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An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D)
plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the
very same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode resides
in the strong anisotropy that is present in the graphene band structure near the Dirac point. This
anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the
ΓK direction, which leads to two modes of collective oscillation: one mode in which the two types of
electrons oscillate in phase with one another [this is the conventional 2D graphene plasmon, which at

long wavelengths (q → 0) has the same dispersion, q1/2, as the conventional 2D plasmon of a 2D free
electron gas], and the other mode found here corresponding to a low-frequency acoustic oscillation
[whose energy exhibits at long wavelengths a linear dependence on the 2D wavenumber q] in which
the two types of electrons oscillate out of phase. If this prediction is confirmed experimentally, it will
represent the first realization of acoustic plasmons originated in the collective motion of a system
of two types of carriers coexisting within the very same band.

PACS numbers: 73.20.Mf,73.22.Lp,73.22.Pr

Over the recent years, the interest in graphene has im-
pressively grown in both fundamental research and tech-
nological applications [1]. This is due to the fact that
graphene exhibits a good number of interesting proper-
ties, related mainly to its novel electronic structure near
the Fermi level represented by the so-called Dirac cone.
A major issue is represented in this case by the vari-
ation of the charge carrier density, which is caused by
several conditions including, for example, the shape and
defects of graphene flakes, charge transfer processes with
the supporting material [2], chemical doping [3], and the
application of gating potentials [4]. The appearance of
a two-dimensional (2D) sheet plasmon in graphene ad-
sorbed on a variety of supporting materials has been ob-
served in several experiments [5–7], where the monolayer
graphene happens to be doped by charge transfer to or
from the substrate; on the theoretical side, tight-binding
calculations [8–10] and ab-initio calculations [11–13] have
been able to reproduce a 2D sheet plasmon in extrinsic
(doped or gated) free-standing graphene.

In this letter, we present an ab-initio description of the
energy-loss spectrum of both intrinsic (undoped and un-
gated) and extrinsic free-standing monolayer graphene.
Starting with pristine (intrinsic) graphene, we include
the effect of electron injection by simply up shifting the
Fermi level from the Dirac point, that is by working under
the assumption that the graphene band structure is unaf-
fected by doping. We find that the strong anisotropy that

is present in the graphene band structure near the Dirac
point allows for the coexistence of a majority of electrons
moving with two different velocities along the ΓK direc-
tion, thus leading to a remarkable realization of the old
idea [14] that low-energy acoustic plasmons (whose en-
ergy exhibits a linear dependence on the wavenumber)
should exist in the collective motion of a system of two
types of electronic carriers. Our energy-loss calculations
[which we carry out in the Random-Phase Approxima-
tion (RPA)] clearly show the existence of a low-frequency
acoustic oscillation (in which the two types of electrons
oscillate out of phase), in addition to the conventional
2D graphene collective mode described in Refs. [8–10]
(in which the two types of electrons oscillate in phase
with one another).

We start with the following expression for the in-plane
RPA complex dielectric matrix of a many-electron system
consisting of periodically repeated (and well separated)
graphene 2D sheets (atomic units are used throughout,
unless stated otherwise):

εg,g′(q, ω) = δg,g′ − vg,g′(q)
∑
gz,g′

z

χ0
G,G′(q, ω). (1)

Here, G is a three-dimensional (3D) reciprocal-lattice
vector: G = {g, gz}, g and q being an in-plane 2D re-
ciprocal lattice vector and an in-plane 2D wavevector,
respectively. vg,g′(q) = 2πδg,g′/|q + g| and χ0

G,G′(q, ω)
represents the 3D Fourier transform of the density-
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response function of non-interacting electrons:

χ0
GG′(q, ω) =

2

Ω

BZ∑
k

∑
v c

(fvk − fck+q)

×
ρvck,q(G)ρ∗vck,q(G′)

ω + εvk − εck+q + iη
. (2)

In eq.(2), Ω represents a normalization volume, k is an
in-plane 2D wavevector in the first Brillouin Zone (BZ),
fvk and fck+q are occupation numbers corresponding to
states in the valence (v) and conduction (c) energy bands,
respectively, and ρvck,q is a shorthand for the matrix el-
ement 〈vk|e−i(q+G)·r|ck + q〉, εvck and |vck〉 being the
eigenvalues and eigenvectors of a single-particle Hamilto-
nian, which we take to be the Kohn-Sham (KS) Hamil-
tonian of Density-Functional Theory (DFT).

The inelastic scattering cross section corresponding to
a process in which (after the scattering of external elec-
trons or electromagnetic waves) an electronic excitation
of wavevector q+g (q being a wavevector in the BZ) and
energy ω is created at the graphene 2D sheet is propor-
tional to the energy-loss function Im

[
−ε−1g,g(q, ω)

]
. Col-

lective excitations (plasmons) are dictated by zeros in the
real part of the macroscopic dielectric function

εM (q + g, ω) = 1/ε−1g,g(q, ω) (3)

in an energy region where the imaginary part is small.
Our ab-initio scheme begins with the KS eigenval-

ues and eigenvectors, which we calculate in the local-
density approximation (LDA) by using the Perdew-
Zunger parametrization [15] of the uniform-gas correla-
tion energy. We use a plane-wave basis set (with a cut-off
energy of 25 Hartrees) and a norm-conserving pseudopo-
tential of the Troullier-Martins type [16]. Our system is
made by periodically repeated 2D graphene sheets sep-
arated by a distance of ∼ 20 Å. The BZ integration is
carried out by using an unshifted 60×60×1 Monkhorst-
Pack grid [17], which results in a 3600 k-point sampling
of the BZ. From the converged electron density, we cal-
culate the KS single-particle energies and orbitals on a
denser k-point mesh (720 × 720 × 1), including up to
60 bands. These KS energies and orbitals are plugged
into Eq. (2), which we use to obtain the χ0 matrix with
up to ∼ 500G-vectors. The in-plane RPA complex di-
electric matrix is then computed from Eq. (1). For the
wavevectors and energies of interest here (below the π
plasmon at ∼ 5 eV), stable results were obtained by in-
cluding in Eq. (2) 51 reciprocal-lattice vectors of the form
G = {0, gz}.

In the case of intrinsic graphene, the calculated energy-
loss function presents three well-known distinct features.
First of all, there is a broad peak-like structure starting
at low values of q and ω [see Fig. 1(a)], which originates at
interband π → π∗ single-particle (SP) excitations [8, 9]
and was erroneously interpreted as a cone plasmon in
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FIG. 1. 2D plot of the energy-loss function of (a) intrin-
sic and (b) extrinsic graphene, vs the magnitude of the in-
plane wavevector q along the ΓK direction (horizontal axis)
and the energy ω (vertical axis). In the case of extrinsic
graphene, the Fermi level has been shifted 1 eV above the
Dirac point. (c) The energy-loss function Im

[
−ε−1

0,0(q, ω)
]

(red line), ReεM (q, ω) (black line), and ImεM (q, ω) (green
line) of extrinsic graphene, vs the energy ω for a fixed value

of the magnitude of q along the ΓK direction: q = 0.17 Å
−1

.

Ref. [12]. Second, there is the π plasmon (πP) starting
at ∼ 5 eV [see Fig. 1(a)] (also present in graphite [18]),
which in the case of monolayer graphene is red-shifted
and exhibits a linear dispersion [19, 20] distinct from
the parabolic dispersion in graphite. Third, there is the
broad high-energy graphene σ−π plasmon peak starting
at ∼ 15 eV [not visible in Fig. 1(a)], which corresponds
to the graphite σ − π plasmon at ∼ 27 eV [21].

For extrinsic graphene, we adjust the occupation fac-
tors of Eq. (2) to account for a positive Fermi-energy shift
∆EF = 1 eV relative to the Dirac point, corresponding to
a charge-carrier density of 1.15×1014 cm−2 [22]. Figure 1
exhibits a comparison of the RPA energy-loss function
that we have obtained along the ΓK direction for intrin-
sic graphene [Figure 1(a)] and extrinsic graphene [Fig-
ure 1(b)]. This doping affects neither the π nor the σ−π
plasmon. Important differences are visible, however, at
low q and ω, where we can clearly identify the open-
ing of a gap in the SP excitation spectrum of extrinsic
graphene. More importantly, two collective modes (plas-
mons) are clearly visible in the case of extrinsic graphene
(which are absent in intrinsic graphene): (i) the conven-
tional 2D graphene plasmon (2DP) [8, 9], which within
the gap (of the SP excitation spectrum) has no damping
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(and exhibits the same dispersion, q1/2, as the conven-
tional plasmon of a 2D electron gas [23]) and outside
the gap has finite linewidth, and (ii) a well-defined low-
frequency mode (the new acoustic plasmon, AP), whose
energy clearly exhibits at long wavelengths (q → 0) a
linear dependence on q.

In order to demonstrate that the energy-loss peaks that
are visible in Figure 1(b) correspond to collective exci-
tations, we have plotted in Figure 1(c) the energy-loss
function (red line) for a given value of q (q = 0.17 Å−1),
together with the real and the imaginary parts of the
macroscopic dielectric function εM (black and green lines,
respectively) of Eq. (3). This figure clearly shows that
ReεM exhibits two distinct zeros (marked by the open cir-
cles I and II) in energy regions where ImεM is small and
the energy-loss function is, therefore, large. These two
zeros (each of them being associated to the two maxima
B1 and B2 in ImεM ) represent a signature of well-defined
collective excitations: (i) The higher-energy plasmon (the
conventional 2D graphene plasmon, 2DP) occurs at an
energy (just above the upper edge vF q of the intraband
SP excitation spectrum, vF being the graphene Fermi ve-
locity) where only interband SP excitations are possible.
(ii) The low-energy plasmon (the new acoustic plasmon,
AP) occurs at an energy that stays below vF q, so it is
damped through intraband SP excitations; nonetheless,
Im εM is still considerably small at this energy, signal-
ing that this low-energy mode represents a well-defined
collective excitation as well.

The existence of the low-energy acoustic plasmon could
not possibly have been anticipated in the framework of
simple tight-binding-like investigations [8, 9], simply be-
cause an oversimplified isotropic graphene band structure
was considered in the vicinity of the K-point. A signature
of such a mode has been detected recently [12, 13]; but
it was erroneously interpreted in Ref. [12] as a nonlinear
mode along the nonlinear branch of the cone structure,
and it was not discussed whatsoever in Ref. [13].

With the aim of revealing the origin of the low-energy
acoustic plasmon (the new plasmon), we show in Fig. 2
the graphene band structure [Figure 2(a)] and density
of states [Figures 2(b) and 2(c)] along various high-
symmetry directions around the Dirac point. Figure 2(a)
shows our graphene band structure, as obtained along
three high-symmetry paths all starting at the K-point:
The KΓ and KM branches (red and blue lines, respec-
tively) along the ΓK direction, and the KK branch (green
line) along the ΓM direction, together with the cone ap-
proximation (black dashed line).

The strong band-structure anisotropy that is visible in
Fig. 2(a) implies the very unique behavior of the den-
sity of states shown in Figs. 2(b) and 2(c). While along
the ΓM direction [see Fig. 2(c)] the density of states is
peaked (at the energies of interest, i.e., below ∼ 1.5 eV)
around one single Fermi velocity vF ∼ 1× 106 m/s (peak
B1 above the Dirac point and peak B1’ below), as occurs
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FIG. 2. (a) The graphene DFT band structure, as obtained
along three high-symmetry paths all starting at the K-point:
The KΓ and KM branches (red and blue lines, respectively)
along the ΓK direction, and the KK branch (green line) along
the ΓM direction; the cone aproximation is represented by a
black dashed line. (b) and (c) Density of states, along ΓK
and ΓM, vs the energy ω and the Bloch speed v. The solid
and dashed vertical lines represent the Fermi level of intrinsic
graphene and extrinsic graphene (with ∆EF = 1 eV), respec-
tively.

in a free-electron gas, the density of states along the ΓK
direction is peaked at two distinct velocities (peaks B1
and B2 above the Dirac point, and B1’ and B2’ below)
within the very same band. Since for a low wavevector
along a given direction the number of allowed intraband
transitions [dictated by ImεM ] is known to be propor-
tional to the density of states with group velocity along
that direction [24], intraband transitions along the ΓK
direction [see also the maxima B1 and B2 in Figure 1(c)]
happen to be determined by the coexistence of carriers
moving with two distinct Fermi velocities. This leads
to two modes of collective oscillation: (i) one mode (the
conventional 2D plasmon, 2DP) in which the two types
of electrons oscillate in phase with one another with an
energy that should be slightly larger than along the ΓM
direction (where only one type of electrons participate
and the 2DP dispersion -outside the gap- simply follows
the upper intraband edge vF q [8, 9]), and (ii) another
mode (the new acoustic plasmon, AP) which corresponds
to an acoustic oscillation of lower frequency in which the
two types of electrons oscillate out of phase.

Hence, hereby we shed light on the observed deviation
(along the ΓK direction) of the 2DP dispersion curve to-
wards energies that are (outside the gap) above the upper
intraband edge vF q [6]. And hereby we predict the exis-
tence (along the ΓK direction) of a remarkable acoustic
plasmon as the collective motion of a system of two types
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FIG. 3. The energy (in eV) of the conventional graphene
2D plasmon (2DP), vs the in-plane 2D wavevector q. The
Fermi level has been shifted 1 eV above the Dirac point, i.e.,
∆EF = 1 eV.

of electronic carriers coexisting in the very same 2D band
of extrinsic graphene.

The complete anisotropic plasmon dispersion of both
plasmons (2DP and AP) is shown in Figs. 3 and 4, re-
spectively, where the plasmon energy is plotted vs the in-
plane 2D wavevector q. Figure 3 clearly shows that the
conventional 2D plasmon is (i) isotropic at wavevectors

below ∼ 0.1 Å
−1

(0.05 a.u.) where neither intraband nor
iterband transitions are available and there is no damp-
ing, and (ii) anisotropic at larger wavevectors (reflect-
ing the 6-fold symmetry of the graphene BZ) with the
plasmon energy being along the ΓK direction larger than
along the ΓM direction (as discussed above).

Figure 4 shows that the new acoustic plasmon exhibits
an extraordinary anisotropy. The energy of the AP in-
creases linearly with the magnitude of the wavevector,
with a slope that is minimum along the ΓK direction
and increases as one moves away from that direction un-
til the AP completely disappears at wavevectors q along
the ΓM direction (grey area).

In summary, we have demonstrated that as a conse-
quence of the fact that two types of carriers in extrinsic
graphene (moving with two distinct Fermi velocities) co-
exist within the very same 2D band, (i) the conventional
2D plasmon (corresponding to the two types of electrons
oscillating in phase with one another) disperses along the
ΓK direction with an energy that is higher than along
the ΓM direction, and (ii) there is an additional acoustic
plasmon (corresponding to the two types of electrons os-
cillating out of phase). Low-energy acoustic plasmons are
known to exist [25–29] at metal surfaces where a quasi
two-dimensional 2D surface-state band coexists with the

FIG. 4. As in Fig. 3, but for the graphene acoustic plasmon
(AP). The grey color shows regions where the AP is not found
to exist. For the k mesh and numerical broadening used in
our calculations, we have been able to trace the existence of
the graphene AP down to 0.1 eV.

underlying 3D continuum. Here we predict the existence
of a graphene acoustic plasmon, which if confirmed exper-
imentally would be the first realization of acoustic plas-
mons originated within the very same band and would
represent, therefore, a truly remarkable feature having
no analogue in solid-state physics.
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