
 

Influence of Relativistic Effects on the Contact Formation of Transition Metals

M. R. Calvo,1,2,3,* C. Sabater,1,† W. Dednam,1,4 E. B. Lombardi,5 M. J. Caturla,1 and C. Untiedt1,‡
1Departamento de Física Aplicada and Unidad asociada CSIC, Universidad de Alicante,

Campus de San Vicente del Raspeig, E-03690 Alicante, Spain
2Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain

3CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain
4Department of Physics, University of South Africa, Science Campus, Florida Park, Johannesburg 1710, South Africa

5College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa

(Received 26 September 2017; published 16 February 2018)

Our analysis of the contact formation processes undergone by Au, Ag, and Cu nanojunctions reveals that
the distance at which the two closest atoms on a pair of opposing electrodes jump into contact is, on
average, 2 times longer for Au than either Ag or Cu. This suggests the existence of a longer-range
interaction between those two atoms in the case of Au, a result of the significant relativistic energy
contributions to the electronic structure of this metal, as confirmed by ab initio calculations. Once in the
contact regime, the differences between Au, Ag, and Cu are subtle, and the conductance of single-atom
contacts for metals of similar chemical valence is mostly determined by geometry and coordination.
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As the atomic mass increases, relativistic effects come
into play that modify the electronic structure and thus
determine the properties of heavy-element crystals and
compounds (for a review see, e.g., Ref. [1]). As a
consequence of this, 5d metals differ markedly from their
4d counterparts: examples include Hg being liquid at
standard conditions [2] and the golden luster of bulk
Au [1]. In 5d transition metals, relativistic energy contri-
butions result in a contraction of the outer 6s shell,
accompanied by the expansion of the filled 5d orbitals
[1], producing an enhancement in the s − d hybridization of
the valence orbitals. A first consequence of this is the lattice
constant for Au bulk crystals being slightly smaller than for
Ag, while based on atomic radii only, it would be expected
to increase [1,3], with Au larger than Ag. Relativistic
effects also have a strong influence on the bonding proper-
ties of 5d atoms and thus determine the chemistry of the 5d
elements [1,4], as well as many physical properties of their
bulk crystals. Au exhibits distinct mechanical and structural
properties such as a larger bulk moduli and cohesive
energies than Ag [3]. This effect is further amplified in
low-coordination structures, where it gives rise to phenom-
ena such as surface reconstruction [5,6]. A similar origin is
attributed to the formation of monoatomic chains during the
rupture of Au, Pt, and Ir nanostructures [7], in agreement
with expected enhanced s − d hybridization of the valence
orbitals in these one-dimensional structures [8–11].
The process of contact formation at the nanoscopic scale

has been the object of extensive study in the context of
single-atom metallic junctions [12,13]. The influence of
geometry and coordination on both the contact formation
process as well as the characteristics of the resulting

structures, is well established for a variety of metals
[14–17]. In particular, for Au, Ag, and Cu, it is well known
that first contact in low-coordination geometries is invar-
iably accompanied by an abrupt jump [14,18], upon which a
single or double atomic contact is normally found to have
formed immediately afterward.
In this work, the formation of thousands of atomic

contacts made of pure Au, Ag, and Cu, is studied and
compared. In the contact regime, and in agreement with
previous works, the conductance is mainly determined by
the valence of the metal [19] and the exact geometry of
the contacts [12,14,15,17]. In the tunneling regime, on the
contrary, we find that there is a remarkable difference
between Au, on one hand, and Ag and Cu, on the other, in
terms of the distance from which jump to contact starts,
which we show here to be a consequence of the larger
relativistic effects in the electronic structure of Au.
Our atomic contacts are fabricated by cyclic loading

of two electrode probes made of the same high-purity
(99.999%) metal, Au, Ag, or Cu, under cryogenic vacuum
at 4.2 K. The electrical conductance (obtained as the current
divided by the applied voltage of 100 mV) is recorded while
the two electrodes are carefully brought into contact in a
scanning tunneling microscope (STM) setup. The process is
described in detail in previous works [14,15]. Traces of
conductance, such as the one shown in Fig. 1, can be obtained
in this way. When the atomic-sized electrodes are close
enough but not yet in contact, electrons may tunnel from
one to the other. In this tunneling regime, the conductance
increases exponentially with decreasing distance between the
leads. This increase in conductance remains smooth until a
sudden jump occurs, and a plateau at around the value of one
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quantum of conductance G0 ¼ 2e2/h appears, indicating the
formation of a monatomic contact [12].
For each contact-formation trace, we search for the

largest jump in conductance between two consecutive
points. Thus, two conductance values are recorded, Ga,
from which the jump occurs, and Gb, the final value
immediately after the jump, labeled accordingly in
Fig. 1. Following the analysis introduced by Untiedt et al.
[14], we construct density plots from this set of data pairs
(Ga, Gb). The top row of panels in Fig. 2 represents such
density plots, compiled from more than 2000 contacts
formed by Au, Ag, and Cu, respectively. Density maxima
appear at the most probable values of (Ga, Gb) from and to
which the conductance jump occurs.

The results for Au, presented in the left-hand panels of
Fig. 2, are similar to those reported in previous works
[14,15,17], except that here we have plotted the Ga data on
a logarithmic scale. This, which could be seen as just a
subtle change, enables a new and improved analysis of
these data. First, the log scale conveys a more physical
interpretation of our results, since logðGaÞ [20] is directly
proportional to the distance between electrodes. Note
that the conductance in the tunneling regime depends
exponentially on the distance between the electrodes asG≃
Ke−ð

ffiffiffiffiffiffiffi

2mϕ
p

/hÞd, where K is a proportionality constant which
depends on the area and density of states at the Fermi level
of the electrodes,m corresponds to the electron mass, and ϕ
is the metal work function. Therefore, a change in con-
ductance of 1 order of magnitude corresponds roughly to a
variation in distance of 1 Å.
Moreover, Fig. 2 reveals relevant information on the

statistical distribution of data, unaccessible before. When
plotted on a Ga linear scale as in Ref. [14], density plots
exhibit a triangular shape, allowing only for a rough
identification of distributions and their most probable
values on Ga. In contrast, on a logarithmic scale
(Fig. 2), density plots resemble normal distributions in
both Gb and logðGaÞ. In fact, the density maximum around
the quantum of conductance can be modeled as the
superposition of two distributions. A third maximum,
associated with a lower number of counts, can also be
observed at higher values of Gb. Hence, our data can be
fitted to the sum of three bivariate normal distributions (see
Ref. [21] for details), and thus allowing for a more precise
identification of distributions as well as their mean and
standard deviation values. Fit results are shown in the lower
panels of Fig. 2 and graphically summarized in Fig. 3. In a
related work (see Ref. [21]), we show how these three

FIG. 1. A trace of conductance recorded during the formation
of a gold contact in a STM setup at 4.2 K. As the electrodes
approach each other, an initial exponential increase in conduct-
ance is followed by a jump into contact, as indicated by the
vertical black arrow. Conductance values before and after contact
formation are marked and labeled as Ga and Gb, respectively. On
the right-hand side, from bottom to top, different stages of the
contact process are illustrated.
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FIG. 2. Upper panels: Density plots of jump to contact
parameters extracted from more than 2000 contact formation
traces for Au, Ag, and Cu (labeled correspondingly). Bottom
panels: Evaluation of the results from fitting the data in the upper
panels to a sum of three bivariate normal distributions.
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FIG. 3. Graphical summary of the fitting results used to
compare the metals. Dots mark the mean value of the distribution,
the size of which is proportional to the ratio of occurrence of each
configuration, and the ellipse contour encloses the equivalent of 1
standard deviation for each bivariate distribution; in other words,
the ellipse encloses 68% of the data.
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maxima correspond to three first-contact configuration
categories, namely, monomers, dimers, and double con-
tacts, in agreement with previous works [14,15,18].
However, in contrast to those works, the distributions
corresponding to monomers and dimers can now be clearly
disentangled. Furthermore, in Ref. [21] we also present a
more precise identification of contact geometry and con-
ductance based on our analysis.
A comparison of the results for Au, Ag, and Cu contacts

reveals a striking difference between Au and the other two
metals, in the distribution of Ga values. As listed in Table I
and clearly visible in Fig. 3, the mean value of the distance
over which Au jumps into contact [proportional to logðGaÞ]
is much larger in magnitude, for all three of its associated
distributions. Assuming that in tunneling an increase of an
order of magnitude in conductance corresponds approx-
imately to a change of 1 Å in distance, jump to contact for
gold occurs at distances up to ∼0.5 Å larger than Ag and
Cu, with a broader distribution. This compares favorably
with the mean binding lengths calculated for Au and Ag
junctions from experimental force-extension curves in
Ref. [22], which in the case of Au is ∼0.8 Å longer. At
the same time, the conductance at first contact exhibited by
Au is slightly smaller than for Ag and Cu, which, in turn,
exhibit similar values.
All of the above can be understood in terms of a longer-

range interatomic potential felt by the atoms on opposingAu
electrodes, as compared to electrodes made of Ag or Cu. In
the case of gold, this interaction manifests much sooner,
as the force required relative to the bulk elasticity to provoke
the jump to contact. The stronger interaction also implies a
smoother variation of the interatomic potential as a function
of the separation between the Au electrodes, which explains
the broader distribution in Ga values that is observed.
Finally, the fact that Au jumps to contact earlier produces
strained structures exhibiting a somewhat lower conduct-
ance, which in the case of a dimeric configuration gives way
to the narrower distribution of Gb values seen in Fig. 3.
Hence, the longer-range interaction would then seem to

explain all the observed features of gold. Since Au, Ag, and
Cu share very similar electronic configurations, one can

expect the long-range interaction here to originate from
relativistic effects, as these are responsible for other similar
physical properties in which Au differs from Ag and Cu
[3,5–7], as previously explained.
To test the above hypothesis, we have performed scalar

relativistic and nonrelativistic total-energy density functional
theory (DFT) calculations on infinite monatomic chains of
gold and silver [9]. For this, we have employed the plane-
wave DFT code CASTEP [23], explicitly including or
excluding scalar relativistic interactions. We make use of
on-the-flygenerated (OTFG) pseudopotentials [24] (bench-
marked against fully converged all-electron DFT calcula-
tions, with an error of 0.5 meV/atom obtained by the
methods described in Ref. [25]). The (scalar) relativistic
treatment is at the level of the Koelling-Harmon approxi-
mation of the Dirac equation [26], which, with the exception
of spin-orbit coupling (SOC), retains all other relativistic
kinematic effects such as mass-velocity, Darwin, and higher-
order terms. Since monatomic chains and atomic point
contacts made of gold do not appear to exhibit significant
local magnetic order [27], we have neglected SOC in our
calculations. As the exchange-correlation functional, we
have used the generalized gradient approximation by
Perdew-Burke-Ernzerhof [28]. We used the Tkatchenko-
Scheffler dispersion-correction scheme to take van der Waals
interactions between atoms into account. van der Waals
interactions more accurately describe long-range interaction
tails between atoms and molecules in vacuum slabs [29], and
even produce improved agreement with experimental bulk
properties [30]. We have also used the plane-wave cutoff in
Ref. [31] for gold, 400 eV, while silver required a larger
value, 600 eV. Convergence was checked with respect to the
plane-wave cutoff, with total energies converged to within
5 × 10−7 eV/atom. A total of 24 irreducible k points were
used to sample reciprocal space in our calculations.
Convergence was also checked for k points by gradually
increasing the size of the Monckhorst-Pack grid automati-
cally generated by CASTEP. To speed up our calculations, the
symmetry was restricted to P4/mmm.
Each unit cell of the infinite chain contained one atom,

with the chain oriented along the z axis (c ∼ 2.5 Å), and, to
avoid interactions between periodic images, at least 10 Å
vacuum in the x̂ and ŷ directions (a ¼ b ¼ 10 Å) [31]. We
first optimized the interatomic separation between the
individual atoms in the chain by varying the cell size
along z, while keeping all other dimensions fixed, until the
per-atom force fell below 10−2 eV/Å. We used the TPSD
algorithm [32] for constrained relaxations. Then, starting
from the equilibrium separation, we increased the inter-
atomic spacing within the chains, incrementing c by 0.1 Å
at a time, and calculated the total energy as a function of
interatomic separation, similar to Ref. [31]. Figure 4(a)
shows the results of these calculations.
The total energy in Fig. 4(a) clearly rises more steeply

with interatomic separation in the case of relativistic gold

TABLE I. Mean values of log(Ga/G0) (� standard deviation)
values extracted from the fitting of Au, Ag and Cu density plots to
three bivariate distributions, labeled as 1,2 and 3 in Fig. 3 and
associated respectively to monomer, dimer and double bond
geometries [14,21]. G0 ¼ 2e2/h denotes here a quantum of
conductance.

μlogðGa/G0Þð�σlogðGa/G0ÞÞ
Au Ag Cu

1 −1.2� 0.4 −0.6� 0.2 −0.6� 0.2
2 −1.2� 0.4 −0.9� 0.2 −0.8� 0.3
3 −1.1� 0.4 −0.6� 0.2 −0.6� 0.2
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(in the figure, the origin coincides with the equilibrium
interatomic separations and corresponding energies of the
chains). To extract parameters that help us to better
characterize these differences, we fit the data to a Rose’s
universal binding curve [33], U¼−αðx−x0Þe−βðx−x0ÞþE0.
This model relates the equilibrium bond length xeq ¼ x0 þ
1/β and energy Eeq ¼ E0 − α/eβ to a number of fitting
parameters of physical importance, such as the breaking
force Fbreak ¼ −α/e2 and interelectrode binding constant
kbind ¼ −αβ/e3. Table II records the fits of our DFT total

energy data to this model. We note that the theoretical
equilibrium interatomic separation of relativistic gold,
2.58 Å, agrees well with the experimental range of values,
2.5� 0.2 Å, reported in Ref. [34].
We observe that the breaking force is twice as high when

relativistic effects are included. The obtained values, ∼1.9
and 1.2 nN for relativistic Au and Ag, respectively, exhibit
good agreement with experiment and previous calculations
[17,22]. The maxima of the derivative curves in Fig. 4(b)
can be identified with the “force" required to break the
monatomic chains [9,31]. It is remarkable that the relativ-
istic gold atoms already experience an interaction force,
equal in magnitude to the maximum force between rela-
tivistic silver atoms, when the separation between them is
∼0.7 Å greater. In particular, in the absence of scalar
relativistic corrections, the force curves are virtually iden-
tical. In reality, there is a small horizontal offset (∼0.1 Å,
not shown) between these two force curves, due to their
slightly different equilibrium chain lengths. The origin of
the much stronger interaction between relativistic gold
atoms can be traced to the significant radial contraction
of their outer 6s orbitals, which is not seen in the
corresponding orbitals of the other three cases, due to
the relativistic mass effect [1]. As a result, the gold atoms
experience a relatively deeper potential well, and hence
steeper energy gradient, within the monatomic chain.
Furthermore, the radial expansion of the outer 5d and
4f orbitals in Au, resulting from the stronger screening of
the nucleus by radially contracted s and p orbitals at lower
energy levels [1], may lead to a much higher density of
states at the Fermi level, contributed by the 5d orbitals [35],
and, thus, to a stronger interelectrode interaction.
The above considerations can be accounted for by the

effective spring constant kbind of the interelectrode poten-
tial. The occurrence of jump to contact has been modeled in
the literature as resulting from a competition between intra-
and interelectrode potentials, represented by their respec-
tive elastic constants (kinter and kintra): a jump to contact
occurs when kinter/kintra > 1, with a larger ratio, resulting in
a larger jump [17]. The calculated binding potential in
Fig. 4 is a reasonable estimate of the interelectrode
potential between the last two atoms of the junction, so
that kinter can then be approximated by the extracted values
of kbind in Table II. In the literature, the intraelectrode
potential is often modeled by a spring potential [17], where
kintra is then represented by the spring constant kel. For
realistic electrodes the geometry, that is, the atomic
coordination, determines this intraelectrode elastic constant
[17]. One may then assume that kel would be similar for
identical Ag and Au electrode geometries; the size of the
jump will then mainly be determined by the interelectrode
constant kbind. Noting that the interelectrode binding con-
stant kbind of relativistic Au is double that of all the other
cases and taking the intraelectrode elasticity arguments
presented above into account, it is expected that relativistic

(a)

(b)

FIG. 4. (Rescaled) total energy (a), and its derivative (b), as a
function of (rescaled) interatomic separation z between atoms in
infinite monatomic chains of nonrelativistic gold (dashed blue)
and silver (dashed red), and scalar relativistic gold (solid blue)
and silver (solid red). The derivative curves in (b) were obtained
from a fit of the total-energy data in (a) to sixth-order poly-
nomials. In the absence of scalar relativistic corrections, mon-
atomic gold and silver chains exhibit almost identical force
curves. Conversely, the interaction “force" between relativistic
gold atoms in (b) rises, from large separations, to the maximum
value for relativistic silver atoms a distance ∼0.7 Å earlier.

TABLE II. Results of fitting DFT total energy data to Rose’s
universal binding potential [33]. The “rel.” stands for relativistic
effects included and “no rel.” for the case when relativistic effects
are not included in the simulations.

Au no rel. Au rel. Ag no rel. Ag rel.

α (eV/Å) 4.48 8.66 4.34 5.46
β (1/Å) 1.58 1.99 1.45 1.66
x0 (Å) 2.2 2.1 2.05 2.052
E0 (eV) −14080 −14130 −3970 −4004
xeq (Å) 2.86 2.58 2.74 2.65
Eeq (eV) −1.084 −1.60 −1.10 −1.21
xbreak (Å) 3.52 3.09 3.43 3.26
Fbreak (eV/Å) −0.61 −1.17 −0.59 −0.74
xbind (Å) 4.18 3.59 4.12 3.86
kbind (eV/Å2) −0.38 −0.86 −0.31 −0.45
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Au will exhibit a larger jump to contact. This is precisely
what we observe in our experimental data.
In summary, we have reported a direct measurement of

the strong relativistic effect in the formation of single-atom
gold contacts. This phenomenon was revealed by the
introduction of a new statistical treatment of the exper-
imental data, and can be fully understood from a compari-
son of the experiments with DFT calculations in which
scalar relativistic corrections are included or not.
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