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Recent core-hole-clock experiments [Phys. Rev. Lett. 112, 086801 (2014)] showed that the spin
dependence of electron injection times at Ar/Co(0001) and Ar/Fe(110) interfaces is at variance
with the expectations based on previous calculations for related systems. Here we reconcile the-
ory and experiment, and demonstrate that the observed dependence is rooted in the details of the
spin-split surface band structures. Our ab initio calculations back that minority electrons are in-
jected significantly faster than majority electrons in line with the experimentally reported ultrashort
injection times. The dynamics is particularly sensitive to the size (in reciprocal-space) of the pro-
jected band gaps around Γ for both substrates at the resonance energies. A simple tunneling model
incorporating the spin-dependent gap sizes further supports these findings.

Electrons carry charge and spin. This concept is con-
tinuously transforming the field of electronics towards a
spin-based discipline known as spintronics. Its applica-
tions promise nonvolatile data storage as well as lossless
and ultrafast transmission of information via the spin de-
gree of freedom [1–3].

Along these lines, the spin-dependence of electron
transfer across interfaces must be understood in detail.
While advances in free-electron lasing yield new oppor-
tunities to directly resolve such ultrafast processes in
time [2], current experiments based on the core-hole-clock
technique [4–6] are readily able to access spin-resolved
charge transfer times down to the sub-femtosecond do-
main [7, 8] through spin selective excitation [9] or detec-
tion [10, 11] in the energy domain.

In particular, recent core-hole-clock experiments by
Blobner et al. [9] probed the spin-dependent dynamics
of electron transfer from core-excited Argon atoms to-
wards ferromagnetic Co(0001) and Fe(110) substrates on
which they are adsorbed. This study revealed a signifi-
cant spin dependence of the ultrashort time-scales of the
injection process, with the transfer of minority-spin elec-
trons significantly faster than that of majority spin.

Interestingly, previous theoretical calculations pre-
dicted the reverse spin dependence for atomic Cs adsor-
bates on Fe(110) [12]. This behavior was explained in
terms of the different character (and, thus, decay into
vacuum) of the electronic acceptor states available in the
substrate at the relevant energy: dispersive sp-bands for
majority spin versus localized d-bands for minority. Al-
though similar correlations were explored in the case of
Ar/Co(0001) and Ar/Fe(110) [9], the ultimate reason re-
garding the experimentally observed trend remains an
open question.

In this letter we explore spin-dependent electron in-
jection from core-excited Argon towards ferromagnetic
Co(0001) and Fe(110) surfaces by means of a combina-
tion of density functional theory (DFT) calculations and
Green’s function techniques. We find that the first Ar∗-
resonance above the Fermi level (4s) shows faster charge
transfer times for minority than for majority spin paral-
leling the core-hole-clock experiments by Blobner et al.
[9]. The analysis of our data reveals that the size of the
electronic gaps around the Γ-point in the surface pro-
jected band structures determines this behavior. A sim-
ple model relying on minimal ingredients and incorporat-
ing the sizes of the band gaps confirms this observation.

We model core-excited Ar∗ on Co(0001) and Fe(110)
surfaces with the Siesta code [13], Troullier-Martins-
type pseudopotentials [14], the PBE functional [15], and
a double-ζ polarized basis generated with an energy shift
of 0.1 eV (the Ar∗ basis includes double-ζ 4s and 3p or-
bitals and single-ζ 3d and 4p shells of polarization or-
bitals). We use slabs containing 11 metal layers sep-
arated by ∼ 40 Å of vacuum and relax the outermost
layer on each side. Ar atoms are then placed, at fixed
distances from the surface, symmetrically on both sides
of the slab within a 4×4 lateral supercell. We checked
that the results are nearly independent on the adsorption
site (see Supplemental Material [16]) and here we only
present those for top positions. The lattice parameters
are a = 2.88 Å for Fe and a = 2.51 Å and c = 4.09 Å for
Co. The computational settings include a mesh cutoff of
250 Ry, a 5×5×1 and a 6×6×1 Monkhorst-Pack k-point
grid to sample the Fe and Co supercells, respectively.

We aim at computing the resonance spectrum %R(E)
from the projection of the Green’s function G(E) onto
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the resonance wave packet φR,

%R(E) = − 1

π
Im〈φR|G(E)|φR〉. (1)

Here, we consider that the resonance wave packet |φR〉 =
cs|ϕ4s〉+ cp|ϕ4pz

〉 is localized on the adsorbate and con-
sists of a linear combination of the 4s- and a polariz-
ing 4pz-orbital of free Ar∗. The amount of polarization
was determined employing an optimization scheme aim-
ing at maximizing the area below the resonance peak
while keeping it localized in energy (see Supplemental
Material [16]). Analyzing the resonance spectra we ex-
tract the linewidth Γ of the 4s-Ar∗ resonance and relate
it to the mean charge injection time τ = ~/Γ.

In order to mimic the excitations produced in the rel-
evant core-hole-clock experiments [9], we simulate con-
strained Ar∗ atoms including a 2p-hole in the pseudopo-
tential and adding the density corresponding to a spin-
polarized electron occupying the 4s-orbital.

Generally, commonly used slab calculations with a fi-
nite amount of layers display an energy spacing between
discrete sub-bands of ∼π2~2/(2m∗L2), i.e., ∼90 meV for
a slab thicknesses of L≈20 Å corresponding to 11 layers
of Co(0001) or Fe(110). This energy spacing critically
affects the shape of the Ar∗ resonances in our simula-
tions, since it is of the order of the linewidths defining
the charge transfer times we study.

To overcome the limitations of such finite slabs, we
adopt a recursive Green’s function scheme [17, 18] to
model surfaces consisting of an infinite amount of lay-
ers using the Transiesta code [19, 20]. In particu-
lar, we compute the Green’s function G(E) of the first
8 Co(0001) layers [6 Fe(110) layers] of which the last 4
(3) layers connect via the self-energy Σ(E) to an infinite
substrate

G(E) = [(E + iη)S −H − Σ(E)]−1, (2)

where H is the Hamiltonian and S the overlap matrix of
the surface layers in our local basis. We use a small shift
η = 5 meV along the complex axis to avoid singularities.

Fig. 1 shows the calculated resonance spectra (cf.
Eq. 1) of the 4s Ar∗ resonance for minority (a) and major-
ity spin (c) on Co(0001) as a function of the adsorption
height. Here, we consider k-averaged spectra since we
aim at modeling an isolated adsorbate rather than a pe-
riodic array of adsorbates [21, 22]. The peaks shift up in
energy as the adsorbate approaches the surface display-
ing a linear behavior. We determine the linewidths Γ by
fitting a Lorentzian Ωπ−1[(E − ER)2 − Ω2]−1 and com-
pare the results for the two spin-polarizations in Fig. 1b.
Note that the small numerical broadening η must be sub-
tracted and, thus, Γ = 2(Ω− η). The plot shows also the
case of the Fe(110) substrate. For both substrate mate-
rials the extracted linewidths in the minority channel are
consistently larger than in the majority channel.

FIG. 1. Computed first resonance above the Fermi level
for Ar∗(2p−14s) on Co(0001) for adsorption distances rang-
ing from 2.4 to 3.6 Å in the minority (a) and majority spin
channel (c). Different shadings of the colored lines in the plots
encode the adsorption heights. The energy positions of the
resonance maxima are marked by horizontal lines with respect
to the band structure of the Co(0001) surface in the insets,
and strongly overlap with the region covered by a band gap
around the Γ-point. Panel (b) collects the linewidths Γ of
the Ar∗ resonances according to a Lorentzian fitting of the
peaks (black lines) in (a, c). The spin-dependent linewidths
of similar Ar∗-resonances on Fe(110) are also shown in (b).

Translating to electron injection times ~/Γ we compare
our simulations with the experiment [9] in Fig. 2. The
time scales are in the right ballpark and show the correct
trends: Charge injection from minority channels is faster
than from majority channels for each substrate, while
the injection time of the minority channel on Co(0001)
equals that of the majority channel on Fe(110). Fur-
thermore, we checked (see Supplemental Material [16])
that, also in agreement with experiment [9], in the case
of Ni(111) both spin channels differ by less than 15%.
This confirms the validity of the approach and allows for
a detailed analysis in order to unveil the origin of the
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observed effect.
Inspecting the alignment of the resonance positions

with the band structure of the surfaces in the insets of
Fig. 1a, c [only Co(0001) shown, see Supplemental Ma-
terial for Fe(110) [16]] reveals that the resonances are
located in regions with a prominent gap in the projected
band structure around Γ. Inside the electronic gaps no
acceptor states are available so that charge transfer is
effectively suppressed. For this reason the size of the
projected gaps is a decisive factor controlling the elec-
tron dynamics at interfaces [23–27]. Resonances of ma-
jority spin, residing deeper inside the electronic gap,
bear smaller linewidths than resonance peaks of minority
spin, explaining the experimentally observed differences
in charge transfer time [9].

As Ar∗ approaches the surface, the presence of gaps
in the projected band structure leads to two competing
effects: (i) the growing overlap of the Ar∗ states with the
wave functions in the substrate increases the linewidth
[e.g., minority spin on Fe(110), Fig. 1b]; (ii) the shifting
of the resonance peak to higher energies and, thus, deeper
into the electronic gaps causes a decrease in the linewidth
[e.g., majority spin on Co(0001) for adsorption distances
from 3.6 Å to 3.0 Å, Fig. 1b].

Fig. 3a illustrates the interaction of the Ar∗4s-
resonance with the electronic gap along the Γ—N line
in reciprocal space. Reducing the adsorption distance
from 3.6 Å to 3.0 Å the resonance shifts up in energy,
where the size of the electronic gap increases (peak
positions marked by dashed lines in Fig. 3a, b). The
folding of the band gap that appears around Γ of the
original surface Brillouin zone gives rise to a region of
lower density of states (DOS) around N in the 4×4-
supercell (lighter shaded areas represent lower substrate
DOS in Fig. 3b). Inside this gap region the extracted k-
dependent linewidths (from Lorentzian fits) drop as can
be seen from the widths of the colored areas in Fig. 3 b.

In order to back our observations we employ a simple

FIG. 2. 4s Ar∗ lifetimes ~/Γ derived from the linewidths
Γ in Fig. 1b for minority and majority spin on Co(0001) and
Fe(110) (blue and red lines as in Fig. 1) in comparison with
experiment [9] (green bars).

model that captures the effect of the electronic gap at
the relevant energies. In particular, we only consider the
dispersive bands in the substrate giving rise to a constant
DOS ρ(E, k‖) ≈ C outside a disk-like gap region (k ≤ k0)

with vanishing DOS around the Γ-point. The average
tunneling rate is then given by

Γ ≈ 4π2C

∫ ∞

k0

|V (k‖)|2k‖ dk‖ (3)

where V (k‖) is the hopping matrix element between the
resonance wave packet φR(r) and each of the delocalized
electronic states ψk‖(r) with the same energy in the sub-
strate. We estimate V (k) to lowest order by their overlap,
so that

V (k‖) ≈
∫
ψk‖(r)φR(r) dr

≈
∫
f(z,k‖)e

−ik‖r‖φR(r) dr‖ dz (4)

≈ f(d,k‖)
∫

e−ik‖rφR(r) dr = f(d,k‖) φ̃R(k‖).

Here, we factor the wave functions of the substrate
ψk‖(r) into a contribution

f(z, k‖) = exp
[
−(z−d0)

√
2[Φ− ER] + k2‖/m

∗
‖

]
, (5)

FIG. 3. k-dependent minority 4s Ar∗-resonance along
the Γ—N line on Co(0001) for adsorption distances of 3.6 Å
(green) and 3.0 Å (red) in a 4×4-supercell (a). Shaded areas
in (b) show the effect of the folding of the projected band gap
around Γ (using the model band-structure in Fig. 4b), reveal-
ing its interplay with the Ar∗-resonance. As the adsorbate
approaches the surface, the resonance (dashed lines) moves
deeper into the electronic gap as reflected by a lower DOS
in lighter shades of gray. In these regions the k-dependent
widths Γ(k‖) –depicted by the red and green areas around
the peak positions– drop in comparison with regions with a
larger DOS.
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FIG. 4. A simple model incorporating the spread of the
initial wave-packet in reciprocal-space (a), and the energy
and spin dependence of the edges of the projected band gap
around Γ (b) yields linewidths in coincidence with the exper-
imental trends [9] regarding spin and material (c). Here, we
used d0 = 3 Bohr, Φ = 5 eV, and m∗‖ = 0.4. The inset in
(c) shows that an unintuitive decrease in tunneling rate is ob-
tained upon lowering the distance d when fixing (d− d0) to a
constant value (here 2 Bohr) in Eq. 5 considering z = d.

that decays exponentially into vacuum with the distance
z to the surface, and a plane wave contribution e−ik‖r‖ re-
flecting the dispersive character of the bands close to the
resonance energies ER. We further simplify the expres-
sion by evaluating f(z, k‖) at the adsorbate’s position d.
Finally, the coupling is determined by the product of the
Fourier transform of the initial wave packet φ̃R(k‖) with
f(d, k‖). For electrons with large momenta k‖ parallel
to the surface the injection probability decreases expo-
nentially (see Eq. 5): At a given energy ER the effective
injection barrier grows with the kinetic energy k2‖/(2m

∗
‖)

of the acceptor state (m∗‖ ≈ 0.4 for both materials).

The Fourier transform φ̃R(k‖) also reduces efficiently
the coupling to states with large k‖. This can be seen in
Fig. 4a, where we used the 4s pseudo wave-function [14]
of Ar∗ as a simple model for the wave packet. The
spread in reciprocal space of the resonance wave-packet
is comparable to the extension of the projected band gap
around Γ (Fig. 4b), explaining the large impact of this
gap on the charge transfer dynamics. Furthermore, at a
given energy ER the size of the projected band gap is con-
siderably larger for majority spin, explaining the larger

charge-transfer times for the majority spin channel on
both substrates.

The results of the simple model sketched above are
plotted as a function of the distance d in Fig. 4c. It is
important to notice here that k0 (the lower integration
limit in Eq. 3) is a function of the resonance energy ER

(Fig. 4b), while ER depends approximately linearly on d
(Fig. 1). Thus, the linewidths depend on d in several
ways. However, for any arbitrary fixed value of d the
results of the model reproduce nicely the behavior found
in the experiment [9]: majority spin has a larger lifetime
than minority spin on both substrates, while majority
lifetimes on Fe are similar to those of minority electrons
on Co. This confirms the role played by the projected
band gap as the determining factor.

The assumption of an exponential tunneling-like be-
havior in Eq. 5 leads in all cases to a pronounced decay
of the linewidth with distance, which does not fully repro-
duce the various trends of our ab initio calculations. In
particular, the counter-intuitive decrease of the electron
injection rates Γ upon approaching the surface (Fig. 1b)
is missing. However, this behaviour can be recovered by
setting (d − d0) to a fixed value in Eq. 5 with z = d. In
such case, the distance dependence is determined by the
increase of size of the projected band gap as the reso-
nance shifts up in energy when d is reduced. The result
is shown in the inset of Fig. 4c and demonstrates that the
projected band gap also plays a key role to determine the
distance dependence of resonance linewidths.

In conclusion, we showed that the details of the sur-
face projected band structure and the level alignment are
essential to explain the ultra-short time-scales of charge
injection and their variations as a function of electron
spin and electronic coupling across the interface. In par-
ticular, the presence of electronic gaps around Γ, as found
in ferromagnetic Co(0001) and Fe(110) substrates, con-
stitutes an efficient blocking mechanism for the tunneling
of electrons and is instrumental to explain the material,
spin and energy dependence of electron injection. With
this main ingredient we can rationalize and reproduce re-
cent experimental results for electron transfer times from
core-excited Ar∗ atoms [9]. In general, charge transfer
from adsorbates towards surfaces is governed by a com-
bination of the k-dependent coupling matrix elements,
accounting for the symmetry and spatial overlap of the
involved states, and the distribution of the available ac-
ceptor states in reciprocal space. These findings empha-
size that a detailed understanding of the electronic and
atomic structure of the system is a necessary ingredient
of any method to simulate ultra-fast dynamics accurately
down to the fundamental time-scales of electronic mo-
tion.
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ROLE OF THE DESCRIPTION OF THE RESONANCE WAVE PACKET:

POLARIZATION IN THE VICINITY OF THE SURFACE

In order to account for a possible polarization of the Ar∗-resonance wave packet in the vicinity of the surface we

mixed different components of the basis set. In particular we optimized wave packets constructed from Ar∗4s- and

polarizing Ar∗4pz-orbitals of siesta’s numerical atomic orbital basis.

In the following we derive the coefficients c0 and c1 of such wave packets |φR〉 consisting of two different atomic

orbitals |ϕ0〉 and |ϕ1〉, i.e.,

|φR〉 = c0 |ϕ0〉+ c1 |ϕ1〉 . (S1)

The atomic orbitals |ϕ0〉 and |ϕ1〉 are chosen to be real functions and the coefficients c0 and c1 of the initially localized

wave packet in this basis can also be chosen to be real numbers in order to avoid spurious probability currents between

the two components.

We aim at maximizing the projection

f(c0, c1) = − 1

π

∫ b

a

Im 〈φR|G(E)|φR〉 dE . (S2)

Here, G(E) is the Green’s function averaged over the k-points in the Brillouin zone and a and b determine an energy

range that encloses the resonance position. We use the abbreviated notation

f(c0, c1) = Im

[(
c0
c1

)†(
M00 M01

M10 M11

)(
c0
c1

)]
, (S3)

where the matrix elements Mµν are given by the complex values

Mµν = − 1

π

∫ b

a

[SG(E)S]µν dE for µ, ν ∈ {0, 1}, (S4)

and S is the overlap matrix of the non-orthogonal basis set in siesta.

We optimize the above expression under the constraint 〈φR|φR〉 = c20 + c21 = 1 by substituting c1 = ±
√

1− c20 into

f̃(c0) = f(c0,±
√

1− c20) so that

f̃(c0) = ImM11 + c20(ImM00 − ImM11︸ ︷︷ ︸
=A

)± c0
√

1− c20(ImM01 + ImM10︸ ︷︷ ︸
=B

). (S5)

Derivation with respect to the coefficient c0 yields

∂f̃

∂c0
= 2c0A±

1− 2c20√
1− c20

B
!
= 0. (S6)
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FIG. S1. Optimization of the resonance wave packet accounting for polarization in the vicinity of the surface. Example of the

majority channel resonances of Ar∗ attached to Co(0001) at a distance of 3.6 Å: (a) The four formal solutions of Eq. S8 (vertical

colored lines) coincide in two cases with the roots of the derivative of f̃(cs) (Eq. S6, dashed line), where they maximize/minimize

f̃(cs) (Eq. S5). (b) Spectra corresponding to the four roots in subplot (a). Also shown in (b) is the spectrum of the pure Ar∗4s

resonance (dashed black line). The vertical lines highlight the integration range from a to b in Eq. S2.

Isolating the terms containing the coefficient c0 on one side of the equality and taking the square we receive

4c20(1− c20)

(1− 2c20)2
=
B2

A2
. (S7)

This leads to the biquadratic equation

c40 − c20 +
B2

4(A2 +B2)
= 0, (S8)

which has four formal solutions

c0 =





√
1
2 + 1

2

√
C√

1
2 − 1

2

√
C

−
√

1
2 + 1

2

√
C

−
√

1
2 − 1

2

√
C

with C =
A2

A2 +B2
. (S9)

Of those solutions only two optimize the wave packet according to Eq. S6.

To illustrate the construction of an optimized wave packet as described above we inspect the case of Ar∗ attached

to Co(0001) at 3.6 Å adsorption height. We consider a mixture of 4s (first ζ component of the siesta basis) and 4pz

components (as in the main text) and analyze the majority channel.

Fig. S1a shows the function f̃(cs) (cf. Eq. S5) and its derivative ∂f̃(cs)/∂cs (cf. Eq. S6) in dependence of the weight

cs of the 4s-symmetry component. The colored vertical lines indicate the four formal solutions in Eq. S9. Solution 2

(red line) maximizes and solution 3 (blue line) minimizes the function f̃(cs).

The Ar∗-resonances related to the four solutions in Fig. S1a are displayed in corresponding colors in Fig. S1b.

Fig. S1b shows that solution 2 (red line) visibly maximizes the area below the graph in the integration range from

a to b [cf. Eq. S2]. The integration range is marked by vertical black lines and is chosen to be [ER − Γ/2;ER + Γ/2],

where ER and Γ are the energy position ER and the linewidth Γ of the pure Ar∗4s-resonance. Clearly, the spectral

feature of the optimized resonance state shows an increase in spectral density around the peak position in comparison

with the pure Ar∗4s resonance state (dashed black line).

Extracting the widths of the optimized spectra containing a polarizing component we obtain consistently larger

lifetimes than for pure Ar∗4s-resonances. All extracted numerical values of the optimized spectra are summarized in
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TABLE S1. Extracted quantities corresponding to the majority and minority spin Ar∗-resonances on Co(0001). The tabulated

values were obtained using either a pure Ar∗4s-orbital to represent the resonance wave packet |φR〉 or an optimized wave

packet containing a 4pz-component. Shown are: the peak maximum ER, the width obtained from a Lorentzian fitting Γ, the

associated lifetime ~/Γ, and the lifetime τFT derived using the alternative method described below. The percentages |cp|2 of

4pz-contributions contained in the optimized wave packets are displayed in the last column.

Co(0001) |φR〉 = |ϕ4s〉 |φR〉 = cs |ϕ4s〉 + cp |ϕ4pz
〉

Height E4s
R Γ4s ~/Γ4s τ4sFT ER Γ ~/Γ τFT |cp|2

(Å) (eV) (meV) (fs) (fs) (eV) (meV) (fs) (fs) (%)

M
a
jo

ri
ty

2.4 3.92 141 4.64 5.38 3.92 128 5.10 5.67 60

2.7 3.74 139 4.72 4.74 3.74 137 4.79 4.85 52

3.0 3.52 116 5.64 5.71 3.52 118 5.57 5.74 43

3.3 3.35 97 6.73 6.60 3.35 99 6.63 6.63 37

3.6 3.17 98 6.68 6.27 3.17 97 6.74 6.28 30

M
in

o
ri

ty

2.4 4.05 253 2.60 2.81 4.05 219 3.00 3.33 63

2.7 3.86 200 3.29 3.48 3.86 179 3.68 4.06 56

3.0 3.68 182 3.60 4.18 3.68 155 4.23 5.08 50

3.3 3.50 226 2.90 4.43 3.50 181 3.62 4.86 44

3.6 3.34 308 2.14 3.92 3.34 251 2.61 4.63 38

TABLE S2. Extracted quantities corresponding to the majority and minority spin Ar∗-resonances on Fe(110). The values are

defined as in Tab. S1.

Fe(110) |φR〉 = |ϕ4s〉 |φR〉 = cs |ϕ4s〉 + cp |ϕ4pz
〉

Height E4s
R Γ4s ~/Γ4s τ4sFT ER Γ ~/Γ τFT |cp|2

(Å) (eV) (meV) (fs) (fs) (eV) (meV) (fs) (fs) (%)

M
a
jo

ri
ty

2.4 3.67 305 2.16 2.24 3.67 262 2.51 2.50 63

2.7 3.53 216 3.05 3.31 3.54 186 3.53 3.62 56

3.0 3.37 244 2.70 3.18 3.37 206 3.18 3.50 50

3.3 3.21 267 2.46 2.54 3.21 239 2.74 2.77 43

3.6 2.98 268 2.45 2.43 2.99 247 2.66 2.58 33

M
in

o
ri

ty

2.4 3.74 1209 0.54 0.78 3.81 740 0.89 1.00 65

2.7 3.60 736 0.89 1.01 3.64 590 1.12 1.19 57

3.0 3.44 571 1.15 1.21 3.47 495 1.33 1.34 49

3.3 3.26 509 1.29 1.33 3.29 456 1.44 1.43 41

3.6 3.06 472 1.39 1.44 3.07 444 1.48 1.49 32

Tab. S1 and Tab. S2. Listed are the positions of the maxima of the resonances ER, the linewidths Γ obtained from a

Lorentzian fitting, and the corresponding lifetimes ~/Γ. These values can be compared with the values related to pure

Ar∗4s-resonances. For a visual comparison, Fig. S2 additionally shows the extracted linewidths of optimized (opt.)

and pure 4s-resonances for Ar/Co(0001) (Fig. S2a) and for Ar/Fe(110) (Fig. S2b). The optimized resonances exhibit

a reduced linewidth, while the overall trends remain unchanged upon inclusion of the polarizing pz-component.

As in the case of Ar/Co(0001) the observed spin dependence in the lifetimes for Ar/Fe(110) is rooted in the increased

sizes (in reciprocal space) of the electronic gaps around the Γ-point in the majority channel. The alignment of the

resonance positions with respect to the surface band structure of Fe(110) is shown in Fig. S3.

The last columns in Tab. S1 and Tab. S2 show the percentages |cp|2 of the polarizing component contained in the

optimized resonance wave packets. As one expects, the polarization of the wave packets increases when lowering the

distance between the Ar∗ atoms and the surface.

We additionally employed an alternative scheme to extract the lifetime τFT after Fourier transformation (FT) to the

time-domain (cf. τFT in Tab. S1 and Tab. S2). The scheme is described in the section below. Looking at the values

τFT in the tables and comparing them to the values from Lorentzian fittings ~/Γ one can see that overall the trends

remain unchanged. However, in the case of Ar∗/Co(0001) at a distance of 3.3 Å and 3.6 Å growing asymmetries in

the line shapes of the resonances bring about deviations from a symmetric Lorentzian fitting in the minority channel.
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FIG. S2. Extracted linewidths of Ar∗ resonances with respect to different adsorption heights after Lorentzian fitting. Minority

(red lines) and majority channels (blue lines) are displayed for (a) Ar∗/Co(0001) and (b) Ar∗/Fe(110). Continuous lines refer

to values obtained from optimized wave packets (opt.) accounting for polarized Ar∗-resonances, while dashed lines refer to

values related to pure Ar∗4s-resonances.

FIG. S3. Energy positions of Ar∗ resonances with respect to the band structure of clean Fe(110) surfaces. Majority (blue lines)

and minority channels (red lines) are displayed in (a) and (b), respectively.

EXTRACTION OF LIFETIMES IN THE TIME-DOMAIN

An alternative to the extraction of lifetimes by Lorentzian fittings of resonance features, is to compute the survival

amplitude A(t) associated with a given resonance. The survival amplitude A(t) of a state φ(t) at a time t > t0 is

given by

A(t) = 〈φ(t0)|φ(t)〉 = 〈φ(t0)|iG(t− t0)|φ(t0)〉 , (S10)

where the Green’s function G(t− t0) acts as propagator in the time-domain. Once the survival amplitude is known,

the survival probability S(t) = |A(t)|2 can be obtained and the mean lifetime τFT can be computed by

τFT =

∫∞
0
t S(t) dt∫∞

0
S(t) dt

with S(t) = |A(t)|2. (S11)
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The Green’s function in the time-domain G(t− t0) is given by the Fourier transform of the Green’s function G̃(E)

associated with the resonance peak,

G(t− t0) =
1

2π

∫ ∞

−∞
G̃(E)e−iE(t−t0) dE . (S12)

In order to define the Green’s function G̃(E) associated with the resonance we crop the spectrum above the Fermi

level using a Fermi distribution f(E) (only unoccupied states are available for the propagation of the adsorbate’s

excited electron).

Im[G̃(E)] = [1− f(E)] Im[G(E)], (S13)

where the imaginary part of the Green’s function G(E) is related to the spectral density via %(E)R = −1/π Im[G(E)].

Finally, the real part of the Green’s function related to the cropped spectrum is obtained by using the Kramers-Kronig

relation

Re[G̃(E)] =
1

π
P

∫ ∞

−∞

Im[G̃(E′)]
E′ − E dE′ . (S14)

Knowing the real and imaginary part of the Green’s function associated with the resonance, a Fourier transformation

to the time-domain (Eq. S12) yields the survival amplitude (Eq. S10) and thus the mean lifetime τFT (Eq. S11). In

practice, we evaluated Eq. S11 by numerical integration up to 500 fs.

SITE DEPENDENCE OF THE LINEWIDTHS OF THE RESONANCES

To confirm that the observed trends in this work are independent of the placement of the Ar∗ atoms on the Co(0001)

and Fe(110) surfaces, we investigated the variation of the resonant linewidths across different adsorption sites. The

extracted linewidths of pure 4s resonances are listed in Tab. S3. Inspecting the values no site dependence of the

linewidths Γ is found apart from weak fluctuations (less than 14 meV).

TABLE S3. Extracted linewidths Γ in meV for Ar∗4s resonances with respect to different adsorption sites of Argon on Fe(110)

and Co(0001): top position (tp), short bridge (sb), long bridge (lb), bridge position (br), fcc hollow (fcc), and hcp hollow (hcp).

Shown are values for different adsorption heights h in Å.

Fe(110) Co(0001)

h tp sb lb tp br fcc hcp

M
a
j.

2.7 216 215 212 139 143 143 144

3.0 244 247 248 120 128 128 128

3.0 267 273 275 102 107 108 108

M
in

. 2.7 736 734 727 189 194 195 195

3.0 571 584 585 178 191 190 191

3.3 509 518 520 234 247 247 248



6

EXTRACTED LIFETIMES FOR ARGON ON NICKEL

FIG. S4. Extracted line shapes of Ar∗ resonances at Ni(111) surfaces. Majority (a) and minority (b) spin channel. Dashed lines

refer to pure Ar∗4s resonance wave packets (4s) and continuous lines to optimized resonance wave packets (opt.) accounting

for polarization. The continuous black lines represent Lorentzian fits of the optimized resonance shapes.

In analogy to the experiments by Blobner et al. [1], we also investigated the lifetimes of Ar∗ resonances on Ni(111)

at an adsorption height of 3.0 Å. We initially modeled the system using a symmetric slab consisting of 13 layers. In a

second step we computed the Green’s function of the first 9 layers of which the last 6 were connected via self-energy

terms (Eq. 2 of the main text) to an infinite bulk substrate. We used a 6×6×1 k-point sampling. The remaining

computational settings were equal to the calculations for Ar∗ on Fe(110) or Ar∗ on Co(0001) and are reported in the

main text. The resulting resonance lineshapes for pure 4s and polarized (opt.) wave packets are depicted in Fig. S4

from which we extracted the values of the energy positions ER (3.58 eV for both spins), linewidths Γ, and lifetimes

~/Γ associated with the Ar∗ resonances.

For Ar/Ni(111) the charge transfer times ~/Γ differ by only 14% in both spin channels using polarized resonance

wave packets (opt.), the majority channel showing a charge transfer time of ~/Γ = 5.07 fs (Γ = 129 meV) versus

~/Γ = 5.79 fs (Γ = 113 meV) in the minority channel. Pure Ar∗4s-resonances lead to similar results with ~/Γ4s = 5.45

(Γ4s = 120 meV) in the majority and ~/Γ4s = 5.13 (Γ4s = 128 meV) in the minority channel. Therefore, our

calculations result in very faint differences for charge transfer in both spin channels reflecting a reduced spin splitting

of the bands of the magnetic substrate and approaching a situation of equally fast charge transfer in both spin channels

as reported experimentally for Ni(111) surfaces [1].

Moreover, these results contrast our calculations of ~/Γ on Ar/Co(0001) and Ar/Fe(110), where we found pro-

nounced differences with respect to charge transfer in both spin channels, see Tab. S1. Looking at Tab. S1 we find

that the calculated charge transfer times on Ni(111) also come close to the theoretically determined time-scale for

majority channel charge transfer of 5.57 fs on Co(0001) at an adsorption distance of 3.0 Å. This observation resembles

the experimentally reported overall behavior across different substrates [1].
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