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We present a method to analyze the results of first-principles based calculations of electronic currents
including inelastic electron-phonon effects. This method allows us to determine the electronic and
vibrational symmetries in play, and hence to obtain the so-called propensity rules for the studied systems.
We show that only a few scattering states—namely those belonging to the most transmitting eigenchan-
nels—need to be considered for a complete description of the electron transport. We apply the method on
first-principles calculations of four different systems and obtain the propensity rules in each case.
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Electronic transport through atomic-size junctions is of
immense scientific and technological interest. The impor-
tance of inelastic effects in electronic currents has been
revealed in several ground-breaking experiments leading
to the detection and identification of single molecules [1],
chemical reactions [2,3], the detection of vibrations in
atomic wires [4], the detection of inelastic effects by
fluorescence [5], the modification of electron transport in
nanotubes [6], the molecular motion induced by electronic
currents [7], and the hydrogen detection in atomic wires
[8], just to cite a few examples. Of particular importance
due to its spreading use is the case of vibrational spectros-
copy where the conductance changes due to phonon emis-
sion is measured [9–11]. This is often referred to as point
contact spectroscopy or inelastic electron tunneling spec-
troscopy (IETS) [1]. However, experiments alone are not
able to give direct insight into the fundamental question on
how the detailed atomic structure correlates with the elec-
trical transport properties. There is experimental evidence
of approximate selection rules (propensity rules [12]) such
that only a small number out of the many possible vibra-
tional modes give an inelastic signal. These propensity
rules yield clues to the geometric and electronic structure
of the junctions. It is therefore of fundamental interest to
compare the experimental results with first-principles
calculations.

Existing calculations of inelastic effects in electron
transport have been developed either for particular cases
[12–14] or for simplified (one-level) models [15,16]. First-
principles methods capable of treating both weak and
strong coupling to the electrodes have also been developed
[17–19]. However, the results of such detailed calculations
involve many electronic states and vibrational modes. An
advanced analysis is therefore needed in order to provide
insight into the propensity rules.

In this Letter we propose a method for analysis of the
inelastic transport based on just a few selected electronic
scattering states, namely, those belonging to the most
transmitting eigenchannels at the Fermi energy ("F) [20].
These scattering states typically have the largest amplitude
inside the junction and thus account for the majority of the
electron-phonon (e-ph) scattering. To illustrate our method
of analysis and to develop an understanding of the propen-
sity rules we consider four cases: (i) atomic gold-wires, and
(ii) molecular junctions, as well as scanning tunneling
microscope (STM) setups in the (iii) resonant, and
(iv) nonresonant limits. The propensity rules can in these
cases be understood from e-ph induced transitions between
scattering states of a few eigenchannels.

Inelastic scattering of electrons in a device under bias
can be modeled using nonequilibrium Green’s functions
(NEGF) [15,16,19]. In particular, the lowest order expan-
sion (LOE) of the NEGF equations provides a tractable
description of phonon scattering in first-principles calcu-
lations [17]. This approximation assumes a weak e-ph
coupling (M) and that the electronic structure changes
slowly over a phonon energy (@!). It is therefore not
applicable to strong e-ph coupling. In the zero-temperature
limit, the conductance is

 GLOE � G0��
X
�

e�LOE
� ��jeVj � @!�� � GAsym

� ; (1)

which can be divided into the Landauer term, with the
transmission � (at "F) times the conductance quantum G0,
and inelastic corrections in the conductance from each
vibrational mode. In this formulation we have separated
the inelastic contribution in a symmetric term, with respect
to bias, from phonon absorption and emission processes,
and an asymmetric term GAsym

� . GAsym
� is small in the cases

studied here since it is (i) strictly zero for symmetric
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junctions and (ii) negligible in the STM configuration
when very close to or very far from resonance [17,21].
For these reasons we ignore GAsym

� in the following dis-
cussion. Each mode thus gives a step ��jeVj � @!�� in the
conductance at the phonon energy. The magnitude and sign
of this step is given by the scattering rate per excess bias

 �LOE
� �

e
�@

Tr�Gy�LGfM�G�RGyM�

� i
2��RGyM�AM� � H:c:�g�; (2)

where G is the retarded Green’s function at "F, A � i�G�
Gy� the spectral function, and �L;R the couplings to the
leads.

It is instructive to use a one-level model to get an under-
standing of the sign of the conductance step. The one-level
model couples a single electronic level to two electronic
leads and a localized vibration [17,21]. A phase diagram is
plotted in Fig. 1 for the ratio of the coupling to the two
leads � � �R=�L and the transmission � at "F. For this
model the maximal transmission is �max � 4�=�1� ��2

corresponding to the on-resonance case. The crossover
from a decrease to an increase in the conductance is given
by the 1=2 rule [17,22,23], i.e., at �crossover��max=2. Back-
scattering dominates the high-transmission system leading
to a decrease of the conductance while forward scattering
leads to an increase in the low-transmitting case [24].

The scattering rate �LOE may be interpreted as a com-
petition between an inelastic process, the first term of
Eq. (2), that increases the current and an elastic correction,
the second term of Eq. (2), that decreases the current
[13,15,24]. In the case of low transmission, where only
the inelastic term needs to be considered, Troisi et al. [12]

and Gagliardi et al. [14] have extensively discussed the
propensity rules.

Instead of trying to understand the complex issues of the
competition between elastic and inelastic parts of the con-
ductance, we have found that the phonon emission rate
provides a simple way to obtain the IETS propensity rules.
In the LOE approximation the power deposited into the
phonon system is given by [17]

 PLOE �
X
�

�@!��
2

�@
fnB�@!�� � n�gTr�M�AM�A�

� @!��
FGR
� �

�
0 ; jeVj< @!�;
jVj � @!�

e ; jeVj> @!�:
(3)

The first term describes electron-hole damping of the
vibrations that drive the actual occupation n� towards the
Bose-Einstein equilibrium value nB. The second term de-
scribes the heating of the phonon system in terms of the
emission rate [17]

 �FGR
� �

e
�@

Tr�ALM�ARM�� �
4�e
@

X
l;r

jh�ljM�j�rij
2;

(4)

where AL;R � G�L;RGy are the partial spectral functions
from the two leads. To provide physical insights we rewrite
the trace in terms of a complete set of scattering states
j�l;ri from the left (right) lead. This gives Eq. (4) the form
of the physically transparent Fermi’s golden rule (FGR). It
is advantageous to choose the basis as eigenchannels [20],
i.e., the scattering states belonging to the largest trans-
mission. Since the e-ph coupling is essentially local in
space, it is sufficient to evaluate Eq. (4) using only a few
of the most transmitting eigenchannels while the reflected
scattering states can be ignored. For the examples de-
scribed below, only one to three scattering states are
needed to account for over 90% of the phonon scattering.

To illustrate how the phonon emission rate leads to the
IETS propensity rules, we have performed calculations on
four experimentally realized systems which we believe
correspond to the four ‘‘corners’’ of the phase diagram;
see Figs. 1 and 2. The calculations were performed within
density functional theory (DFT) [25] using our extension
of TRANSIESTA as described in Ref. [19]. Broadening by
temperature and lock-in modulation Vrms were included.

The IETS, defined as �d2I=dV2�=�dI=dV�, is shown in
Fig. 2 for the following:

(a) The symmetric low-transmission case: an oligophe-
nylethylene (OPE) molecule symmetrically thiol-bonded
to the hollow position on Au(111) leads. The temperature
and modulation voltage used in the calculation were T �
4:2 K and Vrms � 8 meV. As we have described previ-
ously [18], the calculated IETS compare qualitatively
with measurements [9].

(b) The symmetric high-transmission case: a 7-atom Au
chain connected to Au(100) leads,T�4:2 K,Vrms�1 meV.
There is quantitative agreement with experiments [4,19].
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FIG. 1 (color online). Phase diagram for a one-level model
(inset) illustrating the sign of the conductance change at the
onset of phonon emission. At a given asymmetry factor � the
elastic transmission � has an upper bound �max (black line), and
the inelastic conductance change undergoes a sign change at
�crossover � �max=2 (dashed line). A Mathematica notebook for
the one-level model is available online [21].
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(c) The on-resonance STM configuration with an O2

molecule on Ag(110) surface displaying a decrease in the
conductance upon phonon emission [27]. The STM tip is
modeled by a single Ag atom on a Ag(110) lead laterally
displaced by 1.6 Å corresponding to the experimental
situation [27], T � 13 K, Vrms � 7 meV. The IETS for
O2=Ag�110� is shown both for the self-consistent DFT
calculation (solid black) as well as with "F shifted manu-
ally by �0:6 eV with respect to the DFT result (dashed,
low bias conductance 750 nA=V).

(d) The off-resonance STM configuration with a CO
molecule adsorbed on a Cu(111) surface [28]. The STM
tip is modeled by a single Cu atom positioned on a Cu(111)
lead, T � 5 K, Vrms � 2 meV.

We find that the size of the conductance drop given by
�LOE is well approximated with the phonon emission rate
�FGR. For the OPE and Au-wire cases, the first eigenchan-
nel gives the majority of the phonon emission rate; see
Fig. 3. In this case the propensity rules follow from the
symmetry of the scattering states which are similar to the
Bloch states of the corresponding periodic systems [20]. To
illustrate this understanding of the IETS we have published
Mathematica notebooks showing the propensity rules for
tight-binding models [21]. Before comparing the theoreti-
cal STM-IETS to the experimental, we note that the typical
tip-sample distances of STM are much larger than what is
feasible computationally with a localized basis set. In
practice, we work with a significantly smaller tip-sample
distances than in the experimental situation, while still
being in the tunneling regime.

Results for the O2 on Ag(110) system are shown in
Fig. 2(c). In this case our first-principles calculation fails
to describe the conductance decreases observed experi-
mentally [25]. The DFT-based energy spectrum does not
have a molecular resonance at "F, c.f., the on-resonance
case of Fig. 1. However, DFT predicts a �	 resonance

0.6 eV below "F [26]. By manually adjusting "F to this
resonance we manage to capture some of the qualitative
features of the IETS. Although this result is suggestive, we
have no conclusive evidence that the experimental de-
crease is caused by this mechanism.

The results for CO=Cu�111� [25] is shown in Figs. 2(d)
and 4. The heights of the IETS peaks are qualitatively
captured, we predict that 13% of the transmitted electrons
will emit a frustrated rotation phonon compared to 8%
found experimentally for CO=Cu�001� [29,30]. The eigen-
channels necessary to calculate the transition rates �FGR

are shown in Fig. 4(a). We note that the primary eigen-
channel is of� type, i.e., rotationally symmetric around the
tip-molecule direction, while the secondary and tertiary are
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FIG. 3 (color online). Comparison between the FGR scattering
rate, calculated using only the single-most transmitting eigen-
channel, with the full LOE rate for (a) OPE molecule with
Au(111) leads [compared with the zero-bias conductance of
1:0�1013 e=�sV�], and (b) 7-atom Au wire [4:8�1014 e=�sV�].
The sign of the FGR rate was chosen to agree with the LOE rate.
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FIG. 2 (color online). Calculated
(black lines) and experimental [blue (or
gray) lines] IETS representing the cor-
ners of the phase diagram in Fig. 1:
(a) OPE molecule with Au(111) leads,
(b) Au chain connected to Au(100) leads,
(c) O2 molecule on Ag(110), and (d) CO
molecule on Cu(111). In case (c) the
Fermi energy ("F) as been shifted manu-
ally to match the experiment (dashed
line). The experimental data originate
from Refs. [4,9,27,28]. For the STM
configurations (c) and (d), the calculated
IETS is compared with a rescaled
d2I=dV2.
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of � type. Comparing the scattering states to the phonon
modes, Fig. 4(b), the propensity rules naturally follow from
the symmetry. The frustrated translation (FTx;y) and frus-
trated rotation (FRx;y) modes (in the surface xy plane) can
only scatter between a �- and a �-type eigenchannel,
because the modes have � character with respect to the
transport direction, i.e., s2$ t1 and s3$ t1. Note that the
s1$ t2, 3 transitions are less important due to the weight
of the scattering states (Fig. 4). Similarly, the �-type FTz
and CO stretch modes only scatter between eigenchannels
of the same type, e.g., s1$ t1. Table I confirms these

observations and gives a quantitative account of the e-ph
scattering in the CO=Cu�111� system. It shows that �FGR

closely approximates the �LOE and that the main part is
given by the first three eigenchannels.

We have presented a method to analyze inelastic e-ph
scattering in terms of eigenchannel scattering states. The
main advance in the context of first-principles transport
calculations is to bring the description into a natural frame-
work where underlying symmetries of the propensity rules
can be understood. Through four different examples cor-
responding to different transport regimes, we demonstrated
that the eigenchannel analysis addresses the propensity
rules in a unified way.

*magnus.paulsson@hik.se
[1] B. C. Stipe, M. A. Rezai, and W. Ho, Science 280, 1732

(1998).
[2] T. Komeda et al., Science 295, 2055 (2002).
[3] J. I. Pascual et al., Nature (London) 423, 525 (2003).
[4] N. Agraı̈t et al., Phys. Rev. Lett. 88, 216803 (2002).
[5] X. Qiu, G. Nazin, and W. Ho, Science 299, 542 (2003).
[6] B. J. LeRoy et al., Nature (London) 432, 371 (2004).
[7] M. Lastapis et al., Science 308, 1000 (2005).
[8] M. Kiguchi et al., Phys. Rev. Lett. 98, 146802 (2007).
[9] J. G. Kushmerick et al., Nano Lett. 4, 639 (2004).

[10] A. Troisi et al., Proc. Natl. Acad. Sci. U.S.A. 104, 14255
(2007).

[11] R. H. M. Smit et al., Nature (London) 419, 906 (2002).
[12] A. Troisi and M. A. Ratner, J. Chem. Phys. 125, 214709

(2006).
[13] N. Lorente et al., Phys. Rev. Lett. 86, 2593 (2001).
[14] A. Gagliardi et al., Phys. Rev. B 75, 174306 (2007).
[15] T. Mii, S. G. Tikhodeev, and H. Ueba, Phys. Rev. B 68,

205406 (2003).
[16] M. Galperin et al., Science 319, 1056 (2008).
[17] M. Paulsson, T. Frederiksen, and M. Brandbyge, Phys.

Rev. B 72, 201101(R) (2005).
[18] M. Paulsson, T. Frederiksen, and M. Brandbyge, Nano

Lett. 6, 258 (2006).
[19] T. Frederiksen et al., Phys. Rev. B 75, 205413 (2007).
[20] M. Paulsson and M. Brandbyge, Phys. Rev. B 76, 115117

(2007).
[21] http://www.magnuspaulsson.se/FGRpaper.
[22] L. de la Vega et al., Phys. Rev. B 73, 075428 (2006).
[23] O. Tal et al., Phys. Rev. Lett. 100, 196804 (2008).
[24] H. Ueba, T. Mii, and S. Tikhodeev, Surf. Sci. 601, 5220

(2007).
[25] A discussion of the DFT related issues with the position of

the �	 resonance of O2=Ag�111� [26] and the CO adsorp-
tion on Cu(111) are outside the scope of this work.

[26] F. E. Olsson, N. Lorente, and M. Persson, Surf. Sci. 522,
L27 (2003).

[27] J. R. Hahn, H. J. Lee, and W. Ho, Phys. Rev. Lett. 85, 1914
(2000).

[28] A. J. Heinrich et al., Science 298, 1381 (2002).
[29] L. J. Lauhon and W. Ho, Phys. Rev. B 60, R8525

(1999).
[30] M. Persson, Phil. Trans. R. Soc. A 362, 1173 (2004).

TABLE I. Vibrational modes and inelastic scattering rates for
CO on Cu(111). The FGR rate Eq. (4) (using all eigenchannels)
and the LOE rate Eq. (1) are given in units of 1010 � s V��1

[elastic conductance � 130� 1010 e=�s V�]. The dominating
transitions between the eigenchannel scattering states are indi-
cated along with the fraction in which these processes contribute
to the total FGR rate.

@! (meV) �FGR ��LOE� Substrate$ tip % Mode

236 0.9 (0.8) si $ ti, i � 1, 2, 3 100 CO stretch
48 0.3 (0.3) si $ ti, i � 2, 3 95 FT�z�
35 8.2 (8.0) s3$ t1 95 FR�y�
34 8.3 (8.1) s2$ t1 95 FR�x�
3 5.9 (5.8) s3$ t1 92 FT�y�
3 6.1 (6.0) s2$ t1 92 FT�x�

FIG. 4 (color online). Eigenchannels and phonon modes for
CO on Cu(111). (a) Scattering states associated with eigenchan-
nel 1 (left column, �1 � 1:9� 10�3) and eigenchannel 2 (right
column, �2 � 0:4� 10�3). The top (bottom) row of scattering
states originates from the tip (substrate) side. Eigenchannel 3
(not shown, �3 � 0:4� 10�3) closely resembles those of eigen-
channel 2 rotated by 90
. (b) FR�x� and FT�x� vibrational modes
[degenerate with FR�y� and FT�y�].
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