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Planar refraction and lensing of highly confined
polaritons in anisotropic media
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Refraction between isotropic media is characterized by light bending towards the normal to
the boundary when passing from a low- to a high-refractive-index medium. However,
refraction between anisotropic media is a more exotic phenomenon which remains barely
investigated, particularly at the nanoscale. Here, we visualize and comprehensively study the
general case of refraction of electromagnetic waves between two strongly anisotropic
(hyperbolic) media, and we do it with the use of nanoscale-confined polaritons in a natural
medium: a-MoQs3. The refracted polaritons exhibit non-intuitive directions of propagation as
they traverse planar nanoprisms, enabling to unveil an exotic optical effect: bending-free
refraction. Furthermore, we develop an in-plane refractive hyperlens, yielding foci as small as
A,/6, being A, the polariton wavelength (Ao/50 compared to the wavelength of free-space
light). Our results set the grounds for planar nano-optics in strongly anisotropic media, with
potential for effective control of the flow of energy at the nanoscale.
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yperbolic electromagnetic waves arise as a consequence of

the intrinsic anisotropy of the crystal lattice in natural

medial-3 and of the artificially engineered anisotropic
dielectric environment in metamaterials*~12, which leads to a
metallic-like response (negative permittivity) along one (two) of
the principal axes in such media and a dielectric-like response
(positive permittivity) along the other two (one). Despite their
fundamental interest and their potential for the development of
new optical applications, these exotic waves are still scarcely
explored. In particular, refraction of hyperbolic waves has only
been studied for the case in which the incident beam comes from
an isotropic medium, typically free space®~. As such, the general
case of refraction, involving hyperbolic waves in which both the
incident and the refracted waves exhibit non-collinear wavevector
k and energy flux S, remains experimentally unexplored, parti-
cularly at the nanoscale, where the specific case of negative
refraction of highly confined polaritons has only recently been
theoretically proposed!>!4. The study of the general case of
refraction could extend our capabilities to control the flow of
light.

Importantly, the recent discoveries of phonon polaritons
(PhPs) in van der Waals crystals!>1¢ with hyperbolic dispersion,
such as h-BN17-19, 4-M00320-2>, and a-V,05%°, have provided
unique material platforms to study optical phenomena2”-28 within
strongly anisotropic natural media. In particular, PhPs in a-
MoOQ; feature in-plane hyperbolic propagation, ultra-low losses,
and strong confinement, offering the possibility to visualize
refraction directly on the crystal surface and at the nanoscale,
which can open new routes in planar nano-optics°.

Here, we theoretically and experimentally demonstrate the
general case of refraction at the interface between two strongly
anisotropic (hyperbolic) media. Importantly, we do it at the
nanoscale and in a low-loss natural medium by visualizing the
propagation of polaritons as they traverse planar nanoprisms
tailored on the surface of a-MoO;. Our images show non-
intuitive directions of propagation and strong confinement of the
refracted waves, enabling to unveil an exotic optical effect:
bending-free refraction, which extends the current capabilities to
control the propagation of light at the nanoscale. Furthermore, we
develop an in-plane refractive hyperlens, yielding foci as small as
Ap/6, being A, the polariton wavelength (1o/50 with respect to the
wavelength of light in free space). Our findings provide funda-
mental knowledge and an effective strategy for the manipulation
of polaritons in anisotropic media, paving the way for integrated
flat subwavelength optics.

Results and Discussion

Theory of refraction between hyperbolic media. The unique
properties of polaritons in hyperbolic media can be better
understood by analyzing their isofrequency curve (IFC), a slice of
the polariton dispersion surface in momentum-frequency space
(ks> ky,w) by a plane of constant frequency w,. The IFCs of
polaritons in two different hyperbolic media are illustrated in
Fig. la, b. For convenience, we consider these two media to be
defined by the same hyperbolic slab (with representative per-
mittivity &, = —5, ¢, =1, ¢, =5, see ‘Methods’) placed on two
different dielectric substrates (with permittivities &,;, =1 and
&b = 5). In both cases, the IFCs describe open hyperbolas (black
and gray curves, respectively). As a result, not all wavevectors k
are allowed in these media, which implies that polaritons
cannot propagate along all in-plane directions in real space.
In fact, propagation is only allowed within the sectors

ltan(k,/k,)|<,/—¢,/e, limited by the asymptotes of the hyper-
bola in the (k,,k,) plane (see Fig. la, b). Additionally, the
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Fig. 1 Schematics of refraction of polaritons between two hyperbolic
media. a Isofrequency curves of polaritons propagating in a hyperbolic slab
(with &,=—5; ¢,=1; ¢,=5) placed on two different semi-infinite
substrates with &y, =1 (black curve) and ¢,,, =5 (gray curve) that define
two different hyperbolic media (medium 1 and 2, respectively). The incident
wave in medium 1is characterized by collinear k;, and S;, (as in an isotropic
medium, indicated by a dashed cyan circle). Upon refraction into medium 2,
momentum conservation at the boundary (orange line), k, (k; = k;, e sing,
where ¢ is the angle of the boundary), is fulfilled by non-collinear k,,, and
S,.t- The dashed orange lines represent the normal to the boundary. b The
general case of refraction between two hyperbolic media is represented by
an incident wave from medium 1 with non-collinear k;, and S;, (normal to
the isofrequency curve). When the wave refracts into medium 2,
momentum conservation at the boundary (orange line) is fulfilled by non-
collinear k,; and S, ;. The dashed orange lines represent the normal to the
boundary. ¢ Real-space illustration of refraction between two hyperbolic
media shown in a where the incident wave exhibits collinear k;, and S;, i.e.
0i_x = bin_s, giving rise to non-collinear k,; and S, i.e. 6,15 # Ooyi_i- d
Real-space illustration of the general case of refraction between two
hyperbolic media shown in b where both the incident and the outgoing
wave exhibits non-collinear k and S, i.e. 6, _,#0,, _s and 8,,_, # 6.,_s. The
tangents parallel to both hyperbolas give rise to bending-free refraction, i.e.
0i,_s = O,,_s. The orange dashed lines in ¢, d represent the normal to the
boundary. The white and gray regions in ¢, d correspond to a-MoQO3/air and
a-MoOs/SiO,, respectively.

Poynting vector S—which determines the propagation direction
of the polariton and is normal to the IFC3%-31—is not in general
collinear with k, as indicated in Fig. la (they are collinear only
along the x-axis in Fig. 1a). As such, the properties of propagating
polaritons in hyperbolic media are different to those in isotropic
media, where the IFCs are circular (see dashed cyan curve in
Fig. 1a) and polaritons, as is well-known, are allowed to propagate
along all in-plane directions in real space with the same absolute
value of the wavevector, k, which is always collinear to S.
Importantly, such properties of polaritons propagating in
hyperbolic media have a dramatic effect when they refract at a
boundary between two different hyperbolic media. Particularly,
momentum conservation at the boundary implies that the pro-
jection k; of the incident and refracted wavevectors (k;, and k,,
respectively) must be conserved (with k| = k;,esing, where ¢ is
the angle of the boundary as shown in Fig. 1a), giving rise to the
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generalized Snell’s law32:
kin : Sin(ein—k> = kout - sin (60ut7k)7 (1)

where 6,,_; and 0, _, are the angles that k;, and k_,, form with
the normal to the boundary, respectively (see Fig. 1c, d). The
propagation directions of the incident and refracted waves are
then given by S;, and S, respectively, i.e. the directions normal
to the hyperbolic IFCs for each case, which are in general non-
collinear with k;, and k,,, (Fig. 1b-d), and thus refraction can
occur at angles 6, ¢ that can be different from 6 ,_,. This
behavior is in stark contrast to that in isotropic media, in which
momentum conservation at the boundary implies that refraction
occurs always at 0., =0, _s-

A particular case of refraction between hyperbolic media for an
incident wave with collinear k;, and S, is shown in Fig. 1a. We
observe that the refracted wave (S,,) bends away from the
direction of S;, towards the boundary (Fig. 1c), in contrast to
what is expected in isotropic media for a wave passing from a low
refractive index to a high refractive index, where S_, bends
towards the normal to the boundary (see Supplementary Fig. 8).
Also, the modulus of k,,,, is much larger than that of k;,,, showing
a strong wavelength reduction.

The general case of refraction occurs when k;, and S;, of the
incident wave are not collinear. This case, which has not been
tackled experimentally to date, is sketched in Fig. 1d, where a
wave impinges at a tilting angle 6,,_¢ on the boundary between
two hyperbolic media. The boundary is also tilted a given angle
with respect to the crystal axes. Interestingly, due to the similar
shapes of the IFCs in the considered hyperbolic media (a-MoO3/
air and a-MoQ;/SiO,, black and gray curves in Fig. 1b,
respectively), the Poynting vectors of the incident and refracted
waves are parallel for almost any k;, and boundary angle ¢,
especially in the region where the arms of both hyperbolic IFCs
are straight. Hence, the refracted wave propagates almost parallel
to the incident wave (i.e. 6,,_g ~ 8,,_s), as if the incident wave
had been transmitted directly without any change in its
propagation direction (black and blue arrows in Fig. 1d). This
feature opens the door to the realization of bending-free
refraction at arbitrary incident angles in anisotropic media,
which is not possible in isotropic media. Note, however, that the
modulus and direction of k, is very different from the modulus
and direction of k;,, which opens the door to direct engineering
of the wavelength and wavefront without modifying the direction
of propagation of the wave.

Nanoimaging of refraction of in-plane hyperbolic polaritons.
We experimentally demonstrate and comprehensively study the char-
acteristics of refraction of polaritons propagating in hyperbolic media.
This provides the demonstration of these effects at the nanoscale and/or
in a natural medium. To do so, we design and fabricate planar prisms
(“Methods”) in a slab of the naturally hyperbolic van der Waals crystal a-
MoOs. We then visualize the propagation of hyperbolic phonon polar-
itons (HPhPs) passing through them by polariton wavefront mapping
using a scattering-type scanning near-field optical microscope (s-SNOM,
see “Methods”). To define the prisms, we etch away triangular regions in
a silica (SiO,) substrate on top of which we place a 160-nm-thick a-
MoO; slab, thus forming a region a-MoOs/air with a difterent refractive
index, and thus different polaritonic dispersion, with respect to the region
a-MoO5/SiO,. The different polaritonic dispersions in these two regions
are clearly corroborated by the near-field image of Fig. 2a, taken at an
incident wavelength A, =11.3 um. Specifically, we observe HPhPs
launched inside the prism (highlighted by white dashed lines) by the flake
edge (see “Methods” and Supplementary Fig. 4), which propagate with
collinear k;, and S;, and longer wavelength A;, (white arrow), ie. smaller

wavevector ’km’ =2m/A;, (black arrow), than outside the prism O\P, red
arrow), thus revealing the lower refractive index of the prisms. We also
observe in the same near-field image that when the HPhPs reach a
boundary of the prism tilted at an angle 8, ~ 55°, they refract into the a-
MoO5/SiO, region (note that reflection is expected to be very weak, see
Supplementary Note 8) along a different direction (S, blue arrows)
with respect to which their wavefronts are tilted (K> green arrows).
Thus, the refracted energy flux and wavevector are not collinear, in
agreement with our predictions for hyperbolic refraction in Fig.la.
Importantly, while the wavevector, Ky, refracts towards the normal
(note that polariton launching by the prism boundary can be ruled out,
see Supplementary Note 3), the energy flux, S, bends away from it
This is in stark contrast to what is expected for a wave propagating from
a lower refractive index region to a higher refractive index region in
isotropic media. In addition, the modulus of the refracted wavevector
Koo (~648 pum~1) is considerably larger than that of the incident
wavevector k;, (~2.09 um™!) and that of the polariton wavevector along
the x-direction outside the prism k;, (~4.08 um~1), revealing a strong
wavelength reduction resulting from refraction in hyperbolic media.
These findings are in perfect agreement with the case predicted in
Figs. la—c for hyperbolic refraction considering collinear k;, and S;,.

To unambiguously verify the features of refraction between
hyperbolic media, we carry out full-wave numerical simulations
which mimic our experiments’? (see “Methods”). The resulting
spatial distribution of the out-of-plane component of the electric
field, Re(E, (x,)), is plotted in Fig. 2b, clearly showing refraction
of both the energy flux (S,,,) and the wavevector (k,,), in excellent
qualitative and quantitative agreement (’kout‘ ~6.35um~1) with the
experimental image in Fig. 2a. In addition to numerical simulations,
we also validate our experimental results by performing analytical
calculations®* (Fig. 2c) analogous to those shown in Fig. 1. Namely,
we calculate the IFCs of HPhPs in a-MoOs/air (gray curve), and a-
MoO,/SiO, (black curve) regions at A, = 11.3 pm, and, applying the
condition of momentum (wavevector) conservation at the boundary
(orange line), we extract the Poynting vector and wavevector of the
refracted polaritons. Again, we observe refraction of the energy flux
(Soue> blue arrow) with a tilted wavevector (k. green arrow) in
excellent agreement with the experiment, as well as with the full-
wave numerical simulations.

To further analyze refraction in hyperbolic media, we also
perform experiments at a different illuminating wavelength A,
(different tilting angles of the prism boundary 6 are also shown in
Supplementary Fig. 2), as shown in Fig. 2d-f for Aj =11.1 pm.
Interestingly, we observe that, in this case, both the angular
separation between K,y_cy, and S, ., and the confinement
effect are larger, being the refracted wave (S,_y,) almost parallel
to the prism boundary and the modulus of ke, (12.47 pum—1)
about four times larger than that of k,, (~3.14pum~!) and
2.1 times larger than that of k;, (~5.92 pum~1).

Altogether, these results demonstrate the efficient refractive
nature of our planar prisms, enabling us to visualize in real-space
three important features of highly confined polaritons refracted at
the boundary between two hyperbolic media: (i) large tilting of
their wavefronts (given by kg,_.,) with respect to their
propagation direction (given by S,y_cyp), (ii) counter-intuitive
directions of propagation, and (iii) subwavelength confinement
(with respect to polaritons along the same crystal axis in the same
medium).

Sub-diffractional planar lensing of hyperbolic polaritons. Such
unique features of refracted polaritons in naturally in-plane
hyperbolic media open the door to focus ultra-confined
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Fig. 2 Real-space visualization of refraction between two anisotropic media using highly confined polaritons with collinear incident k and S. a, b
Experimental Re(o5(x, y)) (@) and simulated Re(E,(x,y)) (b) near-field images of HPhPs propagating in a 160-nm-thick a-MoOs flake at Ay =11.3 pm. The
white and black dashed lines mark triangular prisms fabricated by etching an air cavity on the SiO, substrate below the a-MoOs flake. S;, and k;, display
the direction of propagation and the wavevector of incident polaritons in a-MoOs/air, respectively. Horizontal propagation of non-refracted polaritons is
marked as k,, and S;,. Upon refraction at a boundary of the prism with an angle 6,, - 55°, HPhPs bend away from the normal, Sq;_, (blue arrow), with a
tilted wavevector k;_, (green arrow). Compared to non-refracted HPhPs, indicated by A, the refracted HPhPs are stronger confined (with a wavelength
about 1.6 times shorter. ¢ Analytic IFCs of a-MoQOs/SiO; (black hyperbolas) and a-MoOs/air (gray hyperbolas) effective media in a, b, and considering
momentum conservation at the boundary (orange line), the extracted wavevector and direction of the refracted polaritons, k,, and S, respectively, are in
good agreement with both experiment and simulation. d, e Experimental Re(o;(x, y)) (d) and simulated Re(E,(x, y)) (e) near-field images of HPhPs
propagating in a 160-nm-thick a-MoOs flake at Ay = 11.1pm. The refracted HPhPs propagate almost parallel to the boundary with a wavelength 2.1 times
smaller than A,. f Analytic IFCs of a-MoOs/SiO; (black hyperbolas) and a-MoOs/air (gray hyperbolas) effective media in d, e. The orange dashed lines in

a-f represent the normal to the boundary.

polaritons in a planar geometry. To demonstrate this possibility,
we design and fabricate a planar lens in a-MoO; (Fig. 3a). As
noted above (Fig. 2), when HPhPs with collinear k;, and S;, (red
arrow in Fig. 3b) refract at a boundary with another hyperbolic
medium with higher refractive index (such as when passing from
a-MoQj/air to a-MoQ3/SiO;,), they bend away from the normal
to the boundary (blue arrow in Fig. 3b). This means that, in the
case of considering a prism of triangular shape, as that shown in
Fig. 3a, all the refracted polaritons (blue arrows) can converge
into a single spot, and thus the prism acts as a focusing lens for
highly confined polaritons (see Supplementary Note 9 for the
analytical description of general shapes of lenses focusing
hyperbolic waves). More importantly, as such a lens is based on
refraction of HPhPs, the refracted waves can potentially feature
infinitely large wavevectors when the boundary is perpendicular
to the asymptote of the hyperbolic IFC, which would yield deeply
sub-diffractional foci sizes. However, as HPhPs decay exponen-
tially, the intensity at a distant focus can be weak due to propa-
gation losses, which would be more notable for large wavevectors
approaching the asymptote of the hyperbolic IFC. Consequently,
we designed our triangular lens looking for a compromise
between a large refracted wavevector and a long propagation
length of the refracted polaritons. According to our theoretical
calculations (Supplementary Fig. 7), this compromise is obtained
for an angle of the in-plane wavevector of about 62°. Therefore,
we fabricate a triangular prism with boundaries perpendicular to
this angle (Fig. 3a). The experimental and simulated near-field
images for this lens design upon illumination at 11.16 um are
shown in Figs. 3¢, d, respectively. In both images, we observe
refraction of incident HPhPs with collinear k;, and S;, (red
arrows) at the lens boundaries (black dashed contour) resulting in
HPhPs with non-collinear k., and S, (green and blue arrows,
respectively) propagating along directions almost parallel to the

boundaries (blue arrows), which eventually converge, resulting in
a focus. This result is in stark contrast to that observed in a
similar lens based on refraction of highly confined polaritons in
an isotropic material, such as h-BN, in which refracted polaritons
bend towards the normal (Supplementary Fig. 8), making all
them to diverge (Fig. 3e). The near-field images of our hyperbolic
lens reveal that the wavevector k,,, of the refracted HPhPs is
much larger than the wavevector k;, of the incident HPhPs (note
that in the experimental image there is a contribution of tip-
launched HPhPs with two different k;, wavevectors). More
importantly, the wavevector k_,, is also much larger than the
wavevector k, of HPhPs propagating along the x-direction in the
flake on top of SiO, (black arrows). In order to avoid the influ-
ence from the permittivity of substrate, we evaluate the focusing
resolution by comparing the full-width at half-maximum
(FWHM) with the wavelength of polaritons propagating in
MoO;/Si0, (A, = 2r/ Ik, |). Since the focus shows a FWHM of
~240 nm (red dots and gray curve in Fig. 3f, for experimental and
simulated line profiles, respectively), we obtain a focus that is
much smaller than the polariton wavelength (A,) along the x-
direction, or the free-space illumination (,), namely of ~\,, /6, or
Ao/50. This resolution reveals that a diffraction-limited optical
system in hyperbolic media can show a focus that is much smaller
than the incident polaritonic wavelength, which again reflects the
unique behavior of electromagnetic waves in hyperbolic media.
Moreover, this result confirms our planar lens based on refraction
of HPhPs as a nano-optical element that greatly exceeds the
focusing resolution of any lens based on refraction of highly
confined polaritons in isotropic media3>-38,

Visualization of the general case of refraction. So far, we have
visualized refraction in hyperbolic media for the case in which
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Fig. 3 Sub-diffractional planar lens based on refraction of HPhPs. a Schematics of a refractive hyperbolic lens fabricated by etching a triangular air cavity
on the SiO, substrate below the a-MoQs flake. The top and bottom boundaries of the lens have the same slope as the boundary in b. Upon refraction at the
boundaries (orange contour line), polaritons bend far away from the normal, S, (blue arrows), with a tilted wavevector k,, (green arrows), converging at
a focal spot (red dot). S;, and ki, display the direction of propagation and the wavevector of incident polaritons in a-MoOs/air, respectively. b Analytic
isofrequency curves (IFCs) of polaritons propagating in a-MoOs/SiO, (black hyperbola) and a-MoOs/air (gray hyperbola). When the boundary (orange
line) is nearly perpendicular to the asymptote of the open hyperbolic IFC, the refracted polaritons propagate (S, blue arrows) almost parallel to the
boundary with large non-collinear wavevector (k,, green arrows). ¢ Experimental near-field image of the refractive planar hyperlens (black dashed line)
for polaritons in a 170-nm-thick a-MoOs slab, at Ay =11.16 um. The polaritons converge upon refraction at the triangular boundary. Compared to non-
refracted polaritons, indicated by k, and S, (black arrows) the refracted polaritons, Sy ;_e,, (blue arrows), propagate nearly parallel to the boundary. d
Simulated near-field image of the refractive planar hyperlens (black dashed line) considered in b and visualized in c. e, Simulated near-field image of a
refractive lens for in-plane isotropic polaritons in a 170-nm-thick h-BN slab, at A; = 6.5 pm. Upon refraction at the triangular boundary (black dashed line),
polaritons bend towards the normal, S, (blue arrow), with collinear wavevector k,; (green arrow), yielding a diverging effect. Horizontal propagation of
non-refracted polaritons is marked as k, and S,,. f Near-field intensity profiles (gray line and red dots) extracted through the focus spot along the vertical
direction in d and ¢, respectively. Both curves are normalized to the near-field intensity far away from the lens and flake edges. Confinement factors as large
as ~A,/6 and ~1,/50 are obtained with respect to the polariton and free-space light wavelengths.

NATURE COMMUNICATIONS | (2021)12:4325 | https://doi.org/10.1038/s41467-021-24599-3 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24599-3

Non-collinear incident and refracted k and S (at boundary-3)
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Refraction at Boundary-1

Reflection at Boundary-2 Refraction at Boundary-3

e

-10 -10

Fig. 4 Real-space visualization of the general case of refraction between two anisotropic media using nanoscale-confined HPhPs passing through a
bending-free planar prism. a Experimental Re (03(x,y)) near-field images of polaritons propagating in a 231-nm-thick a-MoOs flake at Aj =11.0 pm. The
black contour line marks a triangular prism fabricated by etching an air cavity on the SiO, substrate below the a-MoOs flake. A first refraction takes place
at boundary-1 (orange solid line) for incident polaritons with collinear k and S (black arrows), yielding refracted polaritons with non-collinear ky and Sg
(orange arrows). These polaritons then reflect at boundary-2 (green solid line), yielding polaritons with non-collinear k;, and S;, (green arrows). A second
refraction at boundary-3 (violet solid line) yields polaritons with non-collinear k., and S, (violet arrows). b Simulated Re(E,(x, y)) near-field images of
HPhPs for the case shown in a. Dashed lines in experimental and simulated near-field images indicate the wavefronts of polaritons as they pass through the
prisms. c-e Analytic IFCs of HPhPs in MoOs/air (gray curve) and MoQOs/SiO, (black curve), predicting the directions of refraction or reflection of HPhPs at
boundary-1 (¢), boundary-2 (d), and boundary-3 (e) based on momentum conservation. The orange (c), green (d), and purple (e) solid lines represent the
boundary-1, boundary-2, and boundary-3, while the corresponding dashed lines represent the normal to the boundary.

collinear k;;, and S, refract into polaritons with non-collinear k
and S_,. However, the general phenomenon of refraction
involves the incident polaritons exhibiting non-collinear k;, and
S;, (as sketched in Fig. 1b, d). In the following, we study this
fundamental phenomenon in hyperbolic media (Fig. 4). To do
this, we again fabricate prisms in a-MoOj; (following the same
structure design as in Fig. 2) and visualize (by s-SNOM) the
propagation of HPhPs refracting upon them. As shown in the
near-field image of Fig. 4a, we observe that HPhPs launched by
the edge of the flake (black arrows) refract at boundary-1 (Fig.
4c), and the outcoming HPhPs propagate with non-collinear ky
and Sy inside the prism (orange arrows). As such, these polar-
itons can now be used to visualize the general case of refraction at
another boundary of the prism. However, to carry out this

experiment successfully, we need to ensure that: (i) the angle of
the boundary allows refraction of polaritons according to
momentum conservation, and (ii) the HPhPs can reach this
boundary within a reasonable propagation distance. We fulfill
these conditions by considering a horizontal boundary (bound-
ary-2) followed by a vertical boundary (boundary-3) in the tri-
angular prism, as shown in the near-field image of Fig. 4a. In
particular, we observe that HPhPs with non-collinear k; and Sy
are reflected at boundary-2 (Fig. 4d), yielding polaritons with
non-collinear k;, and S,, (green arrows) propagating directly
towards boundary-3, and reaching it within a reasonably short
distance. Consequently, these polaritons refract at boundary-3,
which results in polaritons with non-collinear k,,, and S, (violet
arrows), as predicted by momentum conservation (Fig. 4e), and
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in good agreement with numerical simulations mimicking the
experiment (Fig. 4b). This result unambiguously demonstrates
refraction of waves whose energy flux and wavevector directions
are non-collinear, and thus constitutes the real-space visualization
of the general case of refraction between two hyperbolic media,
which, in addition, we demonstrate at the nanoscale and in a
natural medium. Furthermore, we highlight that, since k;, and
k., are close to the asymptotes of the IFCs, where the tangents
to both hyperbolas are parallel, S;, and S, are almost parallel
after refraction at boundary-3. As a result, polaritons refract
upon boundary-3 behave as if they had been directly transmitted
without any change in their direction of propagation, despite the
wavevector does change upon this refraction phenomenon.
Therefore, refraction upon this prism is bending-free, in
excellent agreement with our theoretical prediction shown in
Fig. 1d. Such bending-free refractive prism showed in our work
will open possibilities to engineer polaritonic wavefronts at the
nanoscale without the need of changing their direction of
propagation.

Conclusions

In summary, our work explores the character of refraction
between two strongly anisotropic media, which, despite its fun-
damental importance, has remained elusive up to now. Our
observations of refraction of strongly confined polaritons in a
hyperbolic biaxial van der Waals crystal reveal an exotic optical
effect: bending-free refraction, which opens the door to on-
demand steering of light at the nanoscale and in natural media.
Furthermore, our demonstration of a subwavelength planar lens
at the nanoscale based on hyperbolic refraction paves the way for
the development of planar nano-optical elements in anisotropic
media. Altogether, our results open new avenues for integrated
flat optics, directional energy transfer, and heat management
applications, as well as for mid-infrared (bio) sensing.

Methods
Sample fabrication and characterization. The a-MoO; and h-BN nanometer-
thick flakes were obtained by mechanical exfoliation using a Nitto tape (Nitto
Denko Co., SPV 224P) from commercial a-MoO; bulk crystals and isotopically
enriched h-BN (10B) crystals grown via the atmospheric pressure flux growth
method!?. First, the bulk crystals were thinned down employing the Nitto tape and
transferred on an optically transparent polydimethylsiloxane (PDMS) stamp.
Second, selected flakes with sharp edges were identified by an optical microscope
and transferred on the target substrate by the dry-transfer technique, which allows
a precise positioning and alignment of the flakes on top of the triangular air regions
(2D prisms) fabricated on a 500-nm-thick SiO, layer grown by wet oxidation on a
Si substrate. For an efficient transfer, the substrate was heated up to 200 °C.
The triangular air regions were fabricated in a two-steps process: (i) the air
structured patterns were defined using a direct writing system (MLA 100,
Heidelberg Instrument) equipped with a 365 nm LED light source on a 1.5-um-
thick positive tone photoresist (AZ MiR 701, MicroChemicals) previously
deposited on the SiO,/Si substrate; (ii) part of the SiO, layer was etched away by a
fluorine-based plasma using an inductively coupled plasma system (Advanced
Oxide Etcher, SPTS), generating gaps with a depth of around 350 nm into the SiO,
layer. To get rid of photoresist residues and contaminants, the etched substrates
were cleaned with a plasma ashing system (PVA TePla 300, PVA TePla AG) before
transferring a-MoOs and h-BN flakes.

Infrared near-field nanoimaging. Infrared nanoimaging was performed with a
commercial scattering-type scanning near-field optical microscope (s-SNOM)#041
from Neaspec GmbH. A tunable DRS Daylight Solutions quantum cascade laser
(from 880 to 1100 cm~!) was used as excitation source by focusing the light onto a
metal-coated (Pt/Ir) AFM (atomic force microscope) tip oscillating at a tapping
frequency of ~280 kHz with a tapping amplitude ~100 nm. We illuminate the a-
MoO; flakes with s-polarized infrared light and keep the polarization direction of
the incident electric field (E;,.) perpendicular to the flake edges to launch HPhPs.
The flakes were raster scanned and the tip-scattered field E,., was recorded with a
pseudo-heterodyne Michelson interferometer> and detected using a liquid nitro-
gen cooled HgCdTe (MCT) detector. To suppress far-field background signals, the
detected signal was demodulated at the nth harmonics of the tip oscillating fre-
quency (n = 3 in our work), yielding the complex-valued near-field signals

o, = s,e'%, with s, being the near-field amplitude and ¢, being the near-field

phase. Throughout the manuscript, we show the real part of the near-field signal,
Re(o;(x, y)), as a function of the tip position (x, y). Edge-launched polaritons yield
fringes with spacing A, where 1, is the polaritonic wavelength, while tip-launched
polaritons produce fringes with period of 1, /2, existing close to the flake edges (see
Figs. 2 and 3 in the main text).

Full-wave numerical simulations using finite-element methods. We simulated
s-SNOM near-field images using the finite-element-method numerical soft-

ware COMSOL MULTIPHYSICS. a-MoQjs slabs were placed on top of SiO, substrates
where we defined the same geometry of the air structures as in the experiments.
The thickness of the slabs was set to the value extracted from AFM measurements
of the a-MoOsj flakes in the corresponding experimental s-SNOM images. The
whole system was illuminated with plane waves with s-polarization perpendicular
to the flake edges. Given that the s-SNOM signal can be approximated by the
vertical component of the electric field*?, we calculated the real part of z compo-
nent the of the near-field signal at 50 nm above the slab surface, Re(E, (x,y)).
Meshing types and sizes were optimized to ensure a good convergence of simulated
results. The experimental s-SNOM images were well reproduced by our simulated
images (see Figs. 2—4 in the main text). Yet, since our numerical simulations do not
consider the influence of the tip, only the wavefront of edge-launched polaritons is
seen (note the difference with the measurements close to the flake edges, where
dense fringes appear due to tip-launched polaritons). The dielectric permittivity for
a-MoOj3 and isotopically enriched h-BN were taken from references!®33. The real
part of the dielectric function of SiO, used throughout this work was extracted by
fitting the values reported in references*>~4° to experimental HPhPs dispersions
with a Lorentzian model.

HPhPs dispersion and IFC from analytical calculations. The analytically calcu-
lated dispersion for polaritons in a biaxial slab embedded between two semi-infinite
media®* is given by

k(w) = g {arctan (sgl—p) + arctan (M) + ﬂl} J1=0,1,2...,

&

z

where k is the in-plane momentum, ie. k = /k% + k;, &, and &, are the permit-

tivity of the superstrate and substrate, respectively, d is the thickness of biaxial slab,

p=iy/e,/(e,cos?a + eysinzoc), and where « is the angle between the x-axis and k.

Based on the equation above, we calculate the IFC of HPhPs by varying « from 0°
to 360° for a fixed incident frequency w. In all cases we show propagating modes,
i.e. those for which |Re(k)|>|Im(k)|. In addition, since the polaritonic wavevector
depends on ¢; (¢, =1 all throughout this work as the superstrate is air), different
substrate permittivities can give rise to different effective hyperbolic media.

For the general case discussed in Fig. 1 in the main text, we select representative
permittivity values: &, = ¢, = &, =—3 for the isotropic slab and ¢, = 5, ¢, =
1, ¢, = 5 for the hyperbolic slab, respectively, since at least one negative component is
necessary for the existence of polaritons. The slab thickness is set to 100 nm in both
cases. The permittivity of the substrates &, are set to 1 and 5, for the medium in which
polaritons are incident and refracted, respectively (white and gray regions in
Fig. ¢, d).

For the specific case discussed in Figs. 2-4 we calculate the ICFs in a-MoO;
slabs on top of air and SiO, using the permittivity values described in the section
“Full-wave numerical simulations using finite-element methods”. The thickness of
a-MoOj; flakes was set to the value extracted from topography measurements.

Data availability
All data that support the findings of this study are available from the corresponding
author upon reasonable request
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