of £3*"(z) given in Eq. (14), this is more physically
understood as a consequence of that the integral of
h(z;p,z+Z) over all possible “observational” coordinates
(p,Z) is exactly —1.2! The next term in the expansion, pro-
portional to B' and with decay z72, is obtained from the
subleading contribution of the first term on the rhs in Eq.
(A4), together with the leading contribution from the second
term. To the order explicitly displayed in Eq. (18), no con-
tribution arises from the last (third) term in Eq. (A4) as the
leading contrlbutlon coming from this term to s (Z—> ©) is
of the order z*. While this analysis has been performed for
the single-occupied SDL case, it also applies to the general
case where more than a SDL is occupied, as explained in
Sec. IT A 2.
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