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Abstract

We present a new approach to femtosecond direct laser writing lithography to pat-

tern nanocavities in ferromagnetic thin films. To demonstrate the concept we irradiated

300 nm thin nickel films by single intense femtosecond laser pulses through the glass

substrate and created complex surface landscapes at the nickel-air interface. Using a

fluence above the ablation threshold the process is destructive and irradiation leads

to the formation of 200 nm thin flakes of nickel around the ablation crater as seen by

electron microscopy. By progressively lowering the peak laser fluence, slightly below

the ablation threshold the formation of closed spallation cavities is demonstrated by
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interferometric microscopy. Systematic studies by electron and optical interferometric

microscopies enabled us to gain an understanding of the thermo-mechanical mechanism

leading to spallation at the solid-molten interface, a conclusion supported by molec-

ular dynamics simulations. We achieved a control of the spallation process that en-

abled the fabrication of closed spallation nanocavities and their periodic arrangements.

Due to their topology closed magnetic nanocavities can support unique couplings of

multiple excitations (magnetic, optical, acoustic, spintronic). Thereby, they offer a

unique physics playground, before unavailable, for magnetism, magneto-photonic and

magneto-acoustic applications.

Introduction

Destructive laser-matter interactions play an important role in the processing and structur-

ing of materials. The direct optical excitation of solid surfaces and interfaces by single or

multiple laser pulses can be utilized to fabricate a variety of nanostructures.1–6 Nanostructur-

ing occurs as a consequence of laser-induced phase transitions through a sequence of highly

non-equilibrium states of matter7–9 difficult to control. Depending on laser and material

parameters, the laser-induced material destruction/modification mechanisms in absorbing

solids can be either of thermal nature (melting, ablation, resoldification, photo-chemistry

at surfaces and interfaces) or mechanical disruption (spallation) of the material, assisted by

large amplitude acoustic/shock pulses.

In most cases the prerequisite of laser nanostructuring is laser-induced melting. Being an

intricate phenomenon by itself, laser-induced melting triggers the complex spatio-temporal

hydrodynamic and mechanical motion of melted material. Inevitable modification of reso-

lidified surface landscapes may alter the material properties in an unpredictable manner

preventing the use of fs-laser nanostructuring for applications in nanophotonics, where both

nanometer precision and well-defined material properties are usually required at once.

Our present investigation aims at circumventing the aforementioned complications and
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has been inspired by older experiments on macroscopically thick aluminum foils. Salzmann

et al.10 demonstrated that nanosecond optical excitation of the front side of 100 µm thick

aluminum foil results in the formation of a closed cavity in the vicinity of its back side. The

formation of the cavity has been explained by the local mechanical disruption (spallation)

in solid aluminum induced by transient spatially inhomogeneous tensile stresses generated

upon reflection of large amplitude compressive acoustic/shock pulses from the metal-air in-

terface. Similar observations have been reported by Tamura et at.11 using picosecond and

femtosecond laser pulses on free-standing aluminum foils. However, owing to the macro-

scopic thickness of the investigated aluminum layers, these studies were not topical from the

perspective of modern nanotechnologies.

Technically similar experimental investigations on metallic thin films with the thicknesses

in the range between 10 and 400 nm suggested that fs-laser pulses result either in the removal

of the entire film from the substrate and the formation of an ablation crater (punching12) or to

a local thermoelastic separation of the entire film from the dielectric substrate,13 sometimes

denoted as “blistering”14 or “bulging”.12

In this paper we introduce a new way to achieve a deterministic femtosecond laser nanos-

tructuring inside a 300 nm nickel thin film which is partially melted by a single femtosecond

laser pulse focused through a glass substrate. The concurrent fast resolidification of the

melted material and the spallation dynamics, lead to the formation of a dome-like cavity en-

tirely made by nickel and probably enclosing vacuum. Being neither bulging nor punching,

this new mechanism of thermo-mechanical spallation manifests itself in the deterministic,

i.e. controllable, separation of a 200 nm layer of solid nickel (ceiling of the dome) from a

100 nm layer of laser-melted nickel remaining on the glass substrate (floor of the dome). The

deterministic formation of closed spallation cavities with dimensions that can reach the sub-

micron range as well as their periodic arrangements are quantified by optical interferometric

microscopy.15 Such periodic landscapes open the door for numerous technological applica-

tions of this novel and potentially disruptive fs-laser-based nanostructuring technology. From
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the one side, it allows to approach fundamentals questions of modern science related to the

physical properties of novel states of matter, such as amorphous spin glasses16 or curved

magnets.17 From the other side, such magnetic nanocavities can support elementary exci-

tations of different character (magnetic, optical, acoustic...), thereby providing fundamental

conditions for studying and exploiting their coupling.

We have chosen nickel thin films to demonstrate the potential of the proposed approach

for several reasons. First of all, functional nanostructuring of nickel has a great relevance

for applications since studies of elementary excitations in nickel thin films and nanostruc-

tures revealed already a tremendous variety of interesting fundamental physical phenom-

ena such as ultrafast laser demagnetization,18 optical and acoustic generation of exchange

magnons,19,20 magneto-acoustic driving of ferromagnetic resonance ,21–24 magneto-elastic

switching,25,26 magnetic effects on the photonic properties,27–29 the extraordinary optical

transmission through periodic arrays of sub-wavelength holes,30,31 etc. Second, reliable in-

put parameters for molecular dynamics simulations of fs-laser-excited nickel are available,32

thereby facilitating a deeper understanding of the involved phenomena. Third, the physics

of nickel-based complex magnetic compounds is particularly exciting since it is spanning

from unique magnetic properties of 3d-metal alloys such as as Permalloy (Ni80Fe20, Py)33

to ultrafast magnon spectroscopy dynamics of rear-earth doped Py34 to the high-TC super-

conductivity in nickelates.35 An experimental technique for shaping thin films of complex

magnetic compounds at the nanoscale without destroying their unique physical properties

could revolutionize the respective fields of research.

Microscopic characterization of nickel thin films irradi-

ated through glass substrate

During the first set of experiments, the train of ultrashort laser pulses from an amplified

Ti:Sa laser (100 fs duration, 10 Hz repetition rate, pulse energy up to 140 µJ) was focused
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with a quartz lens (focal length 40 cm) under 45 degrees on a 1 cmx1 cm sample, scanning

the beam horizontally at a constant speed thereby making possible to fabricate sequences of

almost identical structures in the single-shot regime. Thanks to the high reliability of such

scanning fs-laser patterning, we then achieved the fabrication of periodic arrays of different

shapes and periods. We first started with the investigation of the key parameters that need

to be controlled to achieve the desired precision and fidelity of the process. Figure 1 presents

an optical image of the surface of a 300-nm thick Ni film irradiated with single femtosecond

laser pulses at different spots through fused silica substrate. Here, one can observe three

horizontal lines of structures obtained with different pulse energies of 35, 70 and 135 µJ,

respectively. During the irradiation, the sample was moved horizontally in order to ensure

that each structure is produced by a single laser shot at a fresh spot. If the pulse energy is

sufficiently large (70 and 135 µJ in Fig. 1), its absorption results in the formation of rather

complex damaged areas. Dark elliptical areas represent ablation craters where the entire

Ni-film is removed from the surface: the low reflectivity is due to reflection from the glass-air

interface at the bottom of the crater. The elliptical ring area just outside the ablation crater

displays the same optical reflectivity of nickel. It is surrounded by irregularly-shaped dark

areas, which are identified as quasi-freestanding flakes of nickel film. A close inspection of

Fig. 1, evidences the existence of an additional outer ring-like elliptical area, which becomes

the entire elliptical spot in the case of the weaker pulse energy of 35 µJ. The weak optical

contrast displayed by this region suggests that the film hasn’t been destroyed but rather

structurally modified, i.e. lifted from the substrate. This conclusion is confirmed by the

results of optical interferometric microscopy of these structures (to be discussed below),

which allow us to state that in this area we are above the threshold for the thermo-mechanical

spallation process inside the film. We determined both ablation and spallation thresholds

using the Liu method36 assuming the Gaussian distribution of laser fluence. For a 300 nm

thick nickel films excited through the substrate the ablation and spallation thresholds were

found to be Fabl = (950± 100) mJ/cm2 and Fspall = (480± 50) mJ/cm2, respectively.
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Scanning electron microscopy (SEM) of a typical damage area induced by at 70 µJ

laser pulse in Fig. 2 provides a detailed microscopic view of uncontrolled spallation, which

is nevertheless useful to understand key aspects of the process. A complementary optical

transmission microscopy on the same structure helps to visualize multiple areas where the

film has been removed from the surface: an elliptical ablation crater and micrometer-small

round holes outside it.

Outside the elliptical ablation crater the laser fluence decreases towards the periphery of

the crater; at the certain distance from the center the absorbed energy is not sufficient to

remove the Ni film completely. Nevertheless, in this region the local laser fluence is sufficient

to melt a fraction of the film interfaced with the substrate and lift up and rip the topmost

part. This outcome is the result of an uncontrolled spallation as confirmed by the molecular

dynamics simulation discussed in the last section. As a result of this thermo-mechanical

spallation mechanism, the melted part of the Ni film remains on the substrate and the solid

part forms dangling flakes surrounding the crater. According to the SEM images presented

in Figure 2, the thickness of the dangling flakes is about 200 nm. In both optical and

SEM images in Fig. 1 and 2, it is interesting to note round micrometer-size holes outside

the ablation crater. The part of the Ni film interfaced with the substrate is melted and

remains in a molten and overheated state for nanoseconds. The complex dynamics of phase

transitions in laser-excited Ni caused the appearance of such round holes. The formation of

these round holes, as well as their number and size, in the outer part of the crater depends

on the kinetics of solid-liquid (melting) and the subsequent liquid-solid (resolidification)

phase transition of the metal film remaining on the substrate. Optical microscopy on a fs-

laser irradiated Ni/sapphire sample did not evidence any holes outside the ablation crater,

presumably due to the much faster cooling and resolidification rates of laser-melted nickel

on sapphire substrate characterized by the much larger thermal conductivity as compared

to fused silica.

A close inspection of Figure 1) shows that the region of laser-produced structures pro-
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Figure 1: (Color online) Reflection optical microscopy of laser damage spots on a 300 nm
thin nickel film on glass irradiated with single femtosecond laser pulses focused through the
glass substrate. The sample was moving horizontally at different speeds to ensure interaction
of pulses from a 10 Hz Ti:Sa pulse train at fresh spots on the surface. Pulse energies were
135, 70 and 35 µJ, respectively. Complex pulse energy-dependent damage patterns signify a
new physical phenomenon: fs-laser-induced spallation of partially melted metallic thin film.
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gressively shrinks up on reducing the pulse energy, below a certain threshold (between 36

and 70 µJ in the case of the 300 nm thick Ni film studied here), only an elliptical region of

controlled spallation (i.e. without the formation of ablation craters and dangling Ni flakes)

remains: compare the transition from the first to the third line of structures in Fig. 1).

Formation of closed spallation cavities below the abla-

tion threshold

In the following we demonstrate that controlled spallation can be indeed achieved tuning

the pulse energy in the range between spallation and abalation onsets. Figure 3 shows the

interferograms of nickel sample excited below the ablation threshold and slightly above the

spallation onset, namely playing with the laser pulse energy in the neighbourhood of 35 µJ.

Interferograms from the front side display pronounced shift of optical interference fringes.

Comparison with reference interferogram of unexcited surface can be used to reconstruct the

phase landscape ∆Ψ(x, y) by applying, for example, the 2D-Fourier transform algorithm.15

For fluences below the ablation threshold the optical properties of the nickel-air interface are

not affected by laser-induced phase transitions. Therefore, the phase shift can used to unam-

biguously determine the surface displacement d(x, y) = (λ/4π)∆Ψ(x, y), where λ=650 nm

is optical wavelength used for interferometric imaging.

Laser pulses with energy 35 µJ (peak fluence F = 1.17Fspall) result in a flat-top surface

profile (Fig. 3(a,c)), where a spalled 200 nm-thin solid layer of nickel lifted up to a height

of 270 nm from the surface, without ripping the film. Indeed, the preserved continuity of

the film is the mechanism that decelerates and eventually stops the lifting up of the spalled

layer thanks to the mechanical forces exerted by the un-irradiated film on the sides,resulting

in the formation of a flat-top surface profile. Excitation with a slightly higher energy of

36 µJ (peak fluence F = 1.20Fspall) generated a characteristic M-shaped surface profile

(Fig. 3(b,d)). In this case the mechanical forces were sufficiently strong to induce the plastic
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Figure 2: (Color online) (a) Scanning electron microscopy demonstrates that the laser-
damaged area consists of an elliptical hole (ablation crater) in the center of laser-excited area
surrounded by random-shape free-standing nickel flakes of 200 nm thickness. The part of the
film remaining on the glass surface contains round holes with a diameter of approximately
3 micrometers. (b) Optical transmission microscopy confirms the removal of the entire film
in the elliptical ablation crater and round holes.
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deformation of the spalled nickel film that bounced back towards the surface in the center of

the laser-excited spot. The outer part of the spallation cavity is elevated by 230 nm on top

of the undisturbed nickel surface. Control interferograms from the back side of the sample

(not shown) displayed only minor interferometric phase shifts, which could be explained

by the change in the optical constants of the resolidified nickel. Therefore we conclude

that part of molten nickel resolidifies on the glass surface leading to the peculiar spallation

cavities sketched in the cross sections shown in Fig. 3(a,b,e) for 35 and 36 µJ pulse energies,

respectively.

One of the most intriguing questions is what is inside the spallation cavities. If gas dif-

fusion through the Ni film could be ruled out, the volume enclosed by the cavity should be

in vacuum conditions and the estimated vacuum pressure would be given by the saturated

vapor pressure of nickel at the room temperature. In this case, the vaccuum pressure would

not exceed 10−26 Pa,37,38 thereby suggesting the formation of a cavity enclosing space in

ultra-high vacuum conditions. However, the actual nickel films are polycrystalline so that

permeation of different gases from air is expected to occur after a some time resulting in a

certain life-time of the vacuum conditions. Whereas permeation of oxygen through nickel is

rather inefficient at room temperature,39 the atomic hydrogen possesses the higher perme-

ation rate .40 Being not present under ambient conditions, the permeation of atomic hydrogen

through nickel has been evidenced under ambient conditions.41 Estimation of the diffusion

of hydrogen atoms through polycrystalline nickel40 for a 200 nm nickel foil of the observed

spallation cavities provide the diffusion time of the order of 100 µs, which represents the

lower limit of vacuum life time in fs-laser-produced spallation cavities.

Therefore we speculate that the transient vacuum inside the spallation cavity protects the

process of resolidification of the bottom layer from surface chemistry, which would alter the

Ni surface material under ambient conditions and elevated temperatures.40 Cooling down and

resolidification of laser-melted nickel layer on glass substrate is governed by thermal diffusion

in glass. The cooling rate of a thin liquid layer on a dielectric substrate is determined by
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Figure 3: (Color online) Interferometric microscopy of Ni-film irradiated at low laser fluences
of F = 1.17 Fspall (pulse energy 35 µJ, (c)) and F = 1.2 Fspall (pulse energy 36 µJ, (d))
evidence distinct surface displacements with maximum amplitudes of (a) 270 nm and (b)
230 nm, respectively. The lack of interferomeric phase shifts within laser-irradiated spots
from the glass side (not shown) and the results of Fig. 2(a) make it possible to reconstruct
the distinct flat-top and M-shaped internal structures of closed fs-laser-produced spallation
cavities. (e) Surface profiles along the dashed horizontal lines in (c) and (d) obtained from
the Fourier-reconstructed interferometric phase maps.15
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its thickness, the thermal boundary resistance of liquid-substrate interface and the heat

conductivity of the substrate.42 We estimate that this process takes place on the nanosecond

time scale in the case studied here. The thickness of fs-laser-melted layer could be preselected

by adjusting the laser pulse energy, whereas the cooling rate can be engineered via a proper

choice of the substrate. Using substrates with a high thermal conductivity can produce

ultrahigh cooling rates of the order 1013 K/s, under which amorphization of monoatomic

liquid metals become possible.16 Given the case that our conclusions about the transient

vacuum are correct, our experiments may represent an alternative way for creating thin

films of high-purity amorphous metals under ambient conditions.

Using the slit projection technique,4 we have produced periodic landscapes of elongated

spallation cavities. A train of unfocused femtosecond pump pulses (pulse energies 35-140 µJ,

repetition rate 10 Hz) illuminated a 150 µm wide slit, which was projected with a microscope

objective on the nickel-glass interface approximately 3 × 70 µm line focus. The sample

was moving at a constant speed of 0.1 mm/s through the line focus to produce an array

of identical structures with 10 µm period. Differential interference contrast microscopy in

Fig. 4(a) shows an image of narrow lines. Imaging optical interferometry (not shown) provide

surface profiles in Fig. 4(b): narrow bell-shaped bumps with spatial width below 2 µm and

reaching a height of 130 nm in the center (cross-section 1) and gradually decreasing to zero

at the edges of the cavities (cross-sections 2 and 3). These results demonstrate a pathway

to fast nanofabrication of cavities with different shape in one shot. By changing by the

velocity of the sample from 0.3 to 0.03 mm/s we were able to produce gratings with periods

from 30 to 3 µm. However, at small velocities the control of mechanical vibrations becomes

more difficult and this affects the long-time stability of the laser beam focusing, becoming a

potential issue for the production of periodic diffraction grating with large pitch.
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Figure 4: (Color online) (a) Differential interference microscopy of a periodic array of elon-
gated spallation cavities in a 300 nm Ni film produced by moving the sample through the line
focus (see text for details). (b) Interferometric microscopy evidences regular periodic surface
excursion consisting of narrow bell-shaped bumps with amplitudes reaching 130 nm. (c)
The internal structure of a periodic landscape of closed spallation cavities providing surface
excursions in (b).
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Molecular dynamics simulations

In order to deeply understand the mechanism of the spallation process observed in the

experiments, we performed the atomistic-continuum modeling of fs-laser induced dynamics

for Ni thin films irradiated through glass substrate. The model is based on the Molecular

Dynamics (MD) approach, but, due to integrated Two Temperature Model (TTM),32,43 it

also accounts for the diffusion of free carriers in metals, playing a determinant role in case

of ultrashort laser pulse interactions. The combined MD-TTM model provides a detailed

atomic-level description of the laser light absorption by conduction band electrons, the energy

transfer to the lattice due to electron-phonon coupling and electron heat diffusion, resulting

in the kinetics of multiple fast non-equilibrium laser-induced defragmentation (spallation)

processes. The strong and ultrafast heating/melting results in a high internal stress of 20 GPa

developed in the vicinity of the substrate within the first 5 ps that launch a compression wave

propagating throughout the film, with a typical amplitude of several GPa. Upon reflection

from the Ni-air interface this pressure wave is converted in a tensile pulse, generating a

reflected tensile wave with amplitude of about 4 GPa that reaches the solid-liquid interface,

where it triggers the spallation process by creating voids in the laser-melted layer remaining

on the surface. The results of MD-TTM simulations depend critically on the applied laser

fluence, the acoustic mismatch and mechanical adhesion at the Ni-glass interface. At a given

fluence, the latter property decides whether the laser-melted layers remains on the surface

or is removed, forming the ablation crater. Quantitative understanding of this phenomenon

requires substantial computational efforts but also experiments on Ni thin films of different

thickness, both beyond the scope of this paper. Nevertheless the MD-TTM simulations

confirm that the experimentally observed 200 nm layer of Nickel film is spalled in the vicinity

of the solid-liquid interface. The observed holes in the remaining 100 nm layer of resolidified

nickel fingerprint the formation of voids in liquid nickel by transient negative pressures.
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Conclusions and outlook

We demonstrated that the controlled thermo-mechanical spallation of nickel films can be

induced and controlled by irradiation with a single femtosecond laser pulses. Molecular dy-

namics simulations shade light at the complex physics of the spallation process occuring in

inside the nickel film at an interface between solid and (laser-molten) nickel. By tuning the

irradiation parameters, closed spallation cavities with two distinct flat and ”M” shaped top

have been produced and characterized by high-resolution interferometric microscopy. Using

slit projection technique periodic arrays of elongated bell-shaped spallation cavities with

periodicities in the range 3 - 30 µm and heights up to 200 nm have been produced demon-

strating that the process can be finely controlled to induce desired shapes and parallelized for

the fast fabrication of metasurfaces and gratings for visible and IR, potentially also for THz,

radiation. The flexible nature of the quasi-free-standing outer nickel membrane forming the

spallation cavities will allow for substantial and fast modulation of light diffraction by ex-

citing the acoustic eigenmodes of the cavities. The curved nature of the nickel membrane is

expected to result in unique topology-induced magnetic states, which are the focus of intense

studies.17 More in general, such magnetic nanocavities can support a variety of excitations:

from magnetic to optical and acoustic ones, thereby providing a unique multifunctional

metasurface for studying their properties and the physics arising from their coupling. Our

results are encouraging and indicate that such back-side femtosecond laser lithography can

be further advanced through the use of (i) more complex spatial patterns of pump radiation

to create sophisticated surface landscapes and (ii) magnetic materials with tailored physical

properties. We envision that future investigations of acoustic, magnetic, magnetophotonic,

magneto-acoustic and ’vacuum’ properties of spallation cavities could open a new avenue in

modern nanoscience.
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Tobey, R. I. Parametric frequency mixing in a magnetoelastically driven linear

ferromagnetic-resonance oscillator. Physical Review B 2017, 95, 60409.

(25) Thevenard, L.; Duquesne, J.-Y.; Peronne, E.; von Bardeleben, H. J.; Jaffres, H.; Rut-
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