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According to time-dependent density functional theory, the exact exchange-correlation kernel fxc(n, q, ω)
for wave vector q and frequency ω determines not only the ground-state energy but also the excited-state
energies/lifetimes and time-dependent linear density response of an electron gas of uniform density n =
3/(4πr3

s ). Here we propose a parametrization of this function based upon the satisfaction of exact constraints.
For the static (ω = 0) limit, we modify the model of Constantin and Pitarke to recover at small q the known
second-order gradient expansion, and to correct its approach to the large q limit. For all ω at q = 0, we use the
model of Gross, Kohn, and Iwamoto. A Cauchy integral extends this model to complex ω. Scaling relations are
identified. We then combine these ingredients, damping out the ω dependence at large q. Away from q = 0 and
ω = 0, the correlation contribution to the kernel becomes dominant over exchange, even at rs = 4. The resulting
correlation energies for 1 � rs � 10 from integration over imaginary ω are essentially exact. The plasmon pole
of the density response function is found by analytic continuation of fxc to ω just below the real axis, and the
resulting plasmon lifetime at rs = 4 is found for q < kF . A static charge-density wave is found for rs > 69, and
shown to be associated with softening of the plasmon mode.

DOI: 10.1103/PhysRevB.101.245135

I. INTRODUCTION

In time-dependent density functional theory (TDDFT)
[1–3], the exact linear density response function χ (r, r′, ω)
of an electronic system in its ground state yields the den-
sity response δn = χδv to a weak external scalar potential
δv(r′, ω), oscillating at angular frequency ω. χ provides
access to the exact ground- and excited-state energies of
the system. Under the standard assumption that the ground-
state and time-dependent densities for the real interacting
system are the same as those of a fictitious noninteracting
system in an effective scalar potential (the Kohn-Sham or KS
potential in the ground-state case), the true response func-
tion χ can be constructed from the calculable noninteracting
response function χKS and an exchange-correlation kernel
fxc. Through the adiabatic-connection fluctuation-dissipation
theorem [4–6], χ yields the ground-state exchange-correlation
energy from an integral along the upper half of the imagi-
nary frequency axis. In other words, the exchange-correlation
kernel fxc “exactifies” the random phase approximation via
an effective electron-electron interaction 1

|r′−r| + fxc(r′, r, ω)
just as ground-state Kohn-Sham density functional theory
“exactifies” the Hartree approximation by addition of the
exact density functional for the exchange-correlation energy.
Under analytic continuation of fxc to complex frequencies,
the poles of the response functions in the lower-half complex
plane are the excitation energies/inverse lifetimes.

The exact ground-state many-electron wave function and
its total energy as an expectation value of the Hamiltonian

are time independent, but the electrons still move and their
density still fluctuates around a time-independent average.
TDDFT and the fluctuation-dissipation theorem provide a
spectral decomposition of the exchange-correlation term of
the total energy into contributions from correlations between
density fluctuations at positive frequencies. The required in-
tegral over real frequencies would be challenging without
a mathematical transformation by contour integration to the
imaginary-frequency axis in the upper half of the complex
plane.

For a homogeneous electronic system, Fourier transforma-
tion leads to the simple algebraic expression,

χ (q, ω) = χKS(q, ω)

ε̃(q, ω)
, (1)

ε̃(q, ω) = 1 −
[

4π

q2
+ fxc(q, ω)

]
χKS(q, ω), (2)

with a wave vector of magnitude q. χKS is the Lindhard
function [7], and the dependence of all functions upon the
uniform density n is implicit. For a uniform density, the
exchange-correlation kernel is known to be short ranged, with
a finite q → 0 limit. The function ε̃ can vanish, introducing
a collective excitation or plasmon that is not present in the
noninteracting KS system.

Many exact properties of the exchange-correlation kernel
have been derived, and models have been constructed to
satisfy those exact constraints, in much the same way that the
density functional for the ground-state exchange-correlation
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energy, Exc[n], is often approximated by the satisfaction of
known exact constraints. Note that the uniform-gas correlation
energy from quantum Monte Carlo (QMC) calculations [8],
which, as extended and parametrized in Refs. [9–11], typically
serves as an input to the construction of such functionals,
can be accurately predicted (not fitted) by a constraint-based
interpolation [12,13] between known high- and low-density
limits.

We know of relatively few q- and ω-dependent TDDFT
kernels for the uniform electron gas, essentially just the
Richardson-Ashcroft [14] and Constantin-Pitarke [15] ker-
nels. Both are constructed only for imaginary (or zero) fre-
quencies. The Richardson-Ashcroft kernel accurately predicts
[16] the correlation energy per electron of the uniform elec-
tron gas, while the Constantin-Pitarke kernel has a parameter
that fits that energy. The kernels commonly used in TDDFT
calculations of excitation energies are usually adiabatic (ω =
0) and often local density approximation or LDA (q = 0).
Our kernel is designed for the uniform electron gas, and
should be used with caution for other systems. An alternative
would be the tensorial kernel [17] of time-dependent current
density functional theory (TDCDFT), which at the LDA level
is known to be more applicable than the corresponding scalar
kernel of TDDFT.

In this work, we will develop a constraint-based model
kernel that refines the Constantin-Pitarke 2007 (CP07) [15]
q-dependent static (ω = 0) kernel, and combines it with
the Gross-Kohn-Iwamoto [2,18] dynamic kernel for q = 0.
Our kernel is developed for general complex frequencies,
while that of CP07 is developed only for zero and imaginary
frequencies. While many practical calculations with TDDFT
for real systems use the adiabatic local density approximation
based upon the uniform-gas fxc(q = 0, ω = 0), we will see
that there are strong dependencies on both variables, and that,
away from q = 0 0 and ω = 0, the correlation contribution
can dominate over exchange, even at the valence electron
densities of metals. Our model passes several early tests: It
yields very accurate correlation energies per electron for the
uniform gas without fitting (while the dynamic CP07 is fitted
to those energies), predicts finite lifetimes for plasmons [19]
of small nonzero wave vector, and finds at about the right low
density a static charge-density wave [8,20,21] that arises from
a softening of the plasmon mode. We did not find a charge-
density wave at any density with the original CP07 kernel. We
hope that our model will have other applications, and that it
might have implications for TDDFT in real systems.

The static kernel fxc(q, ω = 0) for the uniform electron gas
(jellium) has been calculated via QMC [22] and parametrized
by Corradini et al. [23]. Jellium is an important model because
it has a Hamiltonian with Coulomb repulsions between elec-
trons, but with the external potential simplified from that of
positive ions to that of a uniform positive-charge background.
If this background is allowed to expand or contract, then
jellium is only stable for an electron density n = 3/(4π r3

s )
with rs ≈ 4 (in atomic units or bohr), near the valence-
electron density of metallic sodium. But, by adding an ap-
propriately chosen short-range contribution to the external
potential, a stabilized jellium model can be constructed for a
better description of all simple metals and their surfaces [24].
Since the bulk electron density remains uniform, all exchange-

correlation effects in bulk stabilized jellium are the same as
those in bulk jellium at the same density. The book by Giuliani
and Vignale [25] provides a detailed discussion of exchange
and correlation in the uniform electron gas, and an explanation
of the important difference between the short-range kernel of
the uniform electron gas [where fxc(q, ω) tends to a finite
constant as q → 0] and the ultranonlocal kernels of other
systems (where in this limit fxc diverges like α(ω)

q2 ). For this
and other reasons, kernel development has been generalized
[17,26,27] from density to current-density functionals.

Even before TDDFT, it was known that there is a local field
factor Gxc(q, ω), with

fxc(q, ω) = −
(

4π

q2

)
Gxc(q, ω), (3)

that corrects the overestimation of short-range correlation in
the random phase approximation (RPA) for the correlation en-
ergy of a uniform electron gas. Singwi and collaborators [28]
modeled a static local field factor that essentially predicted
the uniform-gas correlation energy later found from QMC [8].
Lein, Gross, and Perdew [16] used the Richardson-Ashcroft
(RA) [14] dynamic kernel (as developed for imaginary fre-
quencies only) to show that the static limit of a good kernel
can capture most of the correction to the RPA correlation
energy, although including the frequency dependence of the
RA kernel gives even more accurate correlation energies. Here
we will find that the static version of our kernel already
predicts very accurate correlation energies, which are hardly
changed by inclusion of our frequency dependence. But, as
discussed below, the frequency dependence of the exchange-
correlation kernel is needed for other applications.

II. DENSITY DEPENDENCE OF
CONSTRAINT-BASED KERNELS

For simplicity, we will discuss here the density dependence
of constraint-based static kernels for the uniform gas. The
frequency dependence complicates the notation but does not
change the conclusions. Here we will use the Fermi wave
vector kF = (3π2n)1/3. The noninteracting response function
has the simple scaling equality χKS(q, 0) = kFF( q

2kF
), and

of course the Fourier transform of the Coulomb interaction
between electrons is 4π

q2 = k−2
F π ( q

2kF
)−2.

The kernel has Coulomb-like scaling equalities only in the
high-density and low-density limits,

fxc(q, 0) → k−2
F G

(
q

2kF

)
, (kF → ∞), (4)

fxc(q, 0) → k−2
F H

(
q

2kF

)
, (kF → 0). (5)

Table I shows the density dependencies of some of the ingre-
dients of our kernel to be introduced later. The macroscopic
or slowly varying-density limit is achieved when q

2kF
→ 0

Thus, in the high-density limit for fixed finite
q

2kF
, ε̃(q, 0) → 1 + O(k−1

F ) and χ (q, 0) → χKS(q, 0). In
the adiabatic connection fluctuation dissipation expression
[4–6] for the exchange-correlation energy, the exchange
energy per electron εx ∼ kF arises from χKS (as a function
of wave vector and imaginary frequency), and the correlation
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TABLE I. Density (n) dependencies of key ingredients (to be
defined later) of the exchange-correlation kernel fxc(q, ω) for a
uniform electron gas with density parameter rs = ( 3

4πn )1/3, and of
related quantities: the Fermi wave vector kF = 1.9192/rs, the bulk
plasma frequency ωp = (4πn)1/2, and � f0/ f0 from Ref. [17] (atomic
units).

rs kF ωp k−1/2/kF b1/2ωp k2
F f0 k2

F f∞ k2
F fxc(∞, ω) � f0/ f0

0 ∞ ∞ 1.15 ∞ −3.14 −1.89 0 –
1 1.92 1.73 1.67 0.51 −3.25 −1.10 −0.39 −0.16
2 0.96 0.61 1.76 0.49 −3.36 −0.92 −0.51 −0.12
3 0.64 0.33 1.80 0.48 −3.45 −0.85 −0.57 −0.10
4 0.48 0.22 1.82 0.47 −3.53 −0.83 −0.61 −0.08
5 0.38 0.15 1.83 0.46 −3.60 −0.83 −0.63 −0.08
∞ 0 0 2.06 0 −6.07 −3.65 0 –

energy per electron εc from χ − χKS (as a function of
coupling constant, wave vector, and imaginary frequency).
The correlation energy is much smaller than the exchange
energy at high densities, but tends to about 0.9εx at very low
densities. In this paper, for the ingredients of fxc, we will
employ the parametrization of Ref. [9] for the rs dependence
of εc at zero spin polarization.

III. MODIFIED CP07 STATIC KERNEL

We begin with the static limit of the original CP07 kernel
of Eq. (12) of Ref. [16] (in atomic units):

f CP07
xc (q, 0) =

(
4π

q2

)
B[e−kq2 − 1] −

(
4π

k2
F

)
C

[1 + 1
q2 ]

, (6)

k = A

4πB
. (7)

Here A, B, and C are positive functions of density n defined
in Ref. [15]. These functions of density typically require
derivatives of εxc(rs) or εc(rs), for which we employ the
parametrizations from the Appendix of Ref. [9] (numerically
almost identical to those of Refs. [10] and [11]) instead of
the less accurate but simpler ones of Ref. [15]. CP07 is a
constraint-based kernel that aims to reproduce the known
small q and large q behaviors of the exact kernel:

fxc(q, 0) → −A, (q → 0), (8)

fxc(q, 0) → −
(

4π

k2
F

)
C −

(
4π

q2

)
B, (q → ∞). (9)

Equation (8) is the well-known compressibility sum rule;
approximating fxc by −A is the adiabatic local density ap-
proximation. Equation (9) is from Refs. [22,23]. Note that C
arises from correlation alone, and vanishes in the high- and
low-density limits, as shown in Table I.

Equation (6) was intended to recover Eq. (9), but does not
because the q → ∞ expansion of the last term of Eq. (6) is
− 4π

k2
F

C[1 − 1
q2 ], which loses the correct 1/q2 contribution in

Eq. (9). Thus our first change to Eq. (6) is to replace 1/q2

in the last term by 1/(kq2)2. This substitution is needed to
recover Eq. (9) and the density scalings discussed in Sec. II of

this article. Note that, by Table I, kq2 scales like ( q
2kF

)2 in the
high- and low-density limits.

The second change we make is to replace Eq. (8) by the
more accurate and better controlled,

fxc(q, 0) → −A + Dq2, (q → 0), (10)

D = 2Cxc(rs)

n4/3
, (11)

from Eqs. (25), (32), and (37) of Ref. [21], but with improved
input. The q → 0 limit is the limit of slowly varying-in-space
induced density, in which the second-order gradient expansion
becomes exact. Thus, in Eq. (11), Cxc(rs) is the coefficient
of the second-order gradient expansion for the exchange-
correlation energy:

Cxc(rs) = Cx + Cc(rs = 0)
1 + 3.138rs + 0.3r2

s

1 + 3.0rs + 0.5334r2
s

, (12)

with Cx = − 0.00238 [29] and Cc(rs = 0) = 0.00423 [30].
Untypically, Cxc does not reduce to Cx as rs → 0. We have
used the rs dependence of Eq. (36) of Ref. [31], in which
Cxc decreases very slowly to zero as rs increases, taking the
values 0.00185, 0.00122, and 0.00015 at rs = 0, 4, and 70,
respectively. This means that, at very low densities with rs �
70, D will be close to 0 and the LDA kernel will be nearly
correct through order ( q

2kF
)2.

A better match to the QMC kernel [22] for rs in the metallic
range and for q

2kF
< ∼1 could be achieved by setting D = 0 in

Eq. (10). Within its error bars, the QMC kernel can also be
matched [32] by including higher-order terms in the gradient
expansion of the exchange-correlation energy, although the
fourth-order terms are not known for the correlation energy. In
the interests of simplicity and generality, we have not included
a q4 term in Eq. (10). The goal of constraint satisfaction is not
to match every detail, but to make a correct global map.

The result of these changes is the modified CP07 (MCP07)
static kernel:

f MCP07
xc (q, 0) =

(
4π

q2

)
B[e−kq2

(1 + Eq4) − 1]

−
(

4π

k2
F

)
C

[1 + 1
(kq2 )2 ]

, (13)

E = D

4πB
− k2

2
. (14)

Its exchange-only and exchange-correlation incarnations for
rs = 4 are plotted in Fig. 1. We see that, away from q = 0,
correlation can be more important than exchange.

We use the name MCP07 only for the static limit of our
kernel, since that is the part solely based upon a modification
of the original CP07.

IV. STATIC CHARGE-DENSITY WAVE IN JELLIUM

Overhauser [20] proposed that periodic metals could be
unstable against the formation of a static charge-density wave
(CDW). Quantum Monte Carlo calculations found a CDW or
incipient body-centered cubic (bcc) Wigner crystallization in
spin-polarized jellium at a low critical density corresponding
to rs = 70 [33], or at rs = 85 ± 20 in spin-unpolarized jellium
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FIG. 1. Modified CP07 (MCP07) static kernels for jellium with
density parameter rs = 4 at the exchange-only and exchange-
correlation levels, versus reduced wave vector.

[8]. The 1980 calculation of Ceperley and Alder [8] also
found that ground-state jellium remains spin unpolarized for
rs � 75 ± 5. In the same year, Perdew and Datta [21], using a
static kernel designed to satisfy Eqs. (10) and (11), also found
a CDW near this critical rs.

Figure 2 of the present article, which is similar to Fig. 4
of Ref. [21], was found by fixing a value for q

2kF
and then

searching for the largest value of kF that makes ε̃(q) = 0
(hence a nonzero density response at wave vector q even in
the absence of any perturbing potential). This happens around
rs = 30 in the adiabatic local density approximation, and
around rs = 69 in MCP07. We could not find a charge-density
wave at any density from the original CP07. All the low-
density instabilities of jellium are difficult to pinpoint, because
the energies of the different phases as functions of rs are nearly
the same at low densities.

0 0.5 1 1.5 2 2.5

Q = q/(2kF)
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

k Fcr
iti

ca
l  (a

to
m

ic
 u

ni
ts

)

rs ≈ 30

rs ≈ 69

ALDAxc

MCP07

FIG. 2. Critical Fermi wave vector for the appearance of a static
charge-density wave in a low-density jellium, from the adiabatic
local density approximation [ fxc = fxc(0, 0)] and MCP07 static
[ fxc = fxc(q, 0)] exchange-correlation kernels, versus reduced wave
vector.

The charge-density wave first appears with q
2kF

≈ 1.14,
making q close to the first reciprocal lattice vector of a bcc
Wigner crystal with one electron per primitive cell. For much
smaller q

2kF
, the CDW is strongly suppressed by the Coulomb

term 4π/q2 in Eq. (2). Later in this article, we will show that
the CDW is associated with a softening of the plasmon mode.

Our Fig. 1 shows that the static MCP07 kernel fxc(q, 0) is
always more negative than its exchange-only version fx(q, 0).
This result confirms Overhauser’s 1968 prediction that corre-
lation enhances the charge-density wave [20].

V. FREQUENCY-DEPENDENT LOCAL KERNEL
OF GROSS AND KOHN

A constraint-based model for fxc(q = 0, ω) was proposed
in 1985 by Gross and Kohn [2], and later corrected by
Iwamoto and Gross [18]. It starts from a constrained inter-
polation for the imaginary part, evaluated at a real frequency,
between known real zero- ( f0) and infinite- ( f∞) frequency
limits at q = 0:

Im fxc(0, ω) = −cb3/4g(b1/2ω), (15)

g(x) = x

(1 + x2)5/4
, (16)

b =
{(γ

c

)
[ f∞ − f0]

}4/3
, (17)

c = 23
π

15
, (18)

γ =
[
�

(
1
4

)]2

(32π )1/2
= 1.311. (19)

Figure 3 shows this function of real ω for rs = 4, and
also its exchange-only contribution. Again the importance of
correlation is manifest. Table I shows that the dimensionless
quantity b1/2ωp (where ωp = (4πn)1/2 is the bulk plasmon
frequency) is nearly constant over the range of metallic den-
sities, but not over all densities. Thus, in the metallic range,
g(b1/2ω) is approximately a function of ω

ωp
.

The next step is to use the Kramers-Kronig relations [2] be-
tween the imaginary and real parts of fxc- f∞ at real frequency
to find

Re fxc(0, ω) − f∞ =
(

1

π

)
P

∫ ∞

−∞
dω′ Im fxc(0, ω′)

ω′ − ω
. (20)

As ω → ∞, Im fxc(0, ω) ∼ −c/ω3/2 and Re fxc(0, ω) −
f∞ ∼ c/ω3/2.

The principal value of the integral can be found numeri-
cally. However, the scaling relation of Eq. (15) implies the
scaling relation,

Re fxc(0, ω) − f∞ = −c b3/4 h(b1/2ω), (21)

where h(0) = 1
γ

to recover the correct nonzero ω → 0 limit.
A fair fit with the correct large-ω asymptotics is provided by
the simple algebraic model,

hmodel(x) =
( 1
γ

)[1 − ax2]

[1 + (a/γ )4/7x2]7/4
, (22)

with a fit parameter a = 0.63.
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FIG. 3. Imaginary part of the Gross-Kohn q = 0 dynamic kernel
for jellium with density parameter rs = 4, at the exchange-only and
exchange-correlation levels, versus real frequency.

Figure 4 compares the real-frequency dependencies of the
real part of the kernel, with and without correlation, from the
Kramers-Kronig relation and from the model. The model is
less accurate at intermediate frequencies than at low or high
frequencies. While the Kramers-Kronig choice is the consis-
tent one, we have found that it does not make any significant
difference from the model in the applications presented here.

For calculation of the correlation energy, we will need
fxc(0, ω) for frequencies ω in the upper-half complex plane,
where this function is analytic [2]. For this, we use the Cauchy
integral over real ω′:

fxc(0, ω) − f∞ = 1

2π i

∫ ∞

∞
dω′ [ fxc(0, ω′) − f∞]

ω′ − ω
, (23)

which follows from the residue theorem and exact properties
of fxc(0, ω) − f∞ [2]. By letting ω approach the real axis from
above, we can derive the Kramers-Kronig relations including
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FIG. 4. Real part of the Gross-Kohn q = 0 dynamic kernel
for jellium with density parameter rs = 4, at the exchange-only
and exchange-correlation levels, versus real frequency [from the
Kramers-Kronig relation of Eq. (20) and from the model of Eq. (22)].
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FIG. 5. The purely real Gross-Kohn q = 0 dynamic kernel for
jellium with density parameter rs = 4, at the exchange-only and
exchange-correlation levels, versus imaginary frequency [from the
Cauchy integral of Eq. (23) and the model of Eq. (22)].

Eq. (20). Figure 5 shows the kernel for frequencies on the
upper imaginary axis, where the kernel is purely real.

VI. COMBINING THE WAVE-VECTOR DEPENDENCE
OF MCP07 WITH THE FREQUENCY DEPENDENCE

OF THE GROSS-KOHN KERNEL

An important constraint is Eq. (5.176) of Ref. [25], at-
tributed there to Ref. [34]. It says that the ω dependence of
the kernel damps out at large q, even when the kernel itself
has a nonzero large-q limit.

To avoid empiricism, we will use the same Gaussian
damping factor that damps out the local density and gradient
expansion terms at large q in Eq. (13):

fxc(q, ω) =
[

1 + e−kq2

{
fxc(0, ω)

fxc(0, 0)
− 1

}]
f MCP07
xc (q, 0). (24)

When q = 0, Eq. (24) properly recovers fxc(0, ω). When ω =
0, Eq. (24) properly recovers f MCP07

xc (q, 0). And when q →
∞, Eq. (24) correctly reduces to f MCP07

xc (q, 0).
Figure 6 shows the q dependence of the imaginary part of

Eq. (24) for rs = 4 for various real frequencies that are integer
multiples of the bulk plasmon frequency. Figure 7 shows the
same for the real part [using the model of Eq. (22)]. Note
that the frequency dependence is already strongly damped at

q
2kF

= 1.
A viscosity correction to the compressibility value for f0 =

fxc(0,0) was found by Conti and Vignale [35]. It is of order
10% at metallic densities, as shown by the values of � f0/ f0

in Table I (based on � f0 values from Ref. [17]), and is not
included in our Eq. (24).

VII. PLASMON IN JELLIUM

The plasmon is a collective long-wavelength oscillation
of the electron density, at a frequency ωp(q) that tends as
q → 0 to the classical limit or bulk plasmon frequency ωp =
(4πn)1/2. At q less than a critical wave vector qc, the real part
of the complex plasmon energy ωp(q) lies above the highest
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FIG. 6. Imaginary part of the exchange-correlation kernel of
Eq. (24) for jellium with density parameter rs = 4, for five different
real frequencies, versus reduced wave vector.

energy of the continuum of single electron-hole excitations of
wave vector q, which in a noninteracting picture has a highest

energy of (kF+q)2

2 − k2
F
2 . Thus

Re ωp(qc)

k2
F

=
(

1

2

)(
qc

kF

)2

+ qc

kF
. (25)

In the range q < qc (the only range we will consider here),
the plasmon excitation cannot decay to a single electron-hole
pair excitation, so its lifetime is infinite for any real (hence
frequency-independent kernel). But a frequency-dependent
kernel should yield a plasmon frequency in the lower-half
complex frequency plane, where Im ωp(q) is minus the in-
verse of a lifetime arising from decay of the plasmon into
multiple electron-hole pairs.

We find ωp(q) by fixing a real wave vector q and searching
over complex frequencies ω for the one that zeros out ε̃(q, ω)
of Eq. (2). In practice, we stop when |ε̃| is of order 10−3. Since
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FIG. 7. Real part of the exchange-correlation kernel of Eq. (24)
for jellium with density parameter rs = 4, for five different real fre-
quencies, versus reduced wave vector [from the model of Eq. (22)].
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FIG. 8. Plasmon dispersion for jellium with density parameter
rs = 4, from the kernel of Eq. (24), versus reduced wave vector. The
real part of the plasmon frequency is plotted.

our Cauchy integral of Eq. (23) is only for ω in the upper-
half complex plane, we find fxc(0, ω) by analytic continuation
or Taylor expansion from a near frequency on the real axis.
The zeroth-order term of this expansion almost suffices, as
we confirm by adding the first-order term, using the Cauchy-
Riemann conditions on an analytic function to convert known
derivatives of the real and imaginary parts of fxc with respect
to Re ω to derivatives with respect to Im ω.

Figure 8 shows the resulting plasmon dispersion or Re
ωp(q) for rs = 4, which would be almost the same if the
frequency dependence of the kernel were neglected, and not
qualitatively different if the kernel were set to 0. Figure 9
shows the resulting Im ωp(q), or minus the inverse plasmon
lifetime, which would equal zero without the frequency de-
pendence. The calculated inverse lifetime grows like q2 at
small q, as expected [25,36], but starts to decrease again as q
approaches kF, where the Gross-Kohn frequency dependence
is increasingly damped out via our Eq. (24). The minimum
predicted plasmon lifetime is of the order of femtoseconds.
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FIG. 9. Plasmon damping for jellium with density parameter
rs = 4, from the kernel of Eq. (24), versus reduced wave vector. The
imaginary part of the plasmon frequency is plotted.
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FIG. 10. Plasmon dispersion for jellium with density parameter
rs = 69, from the kernel of Eq. (24), versus reduced wave vector. The
softened plasmon mode may lead to the static charge-density wave.

Figure 10 shows Re ωp(q) for rs = 69, where the static
charge density wave was found to appear in Sec. IV. Unlike
the dispersion in Fig. 8, the dispersion here is downward, and
ωp(q) appears to be heading toward zero at q/kF ≈ 2. Thus
the static charge density wave can be understood to arise from
a soft plasmon mode.

VIII. CORRELATION ENERGY PER ELECTRON
IN JELLIUM

The correlation energy of the uniform electron gas has a
long history, going back to the random phase approximation
(RPA) ( fxc = 0) of the 1950s [4]. The formula we use here is
Eq. (27) of Ref. [16]. In this equation, an integral over real
frequencies from 0 to ∞ has been transformed by contour
integration to an integral over imaginary frequencies in the
upper half plane. This is done to avoid the plasmon pole near
the real axis, and results in the smooth frequency integrand
shown in Figs. 3 and 4 of Ref. [16]. The Kohn-Sham noninter-
acting and real interacting systems are connected adiabatically
through the coupling constant between 0 and 1 in the Coulomb
interaction 4πλ

q2 . The exchange-correlation kernel must also be
scaled, as in Eq. (18) of Ref. [16]:

f λ
xc(n, q, ω) = λ−1 fxc

( n

λ3
,

q

λ
,

ω

λ2

)
. (26)

Figure 11 shows our results for the correlation energy per
electron as a function of rs in the metallic range, in compar-
ison with the highly accurate parametrization and extension
[13] of the results of Ref. [8] by Perdew and Wang 1992
[11] (indistinguishable on the scale of the figure from the
parametrization of Ref. [9]). As is well known, RPA ( fxc → 0)
makes the correlation energy per electron too low by about 0.4
eV/electron, and the adiabatic local density approximation
[ fxc → fxc(0,0)] makes it too high by about the same absolute
error. A good kernel fxc(q, ω) should produce an accurate
result, and our static MCP07 kernel does so to a remark-
able extent. Adding the frequency dependence of Eq. (24)
degrades the accuracy, but almost negligibly. Replacing the
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FIG. 11. Correlation energy per electron for jellium from vari-
ous kernels, and the essentially exact Perdew-Wang 1992 (PW92)
parametrization, versus density parameter rs. The RPA has no ker-
nel ( fxc = 0). The adiabatic local density approximation [ fxc =
fxc(0,0)], the static MCP07 kernel of Eq. (13) [ fxc = fxc(q, 0)],
and the full dynamic kernel of Eq. (24) [ fxc = fxc(q, ω)] are also
tested here. The wave-vector dependence and frequency dependence
make the kernel fxc(q, ω) less negative (Figs. 1 and 5), which moves
the kernel-corrected correlation energy closer to RPA, in which the
kernel is zero.

Gaussian in Eq. (24) by 1 (thus using the undamped Gross-
Kohn frequency dependence) would degrade the accuracy
significantly, correcting only about two-thirds of the RPA
error.

In both this work and Ref. [16], the frequency dependence
of the exchange-correlation kernel has very little effect on
the correlation energy of the uniform electron gas. But the
frequency dependence is what produced the plasmon inverse
lifetime in Fig. 9. Other properties that are or may be sensitive
to the frequency dependence are listed in the Conclusions
section.

IX. CONCLUSIONS

The CP07 exchange-correlation kernel for zero frequency
and the Gross-Kohn kernel for zero wave vector were con-
structed for the uniform electron gas via the satisfaction of
exact constraints. By imposing further exact constraints, we
have made an improved MCP07 static kernel and combined it
with the Gross-Kohn dynamic kernel. Key added constraints
include the second-order gradient expansion for the exchange-
correlation energy, and the damping out of the frequency
dependence with increasing wave vector. That damping out
is already substantial at q ≈ kF.

Without any fitting, we have achieved high accuracy for all
studied properties. In particular, the critical density (rs ≈ 69)
and critical wave vector of the static charge-density wave that
appears at low density are accurate. We have shown that this
ground-state instability of the uniform phase is associated
with a soft plasmon. We have also found that correlation
enhances the instability, as Overhauser predicted in 1968 [20].
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We have also studied the plasmon at the density of metallic
sodium (rs = 4), where our frequency dependence produces
a plasmon lifetime that first decreases from infinity to a
few femtoseconds and then increases, as the wave vector
increases from 0 toward the Fermi wave vector kF. Previous
work [25,36], based on a Taylor expansion for q � kF , found
a monotonic decrease in lifetime with increasing q in the
latter range.

We have also calculated remarkably accurate correlation
energies per electron for metallic rs from 1 to 10. The im-
provement over RPA arises from the wave-vector dependence
of the MCP07 kernel. The frequency dependence of our kernel
has almost no effect on the ground-state energy, a conclusion
that might extend to real systems.

It should be noted that [37], for metallic densities, the range
of wave vectors relevant to the plasmon outside the electron-
hole continuum, 0 � q < ∼kF, is different from the range
relevant to the correlation energy, 0 < ∼q < ∼3kF. At much
lower densities, the latter range is also relevant to the plasmon
and charge-density wave. In the range 0 � q < ∼kF, the effec-
tive interaction 4π

q2 + fxc in Eq. (2) is dominated by 4π
q2 [37],

so modest deviations of fxc from its RPA value 0, or better
from the adiabatic local density approximation fxc(0,0), have
almost negligible effect in that range, apart from emergent
phenomena like the plasmon lifetime. Thus our applications
test the kernel not only over a wide range of densities but also

over a fairly wide range of q
2kF

. In the future, we hope to find
more demanding tests for the frequency dependence. Several
properties of uniform or weakly inhomogeneous densities are
expected to be, unlike the correlation energy of the uniform
gas, sensitive to the frequency dependence of the uniform
gas kernel, including the electronic stopping power [38] and
residual resistivity [39], optical absorption of a weakly inho-
mogeneous electron density [40], and the peak widths of the
wave-vector-dependent dynamical structure factor [41].

In our uniform-gas exchange-correlation kernel, the full
Gross-Kohn frequency dependence is unveiled only in the
long-wavelength (q → 0) limit, in which the kernel itself is
overwhelmed by the Coulomb interaction 4π

q2 . Inhomogeneous
ground states [25] have ultranonlocal kernels with an α(ω)

q2

variation in this limit that strongly affects optical absorption,
and might quantitatively correct the qualitatively right RPA
description of long-range van der Waals interaction.
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