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Commensurate-incommensurate phase transition and a network of domain
walls in bilayer graphene with a biaxially stretched layer
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The two-chain Frenkel-Kontorova model is applied for an analytical description of the energy and structure of
the network of domain walls in bilayer graphene. Using this approach, the commensurate-incommensurate phase
transition upon biaxial stretching of one of the graphene layers is considered. We demonstrate that formation
of the equilateral triangular network of domain walls becomes energetically favorable above the critical relative
biaxial elongation of the bottom layer of 3.0 × 10−3. It is shown that the optimal period of the triangular network
of domain walls is inversely proportional to the difference between the biaxial elongation of the bottom layer and
the critical elongation as long as it is much greater than the width of domain walls. Quantitative estimates of the
contribution of a single dislocation node to the system energy and the period of the network of domain walls are
obtained. Experimental measurements of the period could help to verify the energy of the fully incommensurate
state (such as that obtained by relative rotation of the layers) with respect to the commensurate one.
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I. INTRODUCTION

Stacking dislocations arising from variation in stacking of
graphene layers were recently predicted for bilayer graphene
[1]. Since then, characteristic patterns consisting of commen-
surate domains separated by stacking dislocations, which play
the role of incommensurate domain walls, have been observed
in numerous experiments [2–8]. It has been demonstrated that
stacking dislocations affect electronic [9–13] and optical [14]
responses of graphene and, similar to in-plane defects, they
should be taken into account upon development of nanoelec-
tronic and nanoelectromechanical devices.

In stacking dislocations, one of the layers in a bilayer is
slightly stretched, and the other one is slightly compressed,
and/or there is a different shear strain in the layers so that the
stacking changes from one ground-state stacking to another
one [1,15–18]. The variation of the stacking is mostly local-
ized in narrow strips with the width much smaller than the
size of commensurate domains where the stacking is close to
the ground-state one. These narrow strips are referred to as
domain walls [2–5,7,8] or boundaries between commensurate
domains [1,15–18].

In previous theoretical works [1,3,4,15,16,18,19], it was
assumed that domain walls do not cross as long as the distance
between them is large and can be treated as isolated. It was
shown that formation of domain walls becomes energeti-
cally favorable above some critical uniaxial elongation of the
bottom layer [1,16,18]. At small elongations, the layers are
kept commensurate by the interlayer interaction. However, at
some critical elongation, the interlayer interaction energy can
no longer compensate the large elastic energy. As a result,
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formation of the first domain wall takes place. The distance
between adjacent domain walls decreases continuously as the
elongation of the bottom layer is increased. Therefore, there is
a commensurate-incommensurate phase transition of the sec-
ond order, which can be characterized by the inverse distance
between domain walls as the order parameter [1,20,21]. So far
such a phase transition has been studied for bilayer graphene
[1,16], bilayer boron nitride [15,16], and a graphene-boron
nitride heterostructure [18] only upon uniaxial stretching and
when crossing of domain walls was neglected.

Nevertheless, some experimental images of bilayer
graphene obtained by transmission electron microscopy [2,6]
and near-field infrared nanoscopy [7] revealed the presence
of triangular networks of intercrossed domain walls. Such
networks are associated with global interlayer biaxial and ro-
tation strains, i.e., different strains within the graphene layers
and relative rotation of the layers [2]. Therefore, deformation
of one of the layers and/or its rotation with respect to the
other should promote formation of networks of domain walls.
In the present paper, we develop an analytical approach for
the description of networks of domain walls based on the
two-chain Frenkel-Kontorova model [1,15,16,22,23]. While
diverse patterns of domain walls and loading conditions can
be studied using this model, here we limit our consideration
to the case when one graphene layer is biaxially stretched
with respect to the other. The application of a tensile strain
favors formation of tensile domain walls perpendicular to the
Burgers vector [16,18]. Correspondingly, a regular network
of tensile domain walls separating commensurate domains
with the shape of equilateral triangles (Fig. 1) should arise
upon application of a biaxial strain. We show that similar to
uniaxial stretching, the commensurate-incommensurate phase
transition takes place upon increasing the biaxial elongation
of one of the graphene layers. It should be noted that the
commensurate-incommensurate phase transition considered
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FIG. 1. Schematic representation of the triangular network of
domain walls (black lines) in bilayer graphene with a biaxially
stretched bottom layer. The period LT of the network is indicated.

here is very different from the crossover from the incommen-
surate state with commensurate domains separated by domain
walls to the fully incommensurate state observed for graphene
on boron nitride upon rotation of the graphene layer [24].

In the following, we review the theory of domain walls in
bilayer graphene, develop the model for bilayer graphene with
a biaxially stretched bottom layer, and apply it to estimate the
critical biaxial elongation and the period of the network of
domain walls. Finally, we discuss the accuracy of our model
and summarize our conclusions.

II. STRUCTURE AND ENERGY OF DOMAIN WALLS

To understand the structure of domain walls in bilayer
graphene and the reasons for formation of the network of
domain walls, it is necessary to consider the potential surface
of the interlayer interaction energy of graphene layers, i.e., the
dependence of the interlayer interaction energy on the relative
in-plane displacement of the layers. This potential energy
surface is determined by the hexagonal symmetry of a single
graphene layer [25–32] (Fig. 2). The minima of the potential
energy surface are located in vertices of hexagons, the maxima
are located in the centers of the hexagons, and the barriers
for transition between the minima are located in the middle
of the sides of the hexagons. The maxima correspond to the
AA stacking in which all atoms of one layer are on top of
the atoms of the second one. The minima are observed for the
AB stacking obtained from the AA stacking by shifting one
of the layers by one bond length l in any armchair direction.
The barriers for transition between the minima correspond
to the saddle-point (SP) stacking, which can be obtained from
the AA stacking by the shift of one of the layers by 3l/2 in
any armchair direction.

The structure and energy of the domain walls depend only
on changes in the interlayer interaction energy for different

FIG. 2. Interlayer interaction energy of bilayer graphene V di-
vided by the barrier Vmax to relative sliding of the layers as a function
of the relative displacements ux and uy of the graphene layers along
the armchair and zigzag directions, respectively, in units of the bond
length l . The interlayer interaction energy is computed according
to Eq. (7) and is given relative to the energy of the AB stacking.
The AB, AA, and SP stackings are indicated. The boundaries of a
hexagon of the potential energy surface spanned by relative displace-
ments of the layers within a single dislocation node are shown by
dotted lines.

stackings and not on its absolute values. Therefore, in Fig. 2
and below, we consider the interlayer interaction energy rela-
tive to the energy of the AB stacking, i.e., set it to zero at the
minima of the potential energy surface.

Domain walls in bilayer graphene correspond to the rel-
ative displacement of the layers in the armchair direction
through the SP stacking [1,16], which is the minimum en-
ergy path between adjacent minima AB. The dislocations
are partial since the Burgers vector �b equal in magnitude to
the bond length l is smaller than the lattice constant a0 =
l
√

3. In the bilayer with a biaxially stretched bottom layer,
a triangular network of domain walls should be formed with
six domain walls corresponding to six armchair directions
merging at each dislocation node (Fig. 1). It is clear therefore
that dislocation nodes correspond to the transition through the
AA stacking (Fig. 3).

To study domain walls in bilayer graphene we use the two-
chain Frenkel-Kontorova model [1,15,16,22,23], which takes
into account structural relaxation of both of the layers and was
applied previously to study domain walls in double-walled
carbon nanotubes [22,23], bilayer graphene [1,16,17], bilayer
boron nitride [15], and graphene-boron nitride heterostructure
[18]. The out-of-plane buckling of graphene layers [3,4] is ne-
glected. This is justified when the bilayer is supported, for ex-
ample, on misoriented graphene layers [2], boron nitride [5],
etc. In such cases, the two-chain Frenkel-Kontorova model pa-
rameterized on the basis of first-principles calculations [1,16]
gives the width of domain walls in close agreement with the
experimental data [2,4,5]. The account of out-of-plane buck-
ling in suspended graphene can be performed using more ad-
vanced continuum models [19] or atomistic approaches [3,4].

To describe a straight and isolated domain wall in free
bilayer graphene within the two-chain Frenkel-Kontorova
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FIG. 3. Schematic representation of a dislocation node in bilayer
graphene with a biaxially stretched bottom layer. The boundaries
between commensurate domains with the AB stacking and domain
walls are shown using solid lines. The dislocation centers with the SP
stacking are indicated using dashed lines. Dotted lines correspond to
the boundaries of the dislocation node with the AA stacking in the
center. The dislocation width lD is indicated.

model, we consider two chains of particles connected by
harmonic springs (Fig. 4). Each particle corresponds to a
ribbon of graphene parallel to the domain wall, of unit length
and of width equal to the bond length l . The number of
particles in each chain N � 1. The elastic constant of the
springs is ks. The equilibrium distance between particles in
isolated chains is l . Then the elastic energy of the chains can
be computed as

Wel = ksl2

2

N/2∑
n=−N/2

{(vn − vn−1)2 + (vn + un − vn−1 − un−1)2},
(1)

where vn is the displacement of the nth particle in the chain
corresponding to the bottom layer relative to the position pn =
nl in the isolated chain and un is the relative displacement of
the nth particles in the chains corresponding to the upper and
bottom layers. Both of these quantities are in units of the bond
length l .

FIG. 4. Scheme of the Frenkel-Kontorova model for two inter-
acting chains of particles.

The interaction energy of the chains is given by

Wint =
N/2∑

n=−N/2

V (un)l, (2)

where V (u) is the interlayer interaction energy of bilayer
graphene per unit area relative to that in the commensurate
state with the AB stacking.

In the continuum approximation and in the limit N → ∞,
the total energy of the system, W = Wel + Wint, can be written
as

W =
∫ +∞

−∞

{
ksl2

2

(
dv

dn

)2

+ ksl2

2

(
dv

dn
+ du

dn

)2

+ V (u)l

}
dn.

(3)
Introducing the variable a = v + u/2, the above equation

can be presented in the form

W =
∫ +∞

−∞

{
ksl

2

(
da

dn

)2

+ ksl2

4

(
du

dn

)2

+ V (u)l

}
dn. (4)

The energy described by Eq. (4) is minimized when da/dn
is set to zero, and 0 � u(n) � 1 corresponds to the relative
displacement of atoms of the layers between two adjacent AB
minima through the SP stacking (Figs. 2 and 3). In the present
paper we limit our consideration to tensile domain walls. In
this case, i.e., when the Burgers vector is perpendicular to the
domain wall, ksl = k/(1 − ν2), where k is the elastic constant
of graphene under uniaxial stress (related to Young’s modulus
Y and the thickness of graphene layers h as k = Y h) and ν is
Poisson’s ratio. Then Eq. (4) is reduced to

�W =
∫ +∞

−∞

{
kl2

4(1 − ν2)

∣∣∣∣du

dx

∣∣∣∣
2

+ V (u)

}
dx, (5)

where �W = W is the energy associated with the creation of
a single domain wall per unit length and the coordinate x =
nl corresponds to the direction perpendicular to the domain
wall and parallel to the Burgers vector (i.e., along the armchair
direction).

The relative displacement u(x) that minimizes the forma-
tion energy of domain walls in Eq. (5) is determined by the
Euler-Lagrange equation δ�W/δu = 0, which upon integra-
tion gives

kl2

4(1 − ν2)

∣∣∣∣du

dx

∣∣∣∣
2

= V (u). (6)

It was shown in previous papers [25,27,30–32] that the
potential energy surface of bilayer graphene can be described
with high accuracy by the expression containing only the first
Fourier harmonics:

V (ux, uy) =V0

[
3

2
+ cos

(
2k0ux − 2π

3

)

− 2 cos

(
k0ux − π

3

)
cos(k0uy

√
3)

]
, (7)

where k0 = 2π/3 and ux and uy correspond to relative dis-
placements of the layers in the armchair and zigzag directions,
respectively, in units of the bond length l . Here, as mentioned
above, the interlayer interaction energy is given relative to that
in the AB stacking.
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For uy = 0 and 0 � ux = u(x) � 1, the dependence of the
interlayer interaction energy along the straight line between
two adjacent minima AB, which also corresponds to the
minimum-energy path, can be written as

V (u) = Vmax

[
2 cos

(
k0u + 2π

3

)
+ 1

]2

, (8)

where Vmax = V0/2 is the barrier to relative sliding of
graphene layers through the SP stacking.

From Eqs. (6) and (8), it follows that the domain wall is
described by a soliton:

u(x) = 1

2
+ 3

π
arctan

[
1√
3

tanh

(
2πx

√
Vmax(1 − ν2)

3kl2

)]
.

(9)

The dependence u(x) has a nearly constant slope close to the
center of the domain wall at x = 0, which is roughly equal
to |du/dx|x=0. Therefore, the dislocation width corresponding
to the characteristic width of domain walls can be defined as
[1,15,16,22,23]

lD =
∣∣∣∣du

dx

∣∣∣∣
−1

x=0

= l

2

√
k

Vmax(1 − ν2)
. (10)

The dislocation energy per unit length of domain walls based
on Eqs. (5), (6), and (8) becomes

�W =
√

kl2

(1 − ν2)

∫ 1

0

√
V (u)du

=
√

kl2Vmax

(1 − ν2)

(
3
√

3

π
− 1

)
. (11)

The use of the continuum approximation in Eqs. (3)–(5)
is justified if lD � l . In the present paper, we use the follow-
ing parameters for the model obtained by density functional
theory (DFT) calculations [16] using the second version of
the van der Waals density functional (vdW-DF2) [33]: l =
1.430 Å, k = 331 ± 1 J/m2, ν = 0.174 ± 0.002, and Vmax =
1.61 meV/atom (in meV per atom of the upper/adsorbed
layer). The latter value for the barrier is in agreement with
the data deduced from shear mode frequencies of bilayer
and few-layer graphene and graphite [25,34] and within
the range of other DFT results [26–30,34,35]. Using these
parameters, we estimate that for tensile domain walls in
bilayer graphene, lD = 13.4 nm, and this is indeed much
greater than the bond length. This result is close to the
corresponding experimental data of 10.1 ± 1.4 nm [2] and
11 nm [5].

Let us now discuss the effect of uniaxial stretching of
the bottom layer on the formation energy of domain walls.
For that we consider relative elongations of the layers in
the case when one domain wall is created in the system of
finite length L in the direction of the Burgers vector [1].
According to the two-chain Frenkel-Kontorova model, atoms
of both of the layers are displaced relative to their positions in
the initial commensurate system upon creation of a domain
wall [1,15,16,22,23]. One domain wall corresponds to the
relative displacement of the layers equal to the bond length l .

Therefore, if the layers are free and composed of the same
material, the resulting relative elongations of the bottom and
upper layers with one domain wall are ε0 = l/(2L) and −ε0,
respectively. This means that Eqs. (5) and (11) describe the
energy of the finite bilayer with one domain wall and relative
elongation of the bottom layer ε0 with respect to the commen-
surate system (the bilayer with no domain walls) with zero
elongation. Analogously, these equations also describe the
energy of the bilayer with one domain wall and relative elon-
gation of the bottom layer ε with respect to the commensurate
system with the relative elongation ε − ε0. Thus, to calculate
the energy of the bilayer with one domain wall with respect to
the commensurate system with the same relative elongation
ε of the bottom layer, we need to substract from Eqs. (5)
and (11) the elastic energy coming from the increase of the
relative elongation of the commensurate bilayer from ε − ε0

to ε. While the formation energy of domain walls in the case
when the relative elongation of the bottom layer is greater by
the extra elongation ε0 compared to the commensurate bilayer
[see Eqs. (5) and (11)] is always positive, the formation energy
of domain walls in the system with a fixed length of the bottom
layer can be negative for sufficiently large ε (above the critical
value) [1,16,18,22,23].

III. TRIANGULAR NETWORK OF DOMAIN WALLS

For a biaxially stretched bottom layer, we consider the
triangular network with domain walls in all zigzag directions
(Fig. 1). We assume that commensurate domains are large
compared to the width of domain walls so that the side of
the triangles LT � lD. In this case, Eqs. (5) and (11) describe
the energy of domain walls in the bilayer with the relative
biaxial elongation of the bottom layer ε with respect to the
commensurate system with the relative biaxial elongation
ε − ε0, where ε0 = √

3l/(2LT). Correspondingly, the energy
of the bilayer with the network of domain walls relative to the
commensurate bilayer at the same relative elongation ε of the
bottom layer can be written as

�WT = −�Wel + �Wdw + �Wdn, (12)

where �Wel is the increase in the elastic energy of the
commensurate bilayer due to the extra elongation ε0 and
�Wdw and �Wdn are the contributions of domain walls (edges
of triangles) and dislocation nodes (vertices of triangles; see
Fig. 3) to the formation energy of the network of domain
walls, respectively. Below we give these relative energies per
unit area of the bilayer.

The increase in the elastic energy of the commensurate
bilayer due to the extra elongation ε0 is simply given by

�Wel = 2k

(1 − ν)
[ε2 − (ε − ε0)2]

= 2
√

3kε

(1 − ν)

l

LT
− 3k

2(1 − ν)

(
l

LT

)2

. (13)

The contribution of the domain walls is �Wdw =
3LT�W/(2ST), where �W is the energy per unit length
of the domain walls given by Eq. (11) and ST = √

3L2
T/4 is
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the area of one commensurate domain. Therefore,

�Wdw = 2l

LT

√
3kVmax

(1 − ν2)

(
3
√

3

π
− 1

)
. (14)

The contribution of dislocation nodes should be positive
and proportional to the density of nodes. It therefore should
depend quadratically on the period of the network of domain
walls �Wdn ∝ (l/LT)2.

From this assumption and Eqs. (12)–(14), the expression
for the energy of the bilayer with the triangular network of
domain walls relative to the commensurate system can be
written as

�WT = Al

LT
+ Bl2

L2
T

, (15)

where

A = −2
√

3

[
kε

(1 − ν)
−

√
kVmax

(1 − ν2)

(
3
√

3

π
− 1

)]
(16)

and B is determined by the contribution �Wdn of the disloca-
tion nodes and the term of the elastic energy �Wel quadratic
in l/LT [see Eq. (13)]. Both of these contributions to the total
energy are positive, and B is positive.

It should be noted that limit LT → ∞ corresponds to
the commensurate system. Accordingly, the energy �WT

of the bilayer with the network of domain walls with respect
to the energy of the commensurate system given by Eq. (15)
in this limit tends to zero.

The optimal period of the network of domain walls
can be found from the conditions ∂�WT/∂LT = 0 and
∂2�WT/∂L2

T � 0. It follows from these conditions that when
A is positive, the optimal period of the network tends to infin-
ity; that is, the ground state corresponds to the commensurate
system. When A is negative, the ground state corresponds to
the bilayer with the network of domain walls characterized by
the period

L0 = −2B

A
l. (17)

From Eqs. (15) and (17), it can be checked that in the
latter case, the relative energy of the bilayer with the optimal
network of domain walls is given by

�W0 = − A2

4B
. (18)

Since B is positive [see Eq. (23)], the structure with the tri-
angular network of domain walls is indeed more energetically
favorable than the commensurate system for negative A.

The critical relative biaxial elongation εc above which the
network of domain walls corresponds to the ground state
of the system is determined by the condition A = 0. Using
Eq. (16), this gives

εc =
√

Vmax(1 − ν)

k(1 + ν)

(
3
√

3

π
− 1

)
= (1 − ν)

�W

kl
. (19)

Note that this critical elongation εc does not depend on the
contribution �Wdn of dislocation nodes to the relative energy

of the bilayer with the network of domain walls having a
quadratic dependence on l/LT.

Using the parameters obtained by the DFT calculations
[16] (see Sec. II), we estimate that the triangular network
of domain walls corresponds to the ground state of bilayer
graphene with a biaxially stretched bottom layer at relative
elongations ε > εc = 3.0 × 10−3. For the bilayer with a uni-
axially stretched layer, the critical elongation for becoming
domain walls energetically favorable is given by εc0 = �W/kl
and is about 3.6 × 10−3 [16]. It is seen that the ratio of
the critical biaxial and uniaxial elongations is determined
by Poisson’s ratio: εc/εc0 = 1 − ν; that is, the critical value
for biaxial stretching is smaller than in the case of uniaxial
stretching by only 20%. This may seem surprising as the elas-
tic energy is about two times greater upon introduction of the
biaxial elongation compared to the same uniaxial elongation.
The density of dislocations, however, is also different in two
cases, and the critical elongation turns out to be similar.

From Eq. (17), it follows that above the critical elongation,
the optimal period L0 of the network of domain walls is pro-
portional to L0 ∝ (ε − εc)−1. The inverse quantity L−1

0 can be
considered the order parameter of the phase transition. From
Eq. (18), it can be concluded that the relative energy of the
bilayer with the optimal network of domain walls changes as
�W0 ∝ −l2/L2

0 ∝ −(ε − εc)2 above the critical elongation.
This demonstrates that the commensurate-incommensurate
phase transition in bilayer graphene with a biaxially stretched
bottom layer is of the second order.

The predicted dependence of the optimal period L0 of the
network of domain walls L0 ∝ (ε − εc)−1 is different from the
logarithmic law L0 ∝ ln[(ε − εc)−1] for the optimal separa-
tion between adjacent domain walls in the standard Frenkel-
Kontorova model for a one-dimensional chain on a fixed
substrate [21]. This difference is related to the contributions
to the energy of the system with domain walls that have a
nonlinear dependence on the inverse distance between the
domain walls. In our case, such contributions come from the
extra elongation of the bottom layer that is needed to fulfill
the boundary conditions [see Eq. (13)] and the presence of
dislocation nodes. Both of these contributions are positive
and depend quadratically on the period of the network of
domain walls. In the standard Frenkel-Kontorova model these
contributions are absent. Instead, the repulsive interaction
between the domain walls that depends exponentially on their
separation is taken into account [21]. We assume that this
exponential energy term can be neglected compared to the
quadratic terms for large periods of the network of domain
walls, L � lD.

Note that the quadratic contribution to the energy should
be present in any two-layer system where there are boundary
conditions for the substrate layer but it is not completely fixed
(even in one-dimensional systems, bilayers with a uniaxially
stretched bottom layer and no dislocation nodes [1], etc.).
Therefore, in such systems, the separation between domain
walls should also change inversely proportionally to the dif-
ference between the elongation of the substrate layer and
critical elongation upon the commensurate-incommensurate
phase transition.

To get quantitative estimates of the optimal period of the
network of domain walls, we assume that the nodes have
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the shapes of hexagons with the side lD corresponding to the
width of the domain walls (Fig. 3). We also suppose that
the layers within the nodes are uniformly stretched with the
biaxial strain ±l/(2lD). Accordingly, the relative displace-
ment between the layers in these regions changes linearly
and corresponds to the AB stacking at the vertices of the
dislocation nodes and AA stacking at the centers (Fig. 3). This
means that the average interlayer interaction energy within the
nodes is given by

Vin =
∫

hex V (ux, uy)duxduy∫
hex duxduy

= 3

2
V0 = 3Vmax, (20)

where the integration is performed over one hexagon on the
potential energy surface with vertices at the AB stacking and
the center at the AA stacking (Fig. 2) and we use Eq. (7) for
the interlayer interaction energy V (ux, uy). It is clear that Vin is
equal simply to the average of the interlayer interaction energy
over the whole potential energy surface. Therefore, in our
model, the structure of the layers within the dislocation nodes
can be referred to as fully incommensurate. A similar state is
achieved when the layers are rotated with respect to each other
by an arbitrary angle that does not correspond to any moiré
pattern [25,31,32] (and even in the structures corresponding
to moiré patterns, the average interlayer interaction energy is
only slightly different from Vin, as shown in Ref. [36]).

Considering that the layers are uniformly stretched within
the nodes and the interlayer interaction energy is equal to its
average over the potential energy surface, the contribution of
dislocation nodes to the relative energy of the bilayer with
domain walls can be written as

�Wdn = 3

(
lD
LT

)2
[

Vin + k

2(1 − ν)

(
l

lD

)2
]
. (21)

Taking into account Eqs. (10) and (20), this contribution
can be presented as

�Wdn =
(

l

LT

)2 3(5 + 2ν)k

4(1 − ν2)
. (22)

Then the parameter B in Eq. (17) takes the form

B = 3(7 + 4ν)k

4(1 − ν2)
. (23)

The dependence of the optimal period L0 of the network
of domain walls on the biaxial elongation estimated using
Eq. (17) with the parameter B from Eq. (23) is shown in Fig. 5.
The contribution of a single dislocation node to the relative
energy of the bilayer with the triangular network of domain
walls is wdn = �Wdn

√
3L2

T/2 = 151 eV. This is the same as
the contribution of a domain wall with a length of 0.14 μm.

Our estimates are valid as long as L0 � lD = 13.4 nm.
From Eqs. (10), (16), (17), and (23) it follows that this
condition is satisfied for

ε � εc +
√

3

2
(7 + 4ν)

√
Vmax(1 − ν)

k(1 + ν)
, (24)

which corresponds to ε � 3.3 × 10−2.

FIG. 5. Estimated optimal period L0 (in μm) of the triangular
network of domain walls in bilayer graphene as a function of
the relative biaxial elongation ε of the bottom layer. The critical
elongation εc above which the formation of such a network becomes
energetically favorable is shown by the vertical line.

IV. ACCURACY OF THE MODEL

Let us now discuss the accuracy of our model for dis-
location nodes in which we assume that the layers are just
uniformly stretched and fully incommensurate. A similar ap-
proximation can also be considered for domain walls, whose
formation energy is known from the exact analytical solution
[see Eq. (11)]. For simple estimates, we can suppose that the
layers are completely commensurate within the commensu-
rate domains, while in a domain wall, the layers are uniformly
stretched with the uniaxial tensile strain ±l/(2lD) and the
relative displacement between them changes linearly across
the domain wall and lies on the straight line between two
adjacent minima AB on the potential energy surface (Fig. 2).
In this case, the formation energy of domain walls given by
Eq. (5) can be written as

�W = kl2

4(1 − ν2)lD
+ VavlD, (25)

where Vav is the average interlayer interaction energy along
the line between two adjacent minima.

From Eq. (8), it follows that

Vav =
∫ 1

0
V (u)du = Vmax

(
3 − 9

√
3

2π

)
. (26)

Optimization of the dislocation width lD within this simple
model using Eq. (25) and the condition ∂�W/∂lD = 0 gives

lD = l

2

√√√√(
3 − 9

√
3

2π

)−1
k

Vmax(1 − ν2)
(27)

and

�W =
√√√√(

3 − 9
√

3

2π

)
kl2Vmax

(1 − ν2)
. (28)
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The latter value exceeds the result of the two-chain Frenkel-
Kontorova model corresponding to Eq. (11) by only 10%.

The above value is the minimal error of the model in which
the layers are uniformly stretched and incommensurate within
domain walls. However, in the case of dislocation nodes
formed by crossing domain walls, their size is determined
by the dislocation width lD from Eq. (10). Using a similar
assumption for domain walls gives the formation energy

�W = 1

2

(
4 − 9

√
3

2π

)√
kl2Vmax

(1 − ν2)
. (29)

This is 16% greater than the result given by Eq. (11). Still,
this error is acceptable given that the barrier to relative sliding
of the layers is not known with high precision (the DFT
values for the barrier lie in the range of 0.5–2.1 meV/atom
[26–30,34,35], although the interval can be reduced if the
experimental interlayer distance is used [34], and the esti-
mates of the barrier from the experimental measurements of
the shear mode frequencies [25] and dislocation width [2]
correspond to 1.7 and 2.4 meV/atom, respectively). It can
be expected that our model used to analyze the triangular
network of domain walls in bilayer graphene with a biaxially
stretched bottom layer has a similar accuracy. To improve the
accuracy of the model, a nonuniform strain distribution within
dislocation nodes should be taken into account.

V. CONCLUSIONS AND DISCUSSION

The two-chain Frenkel-Kontorova model was applied to
analyze the commensurate-incommensurate phase transition
in bilayer graphene with a biaxially stretched bottom layer. It
was found that the critical biaxial elongation above which the
triangular network of domain walls corresponds to the ground
state of the system does not depend on the structure and
energetics of dislocation nodes. The critical relative biaxial
elongation was estimated to be about 3.0 × 10−3, and its
difference from the critical elongation in the case of the
uniaxially stretched bottom layer is determined purely by the
Poisson’s ratio. It was also predicted that above the critical
elongation, the optimal period of the network of domain walls
changes inversely proportionally to the difference between
the biaxial elongation of the bottom layer and the critical
elongation. Considering the inverse period of the network to
be the order parameter, it was proved that the commensurate-
incommensurate phase transition is of the second order.

To get quantitative estimates of the period of the triangular
network of domain walls and energy of dislocation nodes,
it was assumed that in the nodes, the layers are uniformly
stretched and fully incommensurate. The estimated contribu-
tion of a single dislocation node to the total energy of the
system was found to be about 150 eV. This quantity can be

overestimated in our model of dislocation nodes by no more
than 20%, as demonstrated by the example of the formation
energy of domain walls.

In our estimates, we use the approximation of the potential
energy surface of bilayer graphene from the first Fourier
harmonics. This approximation has been justified by a number
of DFT calculations [25,27,30–32]. It was also applied to
estimate the barrier Vmax to relative sliding of graphene layers
from measurements of the shear mode frequency of graphene
layers in bilayer and few-layer graphene and graphite, and the
value of 1.7 meV/atom was deduced [25], similar to the most
reliable DFT results [34]. The close value of 2.4 meV/atom
was obtained from measurements of the dislocation width in
few-layer graphene [2]. Experimental measurements of the
period of the triangular network of domain walls, e.g., by
transmission electron microscopy [2,4,6], scanning tunneling
microscopy [5], or near-field infrared nanoscopy [7], would
allow us to get an experimental estimate for the energy of the
transition of bilayer graphene from the commensurate state
to the fully incommensurate one and to further check the
accuracy of the approximation of the potential energy surface.

The approach for the description of networks of domain
walls in bilayer graphene developed in the present paper
on the basis of the two-chain Frenkel-Kontorova model has
allowed us to get an analytical solution for the case of biaxial
elongation of the bottom layer, i.e., when the commensurate
domains have the shape of equilateral triangles and all the
domain walls are tensile. In the experiments [2,6,7], the
triangular domains are not always equilateral, and the domain
walls are not equivalent. The corresponding images can be
obtained when strains applied to the bottom layer are not equal
along different axes and/or there is a shear strain applied.
Relative rotation of the layers and bending of the bilayer also
affect the local structure of domain walls and the global struc-
ture of the network of domain walls. The current analytical
approach based on the two-chain Frenkel-Kontorova model
can be straightforwardly extended to describe formation of
networks of domain walls for such types of the external load,
and they will be considered in subsequent papers.

Other diverse patterns of domain walls have been observed
experimentally, including irregular triangular networks with
curved domain walls [2,6], L-shaped domain walls, closed-
loop circles [7], etc. A nonuniform distribution of strains in
the layers, the presence of defects in graphene layers and
substrate, and the existence of barriers to formation and trans-
formation of domain walls [17] can be considered possible
reasons for the formation of such patterns and require further
investigation.
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