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Resumen

La asfixia perinatal, una de las complicaciones más comunes en partos de alto riesgo,
se caracteriza por un intercambio de gases anómalo que da lugar a la falta de oxígeno en
tejidos y la correspondiente insuficiencia orgánica. En efecto, un evento prolongado de
asfixia puede causar un daño cerebral conocido como encefalopatía hipóxica-isquémica
(HIE) que es una de las principales causas de secuelas neurológicas a largo plazo,
parálisis cerebral y muerte neonatal.

Según la Organización Mundial de la Salud (OMS), en el año 2017 se produjeron 2.5
millones de muertes neonatales, de las cuales el 24% fueron debidos a complicaciones
durante el periodo intraparto como es la asfixia perinatal. Mientras, entre los que
sobreviven, se estima que la HIE afecta a 1.5 por cada 1000 a nivel global, aunque este
número aumenta de forma considerable en países en vías de desarrollo. En España,
diferentes estudios sitúan el ratio de incidencia en torno a 1 por cada 1000, lo que
significa que cada año 400 recién nacidos vivos desarrollan HIE.

La monitorización fetal juega un papel decisivo en la identificación y prevención
de la asfixia perinatal y, por lo tanto, en las muertes neonatales relacionadas y los
consecuentes daños neurológicos, como el HIE. Sin embargo, la efectividad de los
métodos de diagnóstico actuales como la cardiotocografía (CTG), o el muestreo de
sangre fetal en calota (MSF), han sido puestos en duda en la atención obstétrica ya que
no posibilitan un diagnóstico exitoso, unívoco y completamente eficaz, en un proceso
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médico tan sensible socio-sanitariamente como es el parto.

Distintos estudios han asociado la CTG, que evalúa el bienestar del feto mediante
el registro de la frecuencia cardíaca fetal y las contracciones uterinas, con un aumento
de cesáreas y partos instrumentales. A pesar de la recomendación de la Organización
Mundial de la Salud (OMS) de que el número de cesáreas no debe superar el 15%, la
media mundial se sitúa en torno al 22%, llegando incluso al 40% en algunos países. La
OMS también alerta de que una tasa de cesáreas superior al 10% no está asociada con
una reducción de la tasa de mortalidad de madres y neonatos, sino todo lo contrario.

El MSF pretende reducir el número de cesáreas innecesarias mediante un pro-
cedimiento complementario que respalde el diagnóstico de la asfixia perinatal. El
diagnóstico se realiza en base a la medición de pH o lactato en sangre, obtenida por
medio de una punción en la calota fetal. Un déficit de aporte de oxígeno induce el
metabolismo anaerobio de la glucosa que deriva en acidosis metabólica. A pesar de ser
el parámetro de referencia, el pH, por sí solo, no discrimina entre acidosis respiratoria y
metabólica. Aunque la determinación del lactato en calota fetal durante el parto ha sido
estudiada desde los años 70 y se hayan publicado resultados comparables al pH, su uso
no se ha generalizado. En cualquier caso, además de ser un procedimiento incómodo
para la madre, el MSF consiste en una medida invasiva, discontinua y con alto índice
de fallo, en el que el resultado, que tarda varios minutos en obtenerse, no ofrece una
imagen a tiempo real de lo que está sucediendo.

En definitiva, la falta de evidencia y el elevado número de casos neonatales adversos
compromete la funcionalidad de los métodos actuales y pone en entredicho su uso
clínico para el diagnóstico de la asfixia perinatal. Tanto los profesionales clínicos como
los usuarios de los servicios sanitarios demandan un control más riguroso y, al mismo
tiempo, menos invasivo en el parto. Sobre todo en partos de riesgo, cuyo porcentaje se
ha visto incrementado de manera exponencial en los últimos años debido al aumento
de la edad materna o la existencia de cesáreas previas.

Ante esta situación, se observa una clara oportunidad para el desarrollo de una
nuevo método de diagnóstico para la monitorización de la asfixia perinatal. En esta
tesis se propone una alternativa, basada en espectroscopia Raman, que consiste en la
combinación de una sonda específica que se introduciría en la vagina y se colocaría
sobre la calota fetal, y algoritmos de aprendizaje automático. La espectroscopia de

ii



Raman aporta información de gran valor mediante la interacción de la luz láser con los
distintos tejidos. Los datos espectroscópicos constituyen un espacio multidimensional
con información de todos los constituyentes de la muestra bajo prueba, como pueden ser
la sangre, la piel, el líquido intersticial, las capas lipídicas, el hueso y/o todos aquellos
componentes del cráneo del bebé que pueden ser alcanzados por el haz del láser. En
otras palabras, a diferencia del estado del arte donde un único parámetro como el pH o
el lactato sirve para la toma de decisión, esta tecnología tiene en cuenta la totalidad de
la anatomía accesible por la luz incidente. Mediante modelos predictivos se identifican
aquellos patrones característicos de un evento de asfixia. De esta manera, se obtiene un
diagnóstico más preciso y fiable mediante una monitorización no-invasiva, continua y
a tiempo real de la salud del bebé.

Con el fin de cumplir el objetivo establecido, la tesis se ha desarrollado en base a
los siguientes capítulos.

Mientras el Capítulo 1 introduce el tema y la motivación de la tesis doctoral, el
Capítulo 2 describe la teoría fundamental requerida para la correcta interpretación de
los capítulos posteriores.

Capítulo 3. El objetivo de este capítulo es demostrar el gran valor diagnóstico que
se puede lograr al considerar múltiples parámetros que describan el cuadro clínico
generalizado. Para ello, se ha llevado a cabo un estudio retrospectivo de los datos
experimentales obtenidos por Héctor Lafuente durante su tesis doctoral. Con un objetivo
distinto al de su tesis, en el siguiente capítulo se investigan parámetros dinámicos
obtenidos mediante análisis de sangre a cerdos recién nacidos sobre los que se simula
un episodio de asfixia perinatal. En primer lugar, el análisis univariado de los datos
nos permite relacionar aquellos parámetros biológicos más relevantes con el grado
de asfixia. Posteriormente, se ha analizado de manera cuantitativa el poder predictivo
del pH y el lactato como parámetros actuales de referencia ("gold-standard") para
la identificación de la hipoxia-isquemia. Además, se propone el uso de algoritmos
de aprendizaje automático como nueva estrategia para examinar la correlación y la
importancia de los diferentes parámetros en su conjunto. El valor diagnóstico de los
modelos predictivos desarrollados ha sido analizado.

Capítulo 4. Este capítulo evalúa la aplicabilidad de la espectroscopia Raman junto
el aprendizaje automático para el análisis cuantitativo y cualitativo del pH y del lactato
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en fluidos corporales complejos como la sangre o el plasma. Este estudio representa un
salto significativo hacia el diagnóstico de la asfixia perinatal, para el cual pH< 7.20
y [lactato]> 4.8 mM son los umbrales establecidos para inciar una intervención. Para
excluir efectos secundarios de un medio complejo, la tecnología ha sido validada primero
in vitro en muestras acuosas. Se establece un protocolo que considera todo el proceso,
desde la preparación de muestras, las mediciones de espectroscopia Raman, hasta la
evaluación de los datos. Posteriormente, se ha investigado la variación del pH y el
lactato ex vivo en muestras de sangre y plasma provenientes de cerdos domésticos.

Capítulo 5. El desarrollo de un prototipo de una sonda Raman específica para
una monitorización fetal adecuada supone un reto y juego un papel principal en la
futura comercialización de la tecnología. Dada la existencia de un mercado de sondas
ópticas amplio y maduro, la experiencia y el conocimiento al respecto es más que
evidente. Por ello, como parte de la validación de la tecnología y previo paso a la
realización de un estudio preclínico, se ha realizado un evaluación de diferentes sondas
Raman comerciales que aporten información relevante y ofrezcan una visión acerca de
las características que puedan ser de utilidad en el futuro desarrollo de la sonda. En
particular, este capítulo se centra en la comparación de la sonda "EmVision Raman
Lensed probe" (EmVision LLC) y de la sonda "RamanProbeTM" (RPS785, Inphotonics).

Capítulo 6. El nuevo método de diagnóstico, que combina la espectroscopia Raman
con el uso de algoritmos de aprendizaje automático, es validado in vivo. Este capítulo
se centra en la fase preclínica en la que se encuentra el proyecto, en el que la sonda
RamanProbeTM, previamente descrita en el Capítulo 5, es evaluada para la identificación
de un episodio de hipoxia-isquemia. La tecnología es analizada como una alternativa
real para una monitorización no-invasiva, continua y a tiempo real que de soporte en la
toma urgente de decisiones en el cuidado obstétrico.

Capítulo 7. Esta tesis doctoral está integrada en el marco de un proyecto de inves-
tigación con gran capacidad innovadora, ya que surge de una necesidad clínica real e
incluye un enfoque impulsado por el mercado. Desde el grado de preparación más bajo,
la tecnología ha sido elevada hasta un TRL6 en el marco de esta tésis doctoral. Además
de su origen, este capítulo describe los aspectos innovadores, destaca la importancia
socio-económica, y ofrece una visión del análisis de mercado y el plan estratégico.
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Abstract

Worldwide, the number of newborn deaths counts for 2.5 million, of which 24% are
caused by intrapartum complications such as perinatal asphyxia, one of the most com-
mon medical disorders in high-risk births. Characterized by insufficient oxygen supply
to fetal tissue, a prolonged episode of perinatal asphyxia is responsible for neurological
damage known as hypoxic-ischemic encephalopathy. Fetal monitoring plays a major
role in the diagnosis of perinatal asphyxia, and consequent neonatal adverse outcomes.
However, performance of current standard methods, such as Cardiotocography (CTG)
or Fetal Scalp Blood Sampling (FSBS) have been questioned in obstetric care. While
CTG has been related with an increase of cesarean sections and instrumental deliveries,
pH, or alternatively lactate, obtained from FSBS have demonstrated limited evidence
for reduction of cesarean deliveries and adverse neonatal outcome. The method, which
operates in an invasive, non continuous and intermittent fashion, does not provide a
real picture of the clinical status of the fetus, leading to a high misclassification rate.

The primary goal of this thesis is the development of a non-invasive clinical tool for
continuous and real-time monitoring of asphyxia during delivery. The new technology
combines Raman spectroscopy, which is a highly specific vibrational spectroscopy
method, with machine learning algorithms. Equipped with an application-specific
probe, the technology takes into account the systemic picture of physiological variations
or anomalies, compared to state-of-the-art, where a single parameter, as pH or lactate,
serves as base for decision-making. This results in a much more sensitive and stable
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identification of pathological states and prediction of specific parameters that will
support in an innovative way immediate medical decision-making.

In order to fulfill the objective, the thesis has been divided in the following chapters.

While Chapter 1 introduces the theme and the motivation of the present doctoral
thesis, Chapter 2 describes the fundamental theory that is required to correctly interpret
subsequent chapters.

Chapter 3. In this chapter, the objective is to demonstrate that higher diagnostic
value could be achieved by considering multiple parameters that allow for an overall
clinical picture. Thus, a retrospective study is carried out with experimental data ob-
tained by Héctor Lafuente Echeverria in his doctoral thesis. With a different purpose,
in the following chapter dynamic parameters from blood gas of newborn piglets under-
going simulated perinatal asphyxia are investigated. In a first step, the most relevant
biochemical parameters are related with the severity of the asphyxia state by univariate
analysis methods. In a next step, the predictive power of pH and lactate as current gold
standards for the identification of hypoxic-ischemic events is quantitatively analyzed. As
a new approach, multiparametric machine learning methods are introduced to examine
the correlation and importance of different parameters as a combined dataset. With
such techniques, new classification models are developed and their diagnostic value is
examined.

Chapter 4. In the present chapter, the applicability of Raman spectroscopy together
with machine learning is considered for quantitative and qualitative analysis of both pH
and lactate in complex body fluids, such as blood and plasma. This approach represents
a significant step toward diagnosis of perinatal asphyxia, where [lactate]> 4.8 mM
and pH< 7.20 are defined as standards for intervention. To exclude secondary effects
of complex media, the technology is firstly validated in vitro with a set of aqueous
samples. A protocol has been developed for the determination of physiological pH
and lactate, considering the entire process chain from sample preparation over Raman
measurements to data evaluation. Following the protocol, the variation of pH and lactate
ex vivo in blood and plasma samples from domestic pigs is then investigated.

Chapter 5. Prototyping and development of hardware components of a specific
Raman probe for accurate fetal monitoring represents a challenge and plays a major
role in the future commercialization of the technology. Given the existence of a mature
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and wide market of optical probes, valuable practical and technical expertise is already
available. Therefore, as part of the validation of the technology and prior to conducting
a preclinical study, an evaluation of different commercial Raman probes has been
performed to give insight into essential characteristics our customized Raman probe
will require. Particularly, this chapter describes the comparison of the "EmVision Raman
Lensed probe" (EmVision LLC) and the "RamanProbeTM" (RPS785, Inphotonics).

Chapter 6. In this chapter, the new diagnostic tool, which combines Raman spec-
troscopy with machine learning, is validated in vivo. In this pre-clinical phase, the
RamanProbeTM described in Chapter 5 is tested for identification of hipoxic-ischemic
events. The technology is evaluated as a genuine alternative for supporting in an in-
novative way immediate medical decision-making by non-invasive, continuous and
real-time monitoring of perinatal asphyxia.

Chapter 7. This doctoral thesis is embedded in a research project with high in-
novative power, as it originates from real clinical requirements and includes from the
beginning market-driven needs and real-life applications into its research. Starting at
lowest technology readiness level (TRL), the technology was elevated to TRL6 within
the framework of this doctoral thesis. Apart from its origin, this chapter describes the
innovative aspects, highlights the socio-economic importance, and gives insight into
market analysis and strategic planning.
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CHAPTER 1

Introduction

1.1 Motivation

Perinatal asphyxia, which is one of the most common complications in high-risk births,
is a serious medical disorder, characterized by abnormal gas exchange rates that result
in oxygen deprivation in fetal tissue during labor and, ultimately, in organ failure
[1]. Prolonged perinatal asphyxia is responsible for brain damage, known as hypoxic-
ischemic encephalopathy (HIE), which may cause long-term neurological sequelae,
cerebral palsy, and neonatal death [1, 2].

According to the World Heath Organization (WHO), 24% of the estimated 2.5
million neonatal deaths in 2017 were due to intrapartum complications, such as birth
asphyxia [3]. Although the HIE incidence varies from study to study, it is considered
that it affects on average 1.5 per 1000 live births worldwide [4]. This number increases
considerably in preterm infants or in developing countries with poor obstetric care [2, 4].
In Spain, the incidence rate stands at approximately 1 per 1000 live births, meaning
that every year around 400 newborns develop HIE [5].
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Chapter 1. Introduction

1.2 State-of-the-art

Intrapartum fetal monitoring plays a major role in the identification and prevention
of perinatal asphyxia, and hence, related deaths or neurological impairments, such
as HIE. Assessment of fetal heart rate (FHR) is widely used as indicator of fetal
oxygen deprivation and adverse fetal state through continuous electronic monitoring by
cardiotocography (CTG), as described in Figure 1.1 [6, 7].

Tocotransducer
(uterine contractions) Ultrasound

transducer
(FHR)

(a)

Electrode

Intrauterine pressure catheter
(uterine contractions)

Catheter

Cardiotachometer (FHR)

(b)

Figure 1.1: (a) External non-invasive cardiotocography. A Doppler ultrasound transducer is placed on the
maternal abdomen to monitor the fetal heart rate. A tocotransducer or tocodynamometer is placed above the
umbilicus to record the frequency and the duration of uterine contractions. (b) Internal invasive cardiotocog-
raphy. Monitoring of fetal heart rate is obtained by attaching a spiral electrode to the fetal scalp. The leg plate
on the thigh of the mother avoids electrical interference. An intrauterine pressure transducer is introduced in
the uterus of the mother to record the frequency, the duration and the intesity of uterine contractions. Figures
are adapted from [8].

FHR can be externally recorded, by placing a Doppler ultrasound transducer on
the maternal abdomen, or internally, by attaching an electrode to the fetal scalp. De-
spite providing a more reliable and accurate surveillance, the rupture of the amniotic
membranes is required for internal recording of FHR. Simultaneous information about
the frequency and the duration of uterine contractions is obtained by a second pressure
transducer placed below the uterine fundus. Likewise, this second transducer can also
be substituted by an intrauterine pressure catheter [7, 9]. Reassuring or non-reassuring
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1.2. State-of-the-art

CTG patterns prompt the clinical procedure to follow. A non-reassuring CTG can rep-
resent an adaptive response of the fetus to an asphyxia episode. However, considering
the variability between individual fetal responses and the inter-observer disagreement
on a CTG interpretation, non-reassuring patterns do not always reflect a fetal distress
[10]. The effectiveness of FHR to identify perinatal asphyxia is actually questioned
due to an increasing number of cesarean sections and operative deliveries, which are
often unnecessary [6, 11]. Despite WHO’s recommendation to not exceed a rate of 15%
cesarean sections, the worldwide average is around 22%, sometimes reaching 40% [12],
with no concomitant reduction of maternal and neonatal mortality [13, 14]. A gradual
trend to advanced maternal age increases high-risk births and the probability of clinical
complications and adverse neonatal outcomes [15, 16].

Prolonged asphyxia is responsible for anaerobic metabolism and consequently of
metabolic acidosis. Analysis of intradermal pH by means of fetal scalp blood sam-
pling (FSBS) is commonly used for fetal surveillance as an additional test to avoid
unnecessary interventions. Blood gas analysis is the predominant tool for identifying
acid-base imbalances that reflect the current state of the newborn. In practice, blood
pH measurements entail high failure rates and often lead to misclassification of fetal
clinical condition, which has drawn clinical interest to the use of lactate as an alternative
indicator [11, 17, 18]; lactate is overproduced during anaerobic metabolism. Lactate
testing presents adequate properties to be successfully undertaken as it allows for faster
sampling of smaller blood volumes, which are 2-5 µL for lactate compared to 30-60
µL for pH. However, there is limited or no evidence that pH or lactate FSBS reduces
the number of cesarean deliveries or the adverse neonatal outcomes [7, 11, 18].

Moreover, abnormal values of blood pH and lactate may have multiple underlying
mechanisms [19]; thus, a diagnostic test based on fluctuations of a single parameter
poses an evident risk. Higher diagnostic value could be achieved by considering mul-
tiple parameters that allow for an overall clinical picture. Continuous collection and
availability of a multitude of clinical information represents a unique opportunity for
improved personalized assistance. However, handling, integrating, and understanding
this complex information is still a major challenge in healthcare. Machine learning
algorithms, based on multivariate analysis of clinical data, have demonstrated high
potential for statistical analysis and identification of abnormal patterns [20, 21]. Com-
puter-aided systems that assist obstetricians in fetal surveillance by correctly visualizing
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and interpreting the CTG [22, 23, 24] or postnatal electroencephalographic signal [25]
have already been reported with different degrees of success and performance.

Current clinical diagnostics, as blood gas analysis, voltammetric-based or liquid
chromatography detection methods, require arterial blood sampling and operate in an
invasive and non-continuous manner. Moreover, these techniques require significant
time for analysis, are quite expensive, expose healthcare professionals to patients’ blood,
and result in iatrogenic blood loss [26]. Considering these limitations, an effort has
been put on developing continuous perinatal asphyxia, or alternatively pH and lactate,
monitoring systems to allow for robust decision-making and timely clinical interference
in obstetric care medicine. The capabilities and strengths of biophotonic methods
distinctly showcase the importance that spectroscopy gains in medical diagnostics [27,
28]. Although some attractive methods based on microwave sensors [29] or near-infrared
spectroscopy-based sensors [30] for non-invasive monitoring of pH and lactate have
been proposed, so far none of them has shown enough predictive accuracy or reliability
in clinical use.

1.3 Novel approach

Raman spectroscopy, as a promising and emerging photonic technique for diagnostics,
has become of general interest in medical research. The inelastic scattering of the
incident photons due to specific vibrational modes of individual molecules provides a
chemical fingerprint of the sample being studied, hence, delivering highly specific and
diagnostically valuable information. The great ability to non-invasively provide high
molecular selectivity makes Raman spectroscopy an ideal method for chemical quan-
tification in medical diagnostics [31]. Moreover, Raman instrumentation is sufficiently
mature for studying the human organism and physiological parameters. In fact, several
studies have already demonstrated that Raman spectroscopy could be used for rapid
biomedical analysis ex vivo as well as for continuous monitoring in vivo [32, 33, 34].

The interpretation of Raman spectra is far from being straightforward. Due to
the generally weak Raman signal and high fluorescence of biomolecules by nature,
as well as the overlapping of spectral features from different constituents present in
a sample, peak identification and accurate prediction constitute a serious challenge.
Nevertheless, the combination of Raman spectroscopy with a proper sequence of data
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preprocessing methods and machine learning algorithms results in a very powerful
technology for unveiling hidden features. Machine learning algorithms have the capacity
to extract valuable knowledge for building up predictive models to be applied to new data
sets. The potential of such algorithms for quantification and classification of complex
Raman spectroscopy signals has been demonstrated extensively [35]. Although such
a combination has already been used to analyze pH and lactate for different purpose,
as for example food control [36] or sensing of aqueous solutions [37, 38], clinical
requirements are still not fulfilled, particularly not for obstetric approach.

The primary goal of this endeavor is the development of a new diagnostic tool
for monitoring perinatal asphyxia. Our technology represents a photonic non-invasive
approach that works in continuous mode, delivering real-time diagnostics. We combine
Raman spectroscopy, featured by specifically tailored probes, with machine learning as
powerful diagnostic tool. The method is not limited to examine a single parameter as
pH or lactate, it considers the entirety of physiological parameters that are accessible
by Raman spectroscopy, and hence, delivers a systemic picture measured on molecular
level. Moreover, we look in real-time at the development of physiology, thus, at the
pathological severity. Continuous monitoring of a variety of biochemical parameters
allows for the identification of physiological anomalies caused by perinatal asphyxia,
and supports in an innovative way immediate medical decision-making.
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2CHAPTER 2

Theoretical background

For a correct interpretation of the thesis, some fundamental theory needs to be explained.
Hence, this chapter summarizes the most important concepts of the different fields
addressed throughout the document. First, physiology-related notions, such as metabolic
pathways, acid-base equilibrium and hypoxic-ischemic encephalopathy, are analyzed to
better understand the cause and the consequences of perinatal asphyxia. The basis of
Raman spectroscopy as a photonic biosensing technique is then described, Finally, the
importance of data preprocessing and the concept of machine learning for development
of predictive models are addressed.
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2.1 Metabolic pathways

The human body requires a constant supply of energy to guarantee a proper functioning
of the organism. The hydrolysis of adenosine triphosphate (ATP) to adenosine diphos-
phate (ADP) is the so-called “energy currency” of the body. Breakdown of a phosphate
group from ATP,

ATP←→ ADP + Pi + energy −→ work, (2.1)

provides the fuel for physiological activity. However, the availability of ATP is limited
to few seconds. Thus, other sources of energy and inorganic phosphate (Pi) are required
to guarantee quick and continuous regeneration of ATP in working cells. Nutrients,
such as carbohydrates, fats and proteins are broken down into carbon dioxide (CO2) and
water (H2O) molecules while energy is ultimately transferred to the activated energy
carrier molecule ATP. The selection of the type of fuel, and therefore the metabolic
pathway, varies depending on the physiological circumstances. Three main metabolic
pathways are distinguished [39].

2.1.1 Phosphocreatine or CP-ATP system

Phosphocreatine (CP) is the first source of energy when the cell runs out of ATP. Stored
in muscles, only one step is needed to separate the phosphate group from the creatine

phosphocreatine + ADP←→ ATP + creatine, (2.2)

enabling a rapid regeneration of ATP. Due to the reversibility of the equation from
CP into creatine, the CP-ATP system is fundamental in tissues with high fluctuations
of energy demand such as the brain [40, 41]. Despite its high potential to transfer a
high-energy phosphate group, CP is shortly supplied and is therefore able to sustain the
regeneration of ATP only for a few seconds [42].

2.1.2 Anaerobic metabolism

The oxidation of each glucose molecule into two smaller molecules of pyruvate is called
glycolysis. Electrons are transferred from glucose to the coenzyme nicotinamide adenine
dinucleotide, on its oxidized form NAD+, generating two NADH (H for hydrogen) high-
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energy electron carriers without the involvement of oxygen (O2)

glucose + 2 ADP + 2 Pi + 2 NAD+ −→ 2 pyruvate + 2 ATP + 2 NADH +2 H2O. (2.3)

This sequence of reactions, known as substrate-level phosphorylation, occurs in the cy-
tosol, an intracellular fluid where organelles are suspended, and produces two molecules
of ATP [39].

Fermentation: Excretion of lactate

In anaerobic conditions, pyruvate and NADH remain in the cytosol. NADH gives up its
electrons to pyruvate to produce lactate

2 pyruvate + 2 NADH −→ 2 lactate + 2 NAD+, (2.4)

while regeneration of NAD+ maintains the glycolytic activity as the principal source of
ATP at low levels of oxygen. This energy pathway is called fermentation [39]. Even
though it has long been considered a waste or even a harmful end-product, recent studies
confirmed that lactate plays a major role in distinct metabolic pathways [43, 44].

2.1.3 Aerobic metabolism

Under aerobic conditions, ATP synthesis is not at substrate level but in an organelle
called mitochondria. Pyruvate enters the mitochondria

2 pyruvate + 2 NAD+ −→ 2 acetyl-CoA + 2 NADH + 2 CO2 (2.5)

and is converted into CO2, NADH and acetyl-CoA, where most of the energy is pre-
served. Oxidation to CO2 and further energy carrier molecules, as guanosine triphos-
phate (GTP), reduced flavin adenine dinucleotide (FADH2) or NADH, continues with a
series of reactions known as Krebs cycle or citric acid cycle, summarized as

2 acetyl-CoA + 6 NAD+ + 2 FAD + 2 GDP + 2 Pi + 4 H2O

−→ 6 NADH + 2 FADH2 + 2 GTP + 4 CO2. (2.6)

Energy retained in carrier molecules are finally used to produce ATP by transferring
high-energy electrons to oxygen within the electron transport chain. The generation of
ATP with involvement of oxygen

10 NADH + 2 FADH2 + 6 O2 −→ 10 NAD+ + 2 FAD + 12 H2O + 26 ATP, (2.7)
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which occurs in the mitochondrial membrane, is termed oxidative phosphorylation.
Unlike anaerobic respiration, where only a throughput of two ATP molecules is achieved,
complete oxidation of a glucose molecule under aerobic conditions is much more
efficient and produces about 30 ATP molecules in total.

glucose + 6 O2 −→ 6 CO2 + 6 H2O + energy (2.8)

Moreover, other fuels as fats and proteins can also be converted and oxidized by inter-
mediate steps of aerobic metabolic pathway [39].

2.2 Acid-base balance

When the limit of the mechanisms responsible for maintaining pH homeostasis is ex-
ceeded, physiological acid-base equilibrium is disrupted. Minor variations in the normal
extracellular pH range – 7.35 - 7.45 – may have irreversible consequences. For this rea-
son, accurate blood gas interpretation is a challenge to identify metabolic disorders
[45]. Both intracellular and extracellular buffer systems can provide a defense response
to pH variations. Even though phosphate and proteins are also used for intracellular
buffering, the bicarbonate (HCO3

-)\carbonic acid (H2CO3) system

HCO3
- + H+ ←→ H2CO3 ←→ CO2 + H2O, (2.9)

is the primary solution of the interstitial fluid surrounding the cells. In addition to
buffering both acidic and alkaline medium, fluctuations in hydrogen concentration are
independently regulated by kidneys and lungs [46, 47].

Respiratory system Sensitive chemoreceptors to pH or CO2, controlling the alveolar
ventilation, are activated to increase or decrease the tidal volume and the respira-
tory rate. Consequently, pCO2 is adjusted and pH restored to normal values. The
concentration of carbonic acid determines the direction of the process [46, 47].

Renal system Regulation of bicarbonate by the kidneys also maintains the acid-base
equilibrium and allows for pH imbalance correction. A decrease of pH activates
the reabsorption of filtered bicarbonate and the production of new bicarbonate
by acid excretion into urine in the form of titratable acids (urinary buffers) and
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ammonium NH4
+. Conversely, an increase of pH leads to reduction of the reab-

sorbed bicarbonate, which is excreted through the urine. Unlike rapid respiratory
system, renal compensation is a slow process [46, 47].

When mechanisms responsible for acid-base regulation are overwhelmed, body pH
homeostasis is impaired. If prolonged, acid-base disorders might lead to severe conse-
quences. In this study, only disorders related to a decrease in blood pH are addressed.
Two types of acidosis are distinguished.

Respiratory acidosis When CO2 is accumulated in blood, pH is reduced as the equa-
tion 2.9 leans towards the left, increasing the concentration of hydrogen ions.
Acidosis is related to any disorder interfering with alveolar ventilation [17, 45].

Metabolic acidosis Characterized by a deficiency of bicarbonate concentration, acido-
sis might be motivated by different reasons; an overproduction or a decreased
excretion of acid load, and renal or gastrointestinal bicarbonate loss [17, 45].

Acid-base equilibrium is restored either by correction, modifying the system that is
directly affected by a disturbance, or by compensation, triggering an alternative system
as a response to the disturbance (Table 2.1).

Table 2.1: Characteristics of respiratory and metabolic acidosis disorders.

Type of acidosis Consequence Correction Compensation

Respiratory CO2 accumulation Reduce CO2 by
increasing tidal

volume and
respiratory rate.

Increase HCO3
-

reabsorption and
production. Increase

acid excretion.
Metabolic HCO3

- reduction Increase HCO3
-

reabsorption and
production. Increase

acid excretion.

Reduce CO2 by
increasing tidal

volume and
respiratory rate.
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2.3 Hypoxic-ischemic encephalopathy

Birth is often related to a more or less pronounced asphyxia event, accompanied by a
number of physiological changes. Even though a low-oxygen environment is common
in intrauterine conditions, with fetal partial pressure of oxygen (pO2) close to 25-30
mmHg, the fetus has additional adaptive mechanisms when a severe oxygen deficiency
takes place. Reduction of the heart rate, decrease of fetal motility, such as respiratory
movements, and redistribution of blood flow, mainly towards the heart and the brain,
are considered self-protective behaviors against temporary deprivation of nutrients and
oxygen. A reduced metabolic demand is pursued to counterbalance a decreased energy
supply. However, if the impairment is prolonged in time, perinatal asphyxia might result
in hypoxic-ischemic encephalopathy (HIE) and consequent neurological disorder or
death [48, 49].

HIE refers to a brain damage characterized by a deficient cerebral blood flow
during the perinatal period. This impairment is mainly caused by an interruption of the
placental blood circulation (ischemia) and subsequent reduced cerebral blood flow, or
an inadequate oxygen supply at tissue level (hypoxia). Mostly, a combination of both is
observed [50, 51].

The pathophysiology of HIE is characterized by three distinct phases after the
hypoxic-ischemic insult. A primary energy failure begins at the acute phase, charac-
terized by an ATP depletion caused by oxygen deficit. Efficiency of the anaerobic
metabolic pathway in terms of ATP is considerably reduced, as explained in Section
2.1. Moreover, failure of the aerobic metabolism leads to overproduction of lactate and
accumulation of hydrogen ions, mainly consumed in the oxidative phosphorylation
process. The combination of an increased lactate production and a reduced blood pH
caused by tissue hypoxia is called Type A lactic acidosis [43], the most common cause
of metabolic acidosis. Apart from monitoring acidosis, reduction of blood pH has
also been considered a contributing adaptive response to metabolic arrest, due to its
inhibitory effect in enzymatic activity. When correct brain perfusion is restored, a latent
period followed by a secondary energy failure, associated with augmented seizure activ-
ity, occurs. Interventions to avoid further damage can be carried out during the latency
phase, lasting about 6 hours. The degree of recovery right after the hypoxic-ischemic
insult plays a major role and is reflected both in the latency period and in the brain
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damage provoked by the secondary phase of injury. A tertiary phase involves long-term
consequences during the months or even years after the HI event [51, 52].

2.4 Raman spectroscopy

Raman spectroscopy, which belongs to the family of vibrational spectroscopic tech-
niques, spectrally resolves inelastically scattered photons. Vibrational techniques are
widely used to provide fundamental information about molecular structure in a rapid,
straightforward, reproducible and non-invasive manner. Moreover, the negligible sam-
ple preparation makes it ideal for study of biological samples. Particularly, Raman
spectroscopy relies on the interaction of radiation, in the form of monochromatic light,
with specific vibrational modes of molecules [53, 54].

When a sample is irradiated with a laser, both Rayleigh and Raman scattering
processes are involved as depicted in Figure 2.1, the latter being a much rare phenomenon
with an occurrence around 1 in 108. The molecule that absorbs an incident photon
is excited to a virtual energy state. If the energy of the re-emitted photon remains
unchanged after the collision with the molecule, the process is known as elastic scattering
or Rayleigh scattering. However, loss or gain of energy provoked by the interaction
between the molecule and the photon, results in a frequency shift in the scattered
light, the so-called Raman effect. Depending on their initial vibrational state, molecule
excitation will give raise to Stokes (loss of energy) or anti-Stokes Raman scattering
(gain in energy) [53, 54].

The energy shift is characteristic of vibrational modes associated with specific
functional groups, thus providing valuable information about the sample to be analyzed.
Therefore, the Raman spectrum, depicted as the scattered intensity of the Raman shifts
from the incident wavelength, represents a distinctive biological fingerprint [31]. The
intensity of the Raman signal is described by,

IR ∝ ν 4 I0N ( ∂α
∂Q )2, (2.10)

where ν is the frequency of the incident beam, I0 is the intensity of the incident beam,
N represents the number of Raman-active molecules, and ( ∂α∂Q ) indicates the change in
the polarizability of the molecules as a function of a vibrational mode [53].

The above equation unveils the relevance of selecting a particular laser frequency
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Figure 2.1: Excitation of the sample molecules with an incident laser results in different types of interactions.
Momentary absorption of a photon excites the molecule from a ground state into a virtual state. Transition
from this virtual state generates a new scattered photon. Incident photons might be reflected with the same
energy ER (Rayleigh or elastic scattering) or can alternatively lose ES or gain EAS some energy (Raman or
inelastic scattering). Raman scattering coming from a molecule that is initially in a ground vibrational state
is called Stokes Raman, while scattering coming from molecules in an excited state is known as anti-Stokes
Raman. When the energy of the incident photon matches an electronic energy level, the molecule is excited
to a higher level. As some energy is dissipated as heat or vibrations, the wavelength of the re-emitted photon
is higher. This process is called fluorescence. Figure is adapted from [55].

for the sample excitation, resulting in a significant improvement of the signal at smaller
wavelengths. However, high-energy laser (small wavelength) sources can produce
strong fluorescent background and sample photodamage yielding disturbance of the
Raman signal. To avoid such effects, lasers emitting at 785 nm, 830 nm and 1064 nm are
extensively used for biological studies, as they additionally provide a higher penetration
depth into the sample [31, 56].

2.5 Data preprocessing

The complexity of chemical molecules in addition to the diversity of biological samples
makes the analysis and correct interpretation of measurements challenging. Therefore,
a number of different data preprocessing steps of raw Raman spectra are necessary to
reliably extract underlying chemical and structural information from the samples and
mitigate noise and unwanted background.
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2.5.1 Artifacts in Raman signal

Cosmic ray features

Detectors of Raman spectroscopy systems are generally sensitive to cosmic rays that
sporadically produce spike artifacts in the raw spectra. Although these spikes are
easy to distinguish by eye, it is not that simple to eliminate them without modifying
adjacent parts of the spectra [57]. A simple technique to remove cosmic ray features
consists in taking the median of several measurements from the same sample, due to
the low probability of another cosmic ray appearing at exactly the same wavenumber in
consecutive spectra.

High frequency noise

Raman spectra are often affected by high frequency artifacts, that need to be filtered out.
Shot, read o dark current noise generated during collection and conversion of photons
by the charge-coupled device (CCD) are common sources of noise [58]. Savitzky-Golay
filtering is an appropriate low-pass filtering technique based on window polynomial
fitting. The smoothing of spectra is performed by successively fitting a polynomial to a
subset of data points by least-squares [57, 59].

Fluorescent background

Intrinsic fluorescence of molecules, often more intensive than the Raman peaks them-
selves, can strongly impede a correct analysis of the sample. A corrected Raman signal
can be obtained by subtracting a smoothed background signal from the spectra by means
of the asymmetric least squares (ALS) method [60]. Unlike ordinary least square, ALS
gives priority to positive residual errors to guarantee the integrity of Raman peaks [57].

Multiplicative artifacts

Physical events, as light scattering, can also cause multiplicative effects or scattering
artifacts, such as fluctuating background. Even though such artifacts disruptively affect
the interpretation of Raman spectra, extended multiplicative signal correction (EMSC)
allows us to get rid of those varying interfering features. Corrected spectra are obtained
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by scaling all measurements to the mean spectrum of the whole data set. EMSC extends
linear regression to multiple regression with additional non-linear terms to adequately
model the chemical variability of the spectra [61].

Variance uncertainty

Since most of multivariate analysis methods are based on the variance of specific
features of data, it is important to center the data relative to a reference point, like the
mean. Translating the origin of the coordinate system to the center of gravity of the
data avoids uncertainties of the variance of the mean [62].

2.5.2 General preprocessing methods

Principal component analysis (PCA) is a mathematical method used for data com-
pression while retaining most of the information. The dimensionality of the data
is reduced by projection into a new set of orthogonal independent variables, called
principal components, which are linear combinations of the original variables.
Principal components are arranged in descending order according to the direction
of greatest variance, providing insight into the amount of information they contain
[57, 62].

PCA can also be used for exploratory analysis, but due to the lack of any prior
knowledge about the data, its discrimination and quantification power are limited
[57].

Standardization addresses the difference in the order of magnitude between variables.
Scale disparity directly affects the performance of a classifier. Units are corrected
by standardization so that each variable is equally considered, resulting in an
improved discrimination in certain circumstances. For standardization, each
variable is mean-centered and divided by its standard deviation [63].

2.6 Machine learning

Machine learning consists in computational processes designed to emulate human
capacity to learn and process information from the surrounding in order to perform a
particular task. This is achieved by exploring the dependencies of observed features
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and fitting the structure of the data into models which are then understood and applied
by end-users for new unknown inputs. In recent years, machine learning has been
successfully applied in many different fields, like finances, entertainment, preference
identification, autonomous vehicles, psychology or biomedical applications [64, 65].

Based on the nature of the learning procedure, machine learning is classified into
supervised, unsupervised, semi-supervised or reinforcement learning. In the case of
supervised learning, input data is paired with a label. Relationship between the label
and the independent variables allows for identification of the distinctive characteristics
despite the similarities that could exist between classes (classification) or conditions
(regression). Unlike supervised learning, unsupervised algorithms do not have an asso-
ciated label but rather identify clusters based on patterns that occur with some regularity.
Semi-supervised learning is the combination of preceding learning techniques. It ad-
dresses applications where only a minor size of the data is labeled. Many real-world
processes where labeling might be an intensive or even limited task fit in semi-super-
vised learning. Information from labeled data is used in the learning procedure of the
unlabeled part. Reinforcement learning is based on the interaction of a learning agent
with the surrounding environment. Sequence of actions are rewarded based on trial
and error scenario. Considering the consequence of previous actions, reinforcement
learning interprets the environment to maximize the reward and achieve an optimal
action [64, 65].

Machine learning algorithms have brought the ability to carry out tedious and time-
consuming tasks more efficiently. Moreover, the capacity to handle huge amount of
complex data allows for identification of subtle patterns that are negligible to human
appreciation. The potential of such algorithms for quantification of complex Raman
spectroscopy signals has been demonstrated extensively [35].

2.6.1 Model construction and optimization

Machine learning algorithms are able to learn from input data through repeated expe-
rience. This learning and adaptation process is known as training. Available data is
commonly divided into a training and testing set. Even though there is not an established
rule, test samples often represent around 1/3 - 1/4 of all data, depending on the data
size [63, 64]. The predictive model is built and calibrated with the training set, while the
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testing set is used to evaluate how well the model generalizes and to quantify its perfor-
mance. Generalization is a concept that refers to the ability of the model to perform well
not only with the training set but also with new or unseen data [64, 65]. Cross-validation
enables the optimization of model parameters. This optimization technique divides the
training set into k folds, where each of the folds is used for validation only once and
one at a time while the remaining k-1 folds are used for training. Parameters are tuned
based on best cross-validated performance [64, 66].

2.6.2 Model evaluation

A predictive model is evaluated based on its yield for predicting unknown data. The
predictive power is calculated according to statistical metrics [65, 67]. The main goal
of a regression model is to find the best fitting curve that maps the input data with the
continuous output. The root mean square error of prediction (RMSEP) calculates the
deviation of predicted values from reality [65], defined as,

RMSEP =
√∑n

i=1(ŷi−yi)2
n−1 , (2.11)

where ŷi is the predicted output, yi is the real value and n is the number of samples.
This quantity is used as an indicator of the performance of the predictive model.

Classification problems seek the decision boundary that maximizes the distinction
among classes or discrete values. Hence, measuring RMSEP brings no added value.
Alternatively, a confusion matrix, see Table 2.2, records the assignment of data to a
particular category: true negative (TN), true positive (TP), false negative (FN) or false
positive (FP). The evaluation of model performance is represented by scalar metrics
calculated based on these records [67, 68].

Table 2.2: Outcome of correct and incorrect predictions sorted by a confusion matrix or contingency table.

Predicted
Negative (0) Positive (1)

Actual
Negative (0) TN FP
Positive (1) FN TP

Some prominent figures of merit of such confusion matrix are listed subsequently.

Sensitivity or recall refers to the proportion with a positive condition that are predicted
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as positive by the model. It is defined as,

Sensitivity = TP
TP+FN . (2.12)

Specificity refers to the proportion without a positive condition that are predicted as
negative by the model. It is defined as,

Specificity = TN
TN+FP . (2.13)

Positive predictive value (PPV) or precision refers to the proportion predicted as
positive by the model, that really has a positive condition. It is defined as,

PPV = TP
TP+FP . (2.14)

Negative predictive value (NPV) refers to the proportion predicted as negative by the
model, that does not have a positive condition. It is defined as,

NPV = TN
TN+FN . (2.15)

Accuracy refers to the ratio between correct predictions and the total number of cases
to be analyzed. It is defined as,

Accuracy = TP+TN
P+N , (2.16)

where P and N stand for all real positive and negative cases, respectively. The
sum of both values represents the total number of predictions.

F-measure also refers to prediction accuracy. Defined as,

F1 = 2· precision · recall
precision+recall , (2.17)

F-measure is the harmonic average of precision and recall. Unlike accuracy,
F-measure gives more importance to FN and FP being useful for imbalanced
datasets.

Area under receiver operating characteristic (AUROC) curve measures the sepa-
rability between classes as a probability that a randomly chosen positive example
is ranked higher than a randomly chosen negative example. The ROC curve is rep-
resented by plotting sensitivity against 1 - specificity for different discrimination
thresholds.
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2.6.3 Regression algorithm

Partial least squares (PLS) is a powerful multivariate regression technique used for
supervised analysis and for the development of predictive regression models
for chemical quantification. The main goal of PLS is the prediction of a set of
responses Y, as a matrix of outcomes, from a set of predictors X, the matrix of
observations. Similar as in PCA, PLS extracts a new set of orthogonal components,
called latent vectors, in the direction of maximum variance that simultaneously
decomposes the data. Unlike PCA, PLS additionally maximizes the covariance
between between X and Y at the same time [69, 70].

2.6.4 Classification algorithm: Single classifier

Partial least squares – Discriminant analysis (PLS – DA) is an extension of PLS.
Despite being initially introduced for regression to handle continuous variables,
PLS also evolved for classification purposes. In PLS – DA, output categorical
variables are recoded into discrete numbers, typically 0 and 1. Due to the inher-
ent function of PLS, resulting predictions rather take values close to these two
integers. Class membership is determined according to an arbitrary cut-off point
[71].

Support vector machine (SVM) separates positive and negative samples by finding
a hyperplane that maximizes the margin or distance between the hyperplane
and data points. The use of a Kernel function enables distinction of linearly
non-separable data by transforming data to a higher dimensional space [72].

2.6.5 Classification algorithm: Ensemble learning

The objective of ensemble learning is to combine weak or base learners with low
predictive performance to build much stronger and accurate models. The combination
of weak learners helps to minimize the variance of a single model prediction.

Bagging (bootstrap aggregating) consists in generating multiple subsets, i.e. ran-
domly sampling with replacement of the original training dataset. A weak learner is
simultaneously and independently applied to each subset and trained in parallel. Final
classification is obtained by voting, that is aggregating all individual predictions.
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Random forest (RF) fits multiple uncorrelated deep trees to bootstrapped subsets.
These trees are then combined to provide a more consistent prediction. Apart
from sampling over observations when building individual trees, the random
selection of features guarantees a lower variance, i.e. overfitting, and hence, a
more robust model [73].

Boosting algorithms represent another alternative of ensemble learning. Although
the principle is the same as bagging, in this case, weak learners are sequentially trained
with multiple subsets in an iterative manner. Special attention is given to observations
that have been misclassified by previous learners.

Adaptive boosting (AB) redefines the weight of the samples at each iteration. Thus,
distribution of samples is changed by putting a larger weight on wrong samples.
Final classification is obtained by voting of weak learners’ predictions, which are
also weighted based on their individual performance [74].

Gradient boosting (GB) gives importance to misclassified data by fitting a new lear-
ner to the residuals of the predecessor at each iteration. Final classification is done
through a gradient descent optimization to minimize the loss function [74, 75].

Extreme gradient boosting (XGB) is an optimized implementation of Gradient
boosting. Performance and efficiency of the algorithm are improved by
employing parallel computing, regularization terms and more accurate
approximations [76].
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CHAPTER 3

Physiological changes induced by hypoxia-ischemia

In this chapter, the objective is to demonstrate that higher diagnostic value could be
achieved by considering multiple parameters that allow for an overall clinical picture.
Experimental data is the result of the doctoral thesis of Héctor Lafuente Echeverria
[77] and serves as base for a retrospective study, which was not subject of his thesis. In
the following chapter, dynamic parameters from blood gas of newborn piglets under-
going simulated perinatal asphyxia are investigated. In a first step, the most relevant
biochemical parameters are related with the severity of the asphyxia state by univariate
analysis methods. In a next step, the predictive power of pH and lactate as current gold
standards for the identification of hypoxic-ischemic events is quantitatively analyzed. As
a new approach, multiparametric machine learning methods are introduced to examine
the correlation and importance of different parameters as a combined dataset. With
such techniques, new classification models are developed and their diagnostic value is
examined.∗

∗Published as: Hector Lafuente, Ion Olaetxea, Ana Valero, Francisco Jose Alvarez, Ander Izeta,
Ibon Jaunarena, and Andreas Seifert. Identification of hypoxia-ischemia by chemometrics consider-
ing systemic changes of the physiology. IEEE Journal of Biomedical and Health Informatics, 2022,
DOI:10.1109/JBHI.2022.3142190
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3.1 Material & Methods

3.1.1 Sample preparation and data acquisition

22 piglets, 1 to 3 days old, were obtained from a local vendor (Arri-Turri farm, Alava,
Spain) with pathogen-free status. Piglets were anesthetized with a perfusion of phen-
tanil, propofol, and midazolam in dextrose 5% (0.004, 3, and 0.5 mg/kg/h, respectively)
and paralyzed by a perfusion of vecuronium (3 mg/kg/h) administered through an ear
vein. Animals were then intubated, and positive pressure ventilated (Bourns BP200,
CA). Continuous three-lead electrocardiogram (ECG) was recorded. The right common
carotid flow (Qcar) was measured by an ultrasonic flow probe (Transonic Systems
Inc., NY), as a representation of cerebral blood flow (CBF). The femoral artery was
cannulated to monitor blood pressure (Ominare CMS24; HP, Göblingen, Germany) and
to obtain blood samples. Blood oxygen saturation was monitored by transcutaneous
pulse oximetry. Furthermore, brain activity was monitored using a two channel bed
amplitude integrated electroencephalogram (aEEG) monitor (BRM2, BrainZ Instru-
ments, Auckland, New Zealand). Rectal temperature was maintained between 37.5
and 38.5°C with heating lamps. Hypoxia-ischemia (HI) was induced by clamping both
carotid arteries with vascular occluders and lowering the fraction of inspired oxygen
(FiO2) to 8 - 10% over 20 minutes. HI was considered for 20 minutes of the flat traces of
aEEG (< 4µV) (grade V). After HI, carotid blood flows were restored, and the inspired
fraction of oxygen was returned to 21%. At the end of the experiment, the piglets were
euthanized with an intravenous injection of potassium chloride.

Table 3.1 shows the 18 physiological parameters that were measured (ABL5, Ra-
diometer, Copenhagen, Denmark) from arterial blood gas samples of newborn piglets.
The database analyzed consists of 98 measurements divided in two subsets, normoxia
or basal condition (BC group, n = 49) and post-hypoxia-ischemia (HIp group, n = 49).
In the BC group, blood gas analysis was randomly performed during 30 minutes of
stabilization after intubation. The HIp group was formed by three subsets: immediate
post-hypoxia-ischemia (HIp1, n = 22), at the interval 15 - 30 minutes after hypoxia-is-
chemia event (HIp2, n = 17) and 60 minutes after hypoxia-ischemia (HIp3, n = 10). This
partitioning was included to study the ability of both, gold standard methods and pro-
posed models, to distinguish an HI event even during the recovery process. Considering
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the lower probability to detect an HI event as the recovery time passes, the number of
samples per interval were included accordingly.

Table 3.1: Physiological parameters of newborn piglets measured by blood gas analysis.

T (ºC) [Na+] (mM) COHb (%)
(37 - 39.6) (118 - 153) (0 - 4.1)

pH [K+] (mM) MetHb (%)
(7.07 - 7.49) (118 - 153) (0 - 4.1)

[Lactate] (mM) [Ca2+] (mM) HHb (%)
(0.7 - 12.9) (0.66 - 1.45) (−3.9 - 84.1)

pCO2 (mmHg) [Glucose] (mM) SO2 (%)
(31 - 57) (45 - 159) (5.5 - 99.1)

[HCO3
-] (mmHg) [tHb] (g/dL) [Base excess] (mM)

(11.5 - 30.4) (4.5 - 11.1) (−16.8 - 5.1)

pO2 (mmHg) O2Hb (%) Hematocrit (%)
(9 - 140) (15.1 - 100) (14 - 33)

3.1.2 Statistical analysis and classification

Univariate analysis

The most basic form of data analysis studies single variables with the objective to
describe specific attributes of the data. Box-and-whisker plots were used to depict
data distribution. Non-parametric Mann-Whitney U-test was applied to determine
statistical significance among groups, while Spearman’s correlation is used to measure
the monotonic relationship between physiological parameters and the clinical state.
Finally, predictive power of lactate and pH for a binary diagnosis of HI was examined
by means of statistical metrics derived from a confusion matrix, including sensitivity,
specificity, accuracy, positive and negative predictive value (PPV, NPV), and the area
under the receiver operating characteristic curve (AUROC). Definition of perinatal
asphyxia was based on clinical cut-off limits of pH< 7.20 and [lactate]> 4.8 mM, as
proposed by Saling [79] and Kruger et al. [80], respectively.

Multivariate analysis

Multivariate analysis simultaneously evaluates various parameters and identifies ex-
isting correlations. Machine learning algorithms, based on multivariate analysis, are
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characterized by their capacity to learn and adapt to new situations.

A 5-fold cross-validation was carried out for the development of different classifica-
tion algorithms. Data was randomly stratified into 5 groups, where each of the groups
was used for testing only once and one at a time. Predictive models were optimized
by selecting the AUROC as scoring metric for evaluation. Thus, the separability be-
tween classes was maximized and consequently, the probability that a randomly chosen
positive example was ranked higher than a randomly chosen negative example was
also maximized. Despite random stratification of the two subsets BC (n = 49) and HIp

(n = 49), the variability of the HIp group could have affected the model construction
and hence, its performance. To avoid possible bias induced by this random designation
of the folds, the cross validation was repeated 20 times for every classifier. The figures
of merit from the cross validated prediction were then averaged and compared. The
performance of different classifiers for a binary diagnosis of HI was evaluated. The
correlation between the HI state and the clinical parameters was also determined by
analyzing their contribution to the predictive models. Permutation importance technique
calculates the decrease in a metric of a fitted model when a single feature is randomly
shuffled. The difference reveals how decisive a physiological parameter is for generating
a prediction.

A number of different classification algorithms – as single classifier, ensemble
learning – were used for the detection of HI. Specifically, (i) partial least squares –
discriminant analysis (PLS – DA) [71]; (ii) random forest (RF) [73]; (iii) support vector
machine (SVM) [72]; (iv) adaptive boosting (AB) [74]; (v) gradient boosting (GB)
[74, 75]; and (vi) extreme gradient boosting (XGB) [76] have been tested. Fundamental
concepts of applied algorithms can be found in more detail in Section 2.6.

Finally, hybrid classifiers were tested. They combine partial least squares, as feature
extractor for dimensionality reduction, with classification algorithms. Prior to feeding
machine learning algorithms for training, redundant or irrelevant features were removed
by projecting the data in a new reduced subset of latent vectors sorted by the amount
of explained variance and extracted from combinations of the original features. The
classifier was then constructed in this new latent space [81, 82].

To guarantee meaningful graphical representations with no loss of any relevant
information, PLS was applied twice. First, the optimum number of latent vectors that
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minimizes the prediction error was found by internal cross validation. PLS was per-
formed for a second time to this new projected data such that most of the variance was
captured and illustrated by the first two components. All data analysis was performed
in Spyder, a Python open source integrated development environment. Sklearn, Scipy,
Pandas and Numpy libraries were mainly used for the analysis and development of
predictive models, while Seaboorn and Matplotlib were applied to display plots and
figures.

3.2 Results

3.2.1 Transient induction of hypoxia-ischemia

The effects on the brain during the transiently induced HI insult were documented
by recording the aEEG trace (Figure 3.1). Abnormal aEEG background pattern or a
sustained isoelectric EEG (< 4µV) during the first postnatal hours is highly predictive
of adverse outcome. Besides, electroencephalographic traces displayed the occurrence
of seizures in 90% of the piglets. After unclamping both common carotid arteries
(immediately postinjury), a reactive and transient hyperaemia to the brain was shown
by the normalization of the carotid blood flow, remaining normal afterwards. In relation
to the respiratory function, animals were similarly ventilated at same tidal volume.

3.2.2 Physiological parameters from blood gas analysis

Inducing HI causes a shift in several physiological parameters from BC, as shown in
Figure 3.2. The Mann-Whitney U-test quantifies this alteration by unveiling a statistically
significant difference for all measured parameters except for Na+, MetHb and Hct,
(Table 3.2). As expected, pH and lactate present significant variation between BC and
HIp groups. Specifically, pH decreases from 7.37± 0.05 in BC to 7.2± 0.10 after HI,
and more significant, lactate increases from 1.37± 0.46 in BC to 5.56± 2.50 after HI.

The analysis of individual parameters in early and late HIp phase is illustrated in
Figure 3.3. HIp data, split into HIp1 - HIp3 subsets, show that the parameters related to
blood oxygenation (SO2, pO2, O2Hb) exhibit rapid recovery to initial values when ven-
tilation is restored, making them unreliable for clinical diagnosis (Table 3.3, Table 3.4,
Table 3.5). In contrast, base excess, pH, and lactate show a much slower recovery of
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Figure 3.1: Representative brain electroencephalogram and impedance from a hypoxic-ischemic animal.
Amplitude-integrated EEG (aEEG) and impedance during basal condition (BC), immediate post HI event
(HIp1), at the interval 15-30 minutes after HI event (HIp2), and 60 minutes after HI event (HIp3). Arrows at
the right indicate the appearance of seizures.
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Figure 3.2: Exploratory analysis of basal condition (BC) and post-hypoxia-ischemia (HIp) groups for different
physiological parameters. Box-and-whisker plot facilitates the comparison between BC and HIp groups by
displaying the distribution and skewness of the data.
Mann-Whitney U-test
* 0.01< p-value≤ 0.05
** 0.001< p-value≤ 0.01
*** p-value≤ 0.001

29



3

Chapter 3. Physiological changes induced by hypoxia-ischemia

Table 3.2: Statistical significance of physiological parameters between basal condition (BC) and post-hypoxia-
ischemia (HIp) determined by Mann-Whitney U-test.

Parameter |U-statistic| p-value

Lactate 57.5 <0.001*
SO2 338.5 <0.001*
pH 383.5 <0.001*

Base excess 397.0 <0.001*
pO2 399.0 <0.001*

HCO3
- 448.0 <0.001*

HHb 636.5 <0.001*
O2Hb 642.5 <0.001*

K+ 746.5 <0.001*
Glucose 800.5 <0.01*
COHb 856.0 <0.01*
Ca2+ 863.5 <0.01*

T 927.0 0.03*
tHb 940.5 0.03*

pCO2 958.5 0.04*
Hct 971.5 0.051

MetHb 992.0 0.06
Na+ 1100.5 0.24

Mann-Whitney U-test

* p-value≤ 0.05

preinjury levels, with strongest evidence in lactate even at late HIp phases. Lactate
levels did not even reach basal state levels in HIp3, which is 1 hour after the HI event,
while pH demonstrated already normal conditions (Table 3.6). Strongest relationship is
presented between lactate and clinical diagnosis by a Spearman correlation coefficient
of 0.82; other parameters that show good inverse correlation with an HI event are pH,
base excess, SO2, pO2, HCO3

- and O2Hb, as displayed in Table 3.7.

The predictive power of current pH and lactate cut-off limits to identify HI is
surprisingly limited (Figure 3.4). The poor outcome is due to the little capacity to
identify positive cases resulting in an insufficient sensitivity of 24.5% for pH and
59.2% for lactate (Table 3.8). However, separability between groups, as quantified by
the AUROC values (84% for pH, 97.6% for lactate), shows that lactate provides a much
better classification performance than pH.
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Figure 3.3: Exploratory analysis of basal condition (BC) and post-hypoxia-ischemia subsets (HIp1, HIp2,
HIp3) for different physiological parameters. Box-and-whisker plot facilitates the comparison between the
groups by displaying the distribution and skewness of the data.
Mann-Whitney U-test
* 0.01< p-value≤ 0.05
** 0.001< p-value≤ 0.01
*** p-value≤ 0.001
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Table 3.3: Statistical significance of physiological parameters between basal condition (BC) and immediatte
post-hypoxia-ischemia (HIp1) determined by Mann-Whitney U-test.

Parameter |U-statistic| p-value

SO2 0.0 <0.001*
HHb 0.0 <0.001*

Lactate 0.0 <0.001*
O2Hb 0.0 <0.001*
pO2 0.0 <0.001*

COHb 15.5 <0.001*
pH 27.0 <0.001*

Base excess 43.0 <0.001*
HCO3

- 80.0 <0.001*
Glucose 147.0 <0.001*

K+ 160.5 <0.001*
tHb 345.5 <0.01*
Hct 360.5 0.01*
Ca2+ 373.5 0.02*
pCO2 430.0 0.09

T 481.0 0.24
MetHb 483.0 0.24

Na+ 485.5 0.25

Mann-Whitney U-test

* p-value≤ 0.05

Table 3.4: Statistical significance of physiological parameters between basal condition (BC) and 15-30 minutes
post-hypoxia-ischemia (HIp2) determined by Mann-Whitney U-test.

Parameter |U-statistic| p-value

Lactate 10.0 <0.001*
Base excess 124.5 <0.001*

HCO3
- 136.5 <0.001*

pH 140.0 <0.001*
SO2 182.5 <0.001*

MetHb 214.0 <0.01*
pO2 261.5 0.01*

COHb 281.0 0.02*
pCO2 281.0 0.02*

Glucose 294.5 0.04*
T 303.5 0.05*

Ca2+ 332.5 0.11
K+ 365.0 0.23
tHb 379.5 0.30
Hct 388.0 0.34

O2Hb 407.5 0.45
HHb 408.5 0.46
Na+ 415.0 0.49

Mann-Whitney U-test

* p-value≤ 0.05

32



3

3.2. Results

Table 3.5: Statistical significance of physiological parameters between basal condition (BC) and 60 minutes
post-hypoxia-ischemia (HIp3) determined by Mann-Whitney U-test.

Parameter |U-statistic| p-value

Lactate 47.5 <0.001*
K+ 118.0 <0.01*

Glucose 131.0 0.01*
pO2 137.5 0.02*
T 142.5 0.02*

SO2 156.0 0.04*
Ca2+ 157.5 0.04*

MetHb 183.0 0.10
Na+ 199.5 0.18

COHb 201.5 0.19
HHb 212.0 0.26
tHb 215.5 0.28
pH 216.5 0.29

O2Hb 217.0 0.29
Hct 223.0 0.33

Base excess 229.5 0.38
HCO3

- 231.5 0.40
pCO2 242.5 0.48

Mann-Whitney U-test

* p-value≤ 0.05

Table 3.6: Mean± standard deviation of pH and lactate of basal condition (BC) and post-hypoxia-ischemia
(HIp) subsets (HIp1,HIp2,HIp3).

BC HIp HIp1 HIp2 HIp3

pH 7.369±0.046 7.262±0.096* 7.210±0.072* 7.271±0.091* 7.361±0.061
[Lactate] 1.37±0.46 5.6±2.5* 7.6±1.8* 4.6±0.4* 2.70±0.99*

Mann-Whitney U-test

* p-value≤ 0.001
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Table 3.7: Spearman’s correlation between physiological parameters and a hypoxia-ischemia event.

Parameter Coefficient p-value

Lactate 0.83 <0.001*
HHb 0.41 <0.001*
K+ 0.33 <0.001*

Glucose 0.29 <0.01*
Ca2+ 0.24 0.02

T 0.20 0.051
tHb 0.19 0.06

pCO2 0.18 0.08
Hct 0.17 0.10
Na+ -0.07 0.48

MetHb -0.15 0.13
COHb -0.25 0.01*
O2Hb -0.40 <0.001*
HCO3

- -0.54 <0.001*
pO2 -0.58 <0.001*

Base excess -0.58 <0.001*
pH -0.59 <0.001*
SO2 -0.62 <0.001*

Spearman’s correlation

* p-value≤ 0.05

Table 3.8: Classification performance of pH and lactate standard cut-off limits for detection of hypoxia-
ischemia (HI) events; all figures of merit are in percentage (%).

pH< 7.2 [Lactate]> 4.8 mM

Sensitivity 24.5 59.2
Specificity 100 100

PPV 100 100
NPV 57.0 71.0

Accuracy 62.2 78.0
AUROC 84.0 97.6
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Figure 3.4: 1-D visual class separability between basal condition (BC) and post-hypoxia-ischemia (HIp) based
on standard clinical cut-off limits. (a) Decision region of binary classification (BC vs. HIp) based on pH thresh-
old= 7.2. (b) Decision region of binary classification (BC vs. HIp) based on [lactate] threshold= 4.8 mM. (c)
(d) Disaggregation of post-hypoxia-ischemia (HIp) in a) and b) into time-dependent subsets HIp1, HIp2 and
HIp3.
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3.2.3 Development of multiparametric predictive models

Hct, MetHb and Na+, which were previously identified as non-significant by both Mann
Whitney U test and Spearman’s correlation, were excluded for multivariate analysis.
To overcome limitations in predictive power of current gold standard method, different
machine learning algorithms have been tested. As previously stated, due to the limited
available data and the variability inside the HIp group, 5-fold cross-validation was
repeated 20 times for every classifier. Averaged figures of merit and standard deviations
are displayed in Table 3.9. All algorithms present a prediction accuracy> 92.8%. Both
SVM and PLS – DA classifiers exhibit a specificity of around 99%, demonstrating
impressive performance on identification of the BC group, while their sensitivity is
reduced to 87.2% and 88.6%, respectively. It is worth recalling the characteristics
of these two classifiers to understand their behavior. SVM seeks a hyperplane that
maximizes the margin between the hyperplane and data points. Due to higher variability
of the HIp group in comparison to BC group, it is reasonable to think that the margin
favors the true negative rate. Similarly affected, PLS – DA combines maximization of
covariance with classical discriminant analysis, which is no more than determining
the class membership based on an arbitrary cut-off point. This behavior is slightly
reduced with tree-based ensemble learners such as AB, GB, RF or XGB that have a
non-parametric approach of the data resulting in both sensitivity and specificity> 90%.

Table 3.9: Classification performance of different machine learning algorithms for detection of hypoxia-
ischemia (HI) events; all figures of merit are in percentage (%).

PLS – DA RF SVM AB GB XGB

Sensitivity 88.6± 1.9 90.3± 3.7 87.2± 2.4 90.5± 2.6 92.2± 2.4 92.0± 2.4
Specificity 99.4± 1.0 96.5± 2.0 98.7± 2.0 95.1± 2.1 95.9± 2.6 96.8± 1.8

PPV 99.3± 1.0 96.3± 2.0 98.6± 2.2 94.9± 2.1 95.8± 2.7 96.7± 1.8
NPV 89.7± 1.5 91.0± 3.1 88.6± 1.9 91.0± 2.2 92.5± 2.2 92.4± 2.1

Accuracy 93.98± 0.87 93.4± 1.9 93.0± 1.5 92.8± 1.5 94.1± 2.1 94.4± 1.7
AUROC 98.25± 0.44 97.85± 0.37 98.5± 1.2 96.2± 1.4 97.3± 1.1 98.10± 0.55

Once the predictive models are optimized, permutation feature importance is applied
to interpret the predictive power of the physiological parameters regardless of the
constructed model. Here, variables are randomly shuffled, one at a time, and one
observes how accuracy is affected. Lactate is definitely the most relevant feature as
it presents the greatest drop in terms of accuracy, while permutation of the rest of
parameters is reasonably withstood by the distinct predictive models. Averaged decrease
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of accuracy for SVM and XGB models is shown in Figure 3.5.

Projecting the data into new latent vectors, PLS maximizes the covariance with
respect to the clinical state (BC or HIp). To facilitate the graphical representation of the
decision region of different classifiers, only two PLS components are considered. As
previously mentioned, to avoid loss of relevant features, PLS is performed twice. PLS-
based hybrid classifiers yield similar accuracies when compared to non-hybrid models.
Accuracies of non hybrid classifiers lie within the range of 92.8 - 94.4% (Table 3.9),
while hybrid classifiers reach values between 93.2% and 94.5% (Table 3.10). Even
though the outcome of boosting algorithms GB and XGB, is slightly reduced in its
performance when combined with PLS, all hybrid models achieve accuracies> 93.2%.
It is worth mentioning that the combination of RF and SVM with PLS delivers improved
accuracies of 94.4% and 94.5%, respectively, compared to their usage as non-hybrid
classifiers. An example of the decision region determined by SVM and GB in a reduced
latent space of two components is displayed in Figure 3.6a and Figure 3.6b, respectively.
The same two decision regions of PLS – SVM and PLS – GB hybrid classifiers with a
more detailed disaggregation of the HIp into subsets HIp1 - HIp3 (see Figure 3.6c and
Figure 3.6d) reveal that controversial samples belong to latest HI phases.

Table 3.10: Classification performance of different hybrid machine learning algorithms for detection of
hypoxia-ischemia (HI) events; all figures of merit are in percentage (%).

PLS – RF PLS – SVM PLS – AB PLS – GB PLS – XGB

Sensitivity 92.6± 2.3 91.6± 1.0 91.1± 2.8 92.8± 2.8 92.1± 3.1
Specificity 96.2± 1.4 97.4± 1.1 95.2± 2.2 94.9± 1.9 94.6± 2.6

PPV 96.1± 1.3 97.3± 1.2 95.1± 2.1 94.8± 1.9 94.5± 2.6
NPV 92.9± 2.1 92.0± 0.9 91.5± 2.5 93.0± 2.6 92.4± 2.9

Accuracy 94.4± 1.1 94.5± 0.8 93.2± 1.6 93.8± 1.8 93.4± 2.5
AUROC 97.6± 1.2 98.25± 0.64 95.6± 1.2 97.5± 1.4 96.6± 1.4
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Figure 3.5: Permutation feature importance defined as accuracy decrease of fitted predictive models.
(a) Averaged accuracy decrease of fitted Support Vector Machine (SVM) predictive models due to sin-
gle parameter permutation and its standard deviation. (b) Averaged accuracy decrease of fitted Extreme
Gradient Boosting (XGB) predictive models due to single parameter permutation and its standard deviation.
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Figure 3.6: Example of 2-D visual class separability between basal condition (BC) and post-hypoxia-ischemia
(HIp) by hybrid classification models optimized by a 5-fold cross-validation. (a) Binary classification
(BC vs. HIp) based on the decision region defined by an SVM classifier in a 2-PLS component dataset.
(b) Binary classification (BC vs. HIp) based on the decision region defined by a GB classifier in a 2-PLS
component dataset. (c) (d) Disaggregation of post-hypoxia-ischemia (HIp) in a) and b) into time-dependent
subsets HIp1, HIp2 and HIp3.
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3.3 Discussion

Diagnosis of fetal asphyxia relies on the interpretation of fetal heart rate by cardiotocog-
raphy and subsequent intermittent fetal scalp blood sampling with intradermal pH levels
or alternatively lactate as decision-making parameter. This testing regime presents rele-
vant false positive rates, resulting in unnecessary medical interventions as well as low
negative predictive value that may result in prolonged fetal suffering. The development
of new strategies for data interpretation, and hence, higher diagnostic confidence would
naturally deliver added value in obstetric care.

Univariate analysis confirms lactate, pH and base excess as relevant biomarkers
for hypoxic-ischemic events. This outcome is in good agreement with clinical practice
for decision-making. The progressive restoration of these three parameters to basal
levels in comparison with variables directly linked to oxygen, such as pO2, sO2 or
O2Hb, convert them into more reliable indicators. However, it has been demonstrated
that neither established pH nor lactate cut-off limits fulfill the expected performance.
Although lactate proved better long-term evidence than pH, none of these parameters
exhibits reliable predictive power, leading us to question the performance of current
standards in obstetric care. AUROC values (84.0% for pH, 97.6% for lactate), which
are independent of chosen cut-off limits and represent the ability to distinguish between
HIp cases and BC, suggest that other thresholds might provide better statistical metrics,
particularly for post-detection of HI.

One has to emphasize at this point that the results are based on well-controlled
experimental settings compared to the clinical situation with unknown conditions. This
accentuates the weakness and vulnerability of a prediction based on univariate analysis
that is prone to outliers and where relevant characteristic patterns can be overlooked.
Moreover, lactate and pH are not disease-specific and are also used to evaluate the
severity of other pathologies, such as sepsis or some types of cancer [43, 83]. Hence,
physiological changes might also reflect other abnormal behavior rather than HI, making
it even more complicated to define a specific threshold for classification. As a result of
the univariate analysis of biochemical data from HI, it is recommended using lactate as
the superior predictive diagnostic parameter rather than pH or base excess.

Even though, there exists a number of animal models of hypoxic-ischemic en-
cephalopathy (HIE), as for example rodents, lambs, or pigs, the newborn pig animal
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model has a number of advantages compared to other animal models: it has a greater
similarity to a human newborn both in size and brain maturity; further, it resembles the
cardiovascular system at the time of delivery; and in addition, the monitoring, instru-
mentation and evaluation of results in the pig model is similar to that used in the clinical
care of babies with HIE. These points imply that the results obtained with utilized
animal model have high potential for knowledge transfer to clinical settings [84].

Human metabolism entails a multiparametric space that can be much better under-
stood by machine learning. Developing multiparametric models provides predictions
that are based on a systemic clinical picture. Moreover, these models give insight into
inner correlations between physiological parameters and quantify their significance.
The adaptive abilities of machine learning algorithms mitigate the impact of outliers
and allow for better modeling of the variability of the data.

To a great extent, machine learning algorithms do correctly classify samples in
comparison with univariate analysis methods, which completely fail in detecting severe
hypoxic-ischemic events after 30 minutes using pH and after 60 minutes using lactate
as indicator. Furthermore, by different algorithms lactate has been identified as the
main contributor, demonstrating to be a more reliable and long-term biomarker of HI.
Multiparametric analysis of biochemical data derived from blood gas analysis enables
diagnosis of severe HI even 30 to 60 minutes after the occurrence. The detection will
help minimize risks and implications derived from adverse neonatal outcome.

The objective of hybrid classifiers is to reduce the dimensionality, and hence, facili-
tate the processing of different classification algorithms. The datasets of current study
do not feature large sizes or complexity. Nevertheless, PLS – RF and PLS – SVM show
better performance than just using them as non-hybrid classifiers. It is an undeniable
advantage that boosting algorithms as AB, GB or XGB give special attention to mis-
classified data by an iterative development procedure of the model. As a consequence,
the combination with PLS does not improve their performance in this study. Analysis
by hybrid classifiers has demonstrated that dimensionality reduction firstly allows for
graphical representation and subsequent better interpretation of classification by end
users, and secondly represents a useful and necessary preprocessing step for complex
data.
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3.4 Conclusion

Analysis of pH from fetal scalp blood sampling is common practice in obstetric care for
detection of metabolic acidosis and correlated perinatal asphyxia. The limitations of
pH, being a reference parameter for correct medical classification of hypoxic-ischemic
events, have been unveiled. As an alternative, the predictive capacity of lactate has
been evaluated. Despite its potential for long-term evidence of hypoxia-ischemia, its
performance is still limited by just using univariate analysis methods. As a consequence,
predictive models based on multiparametric datasets of physiological parameters have
been developed. By various machine learning methods, lactate has unambiguously been
identified as the main contributor for the detection of hypoxia-ischemia. Moreover,
it has also been validated that the systemic physiological picture, which includes the
entirety of biochemical parameters, yields a substantial improvement in the diagnosis
over the gold-standard techniques. This study represents a first step in the development
of a new diagnostic tool for monitoring perinatal asphyxia.
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CHAPTER 4

pH and lactate sensing in body fluids

In the present chapter, the applicability of Raman spectroscopy together with machine
learning is considered for quantitative and qualitative analysis of both pH and lactate
in complex body fluids, such as blood and plasma. This approach represents a signifi-
cant step toward diagnosis of perinatal asphyxia, where [lactate]> 4.8 mM [80] and
pH< 7.20 [79] are defined as standards for intervention. To exclude secondary effects
of complex media, the technology is firstly validated in vitro with a set of aqueous
samples. A protocol has been developed for the determination of physiological pH
and lactate, considering the entire process chain from sample preparation over Raman
measurements to data evaluation. Following the protocol, the variation of pH and lactate
ex vivo in blood and plasma samples from domestic pigs is then investigated.∗†

∗Published as: Ion Olaetxea, Ana Valero, Eneko Lopez, Hector Lafuente, Ander Izeta, Ibon Jaunarena,
and Andreas Seifert. Machine learning-assisted Raman spectroscopy for pH and lactate sensing in body
fluids. Analytical Chemistry, 92(20):13888–13895, 2020

†Presented as: I. Olaetxea, E. Lopez, A. Valero, and A. Seifert. Determination of physiological lactate
and pH by Raman spectroscopy. In 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 475–481, 2019
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4.1 Material & Methods

4.1.1 Customized Raman spectroscopy system

A customized free-space Raman spectroscopy system, which is shown in Figure 4.1a,
has been designed for investigation of pH and lactate in fluidic samples. The idea is to
combine two different laser excitation wavelengths, 785 nm and 1064 nm, which can
be used interchangeably depending on the characteristics of the sample to be analyzed.
As described in Section 2.4, near-infrared light sources are ideal for biological studies.
Apart from a higher penetration depth, the use of longer wavelengths allows for a
reduction of the fluorescent background and sample photodamage.

The Raman system is built in an inverted microscope configuration composed of
two mirrored optical pathways. Each of the pathways is described in Figure 4.1b and
consists of a continuous wave diode laser, emitting at 785 nm or 1064 nm with adjustable
emission power, as Raman excitation source; adequate optical components for excitation
of the sample and collection of Raman scattering; and a grating spectrometer – EAGLE
Raman-S (Ibsen Photonics) with an Andor iVac 316 detector and a spectral resolution
of 4 cm-1 for the pathway of 785 nm, and Kymera 193i with an iDus InGaAs 490 CCD
detector and a variable spectral resolution with an adjustable slit for the pathway of
1064 nm – to collect the backscattered Raman light.

The free-space mirrored configuration allows for convenient replacement and modi-
fication of the optical components. Moreover, liquid samples are excited from below
such that the effect of evaporation is minimized and unstable focusing and excitation is
avoided. The Raman system emitting at 1064 nm could have not been optimized for
measurements of biological samples so far. Thus, only measurements carried out with
the laser wavelength of 785 nm have been considered. For this chapter, a laser power of
130 mW and a focusing lens with an NA of 0.23 were used.

4.1.2 Sample preparation and acquisition of Raman spectra

In the current chapter both in vitro and ex vivo samples were analyzed. First, spectro-
scopic measurements were carried out with aqueous solutions, such as milliQ water
and phosphate-buffered saline (PBS, 10010015, Thermo Fisher Scientific), to demon-
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1. 1.
2. 2.

3.3.
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(b)

Figure 4.1: (a) Free-space customized Raman system for 785 nm and 1064 nm excitation wavelengths.
(b) Schematic of the customized Raman system. 1. Laser source, 2. illumination path, 3. bandpass laser
line filter, 4. dichroic mirror, 5. focusing lens, 6. motorized sample holder, 7. two longpass filter assembly,
8. filtered Raman scattered light, 9. refocusing lens, 10. spectrometer.

strate proof-of-principle. For a total number of 50 samples, pH was varied from 6.8 to
7.6, by adding 1 M sodium hydroxide (NaOH, S5881, Sigma-Aldrich) or hydrochloric
acid (HCl, H1758, Sigma-Aldrich) diluted at 10%. For each sample, three consecutive
spectra were collected; each spectrum was formed by accumulation of three measure-
ments with an integration time of 10 seconds. Similarly, Sodium L-Lactate (71718,
Sigma-Aldrich) was used to vary the concentration of lactate, firstly for the range of
0 - 30 mM (70 samples) and secondly for the physiologically relevant range of 0 - 10 mM
(60 samples).

In a second step, blood from domestic pigs was analyzed. Blood, stored at 4 ºC, was
provided by Biodonostia Health Research Institute. pH values from 30 samples were
studied in the range from 6.97 to 7.53. The initial concentration of lactate in blood was
varied by addition of sodium lactate. Due to the higher complexity in sample handling,
a slightly broader range than the physiological range has been chosen (2 - 8 mM) and
32 samples prepared. For achieving a better signal-to-noise ratio (SNR) in blood, four
consecutive spectra were collected per sample and each spectrum was obtained by
accumulating five measurements with an integration time of 10 seconds.

Additionally to blood samples, the variation of lactate was also studied in plasma
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samples, as a second example for analyzing complex media. Plasma was extracted
from blood samples by centrifugation at 1000 g for 30 minutes and collection of the
supernatant. Measurement specifications were maintained except the integration time,
which was reduced to 6 seconds to avoid saturation of the detector.

For each sample, 250µL were used and all measurements were performed at room
temperature (23 ºC). Experimental procedures were conducted in strict compliance
with European and Spanish regulations on the protection of animals used for scien-
tific purposes (European Directive 2010/63/EU and Spanish Royal Legislative Decree
53/2013).

4.1.3 Preprocessing of Raman spectra

Analysis of Raman data in biological samples is extremely challenging due to their
heterogeneous nature. Unwanted contributions caused by different background and
noise sources, might hide weak Raman signals from the sample under test. Therefore,
prior to develop any predictive model, preprocessing of raw Raman data is essential for
the correct interpretation of the Raman spectra and for a reliable quantification of the
samples. Hence, all Raman spectra were first trimmed to the range from 300 cm-1 to
1700 cm-1 and preprocessed in MATLAB (MathWorks®). An open toolbox [86] was
used to apply a 6th order Extended Multiplicative Signal Correction (EMSC) to the raw
spectra. Interfering additive and multiplicative artifacts were removed by scaling all
the Raman spectra to the mean spectrum [61]. The median of consecutive spectra from
each sample was taken to eliminate spike artifacts sporadically produced by cosmic rays.
All Raman spectra were smoothed using a Savitzky-Golay filter with a window of 15
points and 3rd order polynomial at a sampling of 4 cm-1. The asymmetric least squares
(ALS) method was used to subtract a smooth background produced by the intrinsic
fluorescence of the molecules [60]. The integrity of the Raman bands is retained by
giving higher relevance to positive residuals [57]. Finally, to avoid uncertainties of the
variance of the mean, the origin of the coordinate system is translated to the center of
gravity of the dataset. Combination of all data preprocessing has been optimized based
on maximization of Raman features and performance of the predictive models.
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4.1.4 Multivariate analysis

Simultaneous analysis and combination of different variables enables the development
of efficient predictive models. However, the correct extraction of significant features
within thousands of misleading, correlated and redundant variables to be handled is a
major challenge [57]. The high number of variables, or pixels in this case, obtained by
Raman spectroscopy can lead to overfitting, impeding the model to generalize. Machine
learning is used to reliably identify and model the spectral variability from preprocessed
spectra [57, 35]. Both partial least squares (PLS) and principal component analysis
(PCA) are techniques for dimensionality reduction used in machine learning. PCA was
used to reveal patterns and facilitate visualization and interpretation of the spectral
data. The discrimination of spectra as a function of their pH or concentration of lactate
was evaluated by projecting the data onto the most relevant principal components
[57]. Moreover, PLS was used to develop predictive regression models that define the
correlation between the spectral variability and the pH and the concentration of lactate
of the samples [69, 70]. Fundamental concepts of applied algorithms can be found in
more detail in Section 2.6.

To evaluate the performance of predictive models, such as those resulting from
PLS, machine learning algorithms consist of two stages. First, the prediction model is
built and calibrated with a training set of measurement data and validated with a new
testing set of unknown samples afterwards. For model calibration, leave-one-out cross-
validation (LOOCV) method was used to determine an optimum set of latent vectors,
and hence, avoiding overfitting. The root mean squared error of prediction (RMSEP)
and the coefficient of determination R2 were used as indicators of the quality of the
predictive model. Whereas RMSEP indicates the standard deviation of the predictions
from the observed values, R2 reflects the amount of variance in the dependent variable
that is explained by the model, or in other words, how well the model fits the data (the
goodness of fit). All the analysis was performed in MATLAB environment.
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4.2 Results

4.2.1 pH and lactate monitoring in aqueous solutions

pH analysis

Due to purity of milliQ water and its subsequent low buffering capacity, PBS has been
used to avoid unwanted additional pH variations when exposed to air. As explained
previously, Raman spectroscopy provides specific information about the vibrational
modes of the molecules. Considering that pH is a metric to determine the acidity of a
solution by measuring the concentration of hydrogen ions, the variation of pH, unlike
lactate, is not directly quantifiable by Raman spectroscopy. However, the variation of
pH can indeed induce changes either in the structure, the concentration or the chemical
bonds of the molecules in the sample being measured, which are eventually detectable by
Raman spectroscopy and can be quantified and correlated with pH. In the case of PBS,
which is a buffered solution, pH is expected to provoke changes to the salts included. In
Figure 4.2, Raman bands at 876 cm-1 and 1076 cm-1, and the peak at 989 cm-1, which
have previously been related to H2PO4 and HPO4 by Fontana et al. [87], have shown to
be pH-dependent.

These spectral variations are highlighted by applying PCA. Figure 4.3a clearly
separates the different samples as a function of their pH. The loading plot in Figure 4.3b
substantiates that most of the spectral variation captured by the first two components
(85% of the variance) is indeed caused by the effect of pH in the vibrational modes of
both H2PO4 and HPO4.

A predictive PLS regression model has been developed for the prediction of pH in
PBS samples. The total of 50 samples were divided into two sets, 40 training samples
for calibration and 10 testing samples. In Figure 4.3c, the small RMSEP of 0.04 and
R2 of 0.98 obtained by the PLS predictive model for unknown samples demonstrates
the quality of the model and the feasibility of the method to detect pH variations in
aqueous solutions. Figure 4.3d shows the main contribution of H2PO4 and HPO4 in the
predictive model.
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Figure 4.2: Preprocessed Raman spectra of PBS solutions with different pH values from 6.8 to 7.6. Only the
range from 850 to 1180 cm-1 is shown for better visualization. (Peaks: I. 876 cm-1, II. 989 cm-1, III. 1076 cm-1)

Lactate analysis

The fingerprint region of pure sodium-lactate powder is shown in Figure 4.4. Some of
the characteristic Raman peaks of lactate, previously reported [88, 89], are indicated:
a sharp predominant peak at 853 cm-1 associated with a C–C single bond vibration,
at 543 cm-1 from CO2 wagging, at 1040 cm-1 and 1053 cm-1 due to C–CH3 stretching
vibrations, at 1081 cm-1 caused by C–O vibrations, and at 1459 cm-1 from asymmetric
CH3 deformation modes. Some other visible Raman bands in Figure 4.4 have not been
addressed, but are characteristic of sodium-lactate.

As mentioned before, the first step was to identify specific Raman features of lactate
in milliQ water solutions. Figure 4.5a and Figure 4.5b present the raw data and its
corresponding preprocessed spectra from the set of samples with varying concentrations
of lactate in a range between 0 and 30 mM. In raw data, it is extremely difficult to
recognize any pattern. However, a completely different picture emerges after applying
the described preprocessing, which demonstrates the importance of this step. Several
regions of the spectra undergo fluctuations in the intensity of the Raman features.
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Figure 4.3: PBS solutions with varying values of pH in the physiological range of 6.8 – 7.6. (a) PCA score plot
(PC-1 vs PC-2); (b) PCA loading plot; (c) prediction of the PLS regression model with an optimum number
of latent vectors of n=3; the values of RMSEP and R2 are characteristic of the model and are calculated with
respect to the target curve; and (d) regression coefficient plot of the PLS regression model. (Peaks: I. 876 cm-1,
II. 989 cm-1, III. 1076 cm-1)
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Figure 4.4: Raman spectrum of Sodium Lactate. (Peaks: I. 420 cm-1, II. 543 cm-1, III. 660 cm-1, IV. 775 cm-1,
V. 853 cm-1, VI. 930 cm-1, VII. 1053 cm-1, VIII. 1081 cm-1, IX. 1459 cm-1)

In Figure 4.5b, Raman bands from pure sodium lactate as well as some additionally
reported peaks [90], such as 930 cm-1 or 1125 cm-1, are observed. Figure 4.5c is a mag-
nification of the predominant peak at 853 cm-1, which clearly shows how the intensity
of the peak varies in correlation with the concentration of lactate; the higher the concen-
tration of lactate, the higher the intensity of the peak. When the concentration of lactate
is reduced to the common physiological range between 0 and 10 mM, lactate Raman
features are still evident despite the little differences between the spectra, as shown in
Figure 4.5d. The great advantage of using multivariate analysis is the possibility to take
into account many features of the spectra instead of single peaks, thereby unveiling
hidden information. Moreover, multivariate analysis omits redundant information so
that reliable and accurate predictive models are developed.

To have a better visualization of the spectra, preprocessed spectra are projected
onto the first two principal components, that explain 78% of the spectral variation
(Figure 4.6a). The loading plot of PC-1 and PC-2 unveils the influence of lactate in
the spectral variation captured by these components (Figure 4.6b). Spectral features
associated with lactate constitute a dominant part. Even Raman peaks, such as 660 cm-1,

51



4

Chapter 4. pH and lactate sensing in body fluids

500 750 1000 1250 1500
Raman shift (cm 1)

1

2

3

4

5
In

te
ns

ity
 (c

ou
nt

s)

1e4

Water
Lactate = 5 mM
Lactate = 10 mM
Lactate = 15 mM
Lactate = 20 mM
Lactate = 25 mM
Lactate = 30 mM

(a)

500 750 1000 1250 1500
Raman shift (cm 1)

0

1

2

3

4

5

6

In
te

ns
ity

 (a
.u

.)

1e3

I II III IV

V

VI

VII

Water
Lactate = 5 mM
Lactate = 10 mM
Lactate = 15 mM
Lactate = 20 mM
Lactate = 25 mM
Lactate = 30 mM

(b)

830 840 850 860 870 880
Raman shift (cm 1)

0.0

0.5

1.0

1.5

2.0

In
te

ns
ity

 (a
.u

.)

1e3

Water
Lactate = 5 mM
Lactate = 10 mM
Lactate = 15 mM
Lactate = 20 mM
Lactate = 25 mM
Lactate = 30 mM

(c)

830 840 850 860 870 880
Raman shift (cm 1)

0.5

1.0

1.5

2.0

2.5

In
te

ns
ity

 (a
.u

.)

1e3

Water
Lactate = 2 mM
Lactate = 4 mM
Lactate = 6 mM
Lactate = 8 mM
Lactate = 10 mM

(d)

Figure 4.5: Aqueous solutions with different concentrations of sodium lactate. (a) Raw Raman spectra in the
region from 500 to 1500 cm-1 with varying concentrations of lactate in the range of 0 – 30 mM and (b) its
corresponding preprocessed spectra. (c) Peak at 853 cm-1, associated with a C–C single bond vibration, for
different concentrations of lactate in the range of 0 – 30 mM and (d) in the physiological range of 0 – 10 mM.
(Peaks: I. 543 cm-1, II. 853 cm-1, III. 930 cm-1, IV. 1053 cm-1, V. 1081 cm-1, VI. 1420 cm-1, VII. 1459 cm-1)
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775 cm-1, 1125 cm-1 or 1315 cm-1, that were not perceptible in Figure 4.5b by eye, are
now gathered by PCA.

A predictive PLS regression model has been developed based on preprocessed
spectra. A total of 60 samples were divided into two sets, 48 training samples for cali-
bration and 12 testing samples. The model was calibrated using the LOOCV method
and the optimum number of latent vectors was determined by Wold’s criterion [91].
The predictive model has been successfully tested with unknown samples providing a
very small RMSEP of 0.32 mM and R2 of 0.99, which corroborates the quality of the
model. Figure 4.6c compares the predicted and real values of lactate concentration. To
understand how strongly each Raman band determines the model, the regression coeffi-
cients of the calibrated PLS model are shown in Figure 4.6d. The major contributing
Raman features are associated directly with lactate.

4.2.2 pH and lactate monitoring in blood

pH analysis

To further study the efficacy of our method, Raman spectra from blood samples from
domestic pigs, as representatives for real physiological samples, have been analyzed at
different pH values (Figure 4.7). As mentioned before, the objective is to identify and
indirectly quantify variations of pH by detecting Raman bands from molecules that are
sensitive to pH. Vibrational modes of hemoglobin have actually been recognized as the
main responsible ones for the Raman spectrum of blood [92].

In Figure 4.8a, the projection of spectra onto the first three principal components
shows a clear clustering of the spectra with respect to their pH value. The loading
plot in Figure 4.8b unveils some spectral variation in Raman bands, such as 420 cm-1,
567 cm-1, 754 cm-1, 789 cm-1, 1002 cm-1, 1207 cm-1, 1222 cm-1, 1357 cm-1, 1547 cm-1

and 1639 cm-1, which have already been assigned to hemoglobin [93]. It has been
reported that hemoglobin also exhibits characteristic active Raman bands in the region
from 1300 cm-1 to 1650 cm-1, however, it is interesting to notice that many of these
reported peaks could not be precisely identified in Figure 4.8b. Nevertheless, the high
variability of the spectra in this region indicates pH-induced modifications in the
vibrational modes of hemoglobin.
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Figure 4.6: Aqueous solutions with varying concentrations of lactate in the physiological range of 0 – 10 mM.
(a) PCA score plot (PC-1 vs PC-2); (b) PCA loading plot; (c) prediction of the PLS regression model with
an optimum number of latent vectors of n=3; RMSEP and R2 defined as in Figure 4.3; and (d) regression
coefficient plot of the PLS regression model.(Peaks: I. 543 cm-1, II. 660 cm-1, III. 775 cm-1, IV. 853 cm-1, V. 930 cm-1,
VI. 1053 cm-1, VII. 1081 cm-1, VIII. 1125 cm-1, IX. 1315 cm-1, X. 1420 cm-1, XI. 1459 cm-1)
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Figure 4.7: Preprocessed Raman spectra of pig blood with varying values of pH in the range of 6.97 – 7.53.

A PLS model has been implemented for the prediction of pH in blood from prepro-
cessed spectra. The model was calibrated with 22 samples for future validation with
8 new samples. Figure 4.8c displays the excellent predictive ability of the model for
unknown samples, which is reflected in the small RMSEP of 0.05 and the good R2 of
0.92, when the reference and the predicted values of pH are compared. Each Raman
band associated with hemoglobin is affected differently by the variation of pH, and
hence, contributes individually to the model. For that reason, it is not straightforward
to identify exact positions of the characteristic Raman peaks of hemoglobin in the re-
gression vector in Figure 4.8d. Nonetheless, stronger contributions from regions around
420 cm-1, 1000 cm-1, 1200 cm-1 and 1600 cm-1 are observed.

Lactate analysis

Unlike in the case of pH, lactate is quantified by detecting characteristic Raman peaks
in the preprocessed spectra from blood, which are displayed in Figure 4.9. The dis-
criminating capability of PCA is demonstrated in Figure 4.10a, where the projection of
preprocessed spectra in the first three principal components allows for visual separation
of the samples into distinct groups. Looking at the loading plot in Figure 4.10b, the
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Figure 4.8: Pig blood with varying values of pH in the range of 6.97 – 7.53. (a) PCA score plot for the first three
principal components; (b) PCA loading plot; (c) prediction of the PLS regression model with an optimum
number of latent vectors of n=6; RMSEP and R2 defined as in Figure 4.3; and (d) regression coefficient plot
of the PLS regression model. (Peaks: I. 420 cm-1, II. 567 cm-1, III. 754 cm-1, IV. 789 cm-1, V. 1002 cm-1, VI. 1207 cm-1,
VII. 1222 cm-1, VIII. 1357 cm-1, IX. 1547 cm-1, X. 1639 cm-1)
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Figure 4.9: Preprocessed Raman spectra of pig blood with varying concentrations of lactate in the range of
2 – 18 mM. (a) Full fingerprint region from 300 to 1700 cm-1. (b) Characteristic peak of lactate at 853 cm-1.

spectral variation captured by the first two components (85% of the variance) reveals
some of the characteristic features of lactate, but also many other bands that are not
related to it.

For developing a PLS regression model, preprocessed spectra of 32 samples have
been used, 24 for training and 8 for testing. The prediction, when tested with unknown
samples, demonstrates again the quality of the model with an RMSEP of 1.25 mM
and R2 = 0.96, as shown in Figure 4.10c. Two main messages can be drawn from the
regression coefficients of the predictive model in Figure 4.10d: first, most of the spectral
variation present in the data is in accordance with different concentrations of lactate,
since most of its characteristic Raman bands are identified; and second, this spectral
variation is not only due to lactate since other Raman bands, which are not associated
with lactate, are also contributing to the model.

To study where other contributions apart from lactate are coming from, a gold
standard method, based on electrochemical analysis, has been used to take a reference
measurement of the main parameters commonly measured in clinical settings (i-STAT,
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Figure 4.10: Pig blood with varying concentrations of lactate in the range of 2 – 18 mM. (a) PCA score plot
for the first three principal components; (b) PCA loading plot; (c) prediction of the PLS regression model with
an optimum number of latent vectors of n=4; RMSEP and R2 defined as in Figure 4.3; and (d) regression
coefficient plot of the PLS regression model. (Peaks: I. 420 cm-1, II. 540 cm-1, III. 567 cm-1, IV. 660 cm-1, V. 754 cm-1,
VI. 775 cm-1, VII. 853 cm-1, VIII. 930 cm-1, IX. 1053 cm-1, X. 1081 cm-1, XI. 1207 cm-1, XII. 1357 cm-1, XIII. 1420 cm-1,
XIV. 1459 cm-1, XV. 1547 cm-1, XVI. 1639 cm-1)
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Abbott Technologies). The values of four blood samples with different concentrations of
lactate at two time intervals are displayed in Table 4.1. As expected, the concentration
of lactate changes from sample to sample, but it can also be observed that many of
these parameters are changing with time, meaning that sample preparation and therefore
exposure of the samples to air is extremely determinant. Furthermore, Lemler et al. [94]
already mentioned that hemoglobin experiences some chemical changes as soon as blood
is extracted. Considering the fact that sample preparation was performed by groups
at different times, the variation of the different parameters shown in Table 4.1 could
explain the unexpected contributions present in the model (Figure 4.10c, Figure 4.10d).
Moreover, it has been demonstrated that prolonged exposure to laser light and high
incident power are responsible for hemoglobin denaturation and heme aggregates [94].
This unwanted effect might hinder possible correlations induced by the addition of
lactate.

Table 4.1: Clinical parameters, measured with i-STAT (Abbott Technologies), from pig blood with varying
concentrations of lactate at two different periods of time.

Clinical Sample 1 Sample 2 Sample 3 Sample 4
parameters t1 t2 t1 t2 t1 t2 t1 t2

pH 6.92 7.02 6.99 7.06 6.98 7.08 6.99 7.06
pCO2 (mmHg) 125 95 103 84 101 76 95 79
pO2 (mmHg) 175 186 178 166 150 157 133 145
BE (mM) -7 -6 -7 -7 -8 -7 -8 -8
HCO2 (mM) 25.6 24.7 24.4 23.5 23.8 22.6 23.0 22.7
TCO2 29 27 27 26 27 25 26 25
sO2 (%) 98 99 98 98 97 98 96 98
Lactate (mM) 1.78 2.07 7.51 7.68 13.08 13.42 18.67 18.98

4.2.3 Lactate monitoring in blood plasma

To minimize the effect induced by sample preparation for the prediction of lactate,
blood cells had been removed and the experiment was repeated in plasma samples
(Figure 4.11). Visual inspection of PCA reveals that plasma spectra still form clusters
according to their concentration of lactate (Figure 4.12a) and that lactate Raman features
are still captured by the first two components, which is reflected in the loading plot in
Figure 4.12b.

In the case of plasma, a more robust and accurate PLS regression model is obtained.
In comparison with blood samples, the prediction error has been reduced to a value of

59



4

Chapter 4. pH and lactate sensing in body fluids

RMSEP= 0.51 mM (Figure 4.12c), which demonstrates a much stronger contribution
of lactate (Figure 4.12d).
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Figure 4.11: Preprocessed Raman spectra of pig blood plasma with varying concentrations of lactate in the
range of 2 – 18 mM. (a) Full fingerprint region from 300 to 1700 cm-1. (b) Characteristic peak of lactate at
853 cm-1.
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Figure 4.12: Pig blood plasma with varying concentrations of lactate in the range of 2 – 18 mM. (a) PCA score
plot for the first three principal components; (b) PCA loading plot; (c) prediction of the PLS regression model
with an optimum number of latent vectors of n=5; RMSEP and R2 defined as in Figure 4.3; and (d) regression
coefficient plot of the PLS regression model. (Peaks: I. 420 cm-1, II. 540 cm-1, III. 660 cm-1, IV. 775 cm-1, V. 853 cm-1,
VI. 930 cm-1, VII. 1002 cm-1, VIII. 1053 cm-1, IX. 1081 cm-1, X. 1125 cm-1, XI. 1420 cm-1, XII. 1459 cm-1, XIII. 1639 cm-1)
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4.2.4 Evaluation of predictive models

PLS regression models have been implemented and used for evaluating the predictive
power of pH and lactate in aqueous solutions and body fluids by Raman spectroscopy.
Quantification errors are summarized in Table 4.2. It has been shown that data prepro-
cessing plays a crucial role in the development of models with good performance. The
capability of our method for sensing lactate and pH variations has been demonstrated by
this study. Moreover, it has been shown that blood, especially hemoglobin, is extremely
sensitive to measurement conditions and affects the model performance for lactate
prediction. External circumstances, such as the exposure of the sample to air or an
excessive power of the laser, can introduce uncontrolled additional variability to the
predictive model that should be considered.

Table 4.2: Prediction errors of pH and lactate in aqueous solutions and body fluids.

PBS/Water Blood Plasma

pH 0.04 0.05 -
Lactate (mM) 0.32 1.25 0.51

4.3 Conclusion

The present study has demonstrated that the combination of Raman spectroscopy with
machine learning represents a suitable tool for monitoring lactate and pH values from
body fluids. Principal component analysis has proved clear discrimination of the spectra
as a function of the pH value and concentration of lactate. For future clinical applications,
this constitutes a powerful tool for both binary and multiclass classification of perinatal
asphyxia, as well as for other fields, such as fatigue analysis or sepsis classification.
In addition, partial least squares predictive models have been successfully tested with
unknown samples, providing clinically promising errors that verify the reliability,
the accuracy and hence, the quality of predictive models. In conclusion, it has been
demonstrated that developing a new a diagnostic method to monitor perinatal asphyxia
ex vivo could be feasible.
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CHAPTER 5

Optimization of a Raman probe system

Prototyping and development of hardware components of a specific Raman probe for
accurate fetal monitoring represents a challenge and plays a major role in the future
commercialization of the technology. Given the existence of a mature and wide market of
optical probes, valuable practical and technical expertise is already available. Therefore,
as part of the validation of the technology and prior to conducting a preclinical study,
an evaluation of different commercial Raman probes has been performed to give insight
into essential characteristics our customized Raman probe will require. Particularly, this
chapter describes the comparison of the "EmVision Raman Lensed probe" (EmVision
LLC) [95] and the "RamanProbeTM" (RPS785, Inphotonics) [96].
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5.1 Comparison of commercial probes

5.1.1 Optical and mechanical characteristics

EmVision Raman Lensed probe consists of a single excitation fiber surrounded by
seven collection fibers. All fibers are composed of silica with low-hydroxyl
(OH) content and have a core diameter of 300µm with a numerical aperture
(NA) of 0.22. Designed to be utilized both for immersion and direct contact
measurements, the performance of the probe at the contact surface is maximized
by a specific geometry of the lens combination at its distal end. A bandpass
laser line filter, centered at 785 nm, is placed in front of the excitation fiber to
selectively transmit a narrow laser band. A donut-shaped longpass notched filter
avoids the entrance of Rayleigh scattered light in the collection fibers. On top of
the filters, a two-component converging lens overlaps the excited and collected
volumes from the contact surface. Approximately, an area of 0.8 mm2 is irradiated.
All components are encased in a stainless steel needle tube of 2.1 mm. Unlike
the donut shape at the tip, seven collection fibers are linearly arranged for the
probe-spectrometer coupling. An FC-PC and an SMA-SMA connector are used
for laser and spectrometer coupling, respectively [95].

1.

2.

3.

4.

5.

6.

7.

(a) (b)

Figure 5.1: (a) Exploded view of the tip of the EmVision Raman Lensed probe [97] consisting of: 1. seven
collection fibers, 2. single excitation fiber, 3. bandpass laser line filter centered at 785 nm, 4. donut-shaped
longpass notched filter, 5. two-component converging lens, 6. excited cone, 7. collected cone of a single
collection fiber. (b) Picture of the EmVision Raman Lensed probe [95].
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RamanProbeTM follows a more standard geometry. The lens combination, similar to
our customized free-space Raman system described in Section 4.1.1, includes
a dichroic filter which allows for collection of the backscattered Raman signal.
The probe consists of a single excitation and a single collection fiber with a core
diameter of 105µm and 200µm, respectively. A 785 nm laser line clean-up filter
is placed in front of the excitation fiber to selectively transmit a narrow laser band.
The dichroic filter allows for transmission of the laser while longer wavelengths,
generated as a result of the Raman scattering, are reflected through the collection
path. Maximum throughput is achieved with a complete overlap of excitation and
collection volumes. Nonetheless, the RamanProbeTM is not designed to work in
contact with the surface. The focus spot has a theoretical area of 0.08 mm2 and is
dependent of the working distance, which has experimentally been determined
at 5.6 mm. A longpass filter assembly avoids the entrance of Rayleigh scattered
light in the collection fiber. All components are embedded in a protective jacket.
An FC-PC and an SMA-SMA connector are used for laser and spectrometer
coupling, respectively [96].

1.

2. 3. 4. 5.

10.

9. 8. 7.

6.

(a) (b)

Figure 5.2: (a) Cross-sectional view of the tip of the RamanProbeTM consisting of: 1. single excitation
fiber, 2. collimating lens, 3. bandpass laser line filter centered at 785 nm, 4. dichroic mirror, 5. focusing lens,
6. measurement spot, 7. reflective mirror, 8. longpass filter assembly, 9. refocusing lens, 10. single collection
fiber. (b) Picture of the RamanProbeTM.
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5.1.2 Measurement performance of the Raman probes

Polypropylene has been examined as standard reference material due to its strong
Raman signal and broad Raman-active spectral range. Figure 5.3a shows the spec-
trum from polypropylene measured with the EmVision Raman Lensed probe and the
RamanProbeTM for an excitation wavelength of 785 nm. Moreover, polypropylene spec-
trum obtained by our customized free-space Raman spectroscopy system was used for
comparison.
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Figure 5.3: Performance comparison of the free-space customized Raman spectroscopy system, the EmVision
Raman Lensed probe, and the RamanProbeTM for an excitation wavelength of 785 nm. (a) Polypropylene
Raman spectrum collected for a power of 25 mW and an integration time of 1 second. (b) Background signal
without sample excitation for a power of 25 mW and an integration time of 20 seconds.

The EmVision Raman Lensed probe exhibited a strong fluorescent background.
This spectral residual was also observed when no sample was irradiated and the probe
was placed inside a black anodized aluminium box with the laser switched on, as seen
in Figure 5.3b. The two-component converging lens at the tip of the probe and the
silica component of the collection fiber emit an intrisic fluorescence that reaches the
detector and disturbs the Raman signal of the polypropylene. The spectrometer from
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EmVision integrates an extra laser blocking filter, critical according to the developers,
at the collimating section to avoid the effect of fluorescence. However, how a longpass
filter, placed at the entrance of the spectrometer, would help to reduce the fluorescence
is not obvious. If such a filter is placed after the light has been transmitted trough the
fiber, fluorescence generated by the silica component of the collection fiber is never
avoided. A potential justification could be that fluorescence is mainly generated by
internal components of the spectrometer. The RamanProbeTM mitigates this interference
by mounting a longpass filter assembly with optical density above eight (OD> 8) before
entering the collection fiber. Such a filter blocks transmission of the laser wavelength
with high efficiency. Similarly, our customized free-space Raman spectroscopy system
includes a combination of two longpass filters with the same purpose.

The coupling between the probes and the Eagle Raman-S spectrometer (Ibsen) also
affects their performance. The spectrometer has an integrated fiber bundle composed of
eight fibers with a core diameter of 400µm and NA of 0.3, geometrically arranged such
that the total diameter is around 1.3 mm (Figure 5.4a). However, the linear arrangement
of the collection fiber bundle in the EmVision probe results in a total length of at least
2.1 mm (Figure 5.4b), clearly out the effective margin of the spectrometer’s integrated
fiber. For the RamanProbeTM, which has a single collection fiber of 200µm (Figure 5.4c),
the coupling effect hardly affects its performance. However, due to the small core size of
its fiber, Raman signal from a much smaller collection cone is recorded in comparison
with the free-space Raman spectroscopy system. Reduction of the Raman signal in
liquids or thick transparent samples is counteracted by its confocal characteristic.

The EmVision Raman Lensed probe has already demonstrated fantastic performance
and great potential for different applications, such as tumor malign delineation [98] or
characterization during prostatectomy procedures [99], but coupling of the probe to
their own customized Raman system has proven to be crucial. Even though its optical
characteristics and design will be considered for future development of an optimized
Raman probe for fetal monitoring, the RamanProbeTM is used for further preclinical
validation of the technology. Moreover, Figure 5.5 supports the election, considering the
great performance of the RamanProbeTM to distinguish different lactate concentrations
in liquid samples.

67



5

Chapter 5. Optimization of a Raman probe system

(a) (b) (c)

Figure 5.4: (a) Integrated fiber bundle of the Eagle Raman-S spectrometer. 8 fibers with a core diameter of
400µm and a numerical aperture of 0.3. (b) Linear arrangement of the collection fibre bundle at the proximal
end of the EmVision Raman Lensed probe. 7 fibers with a core diameter of 300µm and a numerical aperture
of 0.22. (c) Single collection fiber of the RamanProbeTM with a core diameter of 200µm and a numerical
aperture of 0.22.
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Figure 5.5: The RamanProbeTM in aqueous solutions. (a) Raw Raman spectra of aqueous solutions with
varying concentrations of lactate in the region of 500 cm-1 to 1500 cm-1. (b) Characteristic peak of lactate at
853 cm-1.
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5.2 In vivo validation of the probe system

Prior to evaluating the capacity of the technology to detect hypoxic-ischemic events,
measurement conditions were optimized. The mechanical protective jacket of the com-
mercial RamanProbeTM has also been adapted to allow for contact measurements.

5.2.1 Optimization of the focal position

As previously described, the RamanProbeTM is not designed to be used in contact
with the surface to be measured. The working distance of 5.6 mm is not ideal for in
vivo measurements through the skin. The thickness of the human skin ranges from
0.5 mm to 4 mm. Thus, when the probe is directly placed onto the skin, the signal comes
from somewhere below as the working distance is larger. Moreover, light absorption,
transmission and scattering through the skin, as well as the depth of field and the
energy density of the incident beam, affect the Raman intensity, which originates
from an excitation cone rather than a unique point. Figure 5.6 shows the module, with
adjustable working distance, that has been designed and implemented to carry out
contact measurements. The module consists of two threaded pieces with a very fine
pitch and a window-end. Such a configuration allows us to determine a precise focal
position that maximizes the Raman signal at the contact surface.

Figure 5.6: Implementation of an opto-mechanical module to the RamanProbeTM that allows for contact
measurements.

The variability of the Raman peaks has been analyzed for different tissues, such as
the abdomen or the tongue of a pig, as a function of the position of the focus. From the
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innermost position, the working distance was shifted by 500µm at each step for a total
of 13 different positions and a range of 6.5 mm to guarantee that the analysis was done
beyond the surface. Figure 5.7a and Figure 5.7b show the Raman intensity profile of
different tissues which allows for identification of the position of major Raman intensity,
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Figure 5.7: Raman intensity profile as a function of the focal position in the tissue, where 0 represents
the surface, while positive and negative values correspond to inner and outer part of the skin, respectively.
(a) Abdomen of a pig. (b) Tongue of a pig.

5.2.2 Tissue differentiation

Depending on their location, tissues of a living being show differences in their function-
ality and accordingly in their composition. Raman spectra from the abdomen, snout, ear
and tongue of a piglet should exhibit distinct patterns according to the chemical struc-
ture of their components. As part of the evaluation process, our ability to distinguish
different tissues by using the RamanProbeTM was investigated. Apart from the potential
capacity of our technology, this approach gave us insight into the most appropriate tissue
for further validation. The scalp was excluded due to the high fluorescence emitted by
the skull. Possible interference of the bone components needs to be addressed in the
development of a customized probe.
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A total of 110 measurements (30 at the abdomen, snout and tongue; 20 at the ear)
from three piglets were collected. An integration time of 60 s and a laser power of
30 mW were used. The same preprocessing procedure described in Section 4.1.3 was
used here. Preprocessed Raman spectra are displayed in Figure 5.8, where different
patterns of the Raman peaks are clearly distinguished among tissues. Even though
the origin of the Raman peaks of each type of tissue is out of the scope of this study,
Figure 5.9 demonstrates that the projection of the data in its first latent vectors (Partial
Least Squares) increases the difference and makes the ability to distinguish the type of
tissue more evident. Data from the ear was omitted to facilitate the visualization of the
clusters. The tongue is selected for further experiments due its suitable Raman signal
and high level of irrigation.
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Figure 5.8: Averaged preprocessed Raman spectra from different piglet tissues± their standard deviation
represented by the shaded area.

5.2.3 Pre- & post-mortem differentiation

In two of those piglets , our ability to distinguish completely extreme physiological
situations was investigated again by using the RamanProbeTM. As an interesting example,
Raman spectra from pre-mortem and post-mortem state were compared. In fact, a post-

71



5

Chapter 5. Optimization of a Raman probe system

L.V. 1

15
10

5
0

5
10

L.V. 2

10

0

10

20

L.V. 3

10
5

0
5

10
15
20

Tongue
Snout
Abdomen

(a)

15 10 5 0 5 10
L.V. 1

15

10

5

0

5

10

15

20

L.
V.

 2

Tongue
Snout
Abdomen

(b)

Figure 5.9: Partial Least Squares score plot of different piglet tissues. (a) 3-D projection of the Raman data
into the first three latent vectors. (b) 2-D projection of the Raman data into the first two latent vectors.

mortem clinical state implies nothing else than an extreme hypoxic-ischemic situation,
and such analysis would represent a real estimate of the potential of our technology to
identify hypoxic-ischemic events.

A total of 65 measurements (32 pre-mortem and 33 post-mortem) were collected at
the tongue. An integration time of 60 s and a laser power of 30 mw were used. Raman
spectra, displayed in Figure 5.10, followed the same preprocessing procedure defined
in Section 4.1.3. Despite the difficulty to identify clear characteristic patterns in the
Raman curves, projection of the data into its first latent vectors in Figure 5.11 reveals
two distinct clusters associated to the clinical state. This result represents a fantastic
achievement in the process of identifying hypoxic-ischemic events.
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Figure 5.10: Averaged preprocessed Raman spectra from piglets at pre- and post-mortem clinical states± their
standard deviation represented by the shaded area.
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Figure 5.11: Partial Least Squares score plot of piglets at pre- and post-mortem clinical states. (a) 3-D
projection of the Raman data into the first three latent vectors. (b) 2-D projection of the Raman data into the
first two latent vectors.
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CHAPTER 6

In vivo non-invasive monitoring of hypoxia-ischemia

In this chapter, the new diagnostic tool, which combines Raman spectroscopy with
machine learning, is validated in vivo. In this pre-clinical phase, the RamanProbeTM

[96] described in Chapter 5 is tested for identification of hipoxic-ischemic events. The
technology is evaluated as a genuine alternative for supporting in an innovative way im-
mediate medical decision-making by non-invasive, continuous and real-time monitoring
of perinatal asphyxia.
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6.1 Material & Methods

6.1.1 Experimental procedure

9 piglets, 1 to 3-d old were anesthetized with sevoflurane (Induction 5% and mainte-
nance 2.5%) and fentanyl (0.0002 – 0.0005 mg/kg/h), and then paralyzed by a perfusion
of vecuronium (1.8 mg/kg/h) administered through the ear vein. Animals were then
tracheotomized and ventilated with positive pressure. The femoral artery was cannulated
to monitor blood pressure and to obtain blood samples. Blood oxygen saturation was
monitored by transcutaneous pulse oximetry.

After stabilization, the animals were kept under normoxic conditions for 1 hour.
The induction of hypoxic-ischemic damage was carried out by reducing the inspiratory
oxygen fraction between 8 – 10% until reaching a base excess (BE)≤ 15 mM and/or a
pH≤ 7 and/or a lactate≥ 12 mM (moderate-severe hypoxic-ischemic damage). In addi-
tion, a mean arterial pressure < 20 mmHg was established as an end-point criterion for
hypoxia, since in these cases the life of the animal is seriously compromised. To reduce
the inspiratory fraction of oxygen below 21%, the ventilation system was modified,
replacing the medical air supply with nitrogen and readjusting oxygen concentrations
with an oximeter. In addition, CO2 was administered in the inspiratory fraction (PaCO2
8.0 – 9.5 kPa), with the aim to mimic the perinatal asphyxia. After hypoxic damage, the
inspired oxygen fraction was restored to baseline levels and kept for 1 hour. Thus, in
total three phases were established throughout the experiment, as shown in Figure 6.1.

BC phase HI phase HIp phase

Timeline

60 min X min 60 min

Figure 6.1: Experiment timeline divided in three phases, basal condition phase (60 minutes before the
damage phase), hypoxic-ischemic damage phase (variable time until reaching one or more of the established
thresholds), post-hypoxia-ischemia phase (60 minutes after the damage phase).

At the end of the experiment, the piglets were euthanized with an intravenous
injection of potassium chloride. All experimental procedures and euthanasia of the
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animals were conducted in strict compliance with European and Spanish regulations on
the protection of animals used for scientific purposes (European Directive 2010/63/EU
and Spanish Royal Legislative Decree 53/2013). The protocols were approved by the
Committees on the Ethics of Laboratory Animal Welfare of Biodonostia Health Research
Institute (Permit Numbers: OH 18_22 and OH 20_36) and performed in its experimental
surgical theater.

6.1.2 Data acquisition: blood gas analysis and Raman spectra

In the current chapter both Raman spectra and physiological parameters were simul-
taneously acquired. Raman measurements were performed with the RamanProbeTM

(RPS785, InPhotonics), which had been adapted to be used in contact with the skin. The
RamanProbeTM, with an excitation fiber of 105 nm core and a collection fiber of 200 nm,
is connected to a continuous wave diode laser, emitting at 785 nm, and to the EAGLE
Raman-S grating spectrometer with an Andor iVac 316 detector(Ibsen Photonics) and
a spectral resolution of 4 cm-1. Based on the previous work described in Section 5.2,
the tongue was used as excitation tissue for identification of hipoxic-ischemic events
(Figure 6.2). Even though Raman spectra were continuously collected, for each measure-
ment the probe was replaced at a different position to avoid any possible bias or sample
damage caused by long and permanent exposures. An integration time of 60 seconds
and a power of 60 mW were used. In total, 1033 Raman spectra were analyzed. The
database consists in three subsets, normoxia or basal condition phase (BC, n = 346),
hypoxia-ischemia phase (HI, n = 323) and post-hypoxia-ischemia phase (HIp, n = 364).

Throughout the experiment, blood samples were extracted from femoral artery for
gas analysis with the i-STAT 1 handheld blood analyzer (Abbott Laboratories). Table 6.1
shows the 8 physiological parameters that were provided by the gas analayzer. Due to
the amount of time required for the whole extraction and analysis procedure, blood
samples were extracted every ten Raman measurements. Nonetheless, in order to match
each Raman measurement with a blood gas analysis, a linear equation was fitted every
two points for each physiological parameter, and values in between assigned to their
corresponding spectrum. Thus, a parallel database with 1033 blood gas analyses has
also been generated. Likewise, this second database is also divided in three same subsets,
normoxia or basal condition phase (BC, n = 346), hypoxia-ischemia phase (HI, n = 323)
and post-hypoxia-ischemia phase (HIp, n = 364).

77



6

Chapter 6. In vivo non-invasive monitoring of hypoxia-ischemia

Figure 6.2: Experimental setup for in vivo non-invasive monitoring of hypoxia-ischemia (HI) by Raman
spectroscopy in piglets. HI damage is induced by reducing the inspired oxygen fraction. The RamanProbeTM

is placed at the tongue.

Table 6.1: Physiological parameters measured by blood gas analysis.

pH pCO2 (mmHg) pO2 (mmHg) [Base excess] (mM)
(6.88 - 7.55) (30.3 - 85.0) (14 - 608) (-20 - 13)

[HCO3
-] (mmHg) TCO2 (mmHg) SO2 (mmHg) [Lactate] (mM)

(11.9 - 37.2) (13 - 39) (13 - 100) (0.41 - 14.2)
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6.1.3 Preprocessing of Raman spectra

As explained in Section 4.1.3, analysis of Raman data in biological samples is extremely
challenging due to their heterogeneous nature. Moreover, such a challenge is magnified
when dealing with in vivo data. Therefore, prior to perform any statistical analysis
or develop any predictive model, preprocessing of raw Raman data is essential for
the correct interpretation of the Raman spectra and for a reliable classification of the
samples. Even though the preprocessing methods described in Section 4.1.3 have been
similarly applied to in vivo data, slight modifications were performed to optimize the
Raman signal.

Accordingly, all Raman spectra were first trimmed to the range from 535 cm-1 to
1717 cm-1, the so called fingerprint region. Then, a 6th order Extended Multiplicative
Signal Correction (EMSC) was applied to the raw spectra to remove interfering additive
and multiplicative artifacts by scaling all the Raman spectra to the mean spectrum [61].
An asymmetric least squares (ALS) method, based on Whittaker filter, was used to
subtract a smoothed background produced by the intrinsic fluorescence of the molecules
[60]. The integrity of the Raman bands is retained by giving higher relevance to positive
residuals [57]. All Raman spectra were smoothed using a Savitzky-Golay filter with
a window of 15 points and 3rd order polynomial at a sampling of 4 cm-1. Finally, to
avoid uncertainties of the variance of the mean, the origin of the coordinate system is
translated to the center of gravity of the dataset. Some machine learning algorithms are
built upon the variance of specific features of data, and then, it is important to center
the data relative to a reference point, which in this case is the mean. Combination of all
data preprocessing has been optimized based on maximization of Raman features and
performance of the predictive models.

Even though the experiments were carried out in a well-controlled experimental
context, in vivo measurements imply a considerable degree of uncertainty. In order to
avoid the presence of outliers in the database, a principal component analysis (PCA) is
individually applied to the Raman data of each animal. Outliers are identified based
on a Q residuals vs. Hotteling’sT 2 plot. Such a plot represents the lack-of-fit and the
captured variation of each sample within the model. Samples out of the confidence limit
of 95% were not considered and were discarded for the proceeding data analysis. All
data preprocessing was carried out with the PLS_Toolbox (Eigenvector) in MATLAB
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environment (MathWorks®).

6.1.4 Data analysis

Univariate analysis

Similar to Section 3.1.2, physiological parameters depicted in Table 6.1 have individually
been assessed. Box-and-whisker plots were used to depict data distribution. Non-para-
metric Mann-Whitney U-test was applied to determine statistical significance among
groups, while Spearman’s correlation is used to measure the monotonic relationship
between physiological parameters and the clinical state. Finally, predictive power of
lactate and pH for classification of HI was examined by means of statistical metrics
derived from a confusion matrix, including sensitivity, specificity, accuracy, positive
and negative predictive value (PPV, NPV), and the area under the receiver operating
characteristic curve (AUROC). Again, definition of perinatal asphyxia was based on
clinical cut-off limits of pH< 7.20 and [lactate]> 4.8 mM, as proposed by Saling [79]
and Kruger et al. [80], respectively.

Multivariate analysis

It is well-known that a hypoxic-ischemic event induces a physiological response, which
has been demonstrated in Chapter3 to cause a generalized systemic reaction rather
than the variation of a single biomarker. Such a physiological response is reflected in
distinct spectral features of Raman bands. However, identification and assignment of
peaks, and consequently, differentiation among groups constitutes a serious challenge,
which is even more evident when considering in vivo data classification. A number of
different classification algorithms – as single classifier, ensemble learning and hybrid –
were used for the detection of HI. Specifically, (i) partial least squares – Discriminant
analysis (PLS – DA) [71]; (ii) random forest (RF) [73]; (iii) support vector machine
(SVM) [72]; (iv) adaptive boosting (AB) [74]; (v) gradient boosting (GB) [74, 75]; and
(vi) extreme gradient boosting (XGB) [76] have been tested. Fundamental concepts of
applied algorithms can be found in more detail in Section 2.6.

Relevant spectral bands for identification and classification of the clinical state,
associated to defined phases in Section 6.1.1, were determined. Their contribution to
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different predictive models was calculated by the permutation importance technique.
The accuracy decrease of each optimized predictive model was calculated when a single
wavenumber was randomly shuffled. The difference reveals how decisive that spectral
feature is for generating a prediction.

Additionally, hybrid classifiers were tested. Considering the large number of vari-
ables related to wavenumbers obtained by Raman spectroscopy, feature extraction and
dimensionality reduction prior to feeding machine learning algorithms could result in a
substantial improvement of their performance. First, Raman data was projected into the
optimum number of latent vectors. Redundant or irrelevant features were removed by
projecting the data in a new reduced subset of latent vectors sorted by the amount of
explained variance and extracted from combinations of the original features. A second
PLS was applied to this new projected data such that most of the variance was captured
and illustrated by the first two components. The classifier is then constructed in this new
latent space [81, 82]. This type of hybrid classifiers allows for meaningful graphical
representations with no loss of any relevant information.

Due to the limited number of animals (n= 9), the procedure of data splitting into
calibration and validation datasets was avoided. Instead, a leave-one-subject-out cross-
validation (LOSOCV) method was implemented for predictive model construction
and optimization. Similar to k-fold cross-validation, data is divided in groups. The
characteristic of LOSOCV is that groups are formed with data from a unique subject.
Therefore, each subject is tested only once and one at a time, while the remaining
subjects are used for training. Avoiding data from a same pig to be in different groups
prevents the model from overfitting and better simulates a real predictive situation of
unknown data. Parameters were tuned according to the best averaged cross-validated
performance by selecting balanced accuracy as scoring metric for evaluation.

The following three classification problems have been considered:

1. Basal condition vs. hypoxia-ischemia,

2. Basal condition vs. post-hypoxia-ischemia,

3. Basal condition vs. hypoxia-ischemia vs. post-hypoxia-ischemia.

All data analysis was performed in Spyder, a Python open source integrated devel-
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opment environment. Sklearn, Scipy, Pandas and Numpy libraries were mainly used
for the analysis and development of predictive models, while Seaboorn and Matplotlib
were applied to display plots and figures.

6.2 Results

6.2.1 Induction of hypoxia-ischemia

While BC and HIp phases were defined to last 60 minutes, the duration of the HI phase
was variable as the time of reaching the end-point criterion was different for each
experiment. The mean duration of the HI damage was 49± 15 minutes. For seven of
the piglets, experimental procedure was carried out in accordance with the protocol
defined in Section 6.1.1 and no difficulties were reported. The piglet with replicate
ID n° 6 suffered a cardiac arrest during the HI phase after 19 minutes of damage and
fulfillment of end-point criterion. Despite this unexpected setback, experiment could be
completed after resuscitation. Similarly, the piglet with replicate ID n° 9 also suffered
a cardiac arrest. In this case, the heart failure happened when normal oxygenation
was restored. Experiment could not be completed since we did not succeed in the
resuscitation. Therefore, there is no available data from HIp phase for the piglet with
replicate ID n° 9.

6.2.2 pH and lactate as gold standard parameters

Figure 6.3 reveals that induction of an HI event is reflected in all measured physiological
parameters, with a more or less pronounced shift from their basal values. Such a result
supports conclusions obtained in Chapter 3 and confirms our initial hypothesis that
a prediction based on systemic variations would provide a much better performance.
The Mann-Whitney U-test unveils statistical significance for all parameters, including
O2 and pO2, both for HI (Table 6.2) and HIp (Table 6.3) conditions when compared to
BC. However, as the sample size is relatively large, p-value is not enough to assume a
significant difference [100]. For large datasets, the p-value of a statistical test is very
likely to be significant even for minor variations. Hence, the effect size describes the
real magnitude of that difference and is reported by the rank-biseral correlation. The
simplified coefficient proposed by Wendt et al. [101] and defined as,
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Effect size = 1 - 2U
n1 n2

, (6.1)

takes values between 0, for no correlation, and 1, for maximum correlation, where U is
the test statistic, and n1 and n2 are the group sizes. Even though the magnitude of the
effect size is considerable for all parameters during HI (Table 6.2), the effect size for
SO2 and pO2 is negligible when HIp is considered (Table 6.2).

Accordingly, parameters such as lactate, pH, base excess, TCO2 or HCO3
- show a

much slower recovery to initial values, when ventilation is restored after a severe HI
event. Indeed, these parameters show strong correlation with the clinical state (BC,
HI, HIp), resulting in an absolute Spearman correlation coefficient close to 0.8. While
lactate exhibits a positive correlation with the occurrence of an HI event, the rest of
relevant parameters show a negative correlation.

Table 6.2: Statistical significance of physiological parameters determined by Mann-Whitney U-test between
basal condition (BC) and hypoxia-ischemia (HI) condition.

Parameter |U-statistic| p-value Effect size

SO2 0.0 <0.001* 1.0
pO2 0.0 <0.001* 1.0

Lactate 1862.0 <0.001* 0.96
Base excess 6118.0 <0.001* 0.89

pH 6171.5 <0.001* 0.89
HCO3

- 8218.5 <0.001* 0.85
TCO2 9317.5 <0.001* 0.83
pCO2 25688.0 <0.001* 0.54

Mann-Whitney U-test

* p-value≤ 0.05

Binary classification of BC and HI conditions for clinical pH and lactate cut-off
limits is displayed in Figure 6.4b. The figures of merit in Table 6.5 summarize their
classification performance. Similar to the results achieved in Chapter 3, lactate demon-
strates to be a reasonably better indicator of an HI event than pH. Likewise, the little
capacity of current standards to detect positive cases provides a poor sensitivity of
55.7% for pH and 72.1% for lactate. The time lag between the beginning of the HI
event and predefined cut-off limits being exceeded is responsible for this poor outcome.
Unlike in Chapter 3, the effect of this delay in their classification performance is slightly
mitigated as hypoxia-ischemia is prolonged beyond 20 minutes, giving additional time
to both pH and lactate to exceed those thresholds in most of the blood gas analyses
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Figure 6.3: Exploratory analysis of basal condition (BC), hypoxia-ischemia event (HI) and post-hypoxia-
ischemia (HIp) groups for different physiological parameters. Box-and-whisker plot facilitates the comparison
between the groups by displaying the distribution and skewness of the data.
Mann-Whitney U-test
* 0.01< p-value≤ 0.05
** 0.001< p-value≤ 0.01
*** p-value≤ 0.001
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Table 6.3: Statistical significance of physiological parameters determined by Mann-Whitney U-test between
basal condition (BC) and post-hypoxia-ischemia (HIp) condition.

Parameter |U-statistic| p-value Effect size

Lactate 0.0 <0.001* 1.0
Base excess 0.0 <0.001* 1.0

pH 0.0 <0.001* 1.0
HCO3

- 2.5 <0.001* 1.0
TCO2 38.0 <0.001* 1.0
pCO2 33258.0 <0.001* 0.47
pO2 47549.5 <0.001* 0.24
SO2 61415.0 <0.01* 0.02

Mann-Whitney U-test

* p-value≤ 0.05

Table 6.4: Spearman’s correlation between physiological parameters and the clinical state associated to
established phases (basal condition, hypoxia-ischemia, post-hypoxia-ischemia).

Parameter Coefficient p-value

Lactate 0.81 <0.001*
pCO2 0.33 <0.001*
SO2 0.01 0.84
pO2 -0.10 <0.001*
pH -0.76 <0.001*

TCO2 -0.81 <0.001*
Base excess -0.81 <0.001*

HCO3
- -0.81 <0.001*

Spearman’s correlation

* p-value≤ 0.05
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Figure 6.4: 1-D visual class separability between basal condition (BC) and hypoxia-ischemia (HI) based
on standard clinical cut-off limits. (a) Decision region of binary classification (BC vs. HI) based on pH
threshold= 7.2. (b) Decision region of binary classification (BC vs. HI) based on [lactate] threshold= 4.8 mM.

Table 6.5: Classification performance of pH and lactate standard cut-off limits for differentiation of basal
condition (BC) and hypoxia-ischemia (HI) condition; all figures of merit are in percentage (%).

pH< 7.2 [Lactate]> 4.8 mM

Sensitivity 55.7 72.1
Specificity 100 100

PPV 100 100
NPV 70.8 79.4

Accuracy 78.6 86.5
AUROC 77.9 86.1

carried out at that phase.

Performance of pH and lactate cut-off limits improves for binary classification
between BC and HIp conditions due to a considerable increase of their sensitivity, as
shown in Table 6.6. As the HI phase is not considered, the delay between the beginning
of the HI and the exceeding of the cut-off limits is not reflected in the biochemical data
from blood gas analyses. Instead, values corresponding to HIp condition already start far
above established pH and lactate thresholds. Moreover, induction of a severe HI results
in a slow recovery to basal condition, which contributes to a greater class separability
in terms of AUROC and, consequently, a better classification performance (Figure 6.5).
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Figure 6.5: 1-D visual class separability between basal condition (BC) and post-hypoxia-ischemia (HIp)
based on standard clinical cut-off limits. (a) Decision region of binary classification (BC vs. HIp) based on pH
threshold= 7.2. (b) Decision region of binary classification (BC vs. HIp) based on [lactate] threshold= 4.8
mM.

Table 6.6: Classification performance of pH and lactate standard cut-off limits for differentiation of basal
condition (BC) and post-hypoxia-ischemia (HIp) condition; all figures of merit are in percentage (%).

pH< 7.2 [Lactate]> 4.8 mM

Sensitivity 79.7 95.9
Specificity 100 100

PPV 100 100
NPV 82.3 95.8

Accuracy 89.6 97.9
AUROC 89.8 97.9
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When all three phases are considered, prediction based on univariate analysis of
a single parameter such as pH or lactate, is not feasible since additional valuable
information for differentiation cannot be provided. Apart from established cut-off limits,
no further distinction is done among the groups. As a result, an overlap between hypoxia-
ischemia and post-hypoxia-ischemia is observed in Figure 6.6b.

6.87.07.27.47.6
pH

Normoxia Hypoxia

Threshold = 7.2
BC
HI
HIp

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
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Normoxia Hypoxia

Threshold = 7.2
BC
HI
HIp

(b)

Figure 6.6: 1-D visual multiclass separability between basal condition (BC), hypoxia-ischemia (HI) and
post-hypoxia-ischemia (HIp) based on standard clinical cut-off limits. (a) Decision region of binary clas-
sification (BC vs. HI vs. HIp) based on pH threshold= 7.2. (b) Decision region of binary classification
(BC vs. HI vs. HIp) based on [lactate] threshold= 4.8 mM.

6.2.3 Predictive models based on Raman spectra

The combination of Raman spectroscopy with machine learning algorithms is tested as
an alternative to current gold standard method. The performance of different predictive
models is evaluated for the classification problems stated above. Processed Raman
spectra are shown in Figure 6.7.

Basal condition vs. hypoxia-ischemia

Figures of merit of different classifiers for differentiation of BC and HI phases are
displayed in Table 6.7. Apart from SVM, which exhibits an accuracy of 85.4%, all
predictive models present an accuracy> 87.4%, which is slightly superior to the per-
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Figure 6.7: Averaged preprocessed Raman spectra from different defined phases± their standard deviation
represented by the shaded area.

formance achieved by the cut-off limit of lactate; even greater is the difference with
respect to pH. The substantial improvement of the sensitivity (> 88%) achieved by the
predictive models constitutes the major variation in the classification of BC and HI
phases.

Table 6.7: Classification performance of different machine learning algorithms for differentiation of basal
condition (BC) and hypoxia-ischemia (HI) phases; all figures of merit are in percentage (%).

PLS – DA RF SVM AB GB XGB

Sensitivity 89.5 88.9 88.5 88.2 89.5 90.4
Specificity 86.4 86.1 82.4 87.6 89.0 89.0

PPV 86.0 85.7 82.4 86.9 88.4 88.5
NPV 89.8 89.2 88.5 88.9 90.1 90.9

Accuracy 87.9 87.4 85.4 87.9 89.2 89.7
AUROC 94.7 93.7 93.4 92.5 94.9 95.4

To understand how differentiation of BC and HI phases is done by different algo-
rithms, the accuracy decrease, obtained by feature permutation of PLS – DA and XGB
predictive models, is displayed in Figure 6.8a and Figure 6.8b, respectively. Significant
Raman features are determined as the prediction error increases when these features
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are shuffled. While PLS – DA, which maximizes the covariance between the matrix of
observation and the matrix of outcomes, gets more or less affected by every feature
permutation, XGB algorithm demonstrates to be much more robust to variations.

According to Figure 6.8a, the PLS – DA predictive model identifies a number of
relevant Raman features in the region from 1100 cm-1 to 1650 cm-1 that arises from
Raman active blood components such as proteins or heme groups [93]. Prominent peaks
at 1222 cm-1 and 1547 cm-1 have already been assigned to oxygenated and deoxygenated
red blood cells, respectively [93, 102, 103]. Interestingly, bands associated to lactate
at 853 cm-1 from a C–C aliphatic stretching, 1053 cm-1 from C–CH3 vibration, or
1420 cm-1 from COO- stretching are also observed. Raman band around 543 cm-1 is
probably the overlap of bands associated to the CO2

- wagging of lactate and Fe–O2

stretching of the hemoglobin.
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Figure 6.8: Permutation feature importance defined as accuracy decrease of fitted predictive models
for BC vs. HI classification. (a) Averaged decrease of accuracy and standard deviation of fitted Partial
Least Squares-Discriminant Analysis (PLS – DA) predictive models due to single parameter permutation.
(b) Averaged decrease of accuracy and standard deviation of fitted Extreme Gradient Boosting (XGB) pre-
dictive models due to single parameter permutation. (Peaks: I. 543 cm-1, II. 853 cm-1, III. 1053 cm-1, IV. 1222 cm-1,
V. 1420 cm-1, VI. 1547 cm-1)
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In the case of PLS-based hybrid classifiers, similar predictive power is achieved.
Accuracies of non-hybrid classifiers reach values of 85.4 - 89.7%, while hybrid classifiers
lie within the range of 85.2 - 87.7%. Interestingly, figures of merit of PLS – SVM even
improve compared to its usage alone. As previously mentioned, PLS is applied twice
such that the information from relevant features is represented by only two PLS latent
vectors. To guarantee that applying PLS a second time does not affect the data and
exclude relevant information, performance has first been compared to the single use
of PLS, where the classifier is built in a latent space formed by the optimum number
of latent vectors. Even though it is not shown, it has been observed that applying PLS
twice does not result in any significant variation in the performance. Figure 6.9a and
Figure 6.9b illustrate the decision region of SVM and RF classifiers in one step of the
LOSOCV, respectively.

Table 6.8: Classification performance of different hybrid machine learning algorithms for differentiation of
basal condition (BC) and hypoxia-ischemia (HI) phases; all figures of merit are in percentage (%).

PLS – RF PLS – SVM PLS – AB PLS – GB PLS – XGB

Sensitivity 88.9 89.5 87.0 87.3 88.2
Specificity 83.5 86.1 85.8 83.2 83.2

PPV 83.4 85.8 85.2 82.9 83.1
NPV 88.9 89.8 87.6 87.6 88.3

Accuracy 86.1 87.7 86.4 85.2 85.7
AUROC 92.5 94.7 93.9 92.6 93.6

Basal condition vs. post-hypoxia-ischemia

When ventilation is restored and blood oxygenation returns to its basal levels, identifying
that an HI event has occurred becomes more challenging. This is reflected in the figures
of merit obtained by different classifiers for differentiation of BC and HIp phases,
which are depicted in Table 6.9. As time passes, the difficulty to detect physiological
changes caused by the HI event leads to a general decrease in the predictive power of
the classifiers, whose accuracies lie within the range of 68.9 - 74.4.

Raman feature importance of PLS – DA and XGB, which additionally have the best
performance among the classifiers (Table 6.9), is calculated by permutation importance
technique and displayed in Figure 6.10a and Figure 6.10b, respectively. In the PLS –
DA model, the contribution of the region from 1100 cm-1 to 1650 cm-1 is reduced for
identification of the HIp phase. Contributions from 1222 cm-1 and 1547 cm-1 associated
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Figure 6.9: Example of 2-D visual class separability between basal condition (BC) and hypoxia-ischemia
(HI) phases by hybrid classification models optimized by a leave-one-subject-out cross-validation. (a) Binary
classification (BC vs. HI) based on the decision region defined by an SVM classifier in a 2-PLS component
dataset. (b) Binary classification (BC vs. HI) based on the decision region defined by an RF classifier in a
2-PLS component dataset.

Table 6.9: Classification performance of different machine learning algorithms for differentiation of basal
condition (BC) and post-hypoxia-ischemia (HIp) phases; all figures of merit are in percentage (%).

PLS – DA RF SVM AB GB XGB

Sensitivity 80.8 70.1 77.5 76.6 76.9 78.6
Specificity 67.6 67.6 68.8 66.2 67.9 67.6

PPV 72.4 69.5 72.3 70.5 71.6 71.9
NPV 77.0 68.2 74.4 72.9 73.7 75.0

Accuracy 74.4 68.9 73.2 71.5 72.5 73.2
AUROC 82.5 75.3 81.6 77.5 78.8 79.6

92



6

6.2. Results

with blood oxygenation are still present. New bands around 620 cm-1 or 1120 cm-1 are
assigned to protein denaturation or heme aggregates caused by the HI event, while the
peak at 1639 cm-1 is a marker for hemoglobin oxygenation. Prominent contribution
of phenylalanine band from proteins around 1005 cm-1is also observed [93, 102, 103].
Moreover, contribution of peaks associated to lactate at 543 cm-1, but mainly at 853 cm-1,
is evident. Contribution of lactate is even more obvious in the case of XGB model,
where only permutations at 853 cm-1 and 1459 cm-1 produce a decrease in the prediction
accuracy.
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Figure 6.10: Permutation feature importance defined as accuracy decrease of fitted predictive models for
BC vs. HIp classification. (a) Averaged decrease of accuracy of fitted Partial Least Squares-Discriminant
Analysis (PLS – DA) predictive models due to single parameter permutation. (b) Averaged decrease of
accuracy of fitted Extreme Gradient Boosting (XGB) predictive models due to single parameter permutation.
(Peaks: I. 543 cm-1, II. 620 cm-1, III. 853 cm-1, IV. 1002 cm-1, V. 1125 cm-1, VI. 1222 cm-1, VII. 142 cm-1, VIII. 1547 cm-1,
IX. 1639 cm-1)

Unlike for the differentiation of HI phase, when it comes to HIp, all hybrid pre-
dictive models show improved predictive power in comparison to non-hybrid models.
Identifying an HI event after the ventilation has been restored poses additional difficulty,
given the recovery of the physiological parameters to basal levels and, consequently,
the greater similarity of the BC and HIp Raman curves. In this case, dimensionality
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reduction represents a useful preprocessing step for complex data. An example of the
decision region of SVM and RF classifiers for differentiation of BC and HIp is shown
in Figure 6.11a and Figure 6.11b, respectively.

Table 6.10: Classification performance of different hybrid machine learning algorithms for differentiation of
basal condition (BC) and post-hypoxia-ischemia (HIp) phases; all figures of merit are in percentage (%).

PLS – RF PLS – SVM PLS – AB PLS – GB PLS – XGB

Sensitivity 80.2 81.3 81.9 81.9 81.3
Specificity 69.9 67.9 68.8 69.7 69.1

PPV 73.7 72.7 73.4 73.9 73.4
NPV 77.1 77.6 78.3 78.5 77.9

Accuracy 75.2 74.8 75.5 75.9 75.4
AUROC 82.1 82.4 79.8 80.1 80.0
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Figure 6.11: Example of 2-D visual class separability between basal condition (BC) and post-hypoxia-ischemia
(HIp) phases by hybrid classification models optimized by a leave-one-subject-out cross-validation. (a) Binary
classification (BC vs. HIp) based on the decision region defined by an SVM classifier in a 2-PLS component
dataset. (b) Binary classification (BC vs. HIp) based on the decision region defined by an RF classifier in a
2-PLS component dataset.

Basal condition vs. hypoxia-ischemia vs. post-hypoxia-ischemia

Predictive models based on multiparametric data such as Raman spectra lead to a better
representation of the clinical picture. Raman bands provide additional information
associated to systemic physiological variations, which allows us to classify all different
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phases regarding an HI event. Figures of merit of different classifiers for differentiation
of BC, HI and HIp phases are displayed in Table 6.11. All of them present a total
accuracy around 80%, similar to that obtained for differentiation of only BC and HIp; a
reasonable outcome considering the similarities between groups.

Table 6.11: Classification performance of different machine learning algorithms for multiclass differentiation
of basal condition (BC), hypoxia-ischemia (HI) and post-hypoxia-ischemia (HIp) phases; all figures of merit
are in percentage (%).

PLS – DA RF SVM AB GB XGB

Sensitivity 73.0 68.6 72.3 68.1 71.6 71.8
Specificity 86.3 84.0 85.9 83.7 85.6 85.6

PPV 72.7 68.1 72.1 68.5 71.6 71.7
NPV 86.5 84.2 86.0 83.7 85.7 85.7

Accuracy 81.9 78.8 81.3 78.5 80.9 81.0

Consequently, the permutation feature importance of PLS – DA in Figure 6.12a
is a combination of those obtained for differentiation of HI (Figure 6.8a) and HIp

(Figure 6.10a) independently. Thus, Raman bands at 543 cm-1, 571 cm-1, 620 cm-1,
853 cm-1, 1005 cm-1, 1053 cm-1, 1125 cm-1, 1222 cm-1, 1420 cm-1, 1459 cm-1, 1547 cm-1

and 1639 cm-1 are identified as relevant for detection of an HI event and classification
of BC, HI and HIp phases. XGB is affected only by permutations at 1547 cm-1.

Hybrid classifiers have demonstrated to yield a predictive power similar, or even
slightly better in some cases, to non-hybrid ones; corresponding figures of merit are
depicted in Table 6.12. As stated before, a big advantage of hybrid predictive models is
the possibility to graphically illustrate the decision region defined by different classifiers.
Figure 6.13a and Figure 6.13b are explicit meaningful representations of a multiclass
classification, where BC, HI and HIp phases are differentiated according to their Raman
spectra by PLS – SVM and PLS – RF classifiers, respectively.
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Figure 6.12: Permutation feature importance defined as accuracy decrease of fitted predictive models for
BC vs. HI vs. HIp classification. (a) Averaged decrease of accuracy of fitted Partial Least Squares-Discriminant
Analysis (PLS – DA) predictive models due to single parameter permutation. (b) Averaged decrease of
accuracy of fitted Extreme Gradient Boosting (XGB) predictive models due to single parameter permutation.
(Peaks: I. 543 cm-1, II. 571 cm-1, III. 620 cm-1, IV. 853 cm-1, V. 1002 cm-1, VI. 1053 cm-1, VII. 1125 cm-1, VIII. 1222 cm-1,
IX. 1420 cm-1, X. 1459 cm-1, XI. 1547 cm-1, XII. 1639 cm-1)

Table 6.12: Classification performance of different hybrid machine learning algorithms for multiclass differ-
entiation of basal condition (BC), hypoxia-ischemia (HI) and post-hypoxia-ischemia (HIp) phases; all figures
of merit are in percentage (%).

PLS – RF PLS – SVM PLS – AB PLS – GB PPLS – XGB

Sensitivity 72.2 73.2 72.8 72.2 71.7
Specificity 85.9 86.4 86.2 85.9 85.6

PPV 72.1 73.1 72.6 72.2 71.7
NPV 85.9 86.5 86.2 86.0 85.7

Accuracy 81.3 82.0 81.7 81.3 81.0

96



6

6.3. Discussion

4 2 0 2 4 6
L.V. 1

4

3

2

1

0

1

2

3

4

5

L.
V.

 2

BC
HI
HIp

(a)

4 2 0 2 4 6
L.V. 1

4

3

2

1

0

1

2

3

4

5

L.
V.

 2

BC
HI
HIp

(b)

Figure 6.13: Example of 2-D visual multiclass separability between basal condition (BC), hypoxia-ischemia
(HI) and post-hypoxia-ischemia (HIp) phases by hybrid classification models optimized by a leave-one-
subject-out cross-validation. (a) Multiclass classification (BC vs. HI vs. HIp) based on the decision region
defined by an SVM classifier in a 2-PLS component dataset. (b) Multiclass classification (BC vs. HI vs. HIp)
based on the decision region defined by a RF classifier in a 2-PLS component dataset.

6.3 Discussion

Apart from operating in an invasive manner, fetal scalp blood sampling (FSBS) has
proven limited evidence for accurate identification of perinatal asphyxia. Therefore, the
need of a new diagnostic tool that overcomes these limitations is clear. Our technology,
which combines Raman spectroscopy with machine learning, exhibits great potential
for accurate and robust asphyxia monitoring.

Statistical tests, such as Mann-Whitney test or Spearman’s correlation, have demon-
strated that inducing HI event disturbs the basal state of all measured physiological
parameters. Following the gold standard technique, pH and lactate have been used as
decision-making parameter. Both of them present difficulties to detect an HI event
closely after its occurrence, due to the delay that exists from the insult until exceeding
the cut-off limits. However, determining if irreversible damage has already occurred by
then, it is not guaranteed. Prolonged HI results in extreme pH and lactate values and
consequently, in a slow recovery to basal state. Therefore, the predictive power consid-
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erably increases for differentiation of HIp phase, especially in the case of lactate, which
overall demonstrates to be a better indicator than pH. It is important to point out that this
outcome is obtained as a result of a severe HI event extended over almost 50 minutes.
In Chapter 3, where the duration of the HI event was much shorter (20 minutes), their
performance was considerably reduced. Another big issue of the diagnosis based on a
single parameter is the lack of valuable information to differentiate HI and HIp phases.
Distinction between these two stages can be of great help for medical assessment.

Alternatively, machine learning algorithms have been applied to Raman spectra,
which considers the entirety of physiological parameters that are accessible by the
laser beam. Predictive models have demonstrated great performance for identification
of an HI event. Even though their predictive capacity is reduced at HIp, all models
achieve excellent discriminating power during the HI phase, even better to that obtained
by lactate or pH from blood gas analysis. No significant differences have been found
between different algorithms, but overall, PLS – DA and XGB have shown slightly
better performance. Efficiency of PLS has widely been confirmed for functional data
(i.e. curve or spectrum type problems), where the dimension of the observation space
(broad spectral range) includes multicollinearity of features. The potential of XGB
for classification problems is beyond doubt, since it made itself known after winning
different classification competitions. Nonetheless, each model makes its own interpreta-
tion of the data. The permutation feature importance technique allows us to understand
how the model is constructed and, consequently, guarantees a meaningful classification.
Raman bands associated to red blood cell oxygenation, such as heme groups or protein
denaturation, have been identified as main contributors for classification of HI. In line
with Chapter 3, lactate is also recognized as a suitable biomarker, especially at HIp,
when normal oxygenated ventilation is restored.

As stated above, PLS-based hybrid classifiers allow for graphical representation, as
Raman data is projected to a new space of latent vectors. As a result, decision regions
defined by different classifiers can be compared. Moreover, hybrid classifiers have
demonstrated to achieve similar, or in some cases even better, performance than non-
hybrid ones. Given the ability of PLS to deal with multicollinearity, applying classifiers
after extraction of relevant features can be of great help for success.

Despite the limited number of experiments, these preliminary results already ex-
hibit the great potential of the technology for HI monitoring. This is supported by the
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decreasing trend of the learning curve of the PLS – DA model for all proposed classi-
fication problems (BC vs. HI, Figure 6.14; BC vs. HIp, Figure 6.15; BC vs. HI vs. HIp,
Figure 6.16). The learning curve is calculated as the average of individual learning
curves, and is represented by the classification error rate as a function of the number of
training replicates [104]. In other words, for a given number of training replicates, a
piglet is selected for validation while the rest are used to form all possible permutations.
Classifiers that have been constructed from each of those training sets are then tested in
the validation piglet and the error rate is averaged. This procedure is repeated for each
piglet replicate (Figure 6.14a, Figure 6.15a, Figure 6.16a). The mean and the standard
error (error of the mean) of individual learning curves are then depicted in Figure 6.14b,
Figure 6.15b and Figure 6.16a. It is important to emphasize that this study has been
carried out with a commercial Raman probe (the RamanProbeTM, InPhotonics) [96],
which despite of an application-specific modification, it has not been designed for this
specific task. Development of an optimized probe will certainly result in a considerable
improvement of the performance.
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Figure 6.14: Trend of the error rate for BC vs. HI classification as a function of the training sample size.
(a) Learning curve for each piglet replicate. (b) Averaged learning curve and its standard error (error of the
mean).
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Figure 6.15: Trend of the error rate for BC vs. HIp classification as a function of the training sample size.
(a) Learning curve for each piglet replicate. (b) Averaged learning curve and its standard error (error of the
mean).
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Figure 6.16: Trend of the error rate for BC vs. HI vs. HIp classification as a function of the training sample
size. (a) Learning curve for each piglet replicate. (b) Averaged learning curve and its standard error (error of
the mean).
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6.4 Conclusion

For many years obstetric care is relying on pH from fetal scalp blood sampling as
a standard biomarker for fetal surveillance. The limited capacity to avoid adverse
neonatal outcomes and cesarean deliveries, gave lactate, in vain, the opportunity to
be considered as a more suitable alternative. It has been demonstrated that hypoxia-
ischemia is responsible for an overall impact in the metabolism, which is reflected in
systemic variations of different physiological parameters. The ability to non-invasively
provide high molecular selectivity makes Raman spectroscopy an ideal method for
clinical assessment. This study presents the combination of Raman spectroscopy with
machine learning as a potential diagnostic tool for monitoring of perinatal asphyxia.
Apart from exhibiting great performance for identification of a hypoxia-ischemia event,
predictive models based on Raman spectra perform relevant distinction between damage
(hypoxia-ischemia) and recovery (post-hypoxia-ischemia) phases. In conclusion, the
technology represents an innovative approach that will support immediate medical
decision-making by non-invasive, continuous and real-time monitoring of perinatal
asphyxia.
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CHAPTER 7

Technology transfer

This doctoral thesis is embedded in a research project with high innovative power, as
it originates from real clinical requirements and includes from the beginning market-
driven needs and real-life applications into its research. Starting at lowest technology
readiness level (TRL), the technology was elevated to TRL6 within the framework
of this project. Apart from its origin, this chapter describes the innovative aspects,
highlights the socio-economic importance, and gives insight into market analysis and
strategic planning.
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7.1 Origin of the project

This project was born as a result of discussions with the Donostia University Hospital,
where obstetricians are facing in their daily work during labor the shortcomings of
state-of-the-art perinatal monitoring. The novelty a new technology should provide is
a non-invasive method that delivers continual data in real-time; none of these three
conditions is fulfilled by today’s technology. In 2017, a multidisciplinary team from CIC
nanoGUNE and Biodonostia Health Research Institute, including physicists, chemists,
biologists, engineers, and a physician, established various consecutive collaboration
projects to elaborate and develop technical solutions for the joint vision, "Reduce global
neonatal morbidity and mortality rate, as well as complications that may derive from
perinatal asphyxia". To achieve such an ambitious objective, our mission consisted in
developing a new disruptive diagnostic method for monitoring perinatal asphyxia.

7.2 Proposed diagnostic procedure

When the rupture of amniotic membranes occurs, a customized Raman probe is intro-
duced in the birth canal and externally placed at the scalp of the baby, as described in
Figure 7.1. Unlike current procedure, neither incision nor blood extraction is required
for further analysis. Raman spectroscopy provides a clinical picture of the physiological
status of the baby through the interaction of the incident photons with the irradiated
tissue volume. Raman spectra are then analyzed by a predictive model that has been
previously designed and trained with representative known data. Based on characteristic
patterns of the data, the model predicts with a certain probability adverse physiological
conditions and conveys the information to the obstetrician as a digital display.
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Central Processing Unit
Predictive model

Raman spectroscopy system
Laser, spectrometer, detector

Normoxia

Hypoxia-ischemia

Figure 7.1: Schematic of the complete integrated Raman system, including the hardware (Raman probe, laser,
spectrometer, detector, central processing unit, and a display interface) and software part (source code of
predictive models).

7.3 Innovation & impact

7.3.1 Major innovation

The proposed diagnostic method stands out for its innovative nature, enabling a contin-
uous, non-invasive and real-time fetal monitoring during labor. The combination of a
customized optical probe, a Raman spectroscopy system and the use of machine learning
results in a powerful diagnostic tool for identification of hypoxic-ischemic insults. The
technology is not constrained to perform the examination of a unique parameter like pH
or lactate, as the current standard methods do. Instead, it considers all Raman-active
molecules of the entire physiology irradiated by the incident laser, delivering a systemic
picture at molecular level. Thus, apart from providing quantitative analysis of pH or
lactate if required, our technology offers a more accurate and reliable diagnosis that
supports decision-making in obstetric care.
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7.3.2 Social impact

Improvement of fetal monitoring during the intrapartum period can considerably reduce
the number of neonatal morbidity and mortality rates. Thus, development of a new
technology for such a purpose is aligned with the targets and goals for sustainable
development proposed by the United Nations (UN) as part of the 2030 agenda [105]. In
particular, our technology primarily addresses SDG 3 (sustainable development goal),
which pursues a development that "ensures healthy lives and promotes well-being for
all at all ages", and its Target 3.2 which states that "by 2030, end preventable deaths of
newborns and children under 5 years of age, with all countries aiming to reduce neonatal
mortality to 12 per 1000 live births". The compact size of the system provides a portable
technology that can be easily used in different scenarios. Moreover, availability for all
countries is guaranteed with a fixed and reduced cost given the reusable characteristic
of the technology without need of further investment. As stated by Target 3.D and 10.3,
it is crucial to "strengthen the capacity of developing countries for early warning, risk
reduction and management of health risks", as well as "ensure equal opportunity and
reduce inequalities of outcome", to achieve development sustainability.

Beyond the direct effect our technology can have on neonatal morbidity and mor-
tality rates, associated medical, social or financial implications will have considerable
significance. Consequences of birth asphyxia are not limited to the fetal outcome at the
exact moment of birth but entail further mental and physiological disorders both for the
baby and the mother. Required medical examinations, treatments or prolonged hospital
stays represent substantial administrative management and additional costs. Cesarean
section is a common clinical intervention in high-risk births.

Even though the reasons for performing a cesarean section are diverse, its overuse
is also recognized as a consequence of a preventive, but often unnecessary, procedure
to avoid intrapartum asphyxia. It has been demonstrated that the use of current standard
methods for fetal monitoring has resulted in an excessive use of cesareans and operative
deliveries. The World Health Organization (WHO) assumes an occurrence of 15% of
high-risk births, where lives are at stake and cesarean section is justified. However, in
2008, global unnecessary interventions represented an estimated cost of approximately
US$ 2.3 billions. A reliable and accurate fetal monitoring provided by our technology
could reduce the average cost by 50%.
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7.4 Market opportunity

The existence of a real clinical need, which has still not been fulfilled, is the better
demonstration of a clear market opportunity for the development of our technology.
Ibon Jaunarena, obstetrician at Hospital Universitario Donostia, Édouard Lecarpantier,
obstetrician at Intercommunal Hospital of Creteil (Paris), and Xavier Durrmeyer, neona-
tologist also at Intercommunal Hospital of Creteil, have expressed their enthusiasm
and emphasized the clear need of our technology. Other entities, such as the European
Space Agency and French Defense Innovation Agency have also shown their interest in
the development of the technology. The available products in the market are based on
arterial blood gas analysis and therefore require blood sampling. Some of the major
players in clinical practice are Abbott, Medtronic, Clinical Innovatios, Philips, John-
son & Johnson, General Electric, Roche, or Nova Biotechnology. Even though the entry
barriers for a new player are moderate, the competitive advantages of our technology
over the state-of-the-art provides us a great unique selling point.

The market of medical devices/equipment is characterized by its great responsive-
ness to innovation. Technological advances, prevalence of chronic diseases and increase
of aging population is prompting the demand of medical devices for early and fast
diagnosis. The global medical devices market is expected to grow from $505 billion
in 2020 to almost $630 billion in 2026 [106]. European market accounts for around
one third of the global market. Considering exclusively the fetal monitoring market,
the size is estimated to be $3.73 billion in 2021 and projected to reach $5.26 billion
by 2026 [107]. Given the great size of the market, 140 million births per year, the
intrinsic success of the technology would result in business scalability and product
expansion. Moreover, the ability to rapidly adjust the technology both in design and
software allows for diversification of the portfolio to other pathologies. Only in France,
more than 3000 potential clients have been identified, distributed over 471 obstetric
units, 283 neonatal intensive care units, 510 reanimation units, 657 emergency rooms
and 1200 pneumonology units.
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7.5 Roadmap

At a quite early stage of the project, specialized consultancy agents had been employed
to help us develop a business strategy, sort out the market opportunities, and to identify
unique selling points. In this context, the company SILO (Science & Innovation Link)
was involved and financed by BIC GIPUZKOA (facilitator in the process of creating
new, innovative businesses, as well as active agent in the support and promotion of
entrepreneurial culture in Gipuzkoa). Financed by nanoGUNE, the private consultancy
company Innventik (Santander) elaborated a Technology Dashboard for advancing
technology transfer.

A European patent application was filed on the 18th of August 2020 to protect the
technology. The application nº EP20382756.3, with the title "Method and device for the
determination of hypoxia", is currently under evaluation. In February 2021, the start-up
company Optec4Life SAS (Optical Terchnologies for Life and Health) was founded
in Paris, whose business model is based on our technology with exclusive rights for
patent exploitation and presented subsequently.
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Chapter 7. Technology transfer

According to the European definition for the level of technological maturity, the
product development of our technology is at TRL 6. As presented, the technology has
been validated in vitro and in a collaboration with Biodonostia, a preclinical study with
pigs is in progress. Given its position of strategic partner, Optec4Life will subcontract
CIC nanoGUNE for the scientific development of both the spectroscopy system and the
specific Raman probe for fetal monitoring. Moreover, contacts have been established
with the obstetric and pediatric units of the Intercommunal Hospital of Creteil in Paris.
Additional collaborations are planned with Leartiker (Markina-Xemen), Tecnalia (San
Sebastián) and COMATE Engineering & Design (Leuven) for engineering guidance in
technical aspects, which guarantee the CE marking and the classification as a medical
device.

Optec4Life was chosen within the European program ACTPHAST4.0 for indi-
rect financial support towards prototyping. ACTPHAST (ACceleraTing PHotonics
innovAtion for SME’s: a one STop-shop-incubator) is a unique one-stop-shop rapid
prototyping incubator for supporting photonics innovation by European companies,
which is financially supported by the European Commission under Horizon2020. The
University of Eastern Finland together with the Finnish research institution VTT have
been granted to further develop specific hardware components of the spectroscopy
system for Optec4Life.

The participation in the following acceleration programs has complemented the
scientific activity within the technology transfer towards the market.

Healthtech Translation Advisory Board (TAB) is a European Commission-funded
instrument that was created to accelerate the translation of promising healthtech
projects towards the market.

BBK Venture Philantrophy is a BBK Foundation program that aims to encourage
entrepreneurship and social and environmental impact investment in Bizkaia.

European Technology Platform in Nanomedicine is an initiative led by industry since
2005 and set up together with the European Commission, to address the applica-
tion of nanotechnology in healthcare.

XX premio Manuel Laborde Werlinden is part of the Entreprenari program which
gives support and boosting to entrepreneurship based on innovative ideas.
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Final summary

Within the framework of such an ambitious project, this doctoral thesis has demonstrated
the capabilities of our technology for monitoring perinatal asphyxia. From very basic
principles, the feasibility and viability of the initial proof-of-concept has progressively
been examined.

First, the limitations of pH and lactate, being reference parameters for correct
medical classification of hypoxic-ischemic events, have been unveiled. Alternatively,
it has been shown that predictive models based on the systemic physiological picture,
which includes the entirety of biochemical parameters, yields a substantial improvement
in the diagnosis over the gold-standard techniques.

In a next step, the technology has been validated in vitro and ex vivo. The combination
of Raman spectroscopy with machine learning algorithms as suitable tool for lactate
and pH monitoring in body fluids has been demonstrated. Predictive models have been
successfully tested providing clinically promising errors that verify their reliability,
their accuracy and hence, their quality. In conclusion, it has been demonstrated that
developing a new a diagnostic method to monitor perinatal asphyxia ex vivo could be
feasible.

Finally, the combination of Raman spectroscopy with machine learning as a po-
tential diagnostic tool for in vivo monitoring of perinatal asphyxia has been tested in
a pre-clinical phase. Apart from exhibiting great performance for identification of a

111



S

hypoxia-ischemia event, predictive models based on Raman spectra perform relevant
distinction between damage (hypoxia-ischemia) and recovery (post-hypoxia-ischemia)
phases. In conclusion, the technology represents an innovative approach that will sup-
port immediate medical decision-making by non-invasive, continuous and real-time
monitoring of perinatal asphyxia.
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