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The topological features of low-dimensional superconductors have created a lot of excitement recently
because of their broad range of applications in quantum information and their potential to reveal novel
phases of quantum matter. A potential problem for practical applications is the presence of phase slips that
break phase coherence. Dissipation in nontopological superconductors suppresses phase slips and can
restore long-range order. Here, we investigate the role of dissipation in a topological Josephson junction.
We show that the combined effects of topology and dissipation keep phase and antiphase slips strongly
correlated so that the device is superconducting even under conditions where a nontopological device
would be resistive. The resistive transition occurs at a critical value of the dissipation that is 4 times smaller
than that expected for a conventional Josephson junction. We propose that this difference could be
employed as a robust experimental signature of topological superconductivity.
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The study of topological materials, especially super-
conductors, is rapidly becoming a forefront research field
for its potential to unveil novel forms of quantum matter
and its relevance in quantum information applications
[1–4]. The existence of superconductors with topological
features was first speculated in ν ¼ 5=2 fractional quantum
hall states [5] and then on the edges of effectively spinless
systems with triplet pairing symmetry [6–8]. Later [9], it
was proposed to realize topological superconductivity with
surface states using the proximity effect between a strong
topological insulator and an ordinary s-wave superconduc-
tor. Further work [2,10] has revealed that this requirement
can be realized in one-dimensional semiconductor wires.
Several other proposals have been put forward recently
in order to experimentally observe topological supercon-
ductivity [11–14]. Of special interest in the following
are the results of Ref. [15] in which it was found
that the current phase relationship in thin film d-wave
superconductors with an appropriate boundary geometry
is strongly modified by subgap quasiparticle bound
states.
The recent claimed observation [16,17] of Majorana

fermions in InSb nanowires has further boosted interest in
this problem. The experimental evidence of Majorana
fermions is based on zero-bias conductance anomalies
[16,17]. However, the relation between a zero-bias peak
and the presence of a Majorana mode remains controversial
[18], so robust experimental signatures of topological
features must still be considered an open problem.
Moreover, charging effects and quantum fluctuations,
important in low-dimensional superconductors, must also

be taken into account for a realistic comparison between
theoretical models and experiments.
Here, we tackle both issues by studying a Josephson

junction (JJ) composed of two topological superconductors
separated by a weak link. Our model includes charging and
dissipative effects that are relevant for experiments. Starting
from a microscopic Hamiltonian, we show that dissipation
in a topological JJ suppresses phase slips, induced by
charging effects, more strongly than in a conventional JJ.
We have identified a critical value of the dissipation
strength, which is 4 times smaller than that in conventional
JJs, above which phase slips are suppressed and a super-
current is stable. We also propose an experimental setting in
which this difference could be used as a robust signature of
the existence of Majorana fermions.
We start with a brief introduction to the physics of

conventional JJs. In bulk samples, the Josephson effects
correspond to the existence of a current I ¼ Ic sinðϕÞ
between two superconductors separated by a thin metal
or insulator [8,19], where ϕ≡ ϕ1 − ϕ2 is the phase
between the two superconductors and [20] Ic ≈
ðπΔÞ=2RNe is the so-called critical current with e the
electron charge, Δ the zero temperature superconducting
gap, and RN the normal-state resistance.
As the system size decreases, charging effects induce

fluctuations in the phase that can potentially destroy phase
coherence. At the same time, there are different mecha-
nisms of dissipation [21] that can quench these fluctuations
and restore long-range order. In a certain region of
parameters, it was found [22–24] that quasiparticle dis-
sipation is equivalent to the one introduced by Caldeira and
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Leggett [21] to describe Ohmic dissipation in a quantum
system induced by a linear coupling to a bath of harmonic
oscillators Sdiss½ϕ�¼η=4π

R
dτdτ0f½ϕðτÞ−ϕðτ0Þ�=ðτ−τ0Þg2,

where in the JJ context η ¼ ℏ=4e2RN ∝ Rq=RN and Rq ¼
h=4e2 is the quantum resistance. The effective action for
the superconducting phase contains a 2π-periodic potential
with degenerate minima. Tunneling among different min-
ima, also referred to as a phase slip or instanton, lowers the
ground-state energy and tends to delocalize the phase,
weakening phase coherence. Ohmic dissipation, induced
by the proximity to normal-state conducting channels,
suppresses tunneling [21] and can help to restore
superconductivity.
The interplay between these two mechanisms has been

thoroughly investigated in the literature both for a double
well [25,26] and for a periodic potential (sine-Gordon)
[1,27,28]. In the limit where instantons are dilute, the
partition function can be calculated by integrating over all
multi-instanton paths. A renormalization group analysis of
the resulting expression [29–34] confirms that, at zero
temperature, there is a continuous phase transition at η ¼ ηc
from a phase where phase slips destroy global super-
conductivity, to a superconducting phase where the order
parameter stays in a single potential minimum. Dissipation
introduces instanton-(anti-)instanton correlations which
eventually fully suppress tunneling of the phase for
η ≥ ηc. A transition can only occur when these correlations
are sufficiently long-range as in the case of Ohmic
dissipation Ref. [21]. However, for intrinsic quasiparticle
dissipation [22] the correlations are short range and,
therefore, are not enough to stabilize global superconduc-
tivity. In that case the effect of dissipation is simply to
weaken charging effects by renormalizing the capacitance.
Phase slips will likely still create a local voltage fluctuation
making the junction resistive. The ultimate reason for
this behavior can be traced back to the energy gap 2Δ
that severely penalizes quasiparticle tunneling at low
temperatures.
The model.—In order to address nontrivial topological

effects on the Josephson current, we consider two spinless
superconducting p-wave chains coupled by a weak link.
The simplest tight-binding model with these features is

H ¼
X

n¼0;l¼R;L

tðc†n;lcnþ1;l þ H:c:Þ þ sðc†0;Lc0;R þ H:c:Þ

− g
X
n;l

c†nþ1;lcnþ1;lc
†
n;lcn;l; ð1Þ

where t is the intrawire hopping, s is the weak link
tunneling, and g is the effective coupling constant. At
the mean-field level with Δn;nþ1;l ¼ −ghcn;lcnþ1;li, this
Hamiltonian corresponds to a generalized Kitaev
model [4] by the substitution −gc†nþ1;lcnþ1;lc

†
n;lcn;l →

c†nþ1;lc
†
n;lΔn;nþ1;l þ Δ̄n;nþ1;lcn;lcnþ1;l þ g−1Δ̄n;nþ1;lΔn;nþ1;l.

As in the nontopological case, the effective low-energy

theory of the model involves only the difference between
the superconducting phases across the weak link
ϕ ¼ argðΔ0;1;LÞ − argðΔ0;1;RÞ. Proposals to engineer such
a model [35] considered a physical setup consisting of a
one-dimensional wire where superconductivity is induced
by proximity effect and topological features are a conse-
quence of a strong spin-orbit coupling together with a
perpendicularly applied magnetic field. The proximity to
the nearby bulk superconductor induces an effective
attractive density-density interaction between electrons
on neighboring atomic sites. We refer to the recent review
of Ref. [8] for an introduction to topological superconduc-
tivity and its possible experimental realization.
The microscopic derivation of the effective action for the

junction from Eq. (1) follows the Eckern-Schoen-
Ambegaokar calculation [22] for a conventional (nontopo-
logical) superconductor with an important difference: the
presence of a bound state at the weak link. In the
topological case, the single particle Green’s function can
be decomposed into a bound state and a continuum part.
The former represents the effect of the gapped quasipar-
ticles and, as in the nontopological case, can be treated in
second-order perturbation theory in the weak link hopping
magnitude s. This contribution yields an effective capaci-
tive term, proportional to ð∂τϕÞ2, and the Josephson term,
proportional to cosðϕÞ [22]. The bound-state contribution
cannot be treated perturbatively and requires the knowledge
of the bound-state wave function.
As the bound-state wave function cannot decay to the

quasiparticle continuum, the occupation of the mixed
particle-hole wave function—corresponding to two
Majorana modes—is not a dynamic variable, being either
empty or occupied. This problem has been considered by
Pekker et al. [36] for the case where the magnitude of the
order parameter equals the intrawire hopping jΔj ¼ t,
corresponding to a particularly simple form of the
bound-state wave function. The appearance of a new
cos½ϕðτÞ=2� term, particularly transparent in the treatment
of Ref. [36], is expected to occur for all values of the
intrawire hopping.
At zero temperature, after integration over the fermionic

degrees of freedom, the effective Euclidean action is
given by

Seff ¼
Z �ð∂τϕÞ2

16Ec
−EJð1−cosϕÞ�EM

2
cosðϕ=2Þ

�
dτ0; ð2Þ

which corresponds to the so-called double sine-Gordon
action [36] where Ec is the charging energy due to the
capacitance, which will eventually be renormalized by
quasiparticle tunneling. EJ is the Josephson coupling,
and EM is the energy associated with the two Majorana
fermions localized at the weak link that is proportional to
the hopping amplitude s for an electron to tunnel across the
junction. The positive (even) and negative (odd) energy
states in this setup correspond to whether the bound state
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made of the two single Majorana fermions is occupied or
empty (nb ¼ 1; 0). Here, parity corresponds to the eigen-
value of the number operator of the bound state [8]. This
symmetry labels the two lowest energy states of the system.
Note that (see Fig. 1) the different parities are related by a
translation of the potential by 2π along the ϕ axis. In the
following, without loss of generality, we only treat odd
parity and infer the even-parity results from the transla-
tional symmetry. Defining μ ¼ 8ECEJ, λ ¼ 4ECEM, the
double sine-Gordon potential (with λ > 0)

VðϕÞ ¼ μ½1 − cosðϕÞ� þ λ½1 − cosðϕ=2Þ� ð3Þ

is shown schematically in Fig. 1 for two qualitatively
different cases characterized by the existence or not of a
local minimum.
We are assuming that the occupation number of the

Majorana bound state is fixed. However, in a realistic
situation, nb is likely to fluctuate due to the coupling of the
bound state to continuum states and inelastic processes
[37]. Our derivation holds in the regime where the bound-
state lifetime is larger than the characteristic time of the
phase dynamics.
We now consider the role of a dissipative term in the

topological junction. The total action is, thus, given by

Stop½ϕ� ¼
1

8EC
ðS0½ϕ� þ Sdiss½ϕ�Þ; ð4Þ

where

S0 ¼
Z �ð∂τϕÞ2

2
− V½ϕ�

�
dτ

and Sdiss acquires the Caldeira and Leggett [21] form,

Sdiss ¼ ~η

Z ½ϕðτÞ − ϕðτ0Þ�2
ðτ − τ0Þ2 dτdτ0;

where ~η ¼ 8ηEc. Note that for quasiparticle dissipation
η ¼ ℏ=16πe2RN , while it is a free parameter for a generic
resistive Ohmic shunt.
Results and discussion.—In this section, we carry out a

saddle-point analysis of the action. The resulting field
configurations, usually referred to as instantons, provide
the leading-order contributions to the partition function in
the semiclassical limit.
Depending on the ratio μ=λ, there are two qualitatively

different configurations, depicted in Fig. 1, of the potential
VðϕÞ: case A, characterized by two local minima in the
interval ½0; 4πÞ, and case B, characterized by only one global
minimum. The explicit solutions of the equation δS0 ¼ 0,
found in Ref. [38], greatly simplify the theoretical analysis.
Following Ref. [38], let us first discuss the bouncelike
solution, existing only in case A, that starts and finishes at
ϕ ¼ 2π. For the Wick rotated potential, shown in the left
panel inset of Fig. 2, the bounce trajectory corresponds to the
phase effectively rolling down the hill and bouncing back at
a position where the potential equals that of the local
minimum (ϕ ¼ 2π). This trajectory is given by

ϕdsG ¼ ϕsGðτ þ RÞ þ ϕsG½−ðτ − RÞ�; ð5Þ

where ϕdsG stands for the solution for the double
sine-Gordon potential, ϕsGðτÞ ¼ 4 tan−1½emτ� is the
instanton solution of the sine-Gordon model (i.e.,
the solution of the equations of motion with λ ¼ 0), R ¼
ð1=mÞsinh−1½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ=λ − 1
p � and m2 ¼ μ − λ=4. These solu-

tions are topologically trivial as they do not cause any phase
slip, namely, the winding number of the phase after one
bounce is still zero. In the context of quantum chromody-
namics, it has been shown that these bounces contribute to
tunneling but only perturbatively, so it is safe to neglect them
with respect to the leading nonperturbative contribution to
the action [39]. Moreover, ignoring these bouncing trajec-
tories, enables a joint analysis of cases A and B.
Mussardo et al. [38] have also derived the classical

instanton solution connecting the minima at ϕ ¼ 0 and
ϕ ¼ 4π. This solution, shown schematically in the right
panel of Fig. 2, is written as a superposition of sine-Gordon
instantons,

ϕ0
dsGðτÞ ¼ ϕsGðτ þ R0Þ þ ϕsGðτ − R0Þ; ð6Þ

with R0 ¼ ð1=m0Þcosh−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ=λþ 1

p
and m02 ¼ μþ λ=4.

As shown in Fig. 2, the phase spends a time 2R0 at the
local minimum or maximum of the potential (ϕ ¼ 2π)
before transitioning to the global minimum (ϕ ¼ 4π). The
expression of Eq. (6) also gives the sine-Gordon instantons
back in the limit of λ → 0 for which R0 → ∞. This
corresponds to the loss of the correlation between the
two instantons in the double sine-Gordon solution. In this
limit, therefore, the two sine-Gordon instantons can be
regarded as free [38]. The results from Pekker et al [36] that

FIG. 1 (color online). Effective potential Eq. (2) for odd parity
controlling the phase dynamic of a topological superconducting
junction. Case A: 0 < λ < 4μ and both a local and a global
minimum exist. Case B: λ > 4μ and only a global minimum
exists [38].
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2π phase slips are suppressed can clearly be seen from
the expression for ϕ0

dsG above, since ϕ0
dsGð−∞Þ ¼ 0

and ϕ0
dsGð∞Þ ¼ 4π.

Following the treatment of Schmid [28], we now assume
the following approximate solution, valid in the dilute limit
corresponding to large separations between instantons,

Ψcl ¼
Xn
j¼1

ejϕ0
dsGðτ − τjÞ; ð7Þ

where ej ¼ þ1ð−1Þ for instantons (anti-instantons), n is
the number of instantons or anti-instantons, and τj is the
instanton’s center of mass. The condition

P
n
j¼1 ej ¼ 0

ensures that the action is finite. The proposed configuration
corresponds to the leading-order contribution to the path
integral in the limit in which phase slips are still rare
events, and therefore, a linear superposition of well
separated instantons is a good approximation to a typical
configuration.
To begin the analysis of the instanton contribution to the

action, we observe that within the dissipationless action
there is no interaction between instantons since we have
assumed the typical distance jτi − τjj (with i; j ¼ 1;…; n)
to be large. In this regime, the multi-instanton action can
also be approximately given by the factorized expression
S0ðnÞ ≈ nS0ð1Þ with S0ð1Þ the action of a single instanton

S0ð1Þ ¼
Z �

1

2
½∂τϕ

0
dsGðτÞ�2 − V½ϕ0

dsGðτÞ�
�
dτ:

We now insert the solution above in the dissipative term of
the action and make a further simplifying assumption, valid
for large values of m=~η: the instanton profile is replaced by
a Heaviside θ function. After substituting this ansatz
solution in the dissipative term of the action, integrating
by parts twice, and neglecting second-order terms in R0
(assuming jτi − τjj ≫ R0), we obtain

Sdiss ≈ 8~ηð2πÞ2
Xn
i;j

eiej logðτi − τjÞ: ð8Þ

This result is identical to that obtained for a nontopo-
logical Josephson junction with Ohmic dissipation [1,28]

except for the overall rescaling of the prefactor in the Sdiss
term. The theoretical analysis of Refs. [1,28], under the
assumptions above, yields in our case a critical dissipation
~ηc ¼ EC=4π2. When dissipation is induced by quasiparticle
tunneling, the expression of ~ηc above translates to

Rc ¼
h
e2

; ð9Þ

where Rc is the critical normal-state resistance RN . As a
matter of comparison, the critical normal-state resistance
for the nontopological Josephson junction Rc ¼ h=4e2 is 4
times less than that in the topological case.
We note that this result assumes that a small instanton

fugacity z ¼ e−S0ð1Þ=ð8ECÞ ≪ 1 has a negligible effect on ~ηc.
Corrections to ~ηc ¼ EC=4π2 due to a small z can still be
computed systematically within the renormalization group
framework of Refs. [1,28]. This correction, as for a non-
topological JJ, slightly increases ~ηc though its effect is
relatively small in the dilute limit in which the instanton
approach is applicable. Therefore, topological JJs are more
robust to phase slips than the nontopological counterpart. A
substantially smaller dissipation is sufficient to stabilize
superconductivity in the topological case.
We note that for nontopological JJs, there is compelling

experimental evidence [40], especially for EJ ≫ EC, that
dissipation stabilizes superconductivity for RN < Rq with
Rq ¼ h=4e2 the quantum resistance. The setup of Ref. [40]
consisted of an Al-AlOx-Al shunted tunnel junction of area
∼104 nm2 in which it is possible to tune the charging
energy and the normal resistance. Measurements of the
resistance R ∼ dI=dV versus I show qualitatively different
behavior for RN < Rq and RN > Rq. According to our
theoretical prediction, the replacement of Al by a topo-
logical superconductor would change the value of the
critical resistance so that we expect a transition not at
RN ¼ Rq but at RN ¼ 4Rq. Experimental observation of
this change of behavior in the topological case would
provide direct evidence of the presence of Majorana modes.
The topological material could be an InSb [7] short semi-
conductor nanowire in contact with a bulk superconductor.
Another promising material is the LaAlO3=SrTiO3 inter-
face [41]. It is expected [42] that in a certain range of
parameters this material is an intrinsic topological super-
conductor since the spin-orbit interaction is strong and can
be tuned by the electric field effect. The one-dimensional
step edges of the interface [43] are especially suited for a
topological JJ setup.
In summary, we have studied the role of dissipation in a

topological superconducting junction. In general, such a
junction is more robust against fluctuations than the non-
topological counterpart. The phase transition to a super-
conducting state occurs at a critical value of the dissipation
that is 4 times smaller than that expected for a conventional
Josephson junction. A tentative explanation for this differ-
ence is the existence of a single fermion (charge e)

FIG. 2 (color online). Left: the bounce trajectory for case A.
The solution is effectively the sum of an instanton and anti-
instanton of the sine-Gordon model. Right: the trajectory of a
single instanton for case A [38].
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topological current of Majorana fermions in addition to the
conventional Cooper pairs (charge 2e) supercurrent. We
have proposed an experimental setup is which this differ-
ence could be used to find a robust signature of topological
superconductivity.
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