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Magnetic impurities on a superconductor induce subgap Yu-Shiba-Rusinov (YSR) bound states, localized
at the impurity site and fading away from it for distances up to several nanometers. In this paper, we present a
theoretical method to calculate the spatial distribution of the YSR spectrum of a two-dimensional superconductor
with arbitrary Fermi contours (FCs) in the presence of magnetic impurities. Based on the Green’s function
(GF) formalism, we obtain a general analytical expression by approximating an arbitrary contour shape to a
regular polygon. This method allows us to show the connection between the spatial decay (and, hence, the
extension) of YSR states and the shape of the FC of the host superconductor. We demonstrate the accuracy of this
approximation by comparing the results with those obtained from an exact numerical calculation based on a tight-
binding Hamiltonian. We further apply the analytical formalism to compute the evolution of YSR states in the
presence of a nearby impurity atom, and compare the results with scanning tunneling microscopy measurements
on interacting manganese dimers on the β-Bi2Pd superconductor. The method can be easily extended to any
arbitrary number of magnetically coupled impurities, thus providing a useful tool for simulating the spectral
properties of interacting YSR states in artificial atomic nanostructures.
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I. INTRODUCTION

Magnetic impurities placed on a superconductor are a
potential workbench for investigating many fundamental
properties of the superconductor and pairing mechanisms.
As predicted a long time ago independently by Yu, Shiba,
and Rusinov [1–3], the pair-breaking potential induced by
a magnetic moment distorts the superconducting bands and
gives rise to superconducting bound states with subgap quasi-
particle excitations, so-called Yu-Shiba-Rusinov (YSR) states.
Because they lie within the band gap, these excitations are
long lived and, hence, appear as very narrow resonances in
tunneling experiments [4,5]. YSR states are the elementary
states forming subgap bands in atomic chains of magnetic
impurities [6–15], allegedly turning topological and host-
ing Majorana bound states at their ends. The study of YSR
states also reveals fundamental aspects of atomic-scale mag-
netism. For example, scanning tunneling microscopy (STM)
experiments on superconductors with magnetic impurities
revealed valuable information about molecular [16–25] and
atomic properties, as hybridization of orbitals, anisotropy, etc.
[26–42].

The spatial distribution of YSR states is the subject of
several recent studies based on STM. YSR states appear
localized around atomic-sized magnetic impurities on su-
perconductors, and their spatial distribution may reflect the

shape of atomic or molecular orbitals responsible for the YSR
channel [12,19,24,36,43,44]. Furthermore, the YSR states
are generated by the local exchange interaction between the
impurity orbital with electrons in the superconducting host
and, consequently, far from the impurity the distribution of
YSR amplitude reflects the shape of superconducting bands
[20,31,43,45–47].

As demonstrated by Rusinov in his original work [3], there
are two length scales involved in the spatial decay of the
bound states away from the impurity: a long-range scale de-
termined by the superconducting coherence length ξs, which
provides an exponential decay, e−x/ξS of the YSR wave func-
tion, and a short length equal to the inverse of the Fermi
momentum k−1

F , over which the wave function oscillates and
exhibits an algebraic decay ∼(kF r)−1. This decay law is
valid for three-dimensional systems. For a general isotropic
superconductor, theory predicted that the decay law depends
on dimensionality of the superconducting band, namely, the
YSR amplitude decays as ∼(kF r)(1−d )/2 with dimension
d = 1, 2, 3 [45].

Several STM experiments observed YSR decaying several
nanometers in conventional superconducting systems [43,45–
47], which were attributed to a combination of two effects:
a reduced dimensionality of the superconducting bands and
the anisotropy character of their Fermi surfaces or con-
tours. This last effect is connected with the accumulation of
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multiple scattering wave vectors along specific directions of
the substrate, due to the existence of flat segments in the Fermi
surface. These cause an “electronic focusing” effect along
specific directions [48], resulting in the propagation of the
wave-function amplitude for larger distances. In spite of the
clear relevance of this effect, especially for highly anisotropic
superconductors, there is not a detailed analytical study on its
role in the decay of superconducting quasiparticle states. To
incorporate complex Fermi surfaces and contours one relies
on high-throughput numerical simulations.

In this paper we present an analytical model based on
the well-established Green’s function (GF) technique to study
the spatial dependence of the YSR spectrum in supercon-
ductors with a nonspherical Fermi contour (FC) and several
impurities. Specifically, we focus on two-dimensional super-
conductors with a FC that can be approximated by a regular
polygon. In the limit of the Fermi energy being much larger
than the superconducting gap, we obtain analytical expres-
sions for the GF of a superconductor with arbitrary FC, which
can be approximated by an N-sided regular polygon, from
which one can determine the local YSR spectrum of magnetic
impurities inside. Such analytical expressions are very useful
for describing experimental data of YSR states on supercon-
ductors with noncircular Fermi contours. We use our result to
obtain explicitly the GFs of a square- and hexagonal-shaped
FC [47,49], and demonstrate how the spatial decay of the YSR
is related to the shape of the Fermi contour. These cases are
good approximations to describe surface superconductivity in
materials like β − Bi2Pd and NbSe2, respectively. In particu-
lar, our expressions show the anisotropic spatial variation of
the YSR states, which follows the symmetry of the FC of the
host superconductor. We also derive a compact analytical ex-
pression to describe the spectrum of superconductors with an
arbitrary number of magnetic impurities. We use our model to
describe experimental data of Mn dimers on β − Bi2Pd. From
the comparison between experiment and theory, we unravel
the dimer’s magnetic configuration and suggest a possible
origin of the oscillation of the dimer’s magnetic configuration
reported in a previous work [50].

The structure of our work is the following: In Sec. II we
present the theoretical model based on the GF technique. We
present the general expression for the density of states and an
expression for the exact GF describing a superconductor with
arbitrary number of impurities, in terms of the free propagator
in a superconductor without magnetic impurities. In Sec. III,
we use the model to study the space dependence of the YSR
amplitude away from the scattering impurity. The mentioned
wave-vector focusing effect shows up in experiments as an
anisotropic standing wave pattern of YSR amplitude decaying
away from the magnetic impurity. We reproduce YSR wave-
function oscillations along specific directions of the surface
depending on the shape of the FC. In particular, we confirm
the larger extension or smaller distance decay of YSR oscilla-
tion pattern scales with the size of flat segments in the FC, i.e.,
with the density of nesting vectors along one dimension. In
Sec. IV, we compare the analytical method to a tight-binding
superconducting model in a square lattice which, depending
on the chemical potential, can host circular or squared FCs.

In Sec. V, we apply our model to study the hybridization
of YSR states from several impurities. We find that inter-

acting YSR states interfere and split in odd and even states,
following predictions by numerical methods [20,51]. We fur-
ther calculate the dependence of the YSR energy splitting with
the relative distance and angle between adatoms. This simple
simulations can be utilized to extract information about the
type of magnetic alignment between spins. To illustrate this,
we compare the theoretical results with experiments on Mn
dimers on β − Bi2Pd and obtain information about the type of
magnetic coupling, ferromagnetic (FM) or antiferromagnetic
(AFM), of the dimers in different surface configurations. Fi-
nally, in Sec. VI we present our conclusions.

II. THE MODEL

In this section we use the well-established GF method to
build up a general expression for the density of states of a
two-dimensional superconductor with an arbitrary FC shape,
modeled as a polygon. We also discuss how to treat multiple
atomic impurities by deriving a compact expression for the
GF in real space.

A. Local density of states

We consider a two-dimensional BCS superconductor de-
scribed by the Bogoliubov–de Gennes Hamiltonian [52]

Ȟ0(r) = ξ (p̂)τ̂3 + �τ̂1, (1)

where ξ (r) is the quasiparticle’s energy operator, � is the s-
wave superconducting gap, and p̂ = −ih̄∇r is the momentum
operator. Hamiltonian (1) is a 4 × 4 matrix in the Nambu ×
Spin space. In the absence of impurities it has a trivial struc-
ture in spin space, whereas the Nambu structure is described
by the Pauli τ̂i matrices. In our notation 2 × 2 and 4 × 4
matrices are indicated with “hat” (·̂) and “check” (·̌) symbols,
respectively.

We introduce N pointlike magnetic impurities, located at
rn, where the index n is the impurity index. The potential of
each impurity is described by

V̌n = Unτ̂3 + ha
nσ̂

a, (2)

where σ̂ a stands for the Pauli matrices spanning the spin
space, and Un and ha

n stand for the electrostatic and a-spin
component of the exchange fields in the nth magnetic impu-
rity, respectively.

In order to obtain the spectrum of the system we introduce
the equation of motion for the 4 × 4 matrix GF, the so-called
Gor’kov equation [53], which, in real frequency ε space, reads[

ε − Ȟ0(r) −
N∑

n=1

V̌nδ(r − rn)

]
Ǧ(r, r′; ε) = δ(r − r′).

(3)
We obtain the retarded and advanced GF by adding an in-
finitesimal η to the frequency, ε → ε ± iη, respectively. Once
the GF is known one can compute the local density of states
[ρ(r, ε)] from the retarded GF:

ρ(r, ε) = 1

4π
Tr[ImǦ(r, r, ε + iη)], (4)

where the trace runs over the Nambu × spin space.
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B. General expression for the GF in the presence
of multiple impurities

The spectrum of a single impurity can be found explic-
itly by solving Eq. (3) analytically. In the case of multiple
impurities the equations become more cumbersome. In this
section we provide a useful expression to compute Ǧ(r, r) in
the presence of N impurities situated at arbitrary position ri.

We start writing the solution of Eq. (3) in the form of a
Dyson series:

Ǧ(r, r′) = Ǧ0(r − r′) +
∑

n

Ǧ0(r − rn)V̌nǦ(rn, r′), (5)

where Ǧ0(r − r′) is the GF of the two-dimensional (2D)
superconductor without impurities. To simplify the notation
we drop the ε dependence of the GFs. Our goal is to write the
right-hand side of this equation only in terms of the unper-
turbed Ǧ0. For this we write the N equations for the matrices
Ǧ(rn, r′), with n = 1, . . . , N in a compact form:

Ǧ(r′) = [I − M]−1Ǧ0(r′), (6)

where is I is the 4N × 4N identity matrix and we have intro-
duced the shorthand notation:

Ǧ(r′) =

⎛
⎜⎜⎝

Ǧ(r1, r′)
Ǧ(r2, r′)

...

Ǧ(rN , r′)

⎞
⎟⎟⎠, Ǧ0(r′) =

⎛
⎜⎜⎝

Ǧ0(r1 − r′)
Ǧ0(r2 − r′)

...

Ǧ0(rN − r′)

⎞
⎟⎟⎠, (7)

and the 4N × 4N matrix

M =

⎛
⎜⎜⎝

Ǧ0(0)V̌1 Ǧ0(r1 − r2)V̌2 · · · Ǧ0(r1 − rN )V̌N

Ǧ0(r2 − r1)V̌1 Ǧ0(0)V̌2 · · · Ǧ0(r2 − rN )V̌N
...

...
. . .

...

Ǧ0(rN − r1)V̌1 Ǧ0(rN − r2)V̌2 · · · Ǧ0(0)V̌N

⎞
⎟⎟⎠. (8)

The matrix (I − M) contains the information about the bound
states of a system of N magnetic adatoms and their hybridiza-
tion. In particular, the YSR states are determined from the
condition det(I − M) = 0.

By solving the set of equations (6), and after substitution
into Eq. (5) one can obtain the full GF in terms of G0, the
GF in the absence of impurities. In most of the previous
works superconductors with a spherical Fermi surface were
considered. In the next section we obtain Ǧ0(r − r′) for FCs
with arbitrary shape that can be approximated by a polygon.
In Sec. V we use Eqs. (5)–(8) for the two impurities case
(N = 2).

C. Real space GF for superconductors with noncircular FC

In this section we obtain the GF of a 2D superconductor
with an arbitrary FC. We calculate Ǧ0(r − r′) in an M-sided
regular polygon centered at p = 0 (see Appendix). We focus
on three particular examples—the square (M = 4), hexagon
(M = 6), and circular (M → ∞) FCs—and compare the spa-
tial decay of the states bounded to the impurities in all cases.

The real space GF of the two-dimensional clean supercon-
ductor reads

Ǧ0(r − r′) =
∫

d2p
(2π )2

Ǧ0(p)eip·(r−r′ ), (9)

where Ǧ0(p) is given by the Gor’kov equations of the hosting
media in momentum space, [ε − ξ (p)τ̂3 − �τ̂1]Ǧ0(p) = 1.
We transform the integral in Eq. (9) to an integral over the
quasiparticle energy ξ , by writing d2 p = dC d pn, where dC is
a differential element on a constant energy contour and pn the
perpendicular component of the momentum, normal to such
contour, with d pn = dξ/|∂ξ/∂p| (see sketch in Fig. 1). The
relevant contribution to the integral is around the FC, where

the GFs have poles. Therefore it is convenient to linearize ξ

around the FC.

ξ (p) ≈ vF · (p − pF ), (10)

where the Fermi velocity, vF ≡ ∇pξ |pF
, points in the direction

perpendicular to the the constant energy contours (see sketch
in Fig. 1). The integral over ξ goes from −μ to ∞. In metallic
systems, μ is usually the largest energy scale, hence we take
the limit μ → ∞ and integrate using a residue theorem.

In the next section we compute the integral (9) for inscribed
regular polygons, and discuss some examples.

FIG. 1. Right panel: Sketch of the quasiparticle energy versus
two-dimensional momentum p. The red curve, at ξ = 0, is the FC.
Left panel: Sketch of the FC on the (px, py ) plane. The vector vF is
parallel to ∇pξ and hence points in the direction perpendicular to the
curves of equal energy.
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FIG. 2. (a)–(c) The spatial dependence of the correlation function Tr[Im[G0(x, y; ε + iη)]] evaluated at ε = 2� and normalized with
respect to its value at (x, y) = (0, 0): (a) for a circular, (b) for a square, and (c) for a hexagonal FC. (d)–(f) YSR calculated DOS for the
three different FCs and normalized with respect to its value at x = y = 0. (e) Radial cut along the (100) direction of the ρYSR in panels (d)–(f).
(h) Conductance map recorded by STS for one YSR state of an isolated V adatom deposited on β-Bi2Pd [49]. Parameters: I = 250 pA,
V = 0.93 mV. (i) YSR spatial dependence measured for magnetic impurities on La(1000) films grown on a Re(1000) crystal (adapted from
Fig. 1 a in Ref. [47]).

III. EFFECT OF THE DIMENSIONALITY AND SHAPE
OF FC ON THE YSR STATES SPATIAL DEPENDENCE

The dimension of the host superconductor determines the
characteristic of the decay of the superconducting GF [45].
The latter manifests on the spatial dependence of the YSR
peaks. Namely, the spatial dependence of the normal compo-
nent of the GF is a fast oscillating function with period kF r
with an exponential decay over the coherence length ξs. For
a spherical FC, there is an additional prefactor (kF r)(1−d )/2,
where d is the dimensionality of the system, from which it
follows tha lower dimensional systems exhibit longer correla-
tion distances.

According to this rule, in a 2D superconductor with a
circular FC the decay of the GF obeys (kF r)−1/2e−r/ξs [see
Eq. (A9) of the Appendix]. If we instead assume that the FC
can be approximated by an M-sided regular polygon, we can
determine the GF in the absence of impurities following the
procedure described in Sec. II C. For the unperturbed GF we
obtain the following expression [cf. Eq. (A3)]:

G0(x, y) =
M∑

k=1

1

(2π )2

∫ nk/wk+tan π/M

nk/wk−tan π/M
dχ

×
∫

dξ G0(ξ )e−i[(mξ/p′
F )+p′

F ]χwk
, (11)

where nk = x cos( 2πk
M ) + y sin( 2πk

M ), wk = −x sin( 2πk
M ) +

y cos( 2πk
M ), and p′

F = pF cos( π
M ), with k = 1, 2, . . . , M. It is

straightforward to check (see the Appendix) that in the limit
M → ∞ we recover the result for the circular FC.

We first use Eq. (11) to calculate the GF for a
squarelike FC. The exact expression is given in the Ap-
pendix [Eq. (A10)]. To illustrate the anisotropic spatial
behavior of the GF we compute G0 in two directions: y = 0
[Eq. (A12)] and x = y [Eq. (A13)]. These equations show
decaying behaviors that differ from an isotropic 2D super-
conductor. In the diagonal direction, the decay resembles a
three-dimensional (3D) superconductor, while, in the y = 0
direction, one obtains a one-dimensional-like (1D-like) decay.

The full density of states (DOS), including the YSR bound
states, can be written in terms of the unperturbed Green’s
functions, G0. For the case of a single YSR state the corre-
sponding GF reads [54]

Ǧ(r, r′) = Ǧ0(r − r′) + Ǧ0(r)V̌ [1 − Ǧ0(0)V̌ ]−1Ǧ0(r′).
(12)

The poles of the second term in the right-hand side determine
the energy of the YSR bound states; all the spatial information
is contained in the unperturbed GF, Ǧ0(r).

In Figs. 2(a)–2(c) we show the correlation func-
tion, Tr[ImǦ0(r)], at an energy ε = 2�, for circu-
lar, square-shaped, and hexagon-shaped FCs, respectively.
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The square- and hexagon-shaped FCs resemble the Fermi
surface of the β − Bi2Pd [55] and La(0001) [47] supercon-
ducting surface. We approximate both cases by a single,
square- or hexagon-shaped band. To compare the results,
throughout the work we use the same set of parameters.
Namely, for the superconducting gap � = 0.78 mV, effective
mass m = 6.67me, Fermi momentum p f = 0.274/a0 (a0 =
3.3 Å), and exchange coupling α2 = (πν0JS)2 = 0.156.

We next focus on the spatial distribution of the YSR states
for the same three examples. In Figs. 2(d)–2(f), we show the
spatial dependence of the DOS obtained from the full GF,
Eqs. (4) and (12), evaluated at the energy of the YSR bound
state. In Fig. 2(g) we show cuts of the DOS along the (100)
direction. As expected, the spatial decay of the circular FC is
faster than that along the symmetrical direction of the square-
shaped FC, which behaves as a lower dimensional case. The
hexagon-shaped case lies in between.

Finally, in Figs. 2(h) and 2(i) we show STM measure-
ments. Figure 2(h) shows the spatial dependence of a YSR
state created by a V adatom on the surface of β-Bi2Pd. The
latter is a multiband type-II superconductor, with presumably
a surface 2D superconductivity. First-principle calculations
[56] suggest that the β − Bi2Pd has square-shaped bands.
Qualitatively this is confirmed by comparing Fig. 2(h) and
our predictions for a (single) square-shaped FC, Fig. 2(e).
In Fig. 2(h), we show an example of a hexagon-shaped FC.
Namely, the spatial dependence of the YSR of magnetic im-
purities in the La(1000) films grown on Re(1000) [47].

The good agreement between theoretical [Figs. 2(e) and
2(f)] and experimental [Figs. 2(h) and 2(i)] results demon-
strates the suitability of our model for a qualitative description
of the ρ(r, ε) of superconductors with magnetic impurities.
The results demonstrate how the low-symmetric square- and
hexagon-shaped FCs lead to a slower decay of the YSR states.
Such a decay is similar to the 1D situation, and suggests
the use of superconductors with a square-shaped FC for the
realization of one-dimensional Andreev crystals [57,58] by
placing chains of magnetic defects along the direction parallel
to the symmetry axis of the square.

In principle, the method introduced in Secs. II and III can
be extended to 3D materials. However, in this case calcula-
tions are much more involved and do not lead to compact
expressions useful for analytical quantitative studies. Qual-
itatively, though, one expects in three dimensions similar
behavior regarding the spatial decay of the YSR states in the
directions of Fermi surface nesting.

IV. COMPARISON WITH TIGHT-BINDING MODELS

To compare the above analytical results in which FCs are
approximated by a regular polygon, we present in this sec-
tion exact solutions of a superconducting tight-binding (TB)
model in a square lattice. By changing the chemical potential
μ, the FC evolves from a circular to a square shape in a
continuous manner. The tight-binding Hamiltonian reads

ȞT B(r) = ξ (k)τ̂3 + �τ̂1, (13)

where ξ (k) = −2t (cos kxa0 + cos kya0 − 2) − μ. We can ro-
tate the momentum direction or the spatial coordinates in
order to obtain a proper squared shape parallel to the

FIG. 3. (a), (b) The spatial dependence of the DOS evaluated
at the YSR state in units of the inverse of the hopping term:
(a) for a circular FC with μ = 0.5t , kF = 0.71π/a0, and ε = 0.72�;
(b) for a square FC with μ = 4t , kF = 0.22π/a0, and ε = 0.82�.
(c), (d) Radial cut along the (100) and (110) directions of the ρYSR in
panels (a) and (b). Solid lines represent the DOS obtained from the
computational calculation from the tight-binding Hamiltonian (ρC).
Dot-dashed lines represent the analytical calculation (ρA). (c), (d) In-
sets show the band dispersion of the model for the circular and
square-shape FCs. Blue (yellow) in the color bar represents the min-
imum (maximum) of the band dispersion. The discrete DOS of the
TB calculation is interpolated using a Gaussian distribution centered
on the lattice sites. To compare the spatial decay of the YSR states
we normalize the analytical DOS with respect to the DoOS around
x = 4 nm in the lattice model.

coordinate axes. Based on the set of parameters of the
continuum models, we estimate the hopping term as t =
h̄2/(2ma2

0) ≈ 50 mV.
The local unperturbed GF is obtained from Eq. (9) now

defined in the first Brillouin zone. The integration on one of
the momenta is converted into a contour integral and per-
formed using the algorithm described in [59]. As a result
we obtain a regularized GF that can be finally integrated
computationally along the other momentum to get the local
unperturbed GF.

In Fig. 3 we show the spatial variation of the local DOS
around the impurity evaluated at the YSR bound state energy
ε ≈ 0.8�, for different values of the chemical potential re-
producing the limits in which the FCs are compatible with a
circular (μ = 0.5t) and square shape (μ = 4t). Notice that in
both cases μ 	 �, which is the limit at which the analytical
approach of Sec. III is valid. The Fermi momenta are fixed
by the dispersion relation for a given chemical potential and
consequently the coherence length for each case is different.
We find a very good quantitative agreement between numer-
ical and analytical approaches which shows that the regular
shape approximation can be safely used even when the FCs
are not perfect polygons. Furthermore, the analytical approach
provides the correct spatial decay of the YSR away from the
impurity in both circular and square-shaped FCs in the (100)
and (110) directions.
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V. HYBRIDIZATION OF YSR BOUND STATES
FROM NEIGHBORING IMPURITIES

Atomic manipulation using the tip of a STM has
demonstrated a large potential for fabricating atomic nanos-
tructures of magnetic impurities on superconductors and
exploring the hybridization of their YSR wave func-
tion [20,35,36,41,42,50,60–63]. As predicted by Flatté and
Reynolds [51], the hybridization between overlapping YSR
states depends on the relative alignment of the impurities’
spins and, for the case of parallel aligned spins, leads to a
splitting of the subgap features into two new states with sym-
metric and antisymmetric spatial distribution. The splitting
oscillates with the separation between impurities (d) with pe-
riods comparable with the Fermi wavelength of the substrate.
In the presence of nonisotropic FCs the spatial distribution of
the YSR splitting shows intriguing orientation dependence for
short interimpurity distances [20,51].

In this section we explore the role of the YSR-focusing
effect described above on the YSR hybridization. We apply
the model described in Sec. II B to study YSR hybridization
of two classical impurities on a surface with a squared FC as
a function of their alignment on the substrate. We first assume
that the impurities have parallel spin and analyze the splitting
of their YSR states as a function of their alignment. The GF
of the dimer can be obtained by constructing the matrix in
Eq. (8) with N = 2. The resulting spectral function shows
that the YSR states split by an amount E representing the
hybridization between YSR states. As we show in Fig. 4(a)
the splitting energy oscillates as a function of the distance
between impurities. In Figs. 4(b) and 4(c), we show that the
oscillation amplitude of the YSR splitting is barely constant
when the impurities are aligned along the (100) direction
[panel (b)], while it quickly decays along the (110) direction.
This proves that the focusing effect enhances the hybridization
when the atoms are aligned parallel to the direction of the
nesting vectors.

To correlate these simulations with real systems, we com-
pare them with experimental results on pairs of manganese
atoms positioned with precision by means of atomic manip-
ulation on the β − Bi2Pd superconductor surface. The β −
Bi2Pd surface is a squared lattice of bismuth atoms with lattice
parameter a = 3, 36 Å. Manganese adatoms show two species
of YSR states [49] (different energies). Adatoms in neighbor
sites frequently collapse in Mn2 dimers with no subgap fea-
tures [50]. Therefore, we explore the possible next-neighbor
distances, namely, Mn dimers aligned along the (210), (110),
and (100) crystallographic directions with spatial separation√

5a, 2
√

2a, and 2a. In Fig. 4(d) we compare differential
conductance spectra measured on a reference adatom before
(blue) and after placing a second adatom at the position in-
dicated in the insets. When the second adatom is located at
the sites (2a, a) or (2a, 2a) the YSR state appears split by
∼300 μeV and ∼200 μeV, respectively. The larger splitting
for the former, as well as the range of the splitting energy, are
qualitatively reproduced by the theory, thus suggesting that
these dimers have their spin with a close-to-parallel align-
ment.

For the third dimer, the YSR peaks are barely affected
by the addition of a Mn adatom on the (0,2a) site, while

(a)

(d)

(b) (c)

FIG. 4. (a) The YSR splitting energy E (�), on a S = 1/2 im-
purity as a function of the x and y positions of a second impurity
on a 2D superconductor with a square-shaped FC. The anisotropy of
the band determines certain directions along which the splitting is
larger. (b), (c) YSR subgap spectra on the impurity as a function of
the position of the second impurity along the (1,0) and (1,−1) lines
of high symmetry [indicated with dashed lines in (a)]. (d) dI/dV STS
measurements with a superconducting tip (coated with β − Bi2Pd)
on a Mn adatom on β − Bi2Pd before (blue) and after (colored)
formation of a Mn2 dimer by bringing a second Mn adatom into three
different substrate positions, with respect to the probed adatom. From
top to bottom: (2a, a), (2a, 2a), and (0,2a), with a being the lattice
constant of β − Bi2Pd (i.e., d = √

5a, 2
√

2a, and 2a, respectively).
These atomic sites are represented in panel (a) as colored dots. The
bottom gray spectra is the reference spectra measured on a bare
substrate region (the gap of the β − Bi2Pd substrate is 0.75 meV and
the tip’s gap approaches close to this value).

our model in Fig. 4(a) predicts a larger splitting than in the
previous cases due to the focusing effect. This suggests that
in this configuration the Mn dimers are antiferromagnetically
aligned. As observed in our previous results on this sur-
face [50], the substrate-mediated exchange coupling between
adatoms also depends on their relative orientation, with a
preference of antiferromagnetic (AFM) alignment along the
high-symmetry (100) direction.

We apply our continuum model to obtain the spectral evo-
lution of YSR states as a function of the relative angle between
impurities, similarly as in Ref. [20] where the calculation
was done using a tight-binding lattice. Figure 5(a) shows the
angular dependence of the energy splitting of hybridized YSR
states for the three Mn dimers of the experiment shown in
Fig. 4(d). As mentioned above, the YSR splitting of a (2a,0)
dimer is expected to be the largest for parallel spins but
quickly reduces with the relative angle, vanishing for AFM
spins. Figures 5(b)–5(e) show the evolution of the YSR states
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(a)

(d) (e)

(b) (c)

FIG. 5. (a) Calculated dependence of the YSR splitting on the
mutual spin orientation, from 0 (FM dimer) to π (AFM dimer). The
two adatoms are on a 2D superconductor with a square-shaped FC, in
three configurations along the (100), (110), and (210) directions (i.e.,
with interatomic distances 2a, 2

√
(2)a, and

√
(5)a, respectively).

(b)–(e) Evolution of the YSR spectral function with the dimer’s
separation along the (100) direction for different spin angles.

with dimer separation along the (100) direction for different
relative angles of the impurity spins. The oscillation amplitude
of even and odd states decreases when they are noncollinear
and merge into a single peak for AFM spins. These results
suggest that Mn dimers built along the (100) direction are
antiferromagnetically aligned in contrast to the other dimers
explored, whose YSR splitting is consistent with a close to
ferromagnetic alignment of their relative spins. We suggest
that, in addition to inducing a larger YSR wave-function hy-
bridization along the (100) direction, the anisotropic FC also
leads to stronger exchange interaction between dimers [64],
which at such close distances promotes their mutual AFM
alignment.

VI. CONCLUSIONS

In conclusion, we present an analytical method to compute
the GFs and spectrum of a two-dimensional superconductor
with an arbitrary FC in the presence of magnetic impurities.
We apply the method to FCs with the shape of a regular
polygon. We found that the spatial dependence of the YSR

subgap states reflects the symmetry of the FC, and that the
characteristic decay length of such states strongly depends on
the spatial direction. Namely, Fermi surface nesting in low-
symmetry cases lead to a focusing effect of the YSR spectrum.
We contrast our model with a tight-binding model and STM
measurements on materials with different FC shapes and find
good agreement. We also present STS measurements of Mn
dimers on top of a superconductor with a square FC and, by
comparing them with our theoretical results, we demonstrate
the applicability of the approach.
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APPENDIX: INTEGRATION OF SEVERAL FCs

In this Appendix we present the result of the integral
Eq. (9) for an M-sided regular polygon. We then use the
solution to calculate the integral for the square-shaped contour
and the M → ∞ limit which corresponds to the circular case.

We define the basis vectors (ûx, ûy) → (n̂, ŵ), where n̂ is
a vector normal to a polygon’s side and ŵ its perpendicular
vector. The vertices of the polygon are at the points

Vi :

[
cos

(
2i − 1

M
π

)
, sin

(
2i − 1

M
π

)]
. (A1)

It is also convenient to define p′
F = pF cos( π

M ), where pF is
the Fermi momentum of the inscribing circumference, i.e., the
momentum in the vertices of the polygon. The integral along
one of the polygon sides can be written as

1

(2π )2

∫
dξ

pn
G0(ξ )e−i[(mξ/p′

F )+p′
F ]nk

∫ pk
n tan π/M

−pk
u tan π/M

e−iqwk
dq = 1

(2π )2

∫ uk/wk−tan π/M

nk/wk−tan π/M
dχ

∫
dξ G0(ξ )e−i[(mξ/p′

F )+p′
F ]χwk

, (A2)

where we defined nk = x cos( 2πk
M ) + y sin( 2πk

M ), pk
n = px cos( 2πk

M ) + py sin( 2πk
M ), wk = −x sin( 2πk

M ) + y cos( 2πk
M ), and pk

w =
−px sin( 2πk

M ) + py cos( 2πk
M ). Thus the GF reads

G0(x) =
M∑

k=1

1

(2π )2

∫ nk/wk+tan π/M

nk/wk−tan π/M
dχ

∫
dξ G0(ξ )e−i[(mξ/p′

F )+p′
F ]χwk . (A3)

Defining θp = 2πk
M , in the limit M → ∞ we get that

G0(x) =
N∑

k=1

1

(2π )2

∫ n(θp)/w(θp)+dθ/2

n(θp)/w(θp)−dθ/2
dχ

∫
dξ G0(ε, ξ )e−i[(mξ/pF )+pF ]χw(θp) =

∫ 2π

0

dθ

(2π )2

∫
dξ G0(ε, ξ )e−i[(mξ/pF )+pF ]u(θp).

(A4)
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Note that u(θp) = x cos(θp) + y sin(θp) = r[cos(θp) cos(θr ) + sin(θp) sin(θr )] = r cos(θp − θr ), so

G0(x) =
∫ 2π

0

dθp

(2π )2

∫
dξ G0(ε, ξ )e−i[(mξ/pF )+pF ]r cos(θp−θr ). (A5)

Integral (A5) corresponds to the circular FC, which can be analytically solved.

G0(x) = m

(2π )2

∫ 2π

0
dθpeipF r cos(θp−θr )

∫ ∞

−∞
dξ

ετ0σ0 + �τ1σ0 + ξτ3σ0

ξ 2 + ω2
ei(m/pF )ξr cos(θp−θr )

= m

4π

∫ 2π

0
dθp{ρBCS(ω) + i sgn[cos(θp − θr )]τ3σ0}e−(m/pF )ωr| cos(θp−θr )|+ipF r cos(θp−θr ),

(A6)

where ρBCS(ω) = ετ0σ0+�τ1σ0
ω

, with ω = √
�2 − ε2. The integral is easier to evaluate after making the change θ ′ = θp − θr .

Noticing that ∫ π/2

−π/2
dθ eiu cos(θ ) = π [J0(u) + iH0(u)], (A7)

where J0(x) is the zero-order Bessel function of the first type and H0(x) is the zero-order Struve function, we finally obtain

G0(r) = πN0{ρBCS(ω)[Re{J0(u) + iH0(u)}] + iτ3σ0[Im{J0(u) + iH0(u)}]}, (A8)

where u = (pF + i m
pF

ω)r = (pF + iξ−1
s )r and N0 is the normal metal DOS. In the limit r → 0 this expression reduces to the

BCS Green’s function. In the asymptotic limit pF r 	 1 we obtain [65]

G0(E , x) = πN0iτ3σ0

[√
2

π pF r
sin

(
pF r − π

4

)
e−r/ξs + 2

π pF r

]
+ πN0ρBCS(ω)

√
2

π pF r
cos

(
pF r − π

4

)
e−r/ξs . (A9)

We now calculate the integral for a square-shaped FC. Taking M = 4 in Eq. (A3) one can straightforwardly check that

G0(x) = m

2πy

∫ x+y

x−y
dv[ρBCS(ω) cos(pF v) − sin(pF |v|)τ3σ0]e−(m/pF )ω|v|

+ m

2πx

∫ x+y

y−x
dv[ρBCS(ω) cos(pF v) − sin(pF |v|)τ3σ0]e−(m/pF )ω|v|. (A10)

All these integrals are analytically solvable. We focus here on the region x + y > 0 and x − y > 0 (due to the symmetry of the
system results for the other regions are obtained similarly). In leading order in mω/p2

F � 1 we obtain

G0(x) = π
N0

4

ρBCS(ω)

p2
F

{
e−(m/pF )ω(x+y)

(
1

x
+ 1

y

)
pF sin [pF (x + y)] + e−(m/pF )ω(x−y)

(
1

x
− 1

y

)
pF sin [pF (x − y)]

}

− π
N0

4

τ3σ0

p2
F

{
e−(m/pF )ω(x+y)

(
1

x
+ 1

y

)
pF cos [pF (x + y)] + e−(m/pF )ω(x−y)

(
1

x
− 1

y

)
pF cos [pF (x − y)] − 2pF

x

}

+ O

(
mω

pF

)
. (A11)

In the main text we discuss the GF over the lines y = 0 and x = y:

G0(x, y = 0) = πN0ρBCS(ω)

{
e−|x|/ξs

[
1

pF x
sin(pF x) + cos(pF x)

]}

− πN0τ3σ0

{
e−|x|/ξs

[
1

pF x
cos(pF x) − sin(pF x)

]
− 1

pF x

}
, (A12)

G0(x = y) = m

π
ρBCS(ω)

{
e−2x/ξs

1

pF x
sin(2pF x)

}
− m

π
τ3σ0

{
e−2x/ξs

1

pF x
cos(2pF x) − 1

pF x

}
. (A13)
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