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Abstract. This paper develops a methodology for extracting the Curie temper-
ature distribution from magnetisation versus temperature measurements which
are realizable by standard laboratory magnetometry. The method is integral in
nature, robust against various sources of measurement noise, and can be adopted
to a wide range of granular magnetic materials and magnetic particle systems.
The validity and practicality of the method is demonstrated using large-scale
Monte-Carlo simulations of an Ising-like model as a proof of concept, and general
conclusions are drawn about its applicability to different classes of systems and
experimental conditions.

Keywords Curie temperature, finite size scaling, identification, heat-assisted
magnetic recording



Identification of Curie temperature distributions in magnetic particulate systems 2

1. Introduction

Development of magnetic nanotechnologies, such as
nano-structured high temperature permanent magnets
[1], heat assisted magnetic recording technologies
(HAMR) [2], or biomedical applications [3, 4], relies
upon the availability of methodologies for the accurate
large-scale characterisation of magnetic nanoparticles
and granular materials at elevated temperatures. The
presence of non-uniformities leads to a broadening
of the phase transition region and the consequent
difficulties in determining a single Curie temperature
Tc. Instead, identification of a distribution of Tc is
often required.

For example, in HAMR, the extent of the
broadening of the Tc distribution determines the noise
performance and the quality of the recording process,
and its accurate quantification is essential for the
optimisation and quality control [2]. In heat assisted
cancer therapy, developing self-regulated magnetic
hyperthermia requires optimisation of Tc distributions
in assemblies of low-Tc nanoparticles [4]. Identifying Tc
distributions in such systems, dominated by disorder
and complex spatial inhomogeneities, is in general
a challenge which hinders the optimisation of their
performance at high temperatures.

Direct techniques, such as those based upon
specialised laser systems, have been developed for
the experimental determination of the switching
temperature distribution in HAMR media films [5–7].
Such techniques become difficult to implement in
the case of irregular and highly disordered magnetic
particle distributions. Indirect techniques have
instead proven practical, based on identifying the Tc
distribution from temperature dependent measurement
of the magnetic moment m(T ) or the AC susceptibility
using inverse problem solving techniques [8–10]. Such
techniques have been applied predominantly to thin
film samples thus far and did not include the finite
size effects, nor did they relate the Tc distribution
to the intrinsic properties of elementary particles in
a systematic manner.

In this work, an indirect approach is developed
to extract the Tc distribution from m(T ) data in
assemblies of finite size magnetic grains or particles.
The method systematically incorporates knowledge of
the finite grain size distribution, critical exponents, and
bulk Curie temperature T bc , and as a consequence of
universality in the phase transition region, the method
can be adopted to a broad class of different material
systems. This universality also allows validation
of the methodology using simplified models without
sacrificing its generality, such as the two-dimensional
Ising model used in this work for which the T bc
and critical exponents are known from analytical
calculations [11,12].

The key notion adopted in this work is that of
the finite system size critical temperature Tc = Tc(D),
to be distinguished from the bulk Curie temperature
T bc relevant in the thermodynamic limit [?, 6, 11–17].
Strictly speaking, the phase transition temperature
is defined only in the thermodynamic limit as a
critical point which marks non-analytic and divergent
behaviour of the thermodynamic state functions [11].
In finite size systems the divergent point becomes a
rounded peak and the notion of the finite size Curie
temperature Tc becomes indefinite. It is standard to
adopt the definition that Tc is related or indeed equal
to the peak of a rounded state function, such as the
derivative of magnetisation M(T ) of a grain, dM/dT ,
or the temperature dependent magnetic susceptibility
[14,17]. In practice, both definitions give similar results
and any differences diminish as D increases towards the
bulk, as illustrated in figures 1(a)-(c). The trend obeys
the well known scaling law [11–17]:

Tc(D) = T bc

(
1−D−1/ν

)
(1)

where ν is a material dependent critical exponent
associated with the the correlation length in the phase
transition region.

The study outlined in this paper will consider as-
semblies of independent particles of variable size, each
viewed as an elementary thermodynamic system char-
acterised by a unique value of size-dependent Tc which
obeys relation (1), and develop an approach for ex-
tracting the finite size Tc distribution from a typical
m(T ) measurement of such a particle assembly. The
application domain includes the analysis of dilute sys-
tems of magnetic nanoparticles, or granular magnetic
materials for heat assisted magnetic recording where
the intergranular exchange interactions are optimised
to produce weak correlations.

It is worthwhile mentioning that although the
peak of dM/dT can be used to define Tc of a single
grain, it is not true that the derivative of m(T ) of a
non-interacting granular assembly will similarly define
the distribution of Tc of grains. The dm/dT , being
a superposition of dM/dT of all grains within an
assembly, will also contain convoluted contributions
from the finite widths of functional dependences
of dM/dT of grains, expected to statistically vary
from grain-to-grain. This will lead to broadening of
dm(T )/dT and add a fictitious contribution to the
intrinsic distribution of Tc of grains. The essence
of identification methodologies such as developed
in this article is to systematically deconvolve these
contributions and extract the genuine Tc distribution.
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Figure 1. (a) Snapshot from an ensemble of magnetic grains
of variable size D represented as circular lattices of Ising spins.
(b) Size dependent M(T ) data from Monte-Carlo simulations of
Ising lattices such as shown in (a). (c) The size dependence of
the Tc obtained from the peak of the derivative of M(T ) data
shown in (b) (dashed line) and as a corresponding susceptibility
peak (solid line). (d) The scaling function µ̃ obtained from the
finite system size scaling analysis by collapsing the M(t) data in
(b) using equation (7).

2. Identification Framework

2.1. Overview and application of the framework

The key result derived in this article is the integral ex-
pression for temperature dependent magnetic moment
of an assembly of independent magnetic grains:

m(T ) = m0

∫ 1

0

xβ−νdµ̃

(
T − T bc
T bc

1

x

)
ft(x)dx (2)

where m0 is a constant, d is the dimension of the
smallest characteristic region of a magnetic particle,
β is the magnetisation universal critical exponent, and
µ̃ is the universal scaling function to be discussed in
detail. Expressions analogous to equation (2) can also
be derived for other thermodynamic variables, such as
magnetic susceptibility or specific heat.

The Curie temperature distribution ft = ft(tc)
in (2) is represented in terms of the reduced Curie
temperature tc:

tc = (T bc − Tc)/T bc (3)

If the particle size distribution is chosen to be the
experimentally relevant lognormal distribution, ft(tc)
will be shown to also take lognormal form:

ft(tc) = (
√

2πtcσ̃tc)−1 exp
(
−(ln tc − t̃c )2/2σ̃2

tc

)
(4)

where t̃c and σ̃2
tc are respectively the logarithmic mean

and variance. The corresponding arithmetic mean

and variance follow from the standard properties of
lognormal distribution as 〈tc〉 = exp(t̃c + σ̃2

tc/2) and
σ2
tc = 〈tc〉 2(exp(σ̃2

tc)− 1). According to (3), the mean
non-reduced Curie temperature is 〈Tc〉 = T bc (1 − 〈tc〉)
and the standard deviation σTc = T bc σtc [18].

The parameters t̃c and σ̃tc in (4) can be identified
by least-square fitting equation (2) to experimental
m(T ) data. This in principle also allows extracting
the values of the bulk Curie temperature T bc and the
critical exponents β, ν as fit parameters, although
any knowledge of these parameters from independent
experiments or simulations aids in reducing the fit
parameter correlation. For example, T bc can be
estimated from finite lattice size simulations using the
Binder cumulant expansion method [19, 20], and the
critical exponents can be estimated using the modified
Arrott (Kouvel-Fisher) technique, or the finite size
scaling analysis used below [21].

The relation (2) can be adapted to different classes
of material systems in a straightforward manner by
choosing appropriate critical exponents and scaling
functions (Table 1). This generality is a result of
universality arising from scale invariance in the phase
transition region to be discussed in more detail next.

2.2. Derivation of the fitting function

Consider a system of magnetic grains of variable size
(figure 1(a)). The volume of a grain is V = CDd, where
for example for cylinder D is the base diameter, d = 2,
and C = Lπ/4 with L being the height, assuming L >
D. For a sphere D is the diameter, d = 3 and C = π/6.
For convenience, the dimensionless size D = D/D0 is
introduced, where D0 is some reference length such as
the atomic lattice spacing. Each grain in the ensemble
is assumed to be an elementary thermodynamic system
with magnetic moment ~mg having length mg = |~mg|
dependent on T and D, which can be expressed using
the definitions above as:

mg(T,D) = VMsM(T,D) = m0DdM(T,D) (5)

where m0 = CDd
0Ms, Ms is the saturation

magnetisation at T = 0, and the temperature and size
dependent magnetisation M(T,D) is normalised to be
dimensionless. The fact that M depends upon D is a
manifestation of the finite size effect.

Integrating equation (5) over a grain size distribu-
tion fD(D) gives the expression for the magnetisation
of an ensemble of grains as a weighted superposition of
contributions from all grains m(T ) = m0〈M(T,D)〉:

m(T ) = m0

∫ ∞
0

DdM (T,D) fD (D) dD (6)

where near the phase transition the M(T,D) depen-
dence is known to take universal form [11,16,17]:

M (T,D) = D−β/ν µ̃
(
D1/ν T − T bc

T bc

)
(7)
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Table 1. Various critical exponents and values for Ising model, anisotropic Heisenberg model, and FePt model relevant to HAMR.
Also included are suggested empirical forms for the universal magnetisation function µ̃, and its inverse function µ̃−1, determined
from the scaling analysis, where for Ising model the parameters a1 = 0.640 ± 0.003, a2 = 0.72 ± 0.01, a3 = 0.465 ± 0.007,
a4 = 0.00038 ± 2 × 10−5, a5 = 0.070 ± 0.002; for Heisenberg model a1 = 25.06, a2 = 0.33, a3 = 0.00919 and for FePt model
a1 = 11.58, a2 = 0.5, a3 = 0.0764 with 1% error.

Model T b
c ν β µ̃(x) Empirical

Ising (2D) [11,19] 2.269 J/kB 1 0.125 µ̃(x) = a1 tan−1(a2 + a3x+ a4x3 + a5|x|8/5)
Heisenberg (3D) [11,13,22] 2.269 J/kB 0.71 0.36 µ̃−1(x) = a1(a2 − 1)/(a2 tanh−1(a2x(1− a3x5)−1))
FePt [13] 775 K 0.85 0.33 µ̃−1(x) = a1(a2 − 1)/(a2 tanh−1(a2x(1− a3x5)−1))

The scaling function µ̃(x) can be established by
matching the magnetisation data M(T,D) for grains of
different size D using scaled coordinates µ̃ ≡ Dβ/νM
and x ≡ D1/ν(T − T bc )/T bc if the values of the bulk T bc
and critical exponents β and ν are known (figures 1(b),
(d)). Alternatively, if unknown, β, ν, and T bc can be
found by obtaining the collapse of the M(T,D) data for
different D [23]. This collapse then gives the functional
form of µ̃.

Inserting equation (7) into (6) and arranging using
(1) and (3), leads to the expression for ensemble
magnetic moment as given by equation (2). The
explicit relationship between ft(tc) and fD(D) can be
obtained by substituting equation (1) into (6):

ft(tc) =

(
dtc
dD

)−1
fD(D) (8)

which is the standard transformation between two
probability distributions of random variables related
by a functional relation [18]. For example, for
the experimentally relevant lognormal grain size
distribution:

fD (D) = (
√

2πD̃σD)−1 exp
(
−(lnD − D̃)2/2σ̃2

D

)
(9)

where D̃ and σ̃2
D are the logarithmic mean and

variance, combining (1), (3) and (8) gives the ft(tc)
also in the form of lognormal distribution as given in
(4) with t̃c = −D̃/ν and σ̃tc = σ̃D/ν.

It is worthwhile noting that the validity of the
scaling relation (7) is a consequence of the universality
and emergent scale invariance near phase transitions.
The universal behaviour of different classes of materials
can represented by the same sets of critical exponents
and scaling functions [11, 24]. This universality also
means that complex materials can be studied by
using simplified model systems with the same critical
exponents, i.e. models in the same universality
class, making simulations based on simplified model
systems especially powerful tool for investigating phase
transitions.

3. Proof of concept

A zero field two-dimensional Ising model is used as
a proof of concept model system for validating the

methodology. The zero field Ising Hamiltonian reads
H = −J

∑
ij sisj , where the double-sum extends

over the nearest neighbour spin pairs, and J > 0.
Metropolis Monte-Carlo simulation technique will be
used to study the T dependent behaviour.

The advantage of choice of the Ising model is
in the availability of analytical results. Moreover,
given the low value of the critical exponent ratio β/ν,
equation (7) implies only a weak dependence of M on
D, which turns the Ising model into a convenient test-
case for studying the resolution of the methodology.
However, it should be emphasised that this model
choice does not relate to any inherent limitations of
the identification methodology and is made mostly
for computational convenience. The identification
approach can be adopted to different materials outside
of the Ising class simply by selecting the appropriate
critical exponents and scaling functions (table 1).

The values of the critical exponents β, ν, scaling
function µ̃, and T bc required in equation (2) are
available in the literature for a broad range of
materials. Alternatively, they can be obtained from
independent simulations of the critical behaviour.
To demonstrate the procedure, the Monte-Carlo
simulations of the zero-field Ising model were used
here starting from the paramagnetic phase at high
temperature T and proceeding to ferromagnetic phase
at low temperatures in small decrements. At each
temperature, the system was equilibrated during
10,000 Monte-Carlo sweeps and magnetisation M(T )
computed by averaging the spins over the lattice.

Figure 1(b) shows the computed data for three
Ising lattices of different size D. The form of the
scaling function µ̃ can be found by collapsing these
data through equation (7) using established techniques
[25]. The resulting µ̃ is shown in figure 1(d) and its
empirical expression given in table 1. The scaling
procedure also generated optimised numerical values
β = 0.150600 ± 8 × 10−6, ν = 1.0256 ± 10−4, and
T bc = 2.2647583 ± 5 × 10−7, which compare well with
the theoretical values in table 1. The procedure can
also be applied to identify the critical exponents and
scaling functions of previously unidentified materials.
Alternatively, equation (2) can be fitted to m(T )
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data of a granular assembly directly without a priori
knowledge of the critical parameters. However, this
may lead to increased fit parameter correlation.

4. Discussion

As benchmark granular model system for validating
equation (2), four ensembles of independent planar
Ising spin lattices of circular shape imitating grains
were considered (figure 1(a)). The diameters of
grains D were drawn from the lognormal grain size
distribution (9) with 〈D〉 = 100 spins and σD/〈D〉 =
10%, 20%, 30%, 40%. Each ensemble consisted of
95000 grains of varying size D. The temperature
dependence of magnetic moment, m(T ), for any given
ensemble with specific σD was evaluated by using
the Monte-Carlo method and by superimposing the
contributions from each grain in the ensemble. Figure
2(a) shows examples of m(T ) for granular ensembles
with σD/〈D〉 = 10% and 40%.

Equations (2) and (4) were least square fitted to
the generated m(T ) data. During the fitting procedure
T bc , the critical exponents β and ν, and the scaling
function µ̃ of the Ising model were used (table 1).
The parameters t̃c and σ̃tc of ft(tc) were considered
to be the only fit parameters varied during the fitting
procedure, which were then converted to 〈Tc〉 and σTc

.
Figure 2(b) shows the fitted σTc

/〈Tc〉 plotted as a
function of reference σTc

/〈Tc〉 obtained by binning the
values of D and finding the average value of Tc(D)
of the susceptibility peaks associated with each bin.
The resulting trend deviates from the expected result,
represented by the diagonal dashed line, which suggests
strong parameter correlation between the t̃c and σ̃tc
during the fitting.

Combining t̃c = −D̃/ν and σ̃tc = σ̃D/ν
gives σ̃tc/t̃c = −σ̃D/D̃, which after using the
standard properties of lognormal distributions (see
the discussion of equations (4) and (9)) leads to the
arithmetic form:

σ2
tc = 〈tc〉2

((
1 + σ2

D/〈D〉2
)1/ν2

− 1
)

(10)

Applying formula (10) simultaneously with equations
(2) and (4) during the fitting procedure now allows
unambiguous identification of the Tc distribution as
shown in figure 2(b). Given that information about the
granular or particle size distributions such as 〈D〉 and
σD is typically available from independent experiments
[15, 26–28], the introduction of the constraint in (10)
does not pose any conceptual challenge.

The identification approach developed here has
been based strictly on the zero field analysis, which
is when genuine second order phase transitions can be
observed in bulk systems. In recent experiments the
Tc distribution has been associated with measurements

Figure 2. (a) m(T ) data for an ensemble of Ising-like grains
for two different σD/〈D〉. Inset: Magnified view of the crossing
point. (b) The σTc/〈Tc〉 obtained from fitting equation (2) and
(4) (unconstrained fit), and including equation (10) (constrained
fit), to M(T ) data such as shown in (a), plotted as a function of
σTc/〈Tc〉 obtained by histogramming the values of D and finding
the value of Tc(D) corresponding to the susceptibility peaks of
each bin. Error bars correspond to a 95% confidence interval.

of the so-called switching temperature distribution in
HAMR media [5,6]. The measurement principle, based
on spatially resolved tracking of temperatures at which
grains reverse, required significant reversal magnetic
field to bring the frequency of sub-critical thermal
fluctuations into the time window of the measurement
apparatus. This brings about the question of the effect
of external magnetic fields in extracting the genuine Tc
distributions.

The effect of the applied field H can be studied
by considering simple mean-field theory, where the
magnetisation of a single grain is represented as
M(H,T ) = tanh((VMsH + JmfM)/kBT ), with Jmf
being the mean-field interaction (Weiss molecular
field) in the units of energy. Setting H = 0,
the critical temperature of a grain can be found
to be Tc = Jmf/kB , and |M | ≤ 1 for T <
Tc, whereas M = 0 for T > Tc. Taking the
peak of the derivative dM(H,T )/dT as an estimate
of the fictitious H-dependent Curie temperature
Thc of a grain, differentiating and arranging gives
Thc = Tc + (J−1mfVMsMpeakH)Tc, where Mpeak is the

magnetisation associated with the peak at Thc . Solving
this equation together with the mean-field formula for
M(H,Thc ), assuming small magnetisation |M | << 1,
and expanding the solution to the first order gives
Thc ≈ Tc + q|H|Tc, where the constant q = J−1mfVMs.

Then, averaging over a statistical ensemble of
grains allows to express the mean and standard
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deviation of the Tc distribution as 〈Thc 〉 = 〈Tc〉 +
q|H|〈Tc〉 and σhc = σc + q|H|σc. Although these
simple calculations based on the mean-field theory
inherently do not incorporate thermal fluctuations
and finite size effects included in equation (7),
they qualitatively suggest that the presence of
external field leads to apparent shift and broadening
of the Tc distribution. This is consistent with
experimental reports overestimating the zero-field
theoretical calculations [7–9,13].

5. Conclusions

The developed approach based on least-square fitting
a typical experimentally measurable m(T ) dependence
by expression (2), possibly with constraint (10), has
been demonstrated to allow for the extraction of the
Tc distribution in non-interacting magnetic particle
assemblies. The constraining relation (10) might
prove unnecessary in general materials with more
pronounced dependence of m(T ) on σD/〈D〉.

Most of the similar previously developed Tc
distribution identification techniques assume bulk
relations for describing thermodynamic state functions
near the Tc [7–10], and thereby cannot systematically
incorporate the finite size effects of grains. Validating
these techniques against a theoretically consistent
physical picture, such as the underlying approach
presented in this article, goes beyond the scope of
the present work and will require consideration in the
future.

The present approach can be systematically
adapted to different materials by specifying relevant
critical exponents and scaling functions. These can
be found in broad literature or, alternatively, obtained
through independent experiments or simulations of
simplified models in the same universality class by
using the finite size scaling procedure illustrated
here based on the Ising model. The methodology
can be consistently extended to account for the
anisotropy distributions and effects of surface disorder
by incorporating non-universal corrections in equation
(7). It can also be extended to include external
magnetic field through generalised forms of the field-
dependent scaling functions. In addition, the given
derivation of key formulas presents a recipe for
including the effects of inter-granular interactions, such
as demagnetizing fields. This thus opens prospects for
developing identification methodologies for broad class
of granular and particulate systems.
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