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Semilocal density functional theory with correct surface asymptotics
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Semilocal density functional theory is the most used computational method for electronic structure calculations
in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very
attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside
a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we
derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface
asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can
be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation
level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are
closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential
model to the metal surface asymptotics.
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I. INTRODUCTION

The exact form of the potential felt by an electron leaving
from or approaching a metal surface is of great importance for
a variety of physical phenomena, including the interpretation
of image states [1], modeling quantum transport [2], low-
energy electron diffraction (LEED) [3], scanning tunneling
microscopy [4,5], and inverse or two-photon photoemission
spectroscopy [6,7]. The asymptotic form of this image po-
tential is −1/[4(z − z0)], with z being the distance from the
surface, and z0 representing the position of the so-called image
plane [8], and should be reproduced by any computational
method aiming at an accurate description of the surface
physics.

Within Kohn-Sham (KS) density functional theory (DFT)
[9,10], which is the most used computational method for elec-
tronic structure calculations in theoretical solid-state physics,
the shape of the image potential is dictated by the properties
of the effective Kohn-Sham (KS) potential. This depends
on the employed approximation for the exchange-correlation
(xc) functional Exc[ρ], which gives the xc potential via the
relation

vxc(r) = δExc[ρ]

δρ(r)
, (1)

where ρ is the electron density. It has been shown that the exact
vxc asymptotically approaches the image potential [8,11–14],
despite a different result has been obtained within the plasmon-
pole approximation [15].

The popular local density approximation (LDA) [10] and
the generalized gradient approximation (GGA), however, fail
in this task [16], showing either a too fast decay (e.g., expo-
nential), or an inaccurate description of the surface energetics
(as for the Becke exchange [17]). Ad hoc modifications of
the LDA xc potential [18,19] have then been proposed to
improve the asymptotic behavior of the xc potential, but

such methods are not functional derivatives of any energy
functional. Alternatively, nonlocal methods outside the KS
framework [11,13,14,20–22] are employed.

An accurate KS-DFT method with the correct surface
asymptotics would be desirable for many reasons, including
the local nature and the computational efficiency. However,
a good functional shall yield not only the correct asymptotic
xc potential, but also accurate energies. Thus, it is necessary
to be defined by a realistic energy per particle εxc(r). The
latter is not a uniquely defined physical quantity, but an exact
reference for it is the conventional energy per particle, which
is associated with the interaction of an electron at r with
the coupling-constant-averaged charge of its xc hole [23–25].
The exact (conventional) εxc(r) at metal surfaces decays as
−1/[4(z − z0)], i.e., as the image potential [11,26].

We recall that the exact exchange energy per particle
decreases as εx(z → ∞) → −A(β)/z where A(β) = [π +
2β ln(β)]/[2π (1 + β2)], β = √

εF /W , εF = k2
F /2 being the

Fermi energy (and kF the Fermi wave vector), and W the
work function [27,28]. On the other hand, the exact exchange
potential behaves as vx(z → ∞) → ln(βkF z)/(2πβz) [29].
Note that these behaviors are related to semi-infinite surfaces;
for finite jellium slabs we have that, as in molecules, εx(z →
∞) = −1/(2z) [27] and vx(z → ∞) = −1/(z) [30–34].

The simultaneous description of surface asymptotic and
energy properties is anyway an ambitious objective, which
is in fact not achievable at the GGA level [35–38]. In this
paper, we show that the issue can be instead solved at the
meta-GGA level of theory, employing an exact condition
which yields the correct imagelike asymptotic behavior of
both εxc and vxc at metal surfaces. This condition can be easily
implemented in any meta-GGA functional, keeping its original
accuracy for ground-state properties not related to surface
asymptotics. Hence, an accurate KS-DFT method with correct
metal-surface asymptotic can be obtained for application in
many surface science problems.
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II. EXACT CONDITION FOR ASYMPTOTIC PROPERTIES

To start, we consider the simplest (and most used) model
for a metal surface: the semi-infinite jellium surface. This
model system is very important in surface science and solid-
state physics, containing the physics of simple metal surfaces
[8,39,40].

The KS single-particle orbitals have the form

�kz,k‖(r) = 1√
S
√

L
eik‖r‖φkz

(z), (2)

where k‖ and r‖ are the two-dimensional wave vector and
position vector in the plane xy of the surface, kz and z are
the corresponding components in the direction perpendicular
to the surface, S and L are the normalization area and length,
and φkz

(z) are the eigenfunctions of a one-dimensional KS
Hamiltonian (for details see Appendix A).

In the vacuum region, far away from the surface (z → ∞),
the single-particle orbitals φkz

(z) behave as [27]

φkz
(z → ∞) → φkF

(z → ∞)e−βz(kF −kz), (3)

where

φkF
(z → ∞) ∼ e−z

√
2W (2z

√
2W )αKS/

√
2W, (4)

αKS > 0.
Now, we consider a meta-GGA xc energy per particle of

the form

εMGGA
xc = εLDA

x

1

η

8π

3
√

5

√
α√

ln(α)
, (5)

where η is a parameter to be fixed later, α(r) =
[τ (r) − τW (r)]/τTF(r) is the well-known meta-GGA ingredi-
ent that measures the nonlocality of the kinetic-energy density
[38], with τ , τW , and τTF being the positive-defined exact KS,
von Weizsäcker, and Thomas-Fermi kinetic-energy densities,
respectively. We recall that 1/[1 + α(r)2] is the electron
localization function, often used in the characterization of
chemical bonds [41]. Equation (5) yields the following
asymptotic behaviors (see the Appendix B for details):

εMGGA
xc (z → ∞) → −1

η

1

z
+ O(z−2), (6)

vMGGA
xc (z → ∞) → − 3

2η

1

z
+ O(z−2). (7)

Here, the KS potential has been obtained in the generalized
KS framework using the formula [42]

vxc(r)�i(r) =
[
∂(ρεxc)

∂ρ
− ∇ ∂(ρεxc)

∂∇ρ

]
�i

− 1

2
∇

(
∂(ρεxc)

∂τ

)
∇�i − 1

2

∂(ρεxc)

∂τ
∇2�i.

(8)

Equations (6) and (7) show that, in contrast to previously
developed xc functionals, both vxc and εxc are proportional
to the exact ones: if η = η1 = 4 (η = η2 = 6) then the exact
energy density (potential) is obtained. Unfortunately, η1 �= η2.
Nevertheless, for both values Eq. (5) yields an asymptotic
behavior qualitatively and quantitatively significantly beyond

the current state of the art. We also remark that Eq. (5) is solely
based on the properties of the reduced kinetic ingredient α.
However, at the meta-GGA level of theory, other ingredients
are also available (e.g., the gradient and the Laplacian of the
density) so that the exact asymptotic description of both εxc

and vxc might be achieved.

III. PRACTICAL COMPUTATIONAL TOOL

As a first practical example, we consider the case η = η1

and incorporate the condition of Eq. (5) into the popular Tao-
Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional
[43], using an approach similar to that of Ref. [44]. The
resulting xc functional will be termed surface-asymptotics
(SA) TPSS. This functional is obtained by simply changing,
in the TPSS exchange formula, the parameter κ (which
determines the asymptotic behavior of the functional) from
its original value of 0.804 to

κ = 2π

3
√

5

√
α + 1√

a + ln(α + b)
. (9)

The correlation is left unchanged. (Note that the TPSS
correlation decays exponentially, and thus our xc condition
is incorporated in the TPSS exchange functional. This is
a common procedure for semilocal functionals, which are
based on a strong error cancellation between the exchange
and correlation parts.) In Eq. (9), the parameters a = 2.413
and b = 0.348 have been fixed by imposing the constraints
κ = 0.804 for α = 1 and 0; whereas, when degenerate orbitals
contribute to the tail of the density (α → ∞), κ → 2π

3
√

5

√
α√

ln(α)
[i.e., Eq. (5)]. These conditions assure that (i) all the exact
constraints satisfied by the original TPSS exchange functional
are preserved and (ii) the new functional yields the correct
imagelike asymptotics. The SA-TPSS functional does not
recover locally the Lieb-Oxford bound [44], as TPSS does,
but it satisfies the global Lieb-Oxford bound for all known
physical systems (e.g., for atoms, molecules, solids, and
surfaces ESA-TPSS

xc ≈ ETPSS
xc ). Moreover, it fulfills locally the

simplified version of the Lewin-Lieb bound [see Eq. (22) of
Ref. [45]].

In Fig. 1, we show the TPSS and SA-TPSS exchange
enhancement factors versus α for several values of the reduced
gradient s = |∇ρ|/[2(3π2)1/3ρ4/3]. When s is small, TPSS
and SA-TPSS coincide for all values of α. As s increases,

0 2 4 6 8 10
α

1

1.5

2

2.5

F x

s=1

s=3
s=∞

TPSS
SA-TPSS

FIG. 1. TPSS and SA-TPSS exchange enhancement factors ver-
sus α, for three values of the reduced gradient s.
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FIG. 2. zεxc(z) (upper panel) and zvxc(z) (lower panel) versus the
reduced distance z/λF (λF is the Fermi wavelength), for a jellium
surface with electron-density parameter rs = 2 and 4. The surface is
located at z = 0. Note that SA-TPSS gives zεxc = − 1

4 and zvxc = − 3
8

far outside the surface.

TPSS and SA-TPSS start to differ, especially at large values
of α, as expected.

In Fig. 2, fully self-consistent KS-LDA orbitals were used
to obtain zεxc(z) (upper panel) and zvxc(z) (lower panel)
as a function of the scaled distance z for jellium surfaces
with the electron-density parameters rs = 2 and 4. The TPSS
functional yields a wrong (exponential) asymptotic behavior
for both quantities. Instead, the SA-TPSS functional gives
the following asymptotic behaviors: εxc(z) → −0.25/z and
vxc(z) → −0.375/z. Thus, Fig. 2 provides a numerical proof
of the validity of Eq. (5), as well as a validation of the simple
construction used to obtain the SA-TPSS functional.

In Tables I and II, we report the TPSS and SA-TPSS results
for surface energies and various molecular tests, respectively.
By construction, whenever the surface asymptotics plays a
negligible role (e.g., covalent interactions in molecules: W4,
OMRE, IP13, MGBL19) both functionals yield very similar
results. In the case of jellium surface energies and noncovalent
interactions (DI6, HB6), however, SA-TPSS improves over
the standard TPSS.

Finally, we have to stress that the SA-TPSS meta-GGA
gives only the correct asymptotic decay of the xc energy
per particle and potential at metal surfaces, but it can not
provide the exact behavior for the exchange and correlation

TABLE I. Jellium surface energies (in erg/cm2), as obtained by
using the functionals TPPS and SA-TPSS for various values of
the electron-density parameter rs . Diffusion Monte Carlo (DMC)
calculations [46] are given as a reference. The results of the popular
LDA [10,47] and PBE [48] functionals are also shown for comparison.

rs TPSS SA-TPSS LDA PBE Ref.

2 3380 3368 3354 3265 3392 ± 50
3 772 767 764 741 768 ± 10
4 266 263 261 252 261 ± 8
6 55.5 54.5 53 52 53 ± ...

TABLE II. Mean absolute errors (in kcal/mol for energetical tests
and in mÅ for the bond length test) of several molecular properties
[49,50].

Test TPSS SA-TPSS LDA PBE

Atomization energies (W4 test) 4.7 4.8 44.0 10.7
Reaction energies (OMRE test) 8.0 7.9 21.0 6.7
Ionization potentials (IP13 test) 3.1 3.1 4.9 3.0
Bond lengths (MGBL19 test) 6.9 7.0 10.0 9.3
Dipole interactions (DI6 test) 0.6 0.4 2.7 0.4
Hydrogen bonds (HB6 test) 0.6 0.4 4.5 0.4

components, separately. This is a difficult task that, in our
opinion, a simple semilocal functional can not obey.

IV. AIRY-GAS ASYMPTOTIC PROPERTIES

As an additional example of the use of Eq. (5) and of
the SA-TPSS functional, we consider the Airy gas [51,52],
which is the simplest possible model for an edge electron gas
(for details see Appendix A). This model system plays an
important role in DFT [52–54], as it incorporates the correct
physics of a semi-infinite metal surface and is simple enough to
allow for analytical calculations. To our knowledge, the exact
asymptotic behavior of the xc energy per particle and of KS xc
potential of the Airy gas are unknown. Nevertheless, we can
use the SA-TPSS functional to obtain some information about
them.

The Airy-gas electron density and positive-defined kinetic-
energy density are [51–53,55]

ρ(z) = 1

3π
[z2Ai2(z) − zAi′2(z) − Ai(z)Ai′(z)/2], (10)

τ = − 3

10
zρ(z) + 1

5
ρ ′′(z), (11)

where z is the scaled distance and Ai(z) is the Airy function.
In Fig. 3, we show the Airy-gas semilocal ingredient s,
the reduced Laplacian q = ∇2ρ/[4(3π2)2/3ρ5/3], and α. In
the bulk (z → −∞), both s and q are small, while α → 1
(showing that the Thomas-Fermi theory becomes exact). In
the vacuum, all semilocal ingredients diverge (as in the case
of the jellium surface).
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FIG. 3. The Airy-gas semilocal ingredients (s, q, and α) as a
function of the scaled distance z. The Airy bulk is at z � 0. The
exponential decay of the electron density occurs at z � 0.
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FIG. 4. The Airy-gas zεxc(z) (upper panel) and zvxc(z) (lower
panel), as a function of the scaled distance z.

In the limit z → ∞, the Airy-gas electron density and
kinetic-energy density are

ρ(z → ∞) → 1

32

e−4/3 z3/2

π2z3/2
− 35

768

e−4/3 z3/2

π2z3
+ . . . ,

(12)

τ (z → ∞) → 1

64

e−4/3 z3/2

√
zπ2

+ 13

1536

e−4/3 z3/2

π2z2
+ . . . .

The SA-TPSS xc functional gives the following analytical
expressions:

εSA-TPSS
xc (z → ∞) → −

√
3/(8z) ≈ −0.217/z,

(13)
vSA-TPSS

xc (z → ∞) → −3
√

3/(16z) ≈ −0.325/z.

This result is interesting since it suggests that, for the Airy
gas, both εxc and vxc decay as −1/z, as in the case of the
jellium surface. Furthermore, because the coefficients (0.217
and 0.325) are close to, but smaller than, the ones for the
jellium surface (0.25 and 0.375), we can conclude that at a
metal surface the main contribution to the asymptotics comes
from the region near the surface, where the effective potential is
linear and well described by the Airy-gas model. We note that
such a result cannot be obtained without the proper inclusion
of exact surface conditions into the functional. This is shown
in Fig. 4 where we plot, for several functionals, zεxc(z) (upper
panel) and zvxc(z) (lower panel), versus the scaled distance z,
in the vacuum region of the Airy gas.

The TPSS functional shows a rather unphysical exponential
decay for both εxc and vxc. On the other hand, the AM05
functional [52], whose energy density is fitted to the Airy
gas, is close to our SA-TPSS functional for εxc but displays a
decay that is too fast for vxc. This latter feature represents
a manifestation of the impossibility, at the GGA level, to
describe correctly both εxc and vxc, which can only be
overcome at the meta-GGA level [38].

The exchange-only asymptotic behaviors (εx and vx)
at metal surfaces, are depending on the bulk and surface
parameters (kF and W ) [27–29], and thus they are created
by bulk and surface electrons. When correlation is included,
screening effects dump the bulk contribution, such that the
asymptotic properties of εxc and vxc are mainly created by a
density-independent xc effect of the surface region, as proved

by the SA-TPSS result for the Airy gas. Thus, the Airy-gas
model system can be efficiently used in modeling various
phenomena outside metal surfaces, even being an alternative
to the ad hoc LDA xc potential modifications [18,19].

V. CONCLUSIONS

In conclusion, we have derived an exact meta-GGA
condition for the correct imagelike surface asymptotics of the
xc energy per particle εxc and the KS xc potential vxc. Our
formula [Eq. (5)] depends only on the semilocal ingredient α

and takes advantage of the nonlocality of the kinetic energy
density beyond the von Weizsäcker term [38]. The existence
of this exact condition represents an important contribution in
the framework of DFT, as it shows that surface asymptotics
can be described by semilocal meta-GGA functionals. On the
contrary, no GGA can be constructed that is able to describe
correctly the asymptotics of both εxc and vxc. In fact, there is,
to our knowledge, no GGA functional that yields a realistic
KS xc potential at metal surfaces.

We have demonstrated that our exact condition can be easily
implemented in any meta-GGA functional, keeping its original
accuracy for standard ground-state properties and providing, at
the same time, a correct description of the surface asymptotics.
We have constructed the SA-TPSS functional, which we have
shown to perform as the TPSS for covalent chemistry and
to improve over it for noncovalent interactions and surface-
related problems. This new functional can thus be a promis-
ing tool for the investigation of surface-sensitive electronic
structure calculations, such as molecule/molecular complex-
surface, cluster-surface, and surface-surface interactions.
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APPENDIX A

In case of semi-infinite jellium surfaces, the
one-particle eigenfunctions φkz

(z) have a continuous
energy spectrum εkz

= VKS(∞) + k2
z /2, and are solutions of

the one-dimensional KS equation

(
− ∂2

2∂z2
+ VKS(z) − εkz

)
φkz

(z) = 0. (A1)

Here, VKS(z) = VH (z) + Vxc(z) is the sum of the total
classical electrostatic potential (which incorporates the
positive background), and the xc potential.

In case of the Airy gas, the effective potential has the linear
form

veff(Z) =
{−FZ when − ∞ < Z < L,

+∞ when Z � L,
(A2)

with F > 0 being the slope of the effective potential [51]. Thus,
the one-particle normalized eigenfunctions φj (Z) satisfy the
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one-dimensional equation (
− ∂2

2∂Z2
− FZ − εj

)
φj (Z) = 0,

(A3)
φj (∞) = φj (L) = 0,

being proportional to the Airy function. Here, Z is the distance perpendicular to the surface. It is convenient to consider the
scaled distance z = Z(2F )1/3 [51], as used in Sec. IV.

APPENDIX B

The electron density and kinetic energy density of a jellium surface are

ρ(z) = 1

4π2

∫ kF

−kF

dkz

(
k2
F − k2

z

)∣∣φkz
(z)

∣∣2
, (B1)

τ (z) =
∫ kF

−kF

dkz

[
1

8π2

∣∣∣∣∂φkz
(z)

∂z

∣∣∣∣
2(

k2
F − k2

z

) + 1

16π2
|φkz

(z)|2(k2
F − k2

z

)2
]
, (B2)

with kF being the magnitude of the bulk Fermi wave vector.
Using Eqs. (3) and (4) we obtain, when z → ∞, the following expressions:

ρ →
(

1/4
N2W

kF π2z2
− 1/8

N2
√

2W 3/2

kF
3z3π2

)
e−2z

√
2Wz2αKS , (B3)

τ → 1/4
N2W 2

kF π2z2e2z
√

2Wz−2αKS
+ 1/32

(−8 kF
4
√

WαKS − 4 kF
2W 3/2 + 12 kF

4
√

W )N2W
√

2

kF
5π2z3e2z

√
2Wz−2αKS

+ 1/32
(−12 kF

2W
√

2 + 3
√

2kF
4 + 4 kF

2W
√

2αKS − 4
√

2kF
4αKS + 2

√
2kF

4αKS
2)N2W

√
2

kF
5π2z4e2z

√
2Wz−2αKS

+ 1/32
(6 kF

2
√

WαKS + 6 W 3/2 − 2 kF
2
√

WαKS
2 − 6 kF

2
√

W )N2W
√

2

kF
5π2z5e2z

√
2Wz−2αKS

. (B4)

Then,

α → − (−60 3
√

3 6
√

2kF
2z

√
W + 40 3

√
322/3W − 15 3

√
322/3kF

2)e4/3 z
√

2
√

Wz−4/3 αKS−2/322/3

54W 2/3N4/3kF
4/3 (B5)

and

Fxc → 4

9η

(π 22/332/3 3
√

kF + 9 O(z−4/3)N2/3 3
√

W 3
√

z)e2/3 z
√

2
√

Wz−2/3 αKS−1/3

N2/3 3
√

W
, (B6)

where N is a normalization constant, W is the work function, and kF is the bulk Fermi wave vector. Here, Fxc = εMGGA
xc /εLDA

x is
the enhancement factor corresponding to the energy density of Eq. (5).
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[37] R. Armiento and S. Kümmel, Orbital Localization, Charge
Transfer, and Band Gaps in Semilocal Density-Functional
Theory, Phys. Rev. Lett. 111, 036402 (2013).

[38] F. Della Sala, E. Fabiano, and L. A. Constantin, Kohn-sham
kinetic energy density in the nuclear and asymptotic regions:
Deviations from the von weizsäcker behavior and applications
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