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Nonuniversal surface behavior of dynamic phase transitions
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We have studied the dynamic phase transition (DPT) of the kinetic Ising model in systems with surfaces
within the mean-field approximation. Varying the surface exchange coupling strength Js , the amplitude of the
externally applied oscillating field h0, and its period P , we explore the dynamic behavior of the layer-dependent
magnetization and the associated DPTs. The surface phase diagram shows several features that resemble those of
the equilibrium case, with an extraordinary bulk transition and a surface transition for high Js values, independent
from the value of h0. For low Js , however, h0 is found to be a crucial parameter that leads to nonuniversal surface
behavior at the ordinary bulk transition point. Specifically, we observed here a bulk-supported surface DPT for
high field amplitudes h0 and correspondingly short critical periods Pc, whereas this surface transition simultaneous
to the bulk one is suppressed for slow critical dynamics occurring for low values of h0. The suppression of the
DPT for low h0 not only occurs for the topmost surface layer, but also affects a significant number of subsurface
layers. We find that the key physical quantity that explains this nonuniversal behavior is the time correlation
between the dynamic surface and bulk magnetizations at the bulk critical point. This time correlation has to pass
a threshold value to trigger a bulk-induced DPT in the surface layers. Otherwise, dynamic phase transitions are
absent at the surface in stark contrast to the equilibrium behavior of the corresponding thermodynamic Ising
model. Also, we have analyzed the penetration depth of the dynamically ordered phase for the surface DPT that
occurs for large Js values. Here we find that the penetration depth depends strongly on Js and behaves identically
to the corresponding equilibrium Ising model.
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I. INTRODUCTION

Magnetic systems in the ferromagnetic phase, i.e., below
the Curie temperature Tc, have been found to exhibit a
dynamic phase and a related nonequilibrium dynamic phase
transition (DPT) when driven by an external periodically
oscillating field [1]. This occurs when the period P of the
applied oscillating field becomes comparable to the relaxation
time τ of the magnetic or spin system. In this case, the
time-dependent magnetization is unable to reverse before the
sign of the magnetic field changes again and the system is
in a dynamically ordered phase. This phenomenon was first
studied by Tomé and Oliveira [1], who analyzed the kinetic
Ising model within the mean-field approximation (MFA).

Subsequent studies using different methodologies such as
the MFA and Monte Carlo simulations (MCSs) [2–5] focused
on the question of how the shape and area of hysteresis loops
depend on the period and amplitude of the magnetic field. For
large periods, the area of the hysteresis loop follows a scaling
behavior, while the center of the hysteresis loop deviates from
zero if the field changes are fast, i.e., when the oscillation
period P is sufficiently small. This type of behavior has also
been confirmed experimentally in ultrathin films [6,7]. Further
theoretical investigations of the kinetic Ising model [8–23]
have analyzed various aspects of the DPT and concluded that
the period-averaged magnetization Q plays the role of the
dynamic order parameter, showing a nonzero value in the
dynamically ordered phase, when the period of the oscillating
field is below a certain critical period Pc, while being zero
above Pc in the dynamically disordered phase. It has also been
shown that the DPT occurs at a critical point Pc and that there
is a power law for Q in the vicinity of Pc that exhibits the
same critical exponent as in the thermodynamic equilibrium
case. Hence, it is well established that the kinetic Ising model

for a bulk system belongs to the same universality class as
the corresponding equilibrium model. The question of the
existence of a conjugate field of Q, analogous to the external
magnetic field being the conjugate field of the magnetization
in the thermodynamic case, has been addressed relatively
recently [16,20,22,24]. These studies point out that this role is
played by an external continuous bias field hb that is applied in
addition to the periodic oscillatory field that drives the DPT in
the first place. The equation of state for the kinetic Ising model
within the MFA was derived [22], verifying this role of hb, at
least within the mean-field approximation. Some experimental
works on the DPT have gone beyond a mere observation of
the collapse of the hysteresis loop area with decreasing field
period and instead enabled a quantitative study of the dynamic
order parameter Q as a function of P and hb [25,26].

All these previously mentioned theoretical works have
studied the DPT without the explicit consideration of surfaces.
However, the presence of surfaces is known to have a
substantial impact on local quantities at bulk critical points
in equilibrium. For the thermodynamic case, this fact has
been subject to extensive studies [27–35] and it is well
understood. Depending on the exchange coupling strength
between neighboring spins within the surface Js compared to
that between spins in the bulk Jb, two regimes are observed. For
low Js values, the surface, which would not undergo a phase
transition by itself at the bulk critical point Tc, is polarized
by the bulk. Consequently, both the surface and bulk undergo
a phase transition at the bulk Tc in unison. As the surface is
already ordered through the support of the bulk, it does not
show its own phase transition, which would otherwise occur
at a lower temperature. This regime is called the ordinary
transition. Even if both the surface and bulk order at the same
Tc in this low Js case, their critical exponents differ. Within
the MFA one obtains, for instance, βb = 1/2 for the bulk and
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βs = 1 for the surface. If the surface exchange coupling is
sufficiently enhanced over its bulk value, however, the surface
can order separately at higher temperatures than the bulk,
which is the so-called surface transition. For such systems,
the bulk undergoes the so-called extraordinary transition at its
own Tc in the presence of an already ordered surface. In this
case, the surface ordering is two dimensional, whereas the bulk
one is three dimensional.

The nonequilibrium properties of a system with surfaces
under the effect of an external oscillating field, however, are
not yet fully understood. Only very recently, several authors
have studied the DPT in systems with surfaces [36–43] to shed
light on this subject. Hereby, some intriguing observations
have been made. For instance, surface critical exponents
in the DPT were found to differ from the values of the
equilibrium surface critical exponents [36], thus indicating that
the dynamic surface universality class is different from that of
the equilibrium surface system. This is in strong contrast with
what one observes for the bulk system, where both kinetic and
equilibrium Ising models exhibit the same critical exponents.
Furthermore, it was reported that the kinetic surface phase
diagram resembles the equilibrium one, characterized by a
distinct surface transition and an extraordinary bulk transition
for high values of Js and an ordinary bulk transition for
low values of Js . However, the pioneering work of Tauscher
and Pleimling [40] has revealed the fact that for sufficiently
weak surface couplings, the surface does not undergo a DPT
triggered by the bulk, in distinct contrast to the behavior of the
equilibrium Ising model, where the surface follows the bulk
transition no matter how low Js is.

The main purpose of our work is to perform a broad-based
investigation of the DPT in systems with surfaces. To enable
a wide parameter space exploration, we have realized our
calculations by utilizing the mean-field methodology because
it is computationally far less demanding. In particular, this
approach has enabled us to investigate the role that the
oscillating field amplitude h0 plays. We have concluded that
h0 is a very relevant parameter that determines not only the
exact location of the phase transition point Pc, but also the
actual presence or absence of the DPT at the surface when
the value of Js is low. Thus, we find that the occurrence of the
DPT at surfaces is not a universal behavior or phenomenon, but
instead dependent on the specific external parameter set that
determines the location of the bulk DPT. We have also explored
the underlying physical mechanism that is responsible for this
lack of universal behavior. For this purpose, we have analyzed
the time correlation between the time-dependent surface and
bulk magnetizations and we have identified this correlation as
the relevant physical parameter that triggers a bulk-supported
surface DPT. In addition to the analysis of the topmost surface
layer, we also performed a layer-dependent analysis, enabling
us to identify relevant quantities as a function of depth. In
particular, we observe not only that the DPT is suppressed at
the topmost surface layer for certain low Js and low h0 cases,
but that there are approximately five subsurface layers that are
not participating in the bulk-triggered DPT at Pc either. For
the high Js cases, the layer resolution enables us to study the
penetration of the localized surface transition into the layers
below the surface, which happens at critical periods above the
bulk Pc.

The paper is organized as follows. In Sec. II we explain
the method that we have applied to perform the mean-field
calculations. In Sec. III we discuss the results for two particular
cases: in Sec. III A for the bulk-terminated case (Js = Jb) and
in Sec. III B for a modified surface coupling strength with
respect to that of the bulk (Js �= Jb). Finally, in Sec. IV we
summarize our study, relate it to prior work, and discuss its
implications for future theoretical and experimental work.

II. METHOD

In our calculations we apply the MFA to explore the
DPT in systems with surfaces. For the sake of comparability
with previous theoretical studies [40,41], the system under
study is chosen to be a simple cubic lattice with (100)
surface orientation [44], which is depicted schematically in
Fig. 1. A series of atoms organized in layers from L = 1 to
L = N is coupled with an exchange coupling strength Js ,
for nearest-neighbor spin pairs in L = 1, and with Jb, for
nearest-neighbor spin pairs in which at least one spin is not
located in L = 1. The Ising Hamiltonian that describes this
spin system, normalized to Jb, is given by

H̃ = −Js

Jb

∑
[i,j ]

SiSj −
∑
{i,j}

SiSj − 1

Jb

∑
i

H (t)Si, (1)

where the sum in the first term runs over pairs of nearest-
neighbor spins that are in the surface layer L = 1. In the second

FIG. 1. (Color online) Schematic representation of the simple
cubic lattice with the (100) surface orientation utilized in this
study. Each atom in layer L = 1 (surface) has four in-plane nearest
neighbors and interacts with them via an exchange coupling strength
Js , which is represented by dashed lines. Additionally, it has one
other nearest neighbor in L = 2, to which it is coupled via exchange
coupling strength Jb, represented with solid lines. For L > 1, each
atom interacts with its six nearest neighbors through Jb, of which
four are in-plane neighbors in L, one is in the layer above (L − 1),
and one is in the layer below (L + 1).
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term, the sum with curly brackets is applied to nearest-neighbor
spins, of which at least one is not in the surface layer. The
exchange coupling strengths Js and Jb are given in units of
energy and the spins Si are dimensionless and restricted to
values ±1 for the sake of simplicity. The last term in (1) is
the Zeeman energy summed over all the spins, assuming that
surface and bulk moments have equal size regardless of the
exchange coupling strength in between them. The magnetic
field H (t) is the sum of a periodic oscillating field and a
continuous bias field Hb:

H (t) = H0 cos

(
2π

P
t

)
+ Hb, (2)

with the magnetic fields H0 and Hb given in units of energy.
Here P is the period of the oscillating field. In the following we
will represent all magnetic fields normalized to Jb by lowercase
letters, i.e., h(t) = H (t)/Jb, h0 = H0/Jb, and hb = Hb/Jb.

In the MFA, the complexity of the Hamiltonian (1) is
simplified by the suppression of fluctuations, which allows
for a representation of the Hamiltonian as a sum of products
of spins Si and local effective fields heff

L (t) that depend on the
layer L, in which each of the spins is located. This can be done
because the MFA does not require translational invariance and
has actually been used to solve the equilibrium Ising model
for layered systems [29,31]. Within the MFA, we have

H̃MFA =
∑
i(L)

heff
L (t)Si. (3)

The effective field heff
L (t) is the sum of the external field

h(t) and the mean field arising from the magnetization of the
neighboring atoms and is given as

heff
1 (t) = h(t) + 1

6Jb

[4Jsm1(t) + Jbm2(t)], (4a)

heff
L �=1,N (t) = h(t) + 1

6Jb

[4JbmL(t) + JbmL−1(t)

+ JbmL+1(t)], (4b)

heff
N (t) = h(t) + mN (t), (4c)

with mL being the spin expectation value of layer L. For the
surface layer L = 1, the coupling strength towards the four
in-plane nearest neighbors is Js and the coupling strength to
the neighbor in L = 2 is Jb. The atoms in the rest of the layers
are coupled to their six nearest neighbors (four in plane, one
above, and one below) via the exchange coupling strength
Jb. The interactions have been normalized to 6 Jb, i.e., the
interaction of an atom in the bulk. It should be noted that for
layer N in Eq. (4c), the spins are coupled as if the system
were a pure bulk system. Thus, layer N represents a bulk
layer and not the central layer of a finite film system. If N

is sufficiently large, this specific choice for layer N does not
affect the fundamental behavior of the system. Instead, the
advantage is that coupling this layer to itself provides a clear
reference point for the inferred bulk behavior in terms of the
critical period Pc, which is independent of N .

Assuming that the system follows stochastic Glauber
dynamics, the time-dependent magnetization of every layer
mL(t) is obtained by solving for each layer the dynamic

equation that describes the approach to equilibrium [1]

τ
dmL

dt
= −mL + tanh

(
1

T
heff

L

)
. (5)

Here τ is the relaxation time of the spin system and T

is the temperature of the system normalized to its critical
temperature Tc. The magnetization of each layer depends on
the magnetization of the neighboring layers through the heff

L

term, leading to a system of N coupled differential equations.
Once mL(t) is known, one can compute the dynamic order
parameter for each layer

QL = 1

P

∫ P

0
mL(t)dt (6)

and the layer-resolved susceptibility [45]

χL = dQL

dhb

. (7)

The steady-state solutions of (5) have been determined
numerically by discretizing one period of the oscillating field
into K time steps. This discretization is performed by replacing
2π
P

t with 2π k
K

, where k is an integer that ranges from 1 to K .
Thus, the time-dependent functions mL(t) and heff

L (t) can be
rewritten as functions of the discrete variable k, i.e., mL(k) and
heff

L (k). The evaluation of Eq. (5) by means of finite differences
leads to the system of N × K equations

mL(k) = F (mL(k))

= (τK/P )mL(k − 1) + tanh
{
(1/T )

[
heff

L (k)
]}

1 + τK/P
, (8)

which is solved self-consistently in an iterative process

mi+1
L (k) = F

(
mi

L(k)
)
, (9)

where i is the iteration index. The process is initialized with

mi=1
L (k) = 0.15 + 0.4 cos

(
2π

k

K

)
(10)

if not stated otherwise and continued until mi+1
L (k) − mi

L(k) <

ε is satisfied for all layers L and all time steps k, under the
assumption that if this condition is fulfilled, self-consistency
has been achieved. The cutoff criterion ε is chosen to be 10−11.
The number of k points utilized in our calculations is K = 200
and the number of layers is N = 50. We have tested that
these values ensure convergence and that they are sufficient
for the purposes of our study. We perform our calculations at a
fixed temperature of T = 0.8, thus restricting ourselves to the
parameter range in which only second-order dynamic phase
transitions occur. By doing so we avoid first-order dynamic
phase transitions that may be an artifact of the MFA itself [46].
We vary the period of the oscillating field P , its amplitude h0,
and the surface exchange coupling strength Js . The study is
performed at bias field hb = 0, for which the critical point
occurs. In the following we will denote surface quantities
(corresponding to L = 1) by the subscript (or superscript) s

and all the bulk quantities (L = N ) by b.
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III. RESULTS AND DISCUSSION

A. Bulk-terminated surface ( Js = Jb)

In order to investigate the behavior of surfaces at or near
the DPT, we first analyze the Js = Jb case. With this value
of Js , the surface would not order by itself at the bulk critical
period. This is the case because, even if the exchange coupling
among spins is the same for the surface and bulk, the missing
neighbors at the surface reduce the effective coupling strength.
Thus, the surface alone would have a transition at a lower P

than the bulk. However, being coupled to the bulk, some order
is induced at the surface via the dynamically ordered bulk and
its own DPT at a period below the bulk critical value is absent.
Thus, if there is a surface DPT, it will be bulk supported and
taking place at P s

c = P b
c ≡ Pc. Correspondingly, the system

would exhibit an ordinary transition. However, Tauscher and
Pleimling have found that the DPT in this ordinary transition
regime is actually absent at the surface [40]. Our calculations
confirm that this indeed happens for low values of the
amplitude of the oscillating field h0.

In Fig. 2(a) the time-dependent magnetization curves of
the surface and the bulk are plotted as a function of time for
three different values of P for a field of h0 = 0.080. In this
low-field case the critical period is Pc = 93.375 85τ , meaning
that the dynamics is quite slow. Both the bulk and surface
magnetizations can reverse their sign when P > Pc and they
oscillate symmetrically around zero, giving rise to a vanishing
dynamic order parameter, as can be seen for the P = 2Pc and
1.2Pc curves in Fig. 2(a). As the period of the oscillating field
is further decreased though, the bulk magnetization cannot
be reversed and its period-averaged value differs from zero
and a dynamically ordered phase is achieved. As observed

in the bottom graph of Fig. 2(a), for P = 0.8Pc there are
two solutions for the bulk magnetization, oscillating around a
value of Qb that has the same magnitude but opposite sign. The
surface has also two solutions with the same property, but in
this case both curves are very similar to each other and oscillate
almost symmetrically around zero. Thus, the induced Qs at the
surface is very small. This qualitative difference in between the
bulk and surface behavior can be readily observed in Fig. 2(b).
Upon approaching the bulk critical period from above, both
Qb and Qs are zero, but at Pc the bulk shows a clear onset of
the dynamic order parameter Qb, whereas Qs only increases
very gradually. Additionally, the bulk susceptibility, shown in
Fig. 2(c), has a very pronounced peak at Pc [47], which is
consistent with the expected divergence of the susceptibility
at the critical point. However, the surface does not show any
peak and therefore it is not undergoing a phase transition.
The behavior reported by Tauscher and Pleimling [40] is thus
confirmed in this particular case in that the surface does not
undergo a bulk-supported DPT at Pc for the specific Js and h0

values chosen here.
The situation changes dramatically when the amplitude of

the oscillating field is increased. For h0 = 0.375, the bulk
critical period is reduced (Pc = 7.140 62τ ) and a behavior
that resembles the equilibrium case is observed. Specifically,
we find that the surface starts to order for P < Pc with
Qs following a linear behavior as a function of P that is
mimicking the surface magnetization vs temperature behavior
of the equilibrium MFA case [30]. Figure 2(d) furthermore
shows that the surface is exhibiting considerably larger Qs

values for P < Pc in the h0 = 0.375 case if compared to
the h0 = 0.080 case. Moreover, one can see in Fig. 2(e) that
the surface susceptibility now shows a clear peak. Hence, the

FIG. 2. (Color online) (a) Magnetization of the surface and bulk layers as a function of time (normalized by τ ) for an oscillating field
amplitude h0 = 0.080 and for oscillating periods of P = 2 Pc, 1.2Pc, and 0.8Pc (Pc = 93.375 85τ ). The magnetic field normalized to double
its amplitude is represented by dashed (black) lines. The dynamic order parameter Q of the surface and bulk layers is shown as a function of
the period P of the oscillating field normalized to Pc for (b) h0 = 0.080 and (d) h0 = 0.375. (c) and (e) Susceptibilities of the surface χs and
bulk χb normalized to χ0, as a function of P/Pc, corresponding to the order parameters in (b) and (d), respectively. All surface quantities are
represented with thin (blue) solid lines and the bulk quantities with thick (red) solid lines. The surface coupling constant is Js = Jb in all cases.
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FIG. 3. (Color online) Magnetization m of the surface [thin
(blue) solid line] and the bulk [thick (red) solid line] as a function of
time t normalized to Pc, for different values of h0. The period of the
oscillating field in each case is the Pc value that corresponds to each
respective amplitude h0. The magnetic field normalized to double
its amplitude is depicted as a dashed (black) line in each figure. A
decreasing phase shift between surface and bulk magnetizations can
be observed upon changing from (a) to (d), which corresponds to
successively increasing h0 values as indicated in each figure. The
surface coupling constant is Js = Jb in all cases.

surface is undergoing a DPT. These two cases illustrate that the
bulk-supported DPT at the surface does not have a universal
behavior, but instead depends strongly on h0.

To understand the underlying reasons behind this nonuni-
versal behavior, we have analyzed the time-dependent mag-
netizations of bulk and surface at the bulk critical point Pc

for different values of h0. Four such time sequences are
depicted in Fig. 3. For low h0 (high Pc), the surface and
bulk magnetizations show a substantial phase shift. Upon
going from Fig. 3(a) to Fig. 3(d) by increasing h0 (and thus
decreasing Pc), the phase shift between surface and bulk

FIG. 4. (a) Surface susceptibility χs at Pc normalized by the bulk
susceptibility at the same point, as a function of h0 [47]. (b) Time
correlation Csb between the surface and the bulk magnetizations at Pc

as defined in Eq. (11), as a function of h0. (c) Relationship between the
surface susceptibility peak at Pc and Csb. In all figures, closed circles
represent numerical calculations with the solid line being a guide to
the eye. The surface coupling constant is Js = Jb in all cases.

magnetizations diminishes substantially and the two curves
become more synchronous. This increasing synchronization
permits the bulk, which is undergoing a DPT at Pc, to induce a
surface DPT when the value of h0 is large. In contrast, the low
synchronization at low values of h0 prevents this support of the
surface transition by the bulk and that is the underlying reason
why the surface does not show a DPT in Figs. 2(b) and 2(c).
The h0 influence on the surface DPT can be seen clearly in
Fig. 4(a), where we find that the surface susceptibility χs at
the bulk Pc increases monotonically with h0.

For the purpose of quantifying the synchronization between
surface and bulk magnetizations, we have calculated the
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time-correlation function

Csb = 〈msmb〉√〈
m2

s

〉〈
m2

b

〉 . (11)

Here angular brackets represent the time average, numerically
calculated as 〈msmb〉 = 1

K

∑K
k=1 ms(k)mb(k) and 〈m2

L〉 =
1
K

∑K
k=1 [mL(k)]2, where the layer L can be the surface s or the

bulk b. Figure 4(b) shows that Csb is a monotonically increas-
ing function of h0, which confirms the qualitative observation
visible as apparent phase shifts in Fig. 3. It should be pointed
out that this behavior is somewhat counterintuitive. Large h0

values lead to fast critical dynamics, i.e., low Pc values, but
nonetheless, it is in this very limit that the correlation between
surface and bulk magnetization asymptotically approaches
complete correlation Csb = 1. On the other hand, complete
correlation is also existent for the equilibrium case, where
h0 = 0. This is the reason why in the equilibrium case the
surface always has a bulk-supported phase transition at the
bulk Tc for Js = Jb, because the surface and the bulk magne-
tizations are fully correlated in terms of their time-averaged
behavior.

In Fig. 4(c) we have plotted the surface susceptibility at
Pc as a function of Csb. It can be observed that this relation
has an onset behavior, with a threshold value of Csb, above
which the height of the surface susceptibility peak increases
very steeply. Indeed, the correlation between surface and bulk
magnetizations has to reach a certain value so that the bulk
can effectively induce a surface DPT. If Csb is not sufficiently
high to trigger the surface DPT, the surface behaves as a nearly
isolated system with respect to the bulk in the vicinity of Pc.
Nevertheless, even in this case, the surface gets weakly and
gradually polarized and thus does not undergo its own DPT at
a P value smaller than Pc.

Consistent with these observations, the value of h0 is also
affecting the critical behavior of the surface layer in a most
substantial fashion. When approaching the critical period, the
dynamic order parameter follows a power-law behavior

Qs = As(Pc − P )βs , (12)

which is reminiscent of the ms ∝ (Tc − T )β
eq
s law of the

equilibrium case. The same power-law behavior (12) applies
to the bulk, with the corresponding Qb, Ab, and βb parameters.
Within the MFA, the critical exponent for the surface in the
equilibrium Ising model is known to be β

eq
s = 1 [30]. For

the dynamic case, we have performed least-squares fits of
our simulation results using Eq. (12) to obtain the value of
βs and we have found that it deviates from β

eq
s , a fact that

had also been observed already in [36]. We observe that the
deviation is substantial for low values of h0, as can be seen
in Fig. 5(a). However, βs approaches the equilibrium value at
high h0. Additionally, in Fig. 5(b) we have plotted the ratio
between the proportionality constants for Qs and Qb in the
critical regime, i.e., As/Ab. The value of this ratio collapses
for small h0, which corroborates that the ordering of the surface
is suppressed when the time correlation between surface and
bulk magnetizations is small, in complete agreement with the
results and discussion of Fig. 4.

Furthermore, it should be mentioned that the surface layer
is not the only layer in which the DPT can be suppressed at low

FIG. 5. (a) Critical exponent βs as a function of h0, obtained
by fitting the computed data of Qs with Eq. (12). The dashed line
represents the equilibrium surface critical exponent in the MFA βeq

s =
1. (b) Ratio As/Ab between the prefactors of Eq. (12) as a function of
h0. In both cases, closed circles represent the numerical calculations
and the solid line is a guide to the eye. The surface coupling constant
is Js = Jb in all cases.

h0. The layers immediately beneath the surface are affected as
well, which can be demonstrated by a layer-resolved analysis.
In Fig. 6 the susceptibility of the first 25 layers is plotted as a
function of the oscillation period P and the layer index L. For
h0 = 0.080 [Fig. 6(a)] the susceptibility peak coming from the
bulk DPT and appearing as a dark horizontal line here does
not extend all the way to the surface and there are several dead
magnetic layers from L = 1 to about L = 6 that do not show
a susceptibility peak. For the case of h0 = 0.375 in Fig. 6(b),
however, all the layers show a clear susceptibility peak, even
if its amplitude is reduced close to the surface. Thus, all layers
participate in the DPT in this case.

B. Modified surface exchange coupling ( Js �= Jb)

In the second part of this work, we vary the value of Js to be
different from Jb. As a reference point, we pick the so-called
special point [30,32,40], i.e., the Js value, at which the surface
orders at the same critical period as the bulk by itself without
the need of being driven by the bulk. This condition is fulfilled
for a simple cubic lattice with (100) surface orientation when
Js = 1.25Jb within the MFA. For Js = 1.25Jb the dynamic
magnetic state of the layered system is depth independent and
it behaves as a pure bulk system without surfaces. Varying Js

will now allow for the study of the surface phase diagram as a
function of P and Js for different values of h0.
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FIG. 6. (Color online) Normalized susceptibility χ/χ0 maps as a
function of the normalized period P/Pc and the layer index L, using
a logarithmic (base 10) scale for χ/χ0. The darkest regions represent
high values of the susceptibility, i.e., peaks, and the light color
corresponds to low values of the susceptibility. (a) The amplitude
of the oscillating field is h0 = 0.080 and the peak that comes from
the bulk DPT does not extend to the topmost layers. (b) The amplitude
of the oscillating field is h0 = 0.375 and the peak extends all the way
to the surface layer L = 1. The surface coupling constant is Js = Jb

in both cases.

We shall first discuss the regime above the special point,
i.e., when Js > 1.25Jb. In this regime, the surface exchange
coupling strength is large enough to produce a surface DPT that
is separated from the bulk DPT, with P s

c > P b
c ≡ Pc. For such

systems, the bulk DPT is still present at Pc and essentially
unaffected by the surface DPT. Figures 7(a) and 7(b) show
the surface susceptibility peaks for different Js values as a
function of P for h0 = 0.080 and 0.375, respectively. The
surface shows a clear susceptibility peak in all cases, verifying
the existence of a DPT at the surface for Js values above the
special point, regardless of the value of h0. The specific period
value at which the surface DPT takes place varies with Js ,
with larger Js values leading to larger P s

c . This fundamental
behavior of the surface for Js > 1.25Jb does not vary with
h0 and it is qualitatively the same as in the equilibrium case,
for which a surface phase transition is observed above Tc for
sufficiently high Js . There is only a quantitative difference
for the different h0 values that can be observed by directly
comparing Figs. 7(a) and 7(b). The increase of P s

c with
Js that we find in our calculations is steeper for low h0.
Indeed, in Fig. 7(a) (h0 = 0.080) the surface susceptibility
peaks for different values of Js are more separated along
the P axis than in Fig. 7(b). However, the key observation
for Js > 1.25Jb is that the surface DPT always exists and is

FIG. 7. (Color online) Normalized surface susceptibility χs/χ0

as a function of the normalized period P/Pc for different Js

values above the special point. The Js values, to which each curve
corresponds, are given in the figure. They are, from left to right,
Js = 1.35Jb, 1.45Jb, and 1.55Jb. (a) The h0 = 0.080 case and (b) the
h0 = 0.375 case.

separated from the bulk DPT, just as in the equilibrium case.
This observation is entirely consistent with the nonuniversal
behavior we discussed for Js = Jb. In that case, the presence
or absence of a surface DPT was related to the synchronization
of the bulk and surface magnetization behavior, as both have to
undergo a single phase transition jointly. For the Js > 1.25Jb

case, however, two separate phase transitions exist for the
surface and the bulk, so synchronization in between the bulk
and surface and correspondingly h0 is not fundamentally
relevant.

It should also be mentioned that the surface DPT extends to
several subsurface layers. This is visible in Figs. 8(a) and 8(b).
Here the susceptibility of the first 25 layers is plotted as a
function of P and the layer index L. The dark horizontal
line at P/Pc = 1 corresponds to the DPT of the bulk and the
secondary dark horizontal line at P/Pc > 1 corresponds to
the susceptibility peak of the surface DPT. This secondary
line is most pronounced for the topmost layers. The surface
DPT weakens as one moves away from the surface and
eventually disappears. The penetration of the surface DPT can
be described accurately by an exponential decay as a function
of L,

χL = Be−L/λ + c, (13)

where λ is the penetration depth, c is the asymptotic bulk
susceptibility at P s

c , and B is a multiplicative constant.
This is the same behavior as the one that is observed for
the surface phase transition in thermodynamic equilibrium,
namely, that the susceptibility related to the localized surface
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FIG. 8. (Color online) (a) and (b) Normalized susceptibility
χ/χ0 maps as a function of the normalized period P/Pc and the
layer index L, using a logarithmic (base 10) scale for χ/χ0, for
h0 = 0.375 and (a) Js = 1.3Jb and (b) Js = 1.5Jb. Two peaks are
observed: one occurring at P s

c , with P/Pc > 1, corresponds to the
surface transition and the other one at P/Pc = 1 is the bulk transition.
In (a) the surface transition penetrates more deeply into the bulk than
in (b). (c) Penetration depth λ of the surface transition in units of L,
as a function of Js . Here λ has been obtained by fitting Eq. (13) to
our numerical susceptibility χ vs L data. For the DPT case (shown
as open squares) all fits were done at the surface critical period P s

c .
In the equilibrium case (shown as closed triangles), the fits of χ vs L

were performed at the surface critical temperature T s
c .

phase transition falls off exponentially as a function of the
depth [30]. As one can see from Fig. 8, λ depends strongly
on Js . If Js is close to the special point, as in Fig. 8(a)
with Js = 1.3Jb, P s

c will only be slightly higher than Pc and
the surface transition can penetrate very efficiently into the
subsurface region. If Js is increased further, as in Fig. 8(b)

with Js = 1.5Jb, the bulk and surface transitions will separate
significantly in P and the latter will exhibit a stronger surface
localization, only affecting a few of the topmost layers. We
have performed least-squares fits of Eq. (13) to our numerical
calculations to obtain λ for different values of Js . The results
are plotted in Fig. 8(c) as open squares. The strong dependence
of the penetration depth on Js is very visible from these data.
By analyzing and comparing data for the equilibrium Ising
model, we found that equilibrium and dynamic nonequilibrium
surface transitions behave in the exact same way. The decrease
of λ vs Js for the equilibrium surface phase transition, depicted
as closed triangles in Fig. 8(c), exhibits the same behavior that
we observe for the DPT at surfaces.

So overall, the equilibrium and the nonequilibrium phase
diagrams and the associated physical behavior are fundamen-
tally identical in the high Js regime, in agreement with the
observations in [40]. This is true regardless of the specific
value of h0.

In the following we will analyze the Js < 1.25Jb case. In
this regime, the surface order at the bulk Pc has to be induced
by the bulk. As we have already seen for the Js = Jb case,
this behavior is strongly h0 dependent and for low h0 values,
the surface and the layers close to it do not undergo a DPT.
Figure 9 shows the susceptibility for the first 15 layers as
a function of the period P and the layer index L for low
and high values of h0 and for different values of Js . In the
low-field case with h0 = 0.080, shown on the left-hand side
in Fig. 9, the topmost layers do not participate in the DPT
in Figs. 9(a)–9(c), which correspond to values of Js = 0.8Jb,
0.9Jb, and 1.1Jb, respectively. This is clearly evident because
the dark horizontal line corresponding to the bulk DPT does
not extend all the way to the surface or the surface near the
layers. We observe that the susceptibility of layers 1–6 does
not show any substantial peak at P = Pc until the special point
with Js = 1.25Jb is reached, as is shown in Fig. 9(d). So we
can conclude that in the low h0 case there is no bulk-supported
surface DPT for Js < 1.25Jb. Conversely, for the h0 = 0.375
calculations shown on the right-hand side of Fig. 9, the surface
and the layers close to it show a clear susceptibility peak for
values of Js as low as 0.8Jb. Increasing Js towards the special
point as observed in Fig. 9(h) makes this peak slightly more
pronounced, but does not fundamentally alter the physics. The
bulk-supported DPT occurs at high-h0 amplitudes, even for
Js values that are reduced with respect to the bulk-terminated
case Js = Jb.

For practical purposes, we define here a criterion to
determine whether the surface DPT is existent and observable.
Specifically, we define that the surface is undergoing a
bulk-supported DPT at the bulk Pc if the ratio between
the surface and the bulk susceptibility χs/χ0 at this point
is higher than 0.01 [47]. The fundamental aspects of the
corresponding classification will not depend on the specific
numerical value chosen, which is somewhat artificial and
chosen for convenience and detectability under experimental
or numerical noise conditions. With this definition, we can
now study the surface phase diagram as a function of Js and
P . Several such diagrams are plotted in Fig. 10 for different
values of h0. For each h0, the bulk transition (dashed line)
has the same Pc, independent from the value of Js , because
the systems under consideration here are thick enough so that
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FIG. 9. (Color online) Normalized susceptibility χ/χ0 maps as a
function of the normalized period P/Pc and the layer index L, using
a logarithmic (base 10) scale for χ/χ0, for (a)–(d) h0 = 0.080 and
(e)–(h) h0 = 0.375. The respective values of Js are shown in each
panel.

bulk transitions are not affected by surface properties [48].
The surface DPT behavior, shown as a solid line in each
case, however, is not so simple. In Figs. 10(a)–10(d) the
isolated surface DPT, which occurs above the special point, i.e.,
Js > 1.25Jb, is always present and P s

c increases monotonically
with Js in each case. In Fig. 10(a), corresponding to an applied
field of h0 = 0.080, we find the surface only to have a DPT at
or above the special point. Below it, the correlation between
the surface and bulk magnetizations is too low for the bulk
to drive a surface DPT. However, as h0 and consequently
Csb are increased, the bulk-supported surface DPT starts to
be observable even for values of Js < 1.25Jb, which can be
seen in Figs. 10(b)–10(d). This alteration of the phase diagram
happens because the dynamic surface magnetization becomes
ever more correlated to the dynamic bulk magnetization. The
higher h0 is, the further the surface DPT extends towards the
low Js range. In particular, one can see in Fig. 10(d) that for
h0 = 0.375 the surface DPT is even present for values of Js

that are substantially lower than the Js = Jb bulk-terminated
case.

In order to confirm that the physical mechanism that triggers
the bulk-supported surface DPT is indeed the time correlation

FIG. 10. (Color online) The Js−P surface phase diagrams for
different amplitudes of the oscillating field h0. The lines represent the
boundaries between the phases and are determined from the respective
positions of the susceptibility peaks. The surface phase boundaries are
depicted as solid (blue) lines and the bulk phase boundaries as dashed
(red) lines. The vertical axis corresponds to the period normalized to
the bulk critical period in each case and the horizontal axis to the ratio
between surface and bulk coupling strengths.

between the surface and bulk magnetization at Pc, we analyzed
the height of the surface susceptibility peak at the bulk Pc as
a function of Csb for three different values of Js below the
special point and for several values of h0 each. Indeed, we
find that Csb varies not only with h0, but also with Js . For
each of our simulated Js and h0 pairs, we have computed
χs and Csb. Figure 11 shows χs as a function of Csb, using
different symbols for the different selected Js values. This
plot shows that regardless of Js , all the data not only show an
onset behavior, but are also fairly well described by the same
universal curve. This corroborates that Csb is the key physical
quantity that determines if a system with surfaces exhibits a
bulk-supported surface DPT.
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FIG. 11. (Color online) Normalized surface susceptibility at
P/Pc = 1 as a function of the time correlation Csb between surface
and bulk magnetization. Values have been computed for different
values of h0 and Js (<1.25Jb). Circles (black) represent values
calculated for Js = Jb, squares (red) correspond to Js = 0.85Jb, and
triangles (green) to Js = 1.15 Jb.

It should also be mentioned that the values of h0 for
which we detect a suppression of the surface DPT at the
bulk Pc are lower than the corresponding h0 values found
by Tauscher and Pleimling [40]. This discrepancy can be
ascribed to the fact that mean-field calculations generally do
not give the same numerical values as MCSs for quantities
such as critical temperatures or critical exponents. However,
mean-field calculations frequently predict phase diagrams that
are qualitatively consistent with those obtained by MCSs or
other methods. Thus, we consider it likely that sufficiently
high amplitudes of the oscillating field would allow for the
observation of a bulk-driven surface DPT also by means of
MCSs.

IV. CONCLUSION

We have performed a detailed study of the DPT in systems
with surfaces, varying the surface exchange coupling strength
Js , the period P of the oscillating field, and its amplitude
h0. Our mean-field approximation approach has enabled us

to explore a wide range of the parameter space, which has
allowed us to identify the importance of h0.

In accordance with previous studies, we found that for
sufficiently high values of Js , surfaces undergo a DPT
separately from the bulk in the same way the equilibrium
Ising model shows surface-localized thermodynamic phase
transitions. Additionally, we observed that for low Js values,
for which the surface cannot order by itself at the bulk Pc,
the surface DPT can be completely suppressed in agreement
with the results reported by Tauscher and Pleimling [40].
However, our study shows that this is not a universal behavior.
Instead, surfaces undergo a DPT at the bulk Pc for sufficiently
strong h0. The presence or absence of this bulk-supported
surface DPT can be explained by the time correlation between
the surface and the bulk magnetizations at the bulk critical
point. The bulk is critical at Pc and when the surface and the
bulk magnetizations are almost synchronous at this point, the
surface is effectively coupled to the bulk and thus undergoes a
DPT at this point as well. However, when the time correlation
is below a threshold value, the bulk cannot support the surface
DPT and no DPT at the surface occurs. Our calculation results
show that the time correlation Csb is the key quantity that
determines the system’s behavior, regardless of the value of
Js , assuming that it is below the so-called special point.

We hope this work stimulates further studies on the role of
the amplitude of the applied oscillatory field onto the bulk
and surface DPT, as it is the dynamic input variable that
has no analog in the thermodynamic case. In addition, our
calculations also suggest that the DPT can be suppressed in
the topmost 5–6 atomic layers, which comprise a film of 1–2
nm thickness. Thus, it might very well be feasible to detect this
anomalous and nonuniversal surface behavior experimentally
with a technique that has sufficient selectivity and sensitivity,
such as magneto-optical Kerr-effect-based magnetometry [49].
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