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Robust quantum systems rely on having a protective environment with minimized relaxation channels. Super-
conducting gaps play an important role in the design of such environments. The interaction of localized single
spins with a conventional superconductor generally leads to intrinsically extremely narrow Yu-Shiba-Rusinov
(YSR) resonances protected inside the superconducting gap. However, this may not apply to superconductors
with more complex, energy-dependent order parameters. Exploiting the Fe-doped two-band superconductor
NbSe2, we show that due to the nontrivial relation between its complex-valued and energy-dependent order
parameters, YSR states are no longer restricted to be inside the gap. They can appear outside the gap (i.e.,
inside the coherence peaks), where they can also acquire a substantial intrinsic lifetime broadening. T-matrix
scattering calculations show excellent agreement with the experimental data and relate the intrinsic YSR state
broadening to the imaginary part of the host’s order parameters. Our results suggest that nonthermal relaxation
mechanisms contribute to the finite lifetime of the YSR states, even within the superconducting gap, making
them less protected against residual interactions than previously assumed. YSR states may serve as valuable
probes for nontrivial order parameters promoting a judicious selection of protective superconductors.
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I. INTRODUCTION

In recent decades, Yu-Shiba-Rusinov (YSR) states [1–3]
have been used as local probes to study superconductivity
[4], adsorbate-substrate interaction [5], their interplay with the
Kondo effect [6], and the properties of the impurity spin states
themselves [7]. The interest in YSR states has intensified in
recent years as they play a vital role in engineering Majorana
bound states [8–10] as well as in studying topological super-
conductors [11]. In a simple BCS-type s-wave superconductor
with a real-valued energy-independent order parameter [12],
YSR states can exist only inside the superconducting gap,
which protects them from interacting with, and decaying into,
the quasiparticle continuum [13]. If this gap is void of quasi-
particles, only a thermally induced decay into the quasiparticle
continuum is possible [14]. Residual quasiparticle interactions
could slightly broaden the YSR state [15,16]. The situation is
different in a d-wave superconductor, where the YSR state is
intrinsically expected to have a nonzero lifetime broadening
inside the gap owing to its nontrivial order parameter [5,17].
However, as we will show here, the behavior of YSR states
changes dramatically even for s-wave superconductors if they
feature a nontrivial order parameter.

We choose an s-wave two-band superconductor with finite
interband coupling resulting in complex-valued and energy-
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dependent order parameters [18,19]. This not only leads to
a nontrivial relation between the order parameter and the
position of the gap edge but, due to causality [20], also
implies imaginary parts in the order parameters, which cannot
be trivially removed by a gauge transformation. Effectively,
intrinsic decay channels for YSR states emerge. Hence, the
interplay between interband coupling and YSR states reveals
fundamental properties of superconductors that may be rele-
vant for other unconventional materials.

We explore YSR states in the Fe-doped two-band su-
perconductor NbSe2, which have been well studied in the
past [21–34]. Due to interband coupling, a BCS-type band
induces superconductivity also in a second band (proximity
effect), so that the individual order parameters turn out to be
strongly energy dependent. The Fe doping gives rise to YSR
states that can be directly observed with a scanning tunneling
microscope (STM) for impurities near the surface. In this
way, we demonstrate that in this two-band superconductor,
the energy of YSR states is no longer restricted to inside
the gap but is also found within the quasiparticle continuum.
More specifically, those YSR states with stronger magnetic
exchange coupling are located within the superconducting
gap and have a very small intrinsic lifetime broadening due
to reduced relaxation. We can also safely neglect thermally
activated relaxation processes for YSR states within the gap
[14], as we operate at a base temperature of 15 mK, which is
more than two orders of magnitude below the superconducting
transition temperature. For a weaker exchange coupling, the
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YSR states are located outside of the superconducting gap
within the coherence peaks, where they broaden substantially
with strong intrinsic relaxation channels to the superconduct-
ing host. We demonstrate that the enhanced lifetime broad-
ening is directly related to the proximity-induced complex
order parameters. Their imaginary parts are associated with
relaxation processes within the superconductor. The interac-
tion of an impurity with the individual bands in the bulk makes
these decay channels available to the YSR states. In this way,
we not only demonstrate the relevance of intrinsic relaxation
channels for a certain class of robust quantum states but also
establish YSR states as a probe for the imaginary part of a
complex-valued and energy-dependent order parameter.

II. EXPERIMENT

Single crystals of Fe-doped NbSe2 were grown by chem-
ical vapor transport. Powders of Nb and Fe in a ratio of
99.45:0.55 were mixed well and then placed in a quartz
tube. Se chips were added in a stoichiometric ratio to yield
Nb0.9945Fe0.055Se2. Iodine was used as the transport agent. The
sealed tube was heated to 900 ◦C with a temperature gradient
of 75 ◦C for 3 weeks. The structure and composition of the
crystals were confirmed with x-ray diffraction.

Experiments were carried out in a home-built STM op-
erating at 15 mK base temperature. Samples were cleaved
using Scotch tape in ultrahigh vacuum. To enhance the ex-
perimental resolution, superconducting vanadium was chosen
as a tip material [6]. Tips were cut from 0.1-mm vanadium
wire (Goodfellow) in air and cleaned by Ar+ ion sputtering
in UHV followed by field emission on a V(100) sample.
Tips were characterized on a clean V(100) surface before
measurements on NbSe2, and the tip gap was extracted by
fitting superconductor-insulator-superconductor (SIS) tunnel
spectra while assuming the bulk gap of the vanadium sample
was �V = 710 μeV.

III. CHARACTERIZING Fe-DOPED NbSe2

Layered NbSe2 is a two-band superconductor, whose bands
interact via electron hopping between states near the Fermi
edge [18,19,23,24,28,29,31,34,35]. We follow the description
by McMillan to model this mechanism [19]. Without the
interband coupling, the first band is commonly assumed to
be superconducting, while the second is not [28]. Only the
interband coupling induces superconductivity in the second
band, which in turn reduces the order parameter in the first
band. As a result, two energy-dependent order parameters
emerge, which are complex-valued due to causality [20].
The imaginary part can be interpreted as an intrinsic inverse
lifetime due to the hopping between the bands. This stands
in contrast to the real-valued energy-independent BCS-type
order parameter.

In order to induce YSR states in the NbSe2 host, we have
doped the crystal with about 0.55% Fe [36]. Dopants that are
close to the surface can be directly seen in the topographic
image shown in Fig. 1. We find two characteristic types of
impurities in our samples, which we attribute to Fe defects:
one with a triangular (�) shape [Fig. 1(a)] and one with a W
shape [Fig. 1(b)]. Both give rise to strong YSR states, as can
be seen in the differential conductance spectra measured with

FIG. 1. Topography and differential conductance spectra of Fe in
NbSe2: Topographies of the two most common Fe impurities having
(a) a triangular shape (�) and (b) a W shape (W). (c) The triangular
defect typically has a smaller exchange coupling, so that the YSR
states appear within the coherence peaks. (d) The W defect typically
has a higher exchange coupling, and the YSR states commonly
appear inside the gap. An unperturbed reference spectrum with no
Fe impurity in the vicinity is shown in red. The current set point for
the topography was 20 pA at a bias voltage of 100 mV; the set point
for the spectra was 200 pA at 4 mV.

a superconducting vanadium tip in Figs. 1(c) and 1(d), respec-
tively. However, the � defect shows the YSR state inside the
coherence peaks [Fig. 1(c)], as can be seen by comparison
with the spectrum on the bare surface (red line). Indeed, the
asymmetry of the peak heights suggests the existence of YSR
states as opposed to a change of the local tunneling probability
into the two different bands. By contrast, the YSR state in
Fig. 1(d) appears close to the gap edge but clearly inside the
gap. Evidently, these two types of YSR states substantially
differ in linewidth. The in-gap linewidth [Fig. 1(d)] is much
narrower than the line width outside the gap [Fig. 1(c)]. These
experimental results present quite a different appearance of
YSR states than the “conventional” extremely narrow features
occurring only inside the superconducting gap [37]. In the fol-
lowing, we will demonstrate that this is a direct consequence
of the energy-dependent order parameter.

Both topographic images in Fig. 1 show a rather regular,
continuous lattice corrugation modulated only by a stronger
density of states at the defect positions, suggesting that the
impurities are buried very close to the surface but not directly
at or on the surface. For further analysis, we subtract an
unperturbed reference spectrum of the bare surface, i.e., with
no impurities in the close vicinity of the YSR state, in order to
isolate the YSR states.

IV. THE ORDER PARAMETERS IN Fe-DOPED NbSe2

In order to find a simple, yet appropriate, theoretical model,
we need a detailed description of the order parameter in
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Fe-doped NbSe2. The doping of 0.55% of Fe atoms is already
strong enough to reduce the transition temperature from about
7.2 K [23,38,39] to 6.1 K [36], so that the effects of the
magnetic impurities on the bulk superconductor cannot be
neglected. In order to theoretically describe the supercon-
ducting order parameter, we have to include the interaction
between the two bands [18,19,40], as well as the interaction
with a small but finite concentration of magnetic impurities
[2,41,42]. As we are analyzing density of states measurements
with no momentum information on the band structure or
on the order parameter, we refrain from employing models
involving momentum-dependent order parameters [22,29,33]
and instead focus on an effective description of the order pa-
rameter (for details, see the Supplemental Material [36]). We
add the self-energies of the two interactions to the bare order
parameters �BCS

1,2 for the first and second bands, respectively,
and find two coupled equations for the two order parameters
�1,2(ω) [43,44]:

�1(ω) = �BCS
1 − �12

�1(ω) − �2(ω)√
�2

2(ω) − ω2
− ζ1

�1(ω)√
�2

1(ω) − ω2
,

�2(ω) = �BCS
2 − �21

�2(ω) − �1(ω)√
�2

1(ω) − ω2
− ζ2

�2(ω)√
�2

2(ω) − ω2
.

(1)

Here, ω is the energy, �12 and �21 are the coupling parameters
between the two bands, and ζ1,2 are the coupling constants
of the first and second bands to the finite concentration of
magnetic impurities. The interband hopping and the impurity
interaction are proportional to the density of states n1,2 at the
Fermi level of each band, so that the parameters in Eq. (1) are
related in the following way:

�21

�12
= ζ1

ζ2
= n1

n2
. (2)

Equation (1) can be solved numerically using a multidi-
mensional Newton-Raphson method. A more detailed discus-
sion of these equations is given in the Supplemental Material
[36].

The resulting normalized density of states ρi(ω) of the ith
band is

ρi(ω) = Re

[
ω√

ω2 − �2
i (ω)

]
, (3)

so the total normalized density of states can be written as

ρ(ω) = 1 + η

2
ρ1(ω) + 1 − η

2
ρ2(ω), (4)

where η is a ratio that accounts for the different densities of
states as well as the different tunneling probabilities into the
two bands. Using the total density of states convolved with
the superconducting density of states of the V tip and with the
energy resolution function [45], we can fit the model to our
experimental data. For details, see the Supplemental Material
[36].

The resulting fit captures the experimental differential con-
ductance quite accurately, as shown in Fig. 2(a). Following
a previous analysis [28], we have assumed a second band

FIG. 2. Extracting the order parameters of Fe-doped NbSe2:
(a) Fit of the interband-impurity model to an unperturbed conduc-
tance spectrum. The extracted fit parameters provide the input values
for the subsequent analysis. (b) Calculated total density of states
of the superconducting substrate from the extracted fit parameters
(sum). The weighted densities of states for band 1 (b1) and band 2
(b2) are shown as dashed lines. Note that the gap edges of both bands
are at the same energy. (c) Resulting order parameter �1(ω) of the
first band. (d) Resulting order parameter �2(ω) of the second band.
The blue shaded region indicates the gap.

that is intrinsically normal conducting, �BCS
2 = 0. The best

fits are obtained for a density of states ratio of n1/n2 = 5, in
agreement with previous assessments [28]. The unperturbed
order parameter for the first band �BCS

1 = 1.27 meV is some-
what smaller than what has been reported for undoped NbSe2

(�BCS,lit
1 = 1.4 meV; see Ref. [28] and references therein) but

corresponds to roughly the same ratio as the reduction in the
transition temperature from 7.2 to 6.1 K. For the coupling
terms, we find �12 = 0.36 meV, ζ1 = 57 μeV, and η = 0.38.
The extracted density of states of Fe-doped NbSe2 is plotted
in Fig. 2(b). The weighted individual densities of states are
shown as dashed lines. Their gap edges lie at the same energy.
The total density of states (solid line) features rather blunt co-
herence peaks, where shoulders indicate the coherence peaks
of the second band. The gap itself is substantially narrower
(1.12 meV) than the bare BCS gap (2�BCS

1 = 2.54 meV; see
the Supplemental Material [36]). The corresponding order
parameters are plotted in Figs. 2(c) and 2(d). For large en-
ergies the real part of the order parameter for the first band
shows an asymptotic approach to the �BCS

1 value of 1.27 meV,
while the imaginary part approaches zero. Inside the gap,
the order parameter is entirely real valued. In the vicinity of
the coherence peaks, however, a strong energy dependence is
visible. The order parameter of the second band approaches
zero for large energies.

As a consequence, it becomes clear that for energies below
and around the coherence peaks, the real parts of the order
parameters shown in Figs. 2(c) and 2(d) are larger than the
energy of the gap edge (±0.55 meV). Because the energy
position of the YSR state is directly related to the value of
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the order parameter, we can already anticipate unconventional
locations of the YSR states [17,46].

V. MAGNETIC IMPURITY SCATTERING OF Fe IN NbSe2

We now turn to the impurity scattering and calculate the
YSR spectra following a simple T -matrix scattering formal-
ism [17]. We follow a mean-field approach in assuming that
the ζ1/2 terms affect the sample density of states (DOS) on
a global scale, while YSR scattering is local. The supercon-
ducting host is described by the normalized Green’s function
for the two bands G1,2(ω) using the energy-dependent order
parameters discussed in the previous section:

G1,2(ω) = −π
1 ± η

2

(ω + i�)σ0 − �1,2(ω)σ1√
�2

1,2(ω) − (ω + i�)2
. (5)

Here, σi are the Pauli matrices in Nambu space, with σ0

being the identity matrix. We add a Dynes-type parameter
� � 5 μeV as a phenomenological lifetime broadening [15].
Larger values of � fill the gap, which is not observed in the
experiment. The T matrix for the ith band can be written as

Ti(ω) = Vi[1 − Gi(ω)Vi]
−1, Vi = J ′

i σ0 + U ′
i σ3, (6)

where Vi is the scattering potential, with J ′
i = 1

2 JSni being
the dimensionless, effective magnetic exchange coupling and
U ′

i = Uni being the dimensionless, effective local Coulomb
scattering. Furthermore, 1

2 JS is the exchange coupling of a
classical spin, U is the local Coulomb potential, and ni is the
density of states of the ith band at the Fermi level. The total
Green’s function GYSR

i (ω) can be written as

GYSR
i (ω) = Gi(ω) + Gi(ω)Ti(ω)Gi(ω). (7)

For simplicity we consider only the total Green’s func-
tion at the position of the impurity. Inserting the energy-
dependent order parameters into Eq. (5), we can calculate the
spectral function Ai(ω) = − 1

π
tr{Im[GYSR

i (ω)]} and thus the
density of states of the YSR resonances for different exchange
couplings J ′

i .
The calculated YSR resonances for different exchange

couplings J ′
1 = (n1/n2)J ′

2 are plotted in Fig. 3. For weak
exchange coupling, the YSR state interacting with the first
band can be found within the coherence peaks [see Fig. 3(a)].
For stronger exchange coupling (but still below the zero-
energy crossing [6]), the YSR state for the first band moves
into the gap and becomes extremely sharp, as can be seen
in Fig. 3(b). Inside the gap, the width of the YSR state is
given by the parameter �. In Figs. 3(c) and 3(d), the YSR
spectra are shown as a function of exchange coupling J ′
for the first and second bands, respectively. With increasing
coupling to the first band, the YSR peaks shift towards zero
energy and become extremely narrow when entering the gap
region.

Apparently, the second band affects the YSR states much
less, as can be seen in Figs. 3(c) and 3(d). Both bands
have predominantly Nb d character [29,31]. However, as
the effective exchange coupling between the impurity and
the superconductor is proportional to the density of states
in the superconductor, i.e., J ′

1/J ′
2 = n1/n2, we may assume

FIG. 3. Calculated YSR states: The solid lines correspond to the
YSR spectra coupling to band 1 (YSR 1) and band 2 (YSR 2), while
the dashed lines represent the unperturbed spectra for the first (bare
1) and second (bare 2) bands, respectively. The ratio between the
spectra of the two bands corresponds to the typical ratio η observed
in the experiment. A small value for the Coulomb interaction U ′

1 =
0.05 and U ′

2 = 0.01 = U ′
1n2/n1 was chosen to make the spectrum

asymmetric. (a) YSR spectrum for weak exchange coupling. The
YSR state is broad and within the region of the coherence peaks.
(b) Stronger coupling than in (a), but still before the zero-bias
crossing. The YSR state resides within the gap and has become
extremely sharp. (c) and (d) YSR spectra vs exchange coupling in
band 1 and band 2, respectively. The color scaling is adapted to show
the weaker features; it is nonlinear for values larger than 3.5. The
sharpening of the peak as it enters the gap is clearly visible. In (d) the
YSR peak develops much slower due to the reduced density of states
in band 2. For all panels, J ′

1/J ′
2 = n1/n2.

a strongly reduced impact of the second band. We therefore
consider in leading order only the YSR resonances in the first
band.

Due to the complicated shape of the YSR spectra, we
restrict the following analysis of the peaks to the peak position
and full width at half maximum. These quantities provide
direct insight into the nature of the YSR state-bulk interaction.
Keeping in mind that the peak position directly depends on
the strength of the exchange coupling (Fig. 3), the extracted
values are displayed in Fig. 4(a), where the color coding
represents the strength of the exchange coupling J ′. The red
line in Fig. 4(a) shows twice the imaginary part of the order
parameter of the first band |2Im�1(ω)|.

We observe a clear correlation between the broadening of
the peak and the emergence of a finite Im�1(ω) as calcu-
lated from Eq. (1). When the YSR peak position approaches
the coherence peaks, where |Im�1(ω)| increases abruptly,
their width increases abruptly as well. Thus, there is a clear
indication that the width of a YSR peak is related to the
imaginary part of the superconducting order parameter.
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FIG. 4. Evolution of the YSR peak width: (a) YSR peak width vs
peak location. The width becomes extremely narrow in the region of
the superconducting gap. The color coding represents the strength of
the exchange coupling. The red line is twice the imaginary part of the
order parameter �1(ω) of the first band. We see a clear correlation
between the peak width and the imaginary part. (b) Differential
conductance calculated from the YSR spectral function and the
density of states of the superconducting V tip as well as finite energy
resolution. The sharpening of the YSR state when entering the gap is
clearly visible.

VI. DISCUSSION

In order to correlate the experimentally observed broad-
ening of the YSR peak and its position with theory, we
calculate the differential conductance from the density of
states following Eq. (7). The resulting spectra are shown
in Fig. 4(b) as a function of exchange coupling J ′

1. The
sharpening of the peaks when entering the region of the gap
is clearly visible even though the width of the YSR peaks
is now limited by the energy resolution of the STM [45].
Two representative spectra of YSR states outside and inside
the gap are plotted in Figs. 5(a) and 5(b), respectively. An
unperturbed, averaged reference spectrum was subtracted to
suppress the coherence peaks and isolate the YSR states.
These experimental spectra can be compared to Figs. 5(c)
and 5(d), showing two slices from Fig. 4(b) with similar peak
positions as in Figs. 5(a) and 5(b), respectively. The calculated
spectra are normalized to the normal-state conductance and
scaled with the ratio η [see Eq. (4)]. The subtraction of
an unperturbed reference spectrum is not necessary in the
calculated spectra because the coherence peaks are inherently
suppressed at the impurity center where the DOS is calculated.
Selecting theoretical spectra with matching peak positions, we
observe good agreement between the corresponding panels
concerning the width of the YSR peaks as well as their overall
shape. We find, however, a reduced height in the experimental
peaks, which we attribute to the measurement slightly above
the (subsurface) impurity. Away from the scattering center of
the impurity, intensity modulations can strongly reduce the
peak height [30]. We assume that they do not affect the peak
position or their width. Interestingly, the asymmetry of the
YSR peaks is different in Figs. 5(a) and 5(b), which indicates
a different Coulomb scattering potential U ′ (assuming that the
particle-hole asymmetry in the lattice Green’s function does
not change significantly between the impurities).

From each of the experimental and theoretical spectra, we
extract the YSR peak widths and positions as indicated in
Figs. 5(a)–5(d) and display them in Fig. 5(e). Excellent agree-

FIG. 5. Comparison of experiment with theory: Peak positions
and widths indicated for YSR states (a) outside the gap and (b) inside
the gap, where an unperturbed reference spectrum was subtracted.
(c) and (d) The corresponding calculated spectra. (e) Experimental
YSR peak widths vs peak position in comparison with the extracted
YSR peak widths from the calculated differential conductance spec-
tra. The W-shaped defect and the triangular defect (�) are color-
coded in blue and red, respectively. The blue shaded region indicates
the sample gap.

ment is seen between the experimentally extracted values and
the calculated spectra, indicating that there is indeed a strong
correlation between the shape and position of the YSR states
and the details of the underlying order parameter. Although W
defects seem to couple stronger than � defects, both defects
can be found in a range of exchange couplings (probably
due to slightly different local environments), such that either
defect can be used independently to infer the relation of the
width to the imaginary part of the order parameter.

In a regular s-wave BCS superconductor the order pa-
rameter defines the position of the gap edge. YSR states
must then always lie within the gap. Interband coupling in
a multiband superconductor leads to energy-dependent �1,
which necessarily has a nonzero imaginary part [20]. The gap
edge no longer corresponds to the value of �1 in this case and
is generally found at lower energies. YSR states may then be
found within the coherence peaks but still at energies smaller
than �1. We observe a marked increase in the linewidth of
YSR states when they overlap with the coherence peaks.

The spectral functions on which these arguments are
based result from the imaginary parts of respective Green’s
functions, which are commonly interpreted as single-particle
excitation spectra. The widths of the calculated features are
determined by their relaxation rate into the ground state. The
imaginary part of the order parameter can then be interpreted
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as a measure for the effective lifetime of YSR bound states.
Indeed, an imaginary �1 renders the Green’s function con-
sidered here non-Hermitian and indicates energy dissipation.
These relaxation processes are strongest for YSR states lo-
cated within the coherence peaks where the order parameter
has a finite imaginary part. They sharpen up considerably
within the superconducting gap, where the imaginary part of
the order parameter tends to zero and there are few relaxation
channels. The experimental linewidth is then limited by the
resolution of our STM, which is determined by the interaction
of the tunneling quasiparticles with the local electromagnetic
environment according to the P(E ) description [45,47,48].

This finite energy resolution of the STM obscures a direct
observation of the peak width inside the superconducting gap.
The full width at half maximum of the energy resolution
function is dominated by the fluctuations of single charges at
the junction capacitance [45] and is usually much broader than
the intrinsic peak width of just a few μeV. Nevertheless, we
surmise that even in the gap, there can be weak couplings to
inelastic relaxation processes, which may be modeled effec-
tively by a generic imaginary constant self-energy, such as the
Dynes parameter [15].

The correlation between YSR linewidth and Im�1(ω) sug-
gests that YSR states can also be exploited as local probes
capable of measuring the imaginary part of a superconducting
order parameter. A quantitative analysis would need to ex-
plicitly include the local modifications of the order parameter
induced by the YSR states themselves [17,49]. The nature
and symmetry of the superconducting order parameter remain
a subject of much debate across a wide field of materials
in the scientific literature. Using YSR states as probes for
the complex part of the superconducting order parameter
could give valuable insight into the superconductivity of other
nontrivial materials, especially those of an unconventional,
proximity-induced, or topological nature.

VII. CONCLUSION

In summary, we have shown that complex-valued energy-
dependent order parameters as they can result from multiband
superconductivity give rise to nontrivial interactions with
local pair-breaking potentials. The resulting YSR states may
not just exist in the superconducting gap and can also overlap
with the coherence peaks. In the latter case, they acquire a
substantial linewidth due to dissipative relaxation processes
into the continuum. These processes are expressed in the
order parameter, which can be interpreted as a “rephrased”
self-energy. We show that the imaginary part of the order
parameter is connected to lifetime broadening. Our analysis
focused on the two-band s-wave superconductor NbSe2 as
a model system. We expect similar or even more complex
interactions of YSR states with unconventional (d-wave,
p-wave), proximity-induced, and/or topological superconduc-
tors. At the same time, we have demonstrated that YSR
states may serve as sensitive probes for the imaginary part
of the order parameter, which opens up new possibilities for
understanding the intricacies of multiband superconductivity
as well as unconventional superconductors through the study
of pair-breaking potentials.
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