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Anatomy of ultrafast quantitative magnetoacoustics in freestanding nickel thin films
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We revisit the quantitative analysis of the ultrafast magnetoacoustic experiment in a freestanding nickel thin
film by Kim and Bigot [J.-W. Kim and J.-Y. Bigot, Phys. Rev. B 95, 144422 (2017)] by applying our recently
proposed approach of magnetic and acoustic eigenmode decomposition. We show that the application of our
modeling to the analysis of time-resolved reflectivity measurements allows for the determination of amplitudes
and lifetimes of standing perpendicular acoustic phonon resonances with unprecedented accuracy. The acoustic
damping is found to scale as ∝ ω2 for frequencies up to 80 GHz, and the peak amplitudes reach 10−3. The
experimentally measured magnetization dynamics for different orientations of an external magnetic field agrees
well with numerical solutions of magnetoelastically driven magnon harmonic oscillators. Symmetry-based
selection rules for magnon-phonon interactions predicted by our modeling approach allow for the unambiguous
discrimination between spatially uniform and nonuniform modes, as confirmed by comparing the resonantly
enhanced magnetoelastic dynamics simultaneously measured on opposite sides of the film. Moreover, the
separation of timescales for (early) rising and (late) decreasing precession amplitudes provide access to magnetic
(Gilbert) and acoustic damping parameters in a single measurement.

DOI: 10.1103/PhysRevB.107.134419

I. INTRODUCTION

Since early experimental studies [1–3], ultrafast magne-
toelastic interactions driven by femtosecond light pulses are
conveniently described in the time domain: the dynamics of
magnetization driven by single or multiple acoustic pulses
with picosecond duration are monitored using the magneto-
optical pump-probe technique. This intuitive picture allows
for an elegant description of magnetization precession am-
plified by a sequence of acoustic pulses with an appropriate
time interval via the magnetoacoustic coherent control mech-
anism [4,5]. Moreover, the time-domain picture of ultrafast
magnetoacoustics facilitates the interpretation of magnetiza-
tion switching [6,7], where the duration of acoustic pulses
is shorter than the period of ferromagnetic resonance (FMR)
precession.

An alternative view on ultrafast magnetoacoustics is
provided in magneto-optical transient grating experiments
[8–11]. Here, the spectrally separated quasimonochromatic
acoustic excitations allow for observing resonant amplifica-
tion of FMR precession induced by each acoustic mode.
Such resonant amplification has also been observed in exper-
imental setups involving ferromagnetic thin films embedded
in acoustic cavities [12], deeply subwavelength ferromag-
netic nanogratings [13], and nanomagnets [14]. In all these
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experiments the dependence of the FMR frequency on the
external magnetic field makes it possible to tune the FMR
precession in resonance with a long-lived acoustic mode of
interest. Very recently we have extended this approach to
ultrafast magnetoacoustic dynamics in freestanding thin films
and multilayers [15]. Our theoretical approach is based on
eigenmodes decomposition of both acoustic and magnetiza-
tion dynamics, which allows for a more insightful analysis
of ultrafast magnetoacoustic dynamics experiments in terms
of resonant magnetoelastic interactions between individual
modes of longitudinal acoustic phonons and perpendicular
standing-spin-wave (magnon) modes [16]. For instance, the
application of such rigorous theoretical analysis to resonant
phonon-magnon interactions in freestanding multilayer struc-
tures predicts the key role of the symmetry of magnetic and
acoustic modes in prescribing well-defined selection rules
for individual phonon-magnon interactions. One of the most
relevant conclusions was that in symmetric structures interac-
tions between magnon and phonon eigenmodes with different
symmetries were forbidden.

In this paper, with the purpose of benchmarking the power
of our improved approach, we apply it to reinterpreting the ex-
perimental results by Kim and Bigot [5] obtained for a 300-nm
freestanding nickel thin film. We show that even for such thick
structures, where frequencies of spatially uniform (FMR) and
nonuniform (spin-wave or magnon) modes cannot be distin-
guished using conventional approaches employed so far, our
approach enables the detection of their excitation thanks to the
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symmetry-dependent selection rules that govern their resonant
interaction with acoustic modes. The results of this work are
multiple: from the one side they demonstrate the ability of
our modeling to retrieve fundamental parameters governing
the complex physics involved in ultrafast magnetoacoustic
experiments with an unprecedented accuracy, and from the
other side they corroborate that the physical picture embodied
in our model is particularly insightful, for example, by high-
lighting the importance of symmetries in magnetoacoustics.
Here we would like to stress that the original interpretation
in Ref. [1] roots back to the analysis of the dynamics of the
spatially homogeneous (FMR) mode excited by a sequence
of acoustic pulses. This intrinsically different phenomenolog-
ical time-domain approach did not allow for identification
of spatially inhomogeneous modes (magnon modes) and
made the extraction of magnetic (Gilbert) and acoustic damp-
ing constants extremely challenging, as partially explained
in Sec. V.

II. EXPERIMENT

Freestanding nickel membranes in the experiment in
Ref. [5] had a thickness L = 300 nm and were obtained by
depositing Ni on a glass substrate with a layer of sodium chlo-
ride in between them. The layer was subsequently dissolved
in water to leave the Ni film stretched on a sample holder with
a hole. The film was stretched laterally by gluing a silver paste
around the edges of the film, which created a static strain in
nickel upon drying out.

The nickel thin film was optically excited at the front side
by a femtosecond pump pulse (400-nm wavelength, 45-fs
pulse duration, 10-kHz repetition rate, 1.5 mJ/cm2 fluence),
launching pulses of coherent longitudinal acoustic phonons
with a duration of a few picoseconds propagating inside the
sample at a constant speed cs = 6 nm/ps [see Fig. 1(a)]. Due
to the inverse magnetostrictive effect, these acoustic pulses
drove the magnetization dynamics inside the Ni film. Time-
delayed probe pulses of 800 nm detected transient changes
in the reflectivity and magneto-optical Kerr effect (MOKE)
rotation, both at the front and back sides of the sample. A
rotating permanent magnet positioned on top of the sample
produced a magnetic field with reported magnitude μ0H ∼
0.4 T at a variable angle ξ with respect to the surface normal.
Due to the magnetic anisotropy the equilibrium direction of
magnetization was noncollinear with the external magnetic
field and made an angle θ with the surface normal.

Figure 1(b) shows the measured differential reflectivity �R
R

and Kerr rotation ψ at the back side of the film for five differ-
ent orientations of the external magnetic field: ξ = 15.5◦, 26◦,
35◦, 46.5◦, and 65◦. The slowly varying thermal background
in reflectivity and Kerr rotation signals originated from heat
diffusion from the front to the back side of the film and will be
subtracted throughout the manuscript in order to facilitate the
quantitative comparison with simulations of rapidly varying
elastic and magnetoelastic transients. Complementary Kerr
rotation and reflectivity measurements were performed at the
front side of the film: these data are introduced and discussed
in Fig. 2(a) for reflectivity and Fig. 4(a) for Kerr rotation.

FIG. 1. (a) Schematic picture of the experiment and acoustic
pulse propagating inside the sample. The shaded exponentially de-
caying functions illustrate the optical penetration depth of pump and
probe pulses, respectively. (b) Experimental data for reflectivity and
Kerr rotation.

III. PHYSICAL MODEL

Excitation of acoustic and magnetic transients in ferromag-
netic nickel with femtosecond laser pulses can be adequately
described by the phenomenological two-temperature model
(TTM) [17], which governs the phenomena of ultrafast de-
magnetization on a deeply sub-picosecond timescale [18,19]
and generation of ultrashort acoustic pulses on a picosecond
timescale [20]. In the current paper, we are going to disregard
the phenomenon of transient ultrafast demagnetization and
focus on the resonantly enhanced interactions between the
long-living femtosecond-laser-generated acoustic transients
and the magnetization dynamics, an effect that dominates con-
tributions from ultrafast demagnetization reported in nickel
thin films on silicon substrates [16].

Within the framework of the TTM, the nonequilibrium hot
electrons are initially generated through the absorption of an
optical pump pulse within its skin depth. Subsequently, they
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transport energy into the depth of the sample via electron
diffusion and heat up the cold lattice via electron-phonon
scattering. These complex spatiotemporal dynamics result in
the emission of picosecond acoustic pulses caused by the
thermal expansion of rapidly heated lattice. In the case of
a freestanding nickel film, these acoustic pulses generated
at the front side of the sample, propagate through the film,
are reflected at the back Ni/air interface (with a reflection
coefficient equal to -1), and keep bouncing back and forth
between these two interfaces before they decay due to various
phonon scattering mechanisms.

The magnetization dynamics induced by such ultra-
short acoustic pulses can be adequately described by a
phenomenological approach using magnetoelastically driven
Landau-Lifshitz-Gilbert (LLG) equations [1–3]. Adapted to
the experimental geometry in Fig. 1, the phenomenologi-
cal free energy density F = FZ + Fd + Fex + Fme takes into
account the Zeeman term FZ = −μ0M0m · H due to the
presence of the external magnetic field H, the anisotropy en-
ergy Fd = ( 1

2μ0M2
0 + K )m2

z consisting of the thin-film shape
anisotropy, and the phenomenological anisotropy constant K
due to static built-in strains in a stretched nickel membrane,
the exchange energy Fex = 1

2 M2
0

∑3
i=1 D( ∂m

∂xi
)2, and the mag-

netoelastic energy Fme(t ) = b1m2
z εzz(z, t ) (b1 � 107 J/m3 for

nickel [21]) due to the interaction with an acoustic pulse
εzz(z, t ). The relation between the angle ξ of the magnetic field
and θ magnetization at equilibrium is given by

sin(θ − ξ ) = M̃

2H
sin 2θ, (1)

where M̃ = M0 + 2K
μ0M0

, and M0 is the saturation magneti-
zation for Ni. The length of the magnetization vector stays
constant in our model (assuming constant temperature), so

the magnetization dynamics can be described with the unit
magnetization vector m and its precession s(z, t ):

m = m0 + s(z, t ), (2)

which can be represented as a sum of magnetic eigenmodes:

s(z, t ) =
∞∑

n=0

s(n)(t ) cos (knz), (3)

where kn = πn/L is the wave vector of the nth magnetic
eigenmode and free boundary conditions for magnetization
dynamics are assumed. The n = 0 magnetic eigenmode with
a uniform spatial profile corresponds to FMR, while higher-
order n � 1 modes describe spatially nonuniform modes of
exchange magnons.

Whereas the role of magnetic boundary on magnetoacous-
tic interactions has been discussed in Ref. [22], here we
assume the commonly used free boundary conditions for mag-
netization at Ni/air interfaces [16,23]. However, the results of
our analysis remain valid even in case of pinned and mixed
boundary conditions if the latter are identical at both Ni/air
interfaces. In this case (i) the symmetry of magnetic eigen-
modes does not depend on the nature of boundary conditions,
i.e., the conclusion about the magnetoelastic selection rules
between phonon and magnon modes holds, and (ii) magnon
frequencies will experience only minor changes because of a
thick nickel layer.

It has been shown [15,24] that in the linear approximation
when the acoustic strains are small, the magnetoelastically
driven dynamics for each magnon mode satisfy the equa-
tion of a damped driven harmonic oscillator,

d2s(n)
z

dt2
+ 2αωn

ds(n)
z

dt
+ ω2

ns(n)
z = fn(t ), (4)

where α is the Gilbert damping parameter and magnon eigenfrequencies ωn obey

ωn = γμ0

√[
H cos ξ − (

M̃ − D̃k2
n

)
cos θ

]2 + (
H sin ξ + D̃k2

n sin θ
)[

H sin ξ + (
M̃ + D̃k2

n

)
sin θ

]
. (5)

Here D̃ = D/(h̄γμ0) is the exchange stiffness (D =
430 meV Å2 from Ref. [16]), and γ denotes the gyromagnetic
ratio.

The external magnetoelastic driving force,

fn(t ) = Pn(H)
∫ L

0
εzz(z, t ) cos (knz)dz, (6)

is proportional to the overlap integral between the magnon
eigenmode with the acoustic strain pulse εzz(z, t ). For our
experimental geometry the prefactor

Pn(H) = μ0γ
2b1 sin(2θ )

(
D̃k2

n sin θ + H sin ξ
)

M0L
(7)

is proportional to the magnetostriction coefficient b1 and de-
pends both on the magnitude and orientation of an external
magnetic field H.

Understanding the magnetoelastic dynamics governed by
Eq. (4) is facilitated by decomposing the acoustic strain pulse

in its eigenmodes according to

εzz(z, t ) =
∞∑

p=1

ε(p)
zz (z)e−γpt cos (ωpt + ϕp). (8)

We assume acoustic eigenmodes to oscillate at frequencies
ωp = cskp and decay with damping constants γp; ϕp denote
their initial phases. In a freestanding film, the acoustic eigen-
modes obey the free boundary conditions for the acoustic
displacement (corresponding to zero strains at both Ni/air
interfaces), resulting in

ε(p)
zz (z) = ap sin(kpz), (9)

where kp = π p/L is the wave vector of the pth acoustic eigen-
mode. Using the decomposition of the acoustic strain in its
respective eigenmodes, the expression of the magnetoelastic
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FIG. 2. (a) Experimentally measured reflectivity at the front side of the Ni film, superimposed with its fit as a superposition of ten decaying
sinusoidal eigenmodes. (b) Color map showing the reconstituted strain inside the film as a function of position and time. (c) Experimental
reflectivity measurement at the back side of the Ni film, together with its fit.

driving force becomes

fn(t ) = Pn(H)
∞∑

p=1

Inpape−γpt cos(ωpt + ϕp). (10)

Here we have introduced the overlap integral [15]

Inp =
∫ L

0
cos (knz) sin(kpz)dz (11)

between the nth magnetic and pth acoustic eigenmodes.
To sum up this section, after having quantified the acous-

tic strain and decomposed it in its eigenmodes, we can use
Eqs. (4)–(5) and (10)–(11) to simulate the time evolution of
the magnetization precession. To solve Eq. (4) numerically,
we use the fourth-order Runge-Kutta method.

IV. ANALYSIS OF ACOUSTIC DATA

The change in reflectivity measured by the probe pulse
after excitation with the pump pulse is related to the strain
inside the film through the sensitivity function f (z), which
depends on the optical constants of Ni. Their relation (as in
[25]) is given by

�R(t )

R
= 2Re

(
�r(t )

r

)
=

∫ L

0
εzz(z, t ) f (z)dz, (12)

where we used the expression for the sensitivity function in
the complex notation [20]:

f (z) = 16π

λ
Re

(
i

∂ ñ

∂εzz

ñ

ñ2 − 1
ei 4π ñ

λ
z

)
. (13)

Here ñ = 2.48 + 4.38i denotes the complex index of refrac-
tion of Ni at the probe wavelength λ = 800 nm, and its
derivative with respect to the applied strain ∂ ñ

∂εzz
= 0.6 − 1.8i

[20] is called the photoelastic coefficient. The spatial de-
pendence of the sensitivity function is dominated by the
exponential decay ∝ exp(−z/δskin) within the optical pene-
tration depth of the probe pulse δskin = λ

4πIm(ñ) = 14.5 nm.
Using the previous decomposition of strain into eigen-

modes, we obtain the following expression for the measured
reflectivity:

�R(t )

R
=

∞∑
p=1

apJpe−γpt cos (ωpt + ϕp), (14)

where we can interpret Jp = ∫ L
0 f (z) sin(kpz)dz as the de-

tection integral of the pth mode. This expression for the
transient reflectivity shows that it can be represented as a sum
of damped harmonic oscillations, suggesting that the Fourier
transform of the signal could be useful in characterizing the
acoustic eigenmodes. Panels (a) and (c) in Fig. 2 show the
reflectivity signal at the front and back side of the film, while
Fig. 3(a) displays the Fourier transform of the back-side re-
flectivity signal. The data allows us to distinguish ten peaks in
the Fourier transform, so we carry out the analysis using the
first ten acoustic modes.

To obtain the amplitudes, lifetimes, and phases of the
respective acoustic modes, we performed a nonlinear least-
squares fitting (using the Levenberg-Marquardt algorithm) of
the reflectivity data at the back side with Eq. (14), where ap,
γp, and ϕp are taken as fit parameters and frequencies ωp are
extracted from the Fourier spectrum. Initial guesses for the
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FIG. 3. (a) Fourier power spectrum of the experimental reflec-
tivity and of its fit, for the back side of the film. (b) Damping as
a function of frequency, as extracted from the fitting procedure.
The result follows a quadratic law to a very good approximation.
(c) Amplitudes of the acoustic modes, as extracted from the fitting
procedure. The dashed line represents the acoustic frequency spec-
trum according to Eq. (5) in Ref. [20] for nickel thin films excited by
weak fs pump pulses, amplitudes obtained with Eq. (15) assuming
exponential heating profiles with h = 20 nm and 60 nm are shown
for comparison (continuous lines).

values of ap, γp, as well as estimations of the resulting error
bars are obtained by manually fitting the Fourier power spec-
trum in Fig. 3(a) with a superposition of Lorentzian curves
centered around the acoustic eigenfrequencies fp = ωp/(2π )
and characterized by the (FWHM) width � fp = γp/π . The
results of such fitting in Figs. 2(a), 2(c) and 3(a) appear to be
in an excellent agreement with experimental data.

Furthermore, panels (b) and (c) in Fig. 3 show the de-
pendence of damping and amplitudes for the first eight
eigenmodes on their frequencies. The second-degree poly-
nomial fit of damping γp as a function of frequency shows
that the quadratic term dominates. Thus we can conclude that
damping scales quadratically with frequency up to around
80 GHz. This result is consistent with Ref. [26], suggesting
that the attenuation mechanism is due to the phonon-phonon
scattering.

The straightforward attempt to understand the fitted am-
plitudes [Fig. 3(c)] within the framework of the TTM failed.

Using Eq. (5) and the set of experimental fit parameters in the
low-fluence excitation regime (pump fluence ∼0.01 mJ/cm2)
in nickel thin films [20] results in the initial heat penetration
depth h = 20 nm that only slightly exceeds the optical skin
depth of our pump pulses. In terms of the acoustic amplitudes,
the results of the TTM are well approximated by a simplified
phenomenological model assuming an instantaneous heating
with an exponential profile ∝ exp(−z/h), giving rise to

ap ∝
∫ L

0
e−z/h sin(kpz)dz. (15)

The strong disagreement between the theory and the experi-
mental data indicates that this modeling cannot be applied. In
the strong-excitation regime used in this experiment, the pa-
rameters of the two-temperature model display strong depen-
dence on the pump fluence [27], resulting in larger electronic
heat capacity and weaker electron-phonon coupling. Both ef-
fects favor a larger heat penetration depth mediated by hot
electron diffusion during the increase electron-phonon relax-
ation time. We can account for this effect by assuming a larger
heat penetration depth h = 60 nm, which provides a better ap-
proximation to the experimental data. However, it is clear that
the discussed theoretical models represent oversimplifications
and a further systematic study of the strong-excitation regime
of picosecond acoustic pulses is necessary.

Using the obtained amplitudes, phases, and damping pa-
rameters, we can reconstruct the strain inside the film as a
function of space and time. Figure 2(b) shows an evolution
of spatial strain that is in accordance with the intuitive image
of an acoustic echo propagating back and forth, undergoing
reflections at both ends of the film and damping in time. But
in addition to this intuitive picture, the eigenmode decompo-
sition also helps in explaining the broadening of acoustic echo
in the time domain, which is due to the frequency-dependent
damping.

V. ANALYSIS OF MAGNETIZATION DYNAMICS

Magnetization dynamics in the Ni film are analyzed by
measuring the Kerr rotation angle. The depth sensitivity
function of MOKE becomes important in the case of ultra-
fast magnetization dynamics, varying within the skin depth
of light due to the presence of spatially nonuniform high-
frequency magnons. The relation between the detected Kerr
rotation and the magnetization precession sz(z, t ) inside the
film is given by

�ψ (t )

ψs
=

∫ L

0
sz(z, t )g(z)dz, (16)

where ψs is the static Kerr rotation angle, �ψ (t ) is its change
due to magnetization precession, and g(z) is the depth sensi-
tivity function for the polar MOKE [28]:

g(z) = 4π

λ
Re

(
iQMO

ñ2

1 + ñ2
e−i 4π ñ

λ
z

)
. (17)

Here, unlike the acoustical sensitivity function, the magneto-
optical response is valued by the complex magneto-optical
(Voigt) constant QMO = i ε̃xy

ε̃xx
= −(4.9 + 10.5i)×10−3 [29].

Using our previous decomposition in magnon eigenmodes,
we get an expression that ties the dynamics of individual
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FIG. 4. Comparison of magnetization dynamics at the front and
back side of the film, as obtained (a) experimentally and (b) from
our simulations. For lower-amplitude signals multipliers are used,
the values of which are indicated next to the curves.

magnon modes to the Kerr rotation:

�ψ (t )

ψs
=

∞∑
n=0

J̃ns(n)
z (t ), (18)

where J̃n = ∫ L
z=0 g(z) cos(knz)dz is the detection integral of the

nth magnon mode. Using this expression we can fit the results
of our magnetization dynamics simulation with those of the
experiment in the next section.

VI. RESONANT PHONON-MAGNON INTERACTIONS

The experimental data for the back- and front-side Kerr
rotation are presented in Fig. 4(a) for different orientations
of the external magnetic field. We simulate the Kerr rotation
by solving Eq. (4) for each magnon and using the sensitivity
function defined in the previous section to obtain the Kerr
rotation from Eq. (18). In order to reach an agreement with
experimental data for all angles ξ in Fig. 4, we have used
the values for the anisotropy constant K , magnitude of the
magnetic field H , and Gilbert damping α as fit parameters.
Using the magnetic field of 0.3 T, the anisotropy constant
K = 2.05×105 J/m3, and the Gilbert damping α = 0.04, we
achieve the quantitative agreement between the experimental
data and simulations (Fig. 4). The value of the magnetic field
stays within the expected error bar for a permanent magnet
placed on top of the sample. The value of the Gilbert damping
is equal to the one obtained in a recent study of ultrafast
magnetization dynamics in nickel nanomagnets [14]. The sim-
ulated Kerr rotation at the front and back sides are represented
in Figs. 4(a) and 4(b). We observe an excellent agreement

between the experimental data and simulations, except for the
initial thermal excitation of magnetization at the front side,
which we did not account for in our model and which acts
only at early times.

Given this agreement between experimental data and sim-
ulations, we analyze the peculiarities of the magnetization
dynamics at different angles. For 15.5◦, the magnetization
dynamics at the back side is in phase with that at the front side,
while for 65◦ they are π -shifted. Moreover, we notice that the
magnetization precession at 15.5◦ and 65◦ lasts longer and is
stronger than at other angles. While at 15.5◦ and 65◦ there
are some slowly varying long-lived dynamics, at angles 26◦,
35◦, and 46.5◦ we observe weak, somewhat irregular beating
patterns.

A complementary perspective is presented in Fig. 5, which
shows the reconstructed magnetization dynamics inside the
sample [Figs. 5(b) and 5(c)] as a function of position and time.
After the transient regime dies out, the magnetization profile
for 15.5◦ is approximately uniform in space, suggesting that
the dynamics is dominated by the FMR (n = 0) mode. On the
other hand, the dynamics at 65◦ follow the spatially antisym-
metric profile with respect to the middle of the film, which
suggests that in this configuration the n = 1 magnon domi-
nates. This conclusion is in line with the observed π -phase
shift between the data at the front and the back side at 65◦,
see Fig. 4. At an intermediate angle of 35◦, the magnetization
dynamics with a much smaller amplitude are mainly visible
at early delay times. This suggests that in this intermediate
regime no magnon modes are resonantly excited.

All these observations can be explained by a simple theory
for a driven harmonic oscillator. The main result is that the
oscillation amplitude is resonantly enhanced when the natu-
ral frequency (here, that of magnons ωn) equals the driving
frequency (in our case, that of phonons ωp). Away from
resonance, the transient regime is characterized by a beating
pattern because of the difference between the natural and
driving frequencies.

Figure 5(a) shows the amplitude of magnetization preces-
sion as a function of its frequency and the angle of the external
magnetic field. Two bright spots are visible: one at the point
where the frequency of the first phonon (p = 1) matches that
of FMR (n = 0) and another one where the frequency of
the second phonon (p = 2) matches that of the first magnon
(n = 1).

However, for our symmetric freestanding membrane the
overlap integral Inp (Fig. 6) is zero when the acoustic modes
possess a different symmetry from that of the magnon modes.
This means that symmetric (antisymmetric) acoustic modes
will interact only with symmetric (antisymmetric) magnon
modes, respectively. Therefore, the symmetry-based selec-
tion rules become as important for resonant phonon-magnon
interaction as the previously mentioned frequency-matching
condition.

These considerations enable us to identify the driving
forces of the magnetization dynamics observed at the three
angles shown in Fig. 5. At 15.5◦, the frequency of the first
phonon (p = 1) matches that of the first few magnons but
the symmetry of the modes allows only even magnons to
be excited. Since the overlap integral decays with increasing
magnon number, the dominant magnetic mode at 15◦ is the
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FIG. 5. (a) Fourier transform of simulated Kerr rotation as a function of magnetic field angle. The dashed lines indicate the frequencies
of phonons, and the continuous white lines are the dispersion curves of magnons. Vertical cross sections into the heat map, corresponding to
the three angles in panel (b), are shown. (b) Magnetization dynamics inside the film, as a function of position and time, for three experimental
angles. (c) Magnetization profiles, taken at the times indicated in panel (b) by dashed lines.

FMR (n = 0). At 65◦, the second phonon (p = 2), whose
frequency matches the frequencies of the first few magnons,
interacts only with odd magnons. Thus the dominant mode
in this case is the first magnon (n = 1). At 35◦, the magnon
frequencies are between the frequency of the first (p = 1) and
second (p = 2) phonon and exhibit no resonant interaction.
Hence, the magnetization precession is significantly weaker.

Figure 7 illustrates the quantitative agreement between the
theory and the experiment for the two resonantly driven mag-
netization dynamics. Qualitative analysis suggests that in both

0 1 2 3 4 5 6 7
Magnon mode number n

O
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rla
p 
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te
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I np

p = 1

p = 2

p = 3

p = 4

n=0 n=7n=1

FIG. 6. Representation of magnonic eigenmodes (along the hor-
izontal axis) and acoustic eigenmodes (along the axis) with their
corresponding overlap integrals.

cases the dynamics can be described by the rise time τrise and
decay time τdecay. The magnetization dynamics can be well
approximated by a phenomenological envelope function

A(t ) ∝ (1 − e−t/τrise )e−t/τdecay . (19)

For the magnetization dynamics at 15.5◦, the characteristic
rise time is τ

(1)
rise = 0.62 ns and the decay time is τ

(1)
decay =

1.13 ns. Similarly, for the second resonance at 65◦ we extract
τ

(2)
rise = 0.35 ns and τ

(2)
decay = 0.45 ns, respectively.

In order to interpret the observed rise and decay times we
have solved Eq. (4) analytically, assuming that it is driven by a
single acoustic mode ∝ e−βωpt cos ωpt at resonance, i.e., ωp =
ωn = ω; the acoustic damping is written as γp = βωp. The
approximate solution for the envelope function reads

A(t ) ∝ |e−αωt − e−βωt |, (20)

where we have assumed α �= β � 1 and neglected small
terms ∝ α2, β2, αβ and higher powers. Equation (20) is
equivalent to Eq. (19) with the rise and decay times given by

τrise = 1

|α − β|ω (21)

and

τdecay = max

(
1

αω
,

1

βω

)
, (22)

respectively. From the symmetry of these equations with re-
spect to the permutation of α and β, it is obvious that some
additional information is needed to identify the Gilbert damp-
ing α and acoustic damping β. For example, in the case
of the first resonance in Fig. 7(a), one of the possibilities
would be to have (α1 = 0.014, β1 = 0.04). However, this pair
of parameters corresponds to an unreasonably low value for
Gilbert damping for nickel and leads to the large value of
acoustic damping γ1 = 2.4 GHz, in contradiction with re-
sults in Fig. 3(b). The second possibility (α1 = 0.04, β1 =
0.014) provides both the commonly accepted values for nickel
[14,16] and the acoustic linewidth of 1 GHz in agreement with
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FIG. 7. Long-scan magnetization dynamics at the back side of
the film, under the magnetic field angles (a) ξ = 15.5◦ and (b) ξ =
65◦. Experimental data is represented by dots, the simulated curve
is a black continuous line, while the dashed curve denotes the fit
envelope A(t ). The separation of timescales is clearly visible in
both graphs: the initial growth governed by the Gilbert damping is
followed by the decay due to the acoustic decay.

Fig. 3(b). Similar arguments apply to the second resonance in
Fig. 7(b) quantified with (α2 = 0.041, β2 = 0.018). Therefore
we conclude that the independent quantitative characterization
of acoustic lifetimes is indispensable for the correct physical
interpretation of acoustically induced magnetization dynam-
ics in the time domain [5].

The previous discussion can be reformulated in terms
of quality factors of magnon and phonon resonances. The
magnon quality factor QG = 1/(2α) � 12 does not depend
on the mode number, in agreement with previously re-
ported results on frequency-independent Gilbert damping α

[23,30]. Acoustic quality factors Q(1)
ac = 1/(2β1) � 36 and

Q(2)
ac = 1/(2β2) � 28 are slightly different due to the observed

nonlinear dependence of acoustic damping on frequency,
converging to the approximate scaling Qac(ω) ∝ ω−1 for
higher-order acoustic modes. The observed high values of
acoustic quality factors Qac > QG enable the separation of
timescales in the excitation and decay phases in the magne-
tization dynamics.

Qualitatively similar magnetization dynamics have been
observed earlier in transient grating experiments [8]. How-
ever, in the latter case the conspicuous decay of magnetization
dynamics was explained by the complex spatiotemporal dy-
namics of the magnitude of the magnetization vector Mz(x, t )
on the temperature T (x, t ) in the periodically demagnetized
nickel film [9,11]. In this context, our experimental geometry

probing the magnetization dynamics at the back side of the
sample provides an advantage of isolating resonant phonon-
magnon interactions from thermal effects and extracting their
properties from the same measurement.

VII. SUMMARY AND CONCLUSIONS

In this manuscript we reported on the quantitative analysis
of experimental data by Kim and Bigot in a freestanding
nickel thin film [5] based on the decomposition of magnetic
and acoustic dynamics in phonon and magnon eigenmodes,
respectively. The time-domain fitting of transient reflectivity
data on both sides of the nickel film provides frequencies,
lifetimes, and phases of individual acoustic eigenmodes. The
latter is shown to drive the magnetization dynamics to be in
quantitative agreement with time-resolved MOKE measure-
ments. Notably, the comparison of MOKE signals on both
sides of the sample evidence the in-phase FMR dynamics
(n = 0, with minor contributions of symmetric magnon eigen-
modes n = 2, 4, ...) induced by the lowest order (p = 1)
symmetric acoustic mode and the opposite-sign magnetization
oscillation of antisymmetric magnon modes (n = 1, 3, ...).
Being in a quantitative agreement with a simple theoretical
model with tabulated material parameters, the experimen-
tal data clearly evidence the resonantly enhanced excitation
of nonuniform magnon modes. Moreover, accurate fitting
of the magnetization dynamics driven by long-lived p = 1
(9.8 GHz) and p = 2 (19.1 GHz) acoustic modes delivers the
correct value for magnetic Gilbert damping α = 0.04, corre-
sponding to the quality factor Qm = 12 for magnon modes.
Being smaller than the quality factors of acoustic modes, this
magnetic quality factor assures optimum conditions for res-
onant phonon-magnon excitation, the phenomenon to be fur-
ther explored in the ultrahigh-THz frequency regime [15,31].
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