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The driving force in materials to spontaneously form states with magnetic or electric order is1

of fundamental importance for basic research and device technology. The macroscopic prop-2

erties and functionalities of these ferroics depend on the size, distribution and morphology3

of domains, that is, of regions across which such uniform order is maintained1. Typically,4

extrinsic factors like strain profiles, grain size or annealing procedures control the size and5

shape of the domains2–5, whereas intrinsic parameters are often difficult to extract due to the6

complexity of a processed material. Here, we achieve this separation by building artificial7

crystals of planar nanomagnets that are coupled by well-defined, tunable, and competing8

magnetic interactions6–9. Aside from analysing the domain configurations, we uncover fun-9

damental intrinsic correlations between the microscopic interactions establishing magneti-10

cally compensated order and the macroscopic manifestations of these interactions in basic11

physical properties. Experiment and simulations reveal how competing interactions can be12

exploited to control ferroic hallmark properties such as the size and morphology of domains,13

topological properties of domain walls, or their thermal mobility.14

Domain formation is key to the functional properties of ferroics. In ferromagnets, which until now15

represent the class of ferroics technologically most relevant, domain formation is mainly a result of16

magnetostatic-energy minimisation2, 10. Currently, however, compensated types of magnetic order17

such as antiferromagnetism and ferrotoroidicity are gaining attention with a view to an advanced18

memory or spintronic technology11–14. Due to their zero net magnetisation, domain formation is19
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no longer a consequence of the demagnetising field, which means that less understood, yet fun-20

damental factors of equal importance come to the fore. While thermodynamics can make general21

macroscopic predictions about domain formation, it does not reveal the underlying microscopic22

mechanisms for this formation. Therefore, the link between the microscopic interactions and the23

macroscopic physical properties remains largely unclear. Unfortunately, extrinsic effects such as24

the strain distribution, magnetoelastic interactions or annealing protocols4, 5, 15 compete with the25

sought-after intrinsic effects, making the separation of the latter from the former challenging. For26

the identification and control of the intrinsic coupling mechanisms, a magnetically compensated27

system with tunable competing microscopic interactions that dominate over the extrinsic contribu-28

tions is therefore required.29

This we accomplish by fabricating artificial two-dimensional arrays of nanomagnets that establish30

a magnetically compensated ferroic order16. The transfer from atomic to sub-micrometre length31

scales requires the replacement of the quantum-mechanical exchange interaction by the classi-32

cal magnetic-dipole interaction as the basis for the ferroic order17–19. This approach to scaling33

up yields key advantages such as direct experimental access to the magnetic state, and the possi-34

bility to tailor and implement spin-spin interactions with a degree of control that natural materi-35

als cannot offer. Such artificial spin systems have already proven their ability to answer general36

questions about fundamental magnetic properties, including magnetic correlations20, frustration21,37

emergent magnetic monopoles22, 23, thermal fluctuations24, 25, phase transitions26 and relaxation38

behaviour27, 28. Most of these systems are artificial spin ices without macroscopically distinguish-39

able order-parameter-related domain states and parametrised by a single microscopic interaction.40

The few nanomagnetic systems utilising magnet arrangements with multiple and potentially com-41

peting couplings9, 29, 30 do not exhibit a ferroic order parameter either. Recent work, however, has42

shown that the so-called toroidal square array exhibits a magnetically compensated long-range-43

ordered ground state characterised by the toroidisation as a primary ferroic order parameter (see44

Methods) and distinct domain states16.45

Here we make use of the toroidal square array comprised of parallel and orthogonal pairs of nano-46

magnets, with each magnet carrying an in-plane magnetic moment m along the long axis as shown47

in Fig. 1a. Due to the anisotropy of the magnetic-dipole coupling, such an arrangement promotes48

two interactions J⊥ and J‖ between orthogonal and parallel nearest neighbours, respectively (see49

Methods and Fig. 1). These two interactions can be seen as classical magnetic-dipole-based ana-50

logues to antisymmetric and symmetric exchange interactions as fundamental ingredients deter-51

mining the magnetic order in materials.52
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Figure 1: Model of a ferroic crystal with zero net magnetisation and two competing micro-

scopic interactions. a, Two-dimensional arrangement of magnetic moments (m = |m| m̂, yellow

arrows), coupled via magnetic-dipole interactions that are classical analogues of antisymmetric

(J⊥) and symmetric (J‖) exchange interactions. Note that the the coupling constants (J⊥, J‖) are

each represented by one of the two geometric units (r, a) parametrising the structure of the system

(see Methods). Outlines: Subunits formed by four nanomagnets (octupoles, magenta frame) and

two nanomagnets (quadrupoles, green frame) are promoted by J⊥ and J‖, respectively. b, Ferroic

order of the two-dimensional array with domain states that are distinguished by the uniform hand-

edness of the unit cells outlined in magenta in (a): clockwise (blue shading) and counter-clockwise

(red shading). A domain wall is indicated by the black dotted line.

A possible periodic arrangement resulting from the combination of J⊥ and J‖ is shown in Fig. 1b.53

It is one of the simplest systems that allows us to study the consequences of the competition54

between two intrinsic microscopic interactions for the macroscopic properties of a ferroic state55

with zero net magnetisation. For focusing on the most fundamental consequences, we refrain from56

adding further ingredients, such as additional magnetic-anisotropy contributions, to our model.57

The particular spin arrangement in Fig. 1 can be effectively modelled with a Hamiltonian derived58

from a point-dipole approximation (see Methods), namely59

H = J⊥
∑

<i,j>⊥

D̂ij · (m̂i × m̂j) + J‖
∑

<i,j>‖

m̂i · m̂j , (1)

where m̂i,j are magnetic-moment unit vectors of neighbouring nanomagnets at lattice sites i, j60
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and D̂ij is the classical representation of the Dzyaloshinskii-Moriya vector. We can then explore61

how the relation between J⊥ and J‖ in Eqn. (1) controls characteristic macroscopic observables of62

ferroic order such as the domain size or domain-wall morphology.63

First, equilibrium Monte-Carlo simulations are used to calculate the phase diagram in Fig. 2 as a64

function of J⊥/J‖ using simulated annealing, starting from high temperatures and then decreas-65

ing the temperature to well below the ordering temperature Tc of the array. In the upper part of66

Fig. 2a,b, where J⊥ ≫ J‖, the dominance of J⊥ promotes the alignment of four magnetic moments,67

as shown in Fig. 1a, to form a magnetic flux-closure state that mimics the magnetic-field config-68

uration of an octupole. The octupole population density that saturates well above Tc implies that69

thermal fluctuations of single-nanomagnet dipoles are replaced by fluctuations of four-nanomagnet70

octupoles. The interaction between octupoles drives the phase transition to long-range order, now71

defined by the weaker coupling parameter J‖. Likewise, in the lower part of Fig. 2a,b, where72

J⊥ ≪ J‖, the ordering process is dominated by J‖ such that pairs of neighbouring parallel moments73

(see Fig. 1a) form fluctuating two-nanomagnet quadrupoles above Tc. Their long-range ordering is74

then driven by the weaker coupling parameter J⊥. In the centre part of Fig. 2, where J⊥ ≈ J‖, the75

nanomagnets continue to fluctuate individually as the temperature is reduced to Tc with the phase76

transition being characterised by a simultaneous increase of octupole and quadrupole density near77

Tc, see Fig. 2b. Hence, systems with different J⊥/J‖ ratios differ in their short-range order above78

Tc and thus in their pathways towards long-range order on reducing the temperature. Note that all79

three pathways lead to the same long-range ordered ground state, so that the macroscopic physical80

properties of the system are not affected by symmetry changes, but exclusively by the interplay of81

the two microscopic coupling parameters J⊥ and J‖.82
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Figure 2: Phase diagram revealing the correlation between short-range and long-range or-

der. a, MC-simulated phase diagram of the model Hamiltonian in Eqn. (1) for different coupling-

strength ratios J⊥/J‖. The two varying coupling strengths are represented by yellow triangles and

circles, respectively. The regions dominated by the octupole- and quadrupole-subunit formation

(see text) are shaded magenta and green, respectively. Grey shading indicates the long-range-

ordered ground state. b, Temperature dependent short- and long-range order for five exemplary

choices of J⊥/J‖. The multipole-population densities in (a) and (b) are reflected by the intensity

of the colour shading.

To study the impact of the short-range order on the formation of domains, we employ kinetic83

Monte-Carlo (kMC) simulations and perform a temperature quench from T ≫ Tc to T ≪ Tc.84

Under identical cooling conditions, we obtain the non-equilibrium multi-domain configurations85

shown in Fig. 3a for five values of J⊥/J‖ corresponding to the five values shown in Fig. 2b. The86

domain size reaches a maximum for J⊥ ≈ J‖ and decreases continuously with an increasing87

imbalance of J⊥ and J‖. While the relationship between the ordering temperature and the domain88

size might be concluded from a thermodynamics point of view, here we see explicitly how the89

competition between the exchange coupling constants, an intrinsic microscopic factor, controls the90
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domain size, which is a macroscopic property of a magnetically compensated ordered state.91

We verify this insight experimentally by growing a series of two-dimensional arrays composed of92

sub-micrometre-sized single-domain ferromagnetic building blocks with the magnetisation point-93

ing along the long axis as schematically shown in Fig. 1 (see Methods). We tune J⊥ and J‖ by94

varying the lateral spacing between the magnets while conserving the size of the four-magnet unit95

cell (see Fig. 3b). Although the arrays are thermally inactive at room temperature, they are in a96

superparamagnetic state during growth before their increasing thickness suppresses fluctuations so97

that the magnetic configuration freezes31, 32. The resulting domain configurations are imaged by98

magnetic force microscopy (see Methods).99

The agreement between the simulated and the measured domain configurations in Figs. 3a and 3c,100

in terms of size and morphology, is remarkable. Note that, for J⊥ ≫ J‖, domain walls align101

horizontally and vertically between strongly-coupled four-nanomagnet octupoles (left panel in102

Fig. 3d,e). In a similar way, for J⊥ ≪ J‖, domain walls run diagonally between strongly-coupled103

two-nanomagnet quadrupoles (right panel in Fig. 3d,e). For J⊥ ≈ J‖ (centre panel in Fig. 3d,e),104

a combination of both wall types is observed. Along with the preferential alignment of a domain105

wall, the handedness of the magnetisation within a wall can be tuned from equal (J⊥ ≫ J‖) to106

opposite (J⊥ ≪ J‖) with respect to the magnetic handedness of the enclosed domain as shown in107

Fig. 3d. A particularly interesting case occurs for J⊥ ≈ J‖, where the direction of magnetisation108

along the wall alternates due to the competition between the two domain-wall types. Here the109

walls as such can be regarded as one-dimensional ferromagnetic multi-domain entities with head-110

to-head or tail-to-tail meeting points of magnetic moments, similar to so-called Bloch points, also111

described as emergent magnetic charges22, 23, 29, 33 as indicated in the centre panel of Fig. 3e.112
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Figure 3: Correlation between short-range order and domain formation. a, MC-simulated

multi-domain states obtained by a temperature quench (see Methods) for J⊥/J‖ = [33/1, 6/1, 1/1,

1/6, 1/33] (from left to right). Scalebar: 10 µm. b, Atomic-force-microscopy images of permalloy

nanoarrays on silicon. The geometric variation across the series reflects the variation of J⊥ and

J‖ as defined in Eqs. 5 and 6. Scalebar: 1 µm. c, Magnetic-force-microscopy images of the

corresponding as-grown domain patterns with opposite domain states in blue and red, see Fig. 1.

Scalebar: 10 µm. d, Magnified view of the regions outlined by white frames in (c). The local

direction of magnetisation within the domain walls is shown with yellow arrows. Scalebar: 3 µm.

e, Schematics of the domain-wall configurations for J⊥ ≫ J‖ (left), J⊥ ≈ J‖ (centre) and J⊥ ≪ J‖

(right). For J⊥ ≈ J‖, head-to-head and tail-to-tail meeting points of magnetic moments result in

emergent magnetic charges (black- and white-shaded discs).
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We now use the kMC-simulated multi-domain configurations to predict further relations between113

the microscopic coupling strength and macroscopic ferroic properties such as the density of emer-114

gent magnetic charges, which are known to affect the domain-wall mobility2, and the associated115

spin-spin autocorrelation time τ (see Methods). As shown in Fig. 4, a significant number of emer-116

gent magnetic charges are obtained around J⊥ ≈ J‖. Our next step is therefore to see if, depending117

on J⊥/J‖, the path via which the system enters the ferroic phase (see Fig. 2) has an impact on the118

thermal domain-wall mobility, which would have direct consequences for the material’s coercivity119

and remanence. To parametrise this domain-wall mobility, we use kMC simulations to calculate τ120

at 0.95Tc with the result shown in Fig. 4. The corresponding spin-relaxation rate τ−1 closely fol-121

lows the emergent-magnetic-charge density. For J⊥ ≫ J‖ and J⊥ ≪ J‖, a collective switching of122

the short-range-ordered octupolar or quadrupolar subunits is required. The high energy barrier for123

this process results in a decreased thermal mobility of the domain wall. For J⊥ ≈ J‖, however, the124

lack of short-range order above Tc results in comparable excitation energies for both microscopic125

interactions and thus in an increased density of emergent magnetic charges and a high domain-wall126

mobility. Hence, both spatial and temporal macroscopic measures are closely linked to the com-127

peting short-range orders so that the coupling-strength ratio can be used to control them. Note that128

the J⊥/J‖ dependencies in Fig. 4 are asymmetric with the peaks shifted towards J⊥ < J‖. This129

reflects the different switching-energy barriers of the octupolar and quadrupolar subunits due to130

the different number of magnetic moments involved.131
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Figure 4: Macroscopic physical properties determined by the microscopic interactions. The

average domain size (here parametrised as the mean distance between domain walls), the emergent-

magnetic-charge density and the spin-relaxation rate τ−1 as a function of J⊥/J‖. All plots are

normalised with respect to their maximum value. The asymmetry and shift of the peaks with

respect to J⊥ = J‖ is caused by the different energy barrier for switching the quadrupolar and

octupolar short-range-ordered subunits (see text).

In conclusion, we have demonstrated, with excellent agreement between simulation and experi-132

ment, how the competition between intrinsic microscopic interactions can be used to control the133

macroscopic properties of a ferroic state. In our simple artificial ferroic system with compensated134

magnetic order, the competition of two short-range interactions determines hallmark properties of135

the ferroic state, such as the morphology and size of the domains, and the structure and mobility of136

the domain walls. Nanomagnetic arrays constitute a versatile platform to regulate the ferroic state137

because coupling strengths can be introduced and manipulated at will and the resulting magnetic138

configurations can be experimentally accessed with high spatial resolution. This important insight139

into the relationship between microscopic and macroscopic aspects in ordered systems with no140

net magnetisation is relevant given the current interest in antiferromagnetic spintronics as route141

towards faster and more robust digital memory as well as for neuromorphic computing12–14.142
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Methods143

Effective Model. For our model, we parametrise the magnetic dipole-dipole interaction in the144

framework of magnetic exchange interactions with the purpose to retain the link to real materials145

where the exchange interactions dominate the magnetic behaviour. Note that we aim here to use146

the simplest possible system that is sufficient to simulate ferroic order without a net magnetisa-147

tion and that permits us to relate intrinsic microscopic interactions to macroscopic phenomena of148

ferroic states such as domain and domain-wall formation, and the associated basic physical prop-149

erties. Therefore, we do not consider magnetic-dipole interactions beyond nearest-neighbours and150

higher-order multipole interactions because these would merely yield quantitative changes without151

significant qualitative differences in the results.152

This leads us to the array shown in Fig. 1. For this particular design, we choose the unit cell153

outlined by a magenta square and define its center as the origin. From here, we identify two154

relevant distances: r, the distance from the center of the unit cell to the nearest nanomagnet and a,155

the lattice constant. We represent each nanomagnet as a point dipole mi at lattice site i of equal156

magnetisation m ≡ |mi| pointing along the long axis. The interaction energy ED with its jth157

neighbouring magnetic dipole mj is given by158

ED =
µ0

4π

(

(mi · mj)

|rij|3
− 3 (mi · rij)(mj · rij)

|rij|5
)

, (2)

where rij = ri − rj is the distance between dipoles at positions ri,j . We first evaluate Eqn. (2)159

for orthogonal nearest neighbours, where the first term becomes zero because of mi ⊥ mj . Using160

mi ⊥ ri and mi ‖ rj yields161

E⊥ =
3µ0

4π|rij|5
((mi · rj)(mj · ri) + (mi · ri)(mj · rj)) , (3)

where the second product in the parenthesis is zero. By subtracting this product twice and using162

the Binet-Cauchy identity, Eqn. (3) can be rewritten as a vector product:163

E⊥ =
3µ0

4π|rij|5
((mi × mj) · (ri × rj)) . (4)

Using |ri| = |rj| = r, |rij| =
√
2r, |mi| = m, and defining D̂ij = r̂i × r̂j with r̂i,j and m̂i,j as unit164

vectors, gives165

E⊥ = J⊥ D̂ij · (m̂i × m̂j) with J⊥ ≡ 3µ0m
2

16π
√
2r3

, (5)

which is mathematically equivalent to an antisymmetric exchange interaction with J⊥ as the cou-166

pling strength.167
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For the case of parallel nearest neighbours, the second term in ED becomes zero because mi ⊥ rij .168

Using |rij| = 2(a− r) ≡ d yields169

E‖ = J‖ m̂i · m̂j with J‖ ≡
µ0m

2

4πd3
, (6)

which is mathematically equivalent to a symmetric exchange interaction with J‖ as the coupling170

strength.171

Hence, the two coupling constants (J⊥, J‖), whose competition determines the physical properties172

of the ferroic system, are each represented by one of the two geometric units (r, d) parametrising173

the structure of the system.174

Monte-Carlo simulations. We use a lattice of N = 100 × 100 unit cells with periodic boundary

conditions and represent the magnetisation of each nanomagnet as a bidirectional classical spin,

coupled to its neighbours with interaction strengths J⊥ and J‖, as detailed above. We define tem-

perature in units of the coupling strengths and therefore set kB = 1. We tune J⊥ and J‖ while

keeping the sum J⊥ + J‖ constant, which we achieve by setting

J⊥ = J0(1− tanh (δ)) and (7)

J‖ = J0(1 + tanh (δ)) , (8)

where the amplitude J0 represents an arbitrary scaling factor and and δ determines the ratio be-

tween the interactions. Choosing J0 = 50 and δ ∈ {−2.0,−1.9, .., 1.9, 2.0} we obtain the 41

coupling strengths used in Fig. 2, which cover all three different pathways to the ground state

(see main text). In order to distinguish between the three pathways, we introduce the octupole

population density O and the quadrupole population density Q as follows

O = 〈 1

4N

N
∑

u=1

|
4

∑

j=1

r̂j × m̂u,j| 〉 and (9)

Q = 〈 1

16N

N
∑

u=1

4
∑

j=1

|m̂u,j − m̂
‖
u,j| 〉 , (10)

where 〈...〉 indicates the statistical average, rj denotes the position vector of the j-th nanomagnet175

within a unit cell, while the index u runs over all unit cells. Furthermore, m
‖
u,j indicates the176

magnetisation of the parallel nearest neighbour within the adjacent unit cell of the nanomagnet177

mu,j . The amplitude of the order parameter of the system16 is defined as178

T = 〈 1

4N
|

N
∑

u=1

4
∑

j=1

r̂j × m̂u,j| 〉 . (11)
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The equilibrium MC simulations displayed in Fig. 2 are obtained using the Metropolis algorithm179

with simulated annealing. For each ratio of J⊥/J‖, we start at T = 4J0 and decrease the tem-180

perature as described below. At each temperature, we perform 103 Metropolis sweeps to reach181

thermal equilibrium, and then perform another 104 sweeps to average the observables Q, O and182

T . We calculate the specific heat Cv and decrease the temperature in steps of ∆T = 2 · T/
√
Cv,183

which allows us to increase the density of data points where the observables vary most. We repeat184

this procedure until we reach the ground state characterised by T = 1. The four-spin octupolar185

and two-spin quadrupolar subunits at J⊥ ≫ J‖ and J⊥ ≪ J‖, respectively, cost significant energy186

to break up, so that we introduce collective flips of the magnetisation of these subunits into our187

simulation. This allows the system to efficiently find its ground state with decreasing temperature.188

All out-of-equilibrium simulations (Fig. 3a and Fig. 4) are performed using a kinetic Monte-Carlo189

(kMC) algorithm with the so-called n-fold way introduced by Bortz, Karlos and Lebowitz34. When190

generating the multi-domain patterns shown in Fig. 3a, we start at T = 4J0 and rapidly decrease191

the temperature below Tc in order to prevent the system from reaching equilibrium. We extract the192

resulting domain configuration, the emergent-magnetic-charge density and the average distance193

between domain walls with the results shown in Fig. 4, where all quantities are averaged over 103194

independent runs. To calculate the autocorrelation time τ , defined as195

τ =

∫ ∞

0

G(t)

G(0)
dt , (12)

we create an equilibrium state at 0.95Tc. This relative temperature, in contrast to an absolute196

temperature, results in a comparable thermal excitation for all systems. We use kMC to allow this197

equilibrium state to evolve and calculate the spin-autocorrelation function G(t) = 〈 m̂i(0)·m̂i(t) 〉.198

We extract G(t) after each time step and determine its average over the entire system. Finally, we199

determine the average of τ over 100 runs.200

Sample fabrication. Using electron-beam lithography, the different two-dimensional arrays of201

nanomagnets were patterned on a single silicon-(100) substrate. Subsequently, a 12-nm-thick202

permalloy (Ni81Fe19) film was deposited simultaneously on all patterns by electron-beam evap-203

oration with a growth rate of 3 Å/min and capped with a 4-nm-thick film of gold to prevent ox-204

idation. Finally, unwanted material was removed in an ultrasonic-assisted lift-off process. All205

patterned arrays measure 55× 55 µm2. Four stadium-shaped nanomagnets with lateral dimensions206

450× 150 nm2 form the artificial unit cell of our square lattice with a = 1 µm lattice period, see207

Fig. 1. The nanomagnet aspect ratio of 3:1 and the choice of permalloy as a soft magnetic mate-208

rial ensure the formation of single-domain macrospins with magnetic moments pointing parallel209

(or antiparallel) to the nanomagnet’s long edge. To tune the strength of the pairwise interactions210
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J⊥ and J‖, the structural parameter r is modified to vary the spacing between parallel neighbour-211

ing nanomagnets from 32 nm up to 257 nm and, accordingly, between perpendicular neighbouring212

magnets from 216 nm down to 57 nm.213

Micromagnetic imaging. Magnetic imaging was performed using an NT-MDT NTEGRA mag-214

netic force microscope in semi-contact mode with a lift height of 45 nm. We probed the magnetic215

configurations by scanning the nanomagnetic arrays with a Nanosensors PPP-LM-MFMR mag-216

netic tip. Raster scans with a 10 µm/s tip velocity along the fast axis and line-to-line spacings of217

30 nm were applied for scanning areas of 30× 30 µm2 within the array.218

219
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