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Resumen

El magnetismo es una materia fascinante. Pese a que algunos de los fenómenos

relacionados con el tema ya se conocían unos pocos siglos a.C., la aparición de la

mecánica cuántica dio explicación a los mecanismos que gobiernan las propieda-

des magnéticas de la materia. Una vez se conoce el comportamiento de la materia

y como este puede ser descrito matemáticamente, es posible fabricar dispositivos

que combinan las propiedades de los materiales de forma predeterminada. Esta

norma no se cumple únicamente en el magnetismo, si no en la física en general,

cuyo mayor objetivo es proporcionar conocimiento cuantitativo (y experimental-

mente veri�cado) de la Naturaleza hasta el más profundo nivel.

No obstante, la mecánica cuántica no ha sido el único descubrimiento que ha

ayudado al uso práctico del magnetismo. Durante el último siglo muchas de las

innovaciones del magnetismo han sido posibles debido al desarrollo de la nano-

tecnología: la disminución de al menos una de las dimensiones de los dispositivos

en una rango de 1− 1000 nm causa la aparición de nuevos fenómenos físicos. Por

ello, la unión del magnetismo y la nanotecnología dio lugar al campo fundamental

del nanomagnetismo [1].

Esta tesis recoge la parte más relevante del trabajo realizado durante mi pro-

yecto de doctorado, el cual comenzó el 6 de febrero del 2014 en el grupo de

Nanomagnetismo, como parte del Centro de Investigación Cooperativa de nano-

GUNE (Donostia�San Sebastián, España). El título de la tesis ayuda a elaborar

un resumen de los temas tratados: Estudio de la Frustración Geométrica y

Activación Térmica en Conjuntos de Nanoestructuras Magnéticas.

Conjuntos de nanoestructuras magnéticas

Esta tesis trata de nanoescructuras magnéticas, de�nidas por la disminución

de sus tres dimensiones y formadas por materiales magnéticos. La condición me-
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soscópica determina la longitud L en el que las dimensiones están con�nadas [2]:

L ≈ ρC ,

donde ρC es la longitud característica del fenómeno a considerar. En este caso, la

longitud de interés será la que deriva del peso relativo de los términos que com-

ponen la energía libre micromagnética: reduciendo el tamaño de las estructuras

magnéticas, las paredes de dominio se convierten energéticamente desfavorables,

haciendo así que la imanación de las estructuras se organice en un único dominio

cuando la dimensión de las mismas llegue a ser menor de la extensión de la pared

de dominio (la longitud característica). Para tal �n, las dimensiones consideradas

a lo largo de la tesis son inferiores a los 700 nm, y hasta un mínimo de 3 nm

de grosor. Otro aspecto relevante a considerar es la importancia de la forma. La

formación de los dominios en un cuerpo magnético está relacionada con la reduc-

ción de la extensión espacial del campo magnético producido por el propio cuerpo.

Por tanto, en una nanoestructura de un solo dominio, la mayor contribución a

su energía libre es debida a la energía magnetostática, que en efecto depende del

campo magnético generado por la nanoestructura. Asimismo, el per�l energético

está de�nido por la forma de la nanoestructura: la estabilidad de la imanación

que yace paralela al eje mayor de una nanoestructura alargada depende del ratio

entre el tamaño de los ejes de la nanoestructura. Escogiendo un material magné-

ticamente isótropo (p.ej. Permalloy), se obtiene la unidad de base requerida: una

nanoestructura que se comporta como una aguja imantada cuya estabilidad con

respecto a estímulos magnéticos y temperatura está gobernada por su forma. El

último aspecto relevante está relacionado con la palabra conjuntos. Cualquier tipo

de entidad (desde las personas hasta las nanoestructuras magnéticas) puede ser

muy interesante por si misma, aunque propiedades emergentes pueden aparecer

como consecuencia de la introducción de interacciones entre las unidades bási-

cas1. En el caso de las nanoestructuras magnéticas, las interacciones empiezan a

ser efectivas cuando las unidades de base se encuentran lo su�cientemente cerca

como para ser afectadas por el campo magnético producido por nanoestructuras

vecinas.

En este marco, el Cap. 1 explica las nociones básicas del magnetismo necesa-

rias para la comprensión de cómo las nanoestructuras magnéticas se ven afectadas

por temperatura y campos magnéticos y de cómo interactúan entre si. Uno de

los apartados del capítulo está dedicado a la explicación de la interacción de la

luz con nanoestructuras metálicas, ya que el Cap. 5 se ha desarrollado a partir

1De hecho, en un sistema complejo �el todo es más que la simple suma de sus partes�.
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de este fenómeno. Una vez conocidas las herramientas para describir los sistemas

de interés, las nanoestructuras magnéticas deben ser fabricadas y caracterizadas.

El capítulo 3 ahonda en la fabricación de nanoestructuras mediante el uso de

litografía por haz de electrones y en la caracterización de las mismas mediante

medidas de efecto Kerr magneto-óptico. Debido al la importancia de esta última

técnica para el desarrollo de mi proyecto doctoral, el Cap. 2 está completamente

dedicado a la descripción de los efectos magneto-ópticos en la materia y cómo

estos pueden proporcionar información relativa a la imanación de nanoestructu-

ras. Asimismo, el Cap. 3 contiene los principales resultados obtenidos durante

una estancia de cuatro meses (Septiembre 2016 � Diciembre 2016) en el grupo

de �Ultrafast Dynamics in Condensed Matter� de la Universidad de Estocolmo

(Suecia).

Frustración geométrica

Esta tesis contiene resultados inéditos relacionados con nanoestructuras mag-

néticas en interacción. Un efecto peculiar relacionado con las interacciones es la

frustración, es decir, la inhabilidad de un sistema físico de minimizar simultá-

neamente la energía de todas sus interacciones. Debido a la frustración, pueden

coexistir con�guraciones no triviales que poseen la misma energía. Cuando esto

ocurre, el estado fundamental del sistema resulta degenerado, dando origen a

propiedades singulares, p.ej. entropía residual a temperatura próxima a cero. Un

clásico ejemplo es la disposición de los átomos de hidrogeno en el hielo. Igual-

mente el mismo comportamiento ha sido descubierto en otros materiales debido

a la disposición espacial de los espines atómicos. Estos materiales constituyen la

categoría de sistemas de hielo de espín. Tanto en el hielo como en el hielo de

espín, la frustración está determinada por la disposición geométrica de las unida-

des de base, de ahí el nombre �frustración geométrica�. Una desventaja de estos

sistemas resulta del hecho que las propiedades característica de la frustración son

de�nidas por el material: una vez se tenga el material con sus propiedades, no hay

mucho que se pueda modi�car para investigar de manera sistemática la física de

la frustración. Sin embargo, en el año 2006 [3], una nueva clase de metamateriales

fue creada: sistemas de hielo de espín arti�cial, que son una construcción bidi-

mensional de hielo de espín fabricada mediante litografía por haz de electrones

(básicamente un conjunto de nanoestructuras magnéticas en interacción). Para

que los sistemas de hielo de espín arti�cial funcionen debidamente, las nanoestruc-

turas magnéticas que los componen deben comportarse como agujas imantadas,

como se ha discutido previamente.
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En este marco, el Cap. 4 introduce brevemente el concepto de frustración

para posteriormente enfocarse en el desarrollo de los sistemas de hielo de espín

arti�cial. El �n de este capítulo es resumir nuestro intento en describir y simular

la evolución temporal de los sistemas de hielo de espín arti�cial cuando el efecto

de la temperatura es considerado. De hecho, el calentamiento de los sistemas de

hielo de espín arti�cial es el proceso clave para poder obtener la formación del

estado fundamental. Dependiendo de los parámetros que caracterizan el sistema,

se podría llegar a conseguir o no el estado fundamental, dado que (i) el mate-

rial, (ii) la disposición de las nanoestructuras en el conjunto, (iii) la forma de

cada nanoestructura y (iv) la temperatura tienen un impacto sobre el proceso.

Por tanto, tuvimos en cuenta todos estos factores desarrollando así un esquema

de simulación a multi-escala que es capaz de combinar simulaciones micromag-

néticas estocásticas (cientos de nanómetros, decenas de microsegundos) con el

método de Monte Carlo cinético al �n de considerar el comportamiento del siste-

ma en su totalidad (decenas de micrómetros, cientos de segundos). Los resultados

derivados de este método de simulación han sido comparados con datos de la li-

teratura con el �n de veri�car la validez de nuestra estrategia. A pesar de no

estar directamente relacionado con la frustración, la competición entre interac-

ciones magnetostáticas también puede ser aprovechada para explorar el per�l

energético de nanoestructuras magnéticas, mas allá de lo que se podría obtener

con el solo uso de campos magnéticos homogéneos. El capítulo 6 recoge todas

las simulaciones y evidencias experimentales de cómo una unidad quiral formada

por cuatro nanoestructuras alargadas puede inducir la formación de un estado

de magnetización energéticamente metaestable e imposible de obtener con una

nanoestructura aislada. Por consiguiente, fuimos capaces de inducir de manera

reproducible el estado de vórtice magnético en una nanoestructura diseñada para

que actúe como una aguja imantada. Este descubrimiento acentúa de manera aún

más evidente el papel fundamental que juegan las interacciones magnetostáticas

entre nanoestructuras magnéticas.

Activación térmica

Tal y como se ha discutido en el apartado anterior, el calentamiento de los sis-

temas de hielo de espín arti�cial es el proceso fundamental a investigar. Además

del esquema de simulación de multi-escala descrito en el Cap. 4 y su desarrollo

con la �nalidad de simular procesos térmicamente activados, nos basamos en el

conocimiento de nuestro grupo de investigación en magnetismo y plasmónica pa-

ra idear una técnica no estándar de calentamiento de sistemas de hielo de espín

arti�ciales: el calentamiento termoplasmónico de nanoestructuras magnéticas. La
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transferencia de energía de una onda electromagnética a una nanoestructura me-

tálica puede ser muy efectiva cuando se excita de forma resonante la oscilación

colectiva de los electrones libres del metal que constituye la nanoestructura (ex-

citación de un plasmón localizado de super�cie), mientras que esta transferencia

puede ser prácticamente interrumpida cuando el sistema electrónico está fuera

de resonancia. Además, a una determinada longitud de onda, la transferencia de

energía puede ser modulada acorde a la dirección de la polarización linear con

respecto a los ejes de la nanoestructura, debido al hecho que la frecuencia de re-

sonancia depende del ratio entre la longitud de los ejes (calentamiento selectivo).

Finalmente, utilizando haces de luz es posible controlar el tamaño de la región de

la muestra donde se deposita la energía a través del control del foco del mismo

haz, hasta un diámetro de 1 µm (calentamiento local).

En este marco, el Cap. 5 describe el diseño y la fabricación de nanoestruc-

turas magnéticas las cuales pueden ser (i) parte de un sistema de hielo de espín

arti�cial y (ii) calentadas de manera e�caz a través de la interacción con la luz.

Ambos requerimientos se cumplen trabajando con nanoestructuras alargadas de

multicapa, donde el Permalloy proporciona las propiedades magnéticas y el oro

es un e�caz material plasmónico. Dado que las nanoestructuras son alargadas, es

posible implementar un calentamiento selectivo basado en la dirección de polari-

zación y en la elección de la frecuencia. Tras analizar nanoestructuras aisladas,

nos centramos en averiguar que sucede cuando cuatro nanoestructuras forman

un vértice de un sistema cuadrado de hielo de espín arti�cial. En particular, las

cuatro nanoestructuras están organizadas en parejas y alineadas acorde a dos

direcciones perpendiculares. Las dos nanoestructuras paralelas a la dirección de

polarización pueden ser calentadas de manera más e�caz respecto a las otras

dos, debido a la selectividad de calentamiento descrita anteriormente. No obs-

tante, también el número de nanoestructuras por unidad de área (proporcional

al coe�ciente de recubrimiento super�cial) ejerce una in�uencia sobre la tempe-

ratura que se puede alcanzar. Por lo tanto, deben considerarse varios aspectos a

la hora de aplicar el calentamiento termoplasmónico a los sistemas de hielo de

espín arti�cial. Para llevar a cabo los experimentos sobre el calentamiento termo-

plasmónico, no solo fue necesaria la fabricación de nanoestructuras alargadas de

multicapa, sino también el desarrollo de un dispositivo de calentamiento que se

pudiese combinar con nuestro equipo de medida de efecto Kerr magneto-óptico.

De esta manera, a través de la medición de la variación del campo coercitivo en

función de la temperatura, fuimos capaces de medir el aumento de temperatu-

ra y correlacionarlo con el ratio entre el tamaño de los ejes y el coe�ciente de

recubrimiento super�cial.





Summary

Magnetism is a very fascinating topic. Despite some of the phenomena re-

lated to it have been known since few centuries BC, only the advent of quantum

mechanics shed light on the mechanisms governing the magnetic properties of

matter. Once we know how2 matter behaves and how it can be mathematically

described, we can build devices which combine various material properties in or-

der to carry out the functions they have been designed to supply. This is not

only true for magnetism, but for physics in general, whose main goal is to pro-

vide quantitative (and experimentally veri�ed) knowledge of Nature, down to the

deepest possible level.

However, quantum mechanics has not been the only discovery paving the way

for the practical exploitation of magnetism during the last century. A lot of

room [4] for extending the properties of bulk magnetism has been introduced

by nanotechnology : the reduction in at least one of the devices' dimensions to

(typically) the 1 − 1000 nm range determines the appearance of new physical

phenomena. Therefore, the union of magnetism and nanotechnology gave rise to

the fundamental �eld of nanomagnetism [1].

This thesis collects the most relevant part of the work carried out during my

Ph.D. project, started on the 6th of February 2014 in the Nanomagnetism group

part of the nanoGUNE Cooperative Research Center (Donostia�San Sebastián,

Spain). A brief summary of the considered topics (all related to nanomagnetism)

can be organized by following the keywords contained in the thesis' title: Study of

Geometrical Frustration and Thermal Activation in Arrays of Magnetic

Nanostructures.

2�The next reason that you might think you do not understand what I am telling you is,
while I am describing to you how Nature works, you won't understand why Nature works that
way. But you see, nobody understands that. I can't explain why Nature behaves in this peculiar
way.� R. P. Feynman, QED � The Strange Theory of Light and Matter (Princeton University
Press, 1985).
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Arrays of magnetic nanostructures

All this thesis deals with magnetic nanostructures, which are entities char-

acterized by three reduced dimensions and formed by magnetic materials. The

length scale L which the dimensions are con�ned to is dictated by the mesoscopic

condition [2]

L ≈ ρC ,

where ρC is the characteristic length scale of the involved phenomenon. Here,

the length scale of interest is the one which derives from the relative weight of

the various terms composing the micromagnetic free energy: by reducing the

structure size, the domain walls become energetically too �expensive� and so the

magnetization inside a magnetic nanostructure ends up to be organized in a single

domain. For this purpose, the considered dimensions through the thesis are all

below 700 nm, down to a minimum of 3 nm for the thickness. Another relevant

aspect related to con�nement is the role of shape. The reason leading to the

formation of domains in a magnetic body is connected to the reduction of the

spatial extent of the stray magnetic �eld produced by the body itself. Hence, in

a single-domain nanostructure, the main contribution to its free energy is given

by the so called magnetostatic energy, which indeed depends on the magnetic

�eld the nanostructure generates in space. Moreover, it turns out the associated

energy landscape is controlled by the nanostructure shape: the stability of the

magnetization lying along the major axis of an elongated nanostructure depends

on the ratios in between the nanostructure axes. By choosing a material in

which the magnetocrystalline anisotropy can be neglected (e.g. Permalloy), we

obtain the desired basic units: nanostructures behaving like magnetic needles,

whose stability with respect to both an applied magnetic �eld and temperature

is governed by their shape. The last relevant aspect is coded in the array keyword.

Any kind of entity (from people to magnetic nanostructures) can be extremely

interesting by itself, but complex phenomena can appear as a consequence of

introducing interactions in an array of basic units3. In the case of magnetic

nanostructures, interactions start to be e�ective when the basic units are placed

close enough to �feel� the stray magnetic �eld produced by their neighbours.

In this framework, Chap. 1 provides the basic notions on magnetism needed

for understanding how magnetic nanostructures behaves under the action of both

magnetic �elds and temperature and how they can interact. A small section is

also devoted to the interaction between light and metallic nanostructures, since

this phenomenon will be exploited in Chap. 5. Once the tools for describing the

3Indeed, a complex system is �more than simply the sum of its parts�.
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systems of interest are known, the magnetic nanostructures have to be (i) fab-

ricated and (ii) the expected features have to be investigated. Chapter 3 deals

with both these tasks: the fabrication of nanostructures by means of electron

beam lithography and their characterization through magneto-optical Kerr e�ect

measurements. Since this latter technique has been fundamental for the devel-

opment of my Ph.D. project, Chap. 2 is completely dedicated to the description

of magneto-optical e�ects in matter and on how they can provide information

on the magnetization, to understand what are the right quantities to be mea-

sured. Chapter 3 also contains a report on the main results obtained during a

four-month research stay (September 2016 � December 2016) in the �Ultrafast

Dynamics in Condensed Matter� group at Stockholm University (Sweden).

Geometrical frustration

The original results contained in this thesis are all connected to interacting

magnetic nanostructures. A peculiar e�ect related to interactions is frustration,

namely the inability of a physical system to simultaneously satisfy (i.e. energet-

ically minimize) all the pairwise interactions within it. This de�nition means

there can be various (non-trivial) con�gurations of the considered system which

are associated to the same energy. When this happens, the system ground state

results to be degenerate, leading to the appearance of interesting features, e.g.

a �nite value for the zero-point entropy. A classical example is given by the

proton arrangement in water ice. Moreover, the same behaviour has been found

in other condensed matter compounds, in particular regarding the atomic spin

arrangement. These materials constitute the class of spin ice systems. Both in

water ice and in spin ice systems, the frustration is determined by the geometrical

arrangement of their building blocks, whence the name �geometrical frustration�.

The drawback of these systems is the fact that the interesting features introduced

by frustration are �xed by the material: once you chose the compound, there is

not too much you can do for systematically investigate the physics of frustration.

However, in 2006 [3], a new class of metamaterials has been introduced: the ar-

ti�cial spin ice systems. They are two-dimensional realization of bulk spin ice

systems that can be fabricated by electron beam lithography, since they basically

are nothing else than arrays of interacting magnetic nanostructures. For arti�cial

spin ice systems to properly work, the involved magnetic nanostructures should

behave as magnetic needle, which is what we discussed in the previous section.

In this framework, Chap. 4 brie�y introduces frustration and then it focuses

on the development of arti�cial spin ice systems. The purpose of this chapter
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is to summarize our e�orts in trying to better describe and simulate the time

evolution of arti�cial spin ice systems when temperature comes into play. Indeed,

the heating of arti�cial spin ice systems is the key process possibly leading to

the ground state formation. Depending on the parameters characterizing both

the whole system and its building blocks, the ground state can �nally be reached

or not, since (i) the material, (ii) the nanostructure arrangement in the array,

(iii) the nanostructure shape and (iv) the temperature do have an impact on the

process. Hence, we took into account all these factors by designing a multiscale

simulation scheme which could be able to combine micromagnetic simulations for

the description of the thermal behaviour of magnetic nanostructures (hundreds

of nanometers, tens of microseconds) with kinetic Monte Carlo calculations for

considering the response of the whole system (tens of micrometers, hundreds of

seconds). The results derived form our approach have been compared to data

available in literature to check the validity of our arguments. Even if not strictly

related to frustration, the competition in between magnetostatic interactions can

also be exploited to explore the energy landscape of magnetic nanostructures be-

yond what achievable by a spatially uniform applied magnetic �eld. Chapter 6

collects all the simulations and experimental evidences related to how a properly

designed chiral square unit formed by four nanostructures can induce the for-

mation of a magnetization state which is energetically stable but impossible to

obtain in an isolated nanostructure. Indeed, we were able to reproducibly bring

a nanostructure designed to behave as a magnetic needle to a magnetic vortex

state. This �nding further stresses the essential role of magnetostatic interactions

in between magnetic nanostructures.

Thermal activation

As discussed in the previous section, the heating of arti�cial spin ice systems

is the fundamental process to be investigated. Besides the multiscale simulation

scheme described in Chap. 4 and developed for simulating thermally activated

processes, we also exploited the base knowledge of our research group (i.e. mag-

netism and plasmonics) for conceiving a non-standard heating technique for ar-

ti�cial spin ice systems: the selective and localized thermoplasmonic heating of

magnetic nanostructures. The transfer of energy from an electromagnetic wave

to a metallic nanostructure can be tremendously e�ective when the localized sur-

face plasmon resonance is excited, whereas this transfer can be almost turned

o� when the nanostructure electron system is out of resonance. Moreover, at

a �xed incident wavelength, the energy transfer can be modulated according to
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the direction of linear polarization with respect to the nanostructure axes, since

the resonance frequency depends on the axes aspect ratio (heating selectivity).

Eventually, a great advantage of working with light beams is the fact that the

sample area in which energy is delivered can be controlled by simply focusing or

defocusing the beam itself, down to a diameter of 1 µm (localized heating).

In this framework, Chap. 5 describes the design and the fabrication of mag-

netic nanostructures which can be (i) part of an arti�cial spin ice system and (ii)

e�ectively heated by the interaction with light. Both these requirements can be

satis�ed by elongated multilayer nanostructures, where Permalloy provides the

needed magnetization and gold is a good plasmonic material. Since the nanos-

tructures are elongated, it is possible to implement a certain degree of heating

selectivity based on frequency and on the polarization direction. After having

analyzed magnetically and optically non-interacting nanostructures, we also con-

sidered what happens when four nanostructures meet at a point, forming the

vertex of a square arti�cial spin ice system. In particular, the four nanostruc-

tures are arranged (in pairs) along two perpendicular directions, meaning that

the two nanostructures parallel to the polarization direction can be heated more

e�ciently than the other pair, thanks to the above-mentioned heating selectivity.

Nonetheless, also the number of nanostructures per unit area (proportional to the

�lling factor) in�uences the �nal temperature, so care as to be taken when trying

to apply the thermoplasmonic heating to arti�cial spin ice systems. The exper-

imental realization of the elongated multilayer nanostructure not only involved

their fabrication, but also the development of a thermoplasmonic heating stage

to be combined with our magneto-optical Kerr e�ect setup. Indeed, through the

measurement of the coercive �eld variation as a function of temperature, we have

been able to track the temperature increase and to correlate it to both the axes

aspect ratio and to the �lling factor.
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Chapter 1

Magnetism and Plasmonics

All the concepts reported in this thesis can be coarsely classi�ed into the

two broad �elds appearing in this chapter's name: magnetism and plasmonics.

Magnetism comes into play when the properties of interest have to do with mag-

netic �elds, whereas plasmonics describes the interaction between metals and

electric �elds. A link between these two worlds is provided by Maxwell equa-

tions, in which the constitutive relations de�ne the behaviour of matter when it

is perturbed by an electromagnetic �eld. So, for the study of magnetism and

plasmonics in condensed matter systems, the two relevant quantities to be con-

sidered are the magnetization M and the electric polarization P, and the relevant

phenomena are well described by the relation occurring between these quantities

and the electromagnetic �eld. The chapter is then devoted to introduce the basic

aspects of this relation needed to better understand the rest of the thesis.

1.1 Maxwell equations

The interaction of the electromagnetic �eld with matter (i.e. an ensemble of

atoms) allows us to interpret almost all the phenomena related with the human

daily experience and with technological achievements. From a theoretical point

of view, so far there are only four fundamental interactions which do not appear

to be reducible to more basic interactions. The strong and the weak interactions

are of interest only when considering in detail the atomic nuclei and radioactive

decay processes. The gravitational interaction governs the motion of massive

objects and regulates the behaviour of our universe, but it can be neglected for

electrons and atoms composing ordinary matter. Despite their fundamental value

in terms of a deep knowledge of Nature, none of these interactions can explain
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the stability of ordinary matter. For this purpose, the electromagnetic interac-

tion has been identi�ed, which describes the (long-range) interaction between

electrically charged particles and provides the basis for chemical bondings. Once

atoms are stable, they are kept together by electromagnetic forces. However,

electromagnetism (i.e. the theory describing electromagnetic interactions) has to

be considered inside the framework provided by quantum mechanics in order to

obtain an e�ective description of reality. So, the ultimate theory of ordinary

matter is called quantum electrodynamics. Anyway, as far as this thesis is con-

cerned, it is enough to consider two key features part of this theory: (classical)

electrodynamics and quantum mechanics.

Classical electrodynamics is based upon four equations, called Maxwell equa-

tions [5, 6]:

∇ ·D = ρ, (1.1a)

∇ ·B = 0, (1.1b)

∇×E = −∂B
∂t
, (1.1c)

∇×H = J +
∂D

∂t
, (1.1d)

where D is the electric displacement, B is the magnetic induction, E is the

electric �eld, H is the magnetic �eld, J is the electric current density and ρ

is the electric charge density. Equations (1.1) consist of a set of coupled �rst-

order partial di�erential equations relating the various components of electric

and magnetic �elds. However, it is often convenient to introduce potentials for

obtaining a smaller number of second-order equations, while satisfying some of

the Maxwell equations identically. In this respect, the magnetic �eld B can be

de�ned in terms of a vector potential A:

B = ∇×A, (1.2)

whereas both A and a scalar potential φ are needed in order to de�ne E:

E = −∇φ − ∂A

∂t
. (1.3)

It can be seen that the de�nitions (1.2) and (1.3) satis�es Eqs. (1.1b) and (1.1c),

and so the dynamic behaviour ofA and φ is determined by Eqs. (1.1a) and (1.1d),

where the source terms are present. To be noted that all the scalar and vector

quantities so far introduced are implicitly assumed to be dependent on position
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r(t) and time t.

To allow for a unique determination of the vector �elds from a given distri-

bution of electric currents and charges, the Maxwell equations must be supple-

mented by relations (called constitutive relations) describing the behaviour of

matter under the in�uence of the electromagnetic �eld [6]:

D = εE = ε0E + P, (1.4a)

B = µH = µ0 (H + M) , (1.4b)

J = σE. (1.4c)

The electric polarization P is related to the electric �eld by means of the dielectric

susceptibility tensor χ (i.e. P = ε0χE), which allows introducing the dielectric

permittivity tensor ε = ε0(I+χ). Themagnetization M is related to the magnetic

�eld by means of the magnetic susceptibility tensor χm (i.e. M = χmH), which

allows introducing the magnetic permeability tensor µ = µ0(I+χm). The tensor

σ is the conductivity tensor : the susbstances characterized by negligibly small

components of σ are called dielctrics, whereas sizeable components of σ identify

semiconductors and conductors. Stated in this form, Eqs. (1.4) express the linear

relationship occurring between D and E, B and H, J and E. However, if the

�elds are exceptionally strong [6, 7], D, B and J may have to be supplemented

by terms involving components of the �eld vectors in power higher than the �rst.

The classical equation of motion for a charged particle is given by the Lorentz

force equation:

F = q (E + v ×B) , (1.5)

which expresses the force F = mr̈ acting on a point charge q with mass m

and velocity v = ṙ in the presence of an electromagnetic �eld. Equation (1.5)

can be obtained by applying the Euler-Lagrange equations to the following non-

relativistic Lagrangian L [5, 8]:

L(r, ṙ) =
1

2
mṙ2 + q [ṙ ·A(r, t)− φ(r, t)] . (1.6)

The canonical momentum derived from this Lagrangian is p = mṙ + qA(r, t),

and so the corresponding Hamiltonian H is given by the Legendre transform of

Eq. (1.6) [9]:

H(r,p) =

∑
j

rjpj

− L(r, ṙ) =
1

2m
[p− qA(r, t)]

2
+ qφ(r, t). (1.7)
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H

Material system

Mχm

Figure 1.1: Block diagram outlining the action of a magnetic �eld H on a material
system.

1.2 The appearance of magnetism

In condensed matter, magnetism can be de�ned as the property of a given

substance to respond to an external magnetic �eld. Borrowing the schematic in

Fig. 1.1 from linear system theory, the magnetic �eld H constitutes the input

for the system (the considered material) and the resulting output (the response)

is given by the magnetization M (i.e. a net magnetic dipole moment per unit

volume). As stated by Eq. (1.4b) and detailed in the discussion below it, the cor-

responding transfer function is represented by the magnetic susceptibility tensor

χm:

M = χmH. (1.8)

In case of an isotropic body, χm reduces to a scalar (χm) and its value allows

classifying the various material into categories [10,11]:

• diamagnetic materials, for which χm < 0 and |χm| � 1;

• paramagnetic and antiferromagnetic materials, for which χm > 0 and

|χm| � 1;

• ferromagnetic and ferrimagnetic materials, for which χm > 0 and

|χm| � 1.

Considering ferromagnets (i.e. ferromagnetic materials), the relation between the

applied �eld and the magnetization is no longer well represented by a one-to-one

linear correspondence through a constant parameter χm, but the speci�cation of

a hysteresis loop is required, and so χm itself becomes a function of H. This

irreversible, non-linear response of an in�nite ferromagnetic body to an applied

magnetic �eld depends on the structure of the measured specimen and on the

past magnetic and thermal history. Moreover, hysteresis leads to the fact that a

ferromagnet can show a spontaneous net magnetization (remanent magnetization

MR) even in the absence of an applied magnetic �eld. Whereas MR depends on

the structure of the hysteresis loop, the saturation magnetization MS is an intrin-

sic property of the material: it represents the maximum magnetization value that
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can be reached by applying a high enough magnetic �eld (a process called sat-

uration). However, all the ferromagnetic materials become regular paramagnets

at a temperature above the so-called Curie temperature TC and, as such, they

have a non-zero net magnetization only in the presence of an external applied

�eld and the linear relation (1.8) is recovered.

The materials considered during the development of the Ph.D. project here

presented are all ferromagnetic metals: iron (Fe), cobalt (Co), nickel (Ni) and

Permalloy, a Ni80Fe20 alloy (Py). The next sections will be devoted to the descrip-

tion of the magnetic properties of such materials. To understand the phenomenon

of magnetism one might be tempted to develop a completely classical description,

which could be a useful limit of an underlying quantum-mechanical theory. How-

ever, it turns out that magnetism is incomprehensible within the framework of an

exact classical theory based on the behaviour of moving electrons, a framework

that has been successfully used to build the Drude model for metals. To inspect

this fact, we can write the Hamiltonian (1.7) for a system of N electrons of charge

−e and mass m immersed in a magnetic �eld speci�ed by the vector potential A:

H =
1

2m

N∑
j=1

(pj + eAj)
2

+ V (r1, · · · , rN ) . (1.9)

The potential V represents the interaction potential between the N electrons and

Aj = A(rj). The classical partition function Z is given by

Z =

∫
exp (−βH) dr1 · · · drNdp1 · · · dpN , (1.10)

where β = 1/(kBT ). It is now important to note that the integration in Eq. (1.10)

goes from −∞ to ∞ for all the integration variables. With the substitutions

ρj = rj and µj = pj + eAj (∀j), the partition function becomes1

Z =

∫
exp

−βV − β

2m

N∑
j=1

µ2
j

 dρ1 · · · dρNdµ1 · · · dµN , (1.11)

where all the integration limits are still −∞ to ∞. Hence Z is independent from

A (and so from H), whence the magnetization M, which is thermodynamically

1In the integration by substitution leading to Eq. (1.11), the following property helps in
transforming the di�erentials:

det

[
A 0
C B

]
= det

[
A C
0 B

]
= det(A) det(B),

where A, B and C are n× n matrices.
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given by

M = kBT
∂

∂H
lnZ, (1.12)

vanishes. This result is known as the Bohr�van Leeuwen theorem [12,13]: within

the framework provided by classical mechanics, a system of moving electrons

cannot respond to an applied �eld H by developing a net magnetization M, no

matter what the actual motion of the electrons is. The limit of a pure classical

description can be overcome by the use of quantum-mechanical concepts. For

example, classical electrons cannot move in a circular orbit around the atomic

nucleus without radiating their energy and collapsing into the center. However,

the circular orbits permitted by the Bohr model allows having a semi-classical

theory of diamagnetism [12], a phenomenon occurring in any material system.

1.2.1 The Dirac Hamiltonian

In any case, a satisfactory theory of magnetism in ferromagnetic metals have

to deal with all the prescriptions imposed by quantum mechanics. A complete

picture can be obtained through the Dirac Hamiltonian, and then useful informa-

tion can be extracted by suitable simpli�cations. The Stern�Gerlach experiment

(1921) and its interpretation by Goudsmit and Uhlenbeck (1925) introduced a

new intrinsic degree of freedom for the electron, namely the electron spin S. This

quantity behaves like an angular momentum with quantum number s = 1/2 and

so its expectation value Sz along the quantization direction (usually identi�ed

with the z-axis) can only take the two values Sz = ±~/2. A magnetic moment

µS is associated to the electron spin through the relation

µS = −gSµB
(
S

~

)
, (1.13)

where gS is the spin g-factor and µB = e~/(2m) is the Bohr magneton (expressing

the natural unit for atomic magnetic moments). In this respect, electrons can

interact with a magnetic �eld not only by their motion but also through µS .

The behaviour of an electron (massive spin-1/2 particle with −e charge) in

the presence of an electromagnetic �eld (A, φ) can be described by the Dirac

Hamiltonian [14]:

H = cα · (−i~∇ + eA) − eφ + βmc2, (1.14)
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where

α =

[
0 σ

σ 0

]
, β =

[
I 0

0 −I

]
, I =

[
1 0

0 1

]
,

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
,

and S = ~σ/2, making use of Pauli matrices. The wave functions associated to

the Dirac Hamiltonian are four-component spinors, since 4× 4 are the minimum

dimensions for the matrices α and β in order to satisfy all the conditions imposed

by Dirac during the derivation of his Hamiltonian [14]. So, four components

can accommodate the description of a particle and an antiparticle, each one

of spin 1/2. For low energies (compared with the electron's rest mass), the

Dirac Hamiltonian can be expanded in series, where the parameter governing the

expansion is p/(mc), and the most relevant terms for this thesis are:

H =
1

2m
(−i~∇ + eA)

2− eφ+
2µB
~

S · (∇×A) +
ie~

2m2c2
S · (∇φ×∇) . (1.15)

The �rst three terms in Eq. (1.15) constitute the non-relativistic limit of the

Dirac Hamiltonian (called Pauli Hamiltonian), whereas the last term gives rise

to the spin-orbit interaction in case we are considering atomic electrons. To be

noted that the non-relativistic limit of the Dirac Hamiltonian already contains the

spin operator, whereas the spin-orbit interaction is a relativistic correction to the

Pauli Hamiltonian. Moreover, comparing Eq. (1.15) with Eq. (1.13), the Dirac

theory predicts that gS = 2, in good agreement with experiments (neglecting

small corrections coming from quantum electrodynamics). For a one-electron

atom with atomic number Z, φ(r) = Ze/(4πε0r) is spherically symmetric and

Eq. (1.15) becomes

H = − ~2

2m
∇2 − Ze2

4πε0r
+ ξSO(r)S · L

+
µB
~

B · (L + 2S) +
e2

8m
(B× r)

2
,

(1.16a)

ξSO(r) =
1

2m2c2
Ze2

4πε0

1

r3
, (1.16b)

where we made use of the fact that L = −i~(r ×∇) is the orbital angular mo-

mentum of the electron (with quantum number l) and we considered an applied

uniform magnetic �eld H = B/µ0, for which A = (B× r)/2 and ∇ ·A = 0 [14].
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The spin-orbit interaction term can then be seen as the energy of the spin mag-

netic moment immersed in the magnetic �eld produced by the electron's motion

around the nucleus. As shown by Eq. (1.16b), the weight of this term increases

along with the atomic number Z of the considered element. The expectation value

of the �rst two terms of Eq. (1.16a) (kinetic and Coulomb interaction energies)

is

En = −1

2
mc2

(Zα)
2

n2
, (1.17)

where α ≈ 1/137.036 is the �ne structure constant and n = 1, 2, . . . is the principal

quantum number. The expectation value of the energy splitting ∆ESO determined

by the spin-orbit interaction is given by

∆ESO = |En|

[
(Zα)

2

nl (l + 1)

]
, (1.18)

which is valid for l 6= 0. Considering a 3d orbital for a one-electron atom with

Z = 26, ∆ESO/|En| ≈ 2 · 10−3. The term linear in B in Eq. (1.16a), namely

µB
~

B · (L + 2S) , (1.19)

is called the paramagnetic term, because it induces the alignment of magnetic

moments in an external magnetic �eld (paramagnetism). From this term, it is

possible to de�ne the orbital magnetic moment µL, as we did in Eq. (1.13) for

the spin:

µL = −µB
(
L

~

)
. (1.20)

1.2.2 The exchange interaction and the Heisenberg model

By considering isolated one-electron atoms, we are missing a key ingredient:

ferromagnetism is a many-body e�ect. Current theories are the evolution of

basic concepts postulated by Weiss in 1906 [15]. He assumed that there was

a certain internal (or molecular) �eld proportional to the net magnetization in

ferromagnetic materials which tries to align the neighbouring atomic magnetic

moment, stabilizing their parallel orientation against the disordering e�ect of

thermal �uctuations. In fact, ordinary applied magnetic �elds are unable to

compete against interatomic energies and temperatures of the order of 1 K are

su�cient to destroy any order established by the interactions of atomic magnetic

moments (for reference, consider that kB/µB ≈ 1.489 T ·K−1). However, the

origin of Weiss molecular �eld had to wait the advent of quantum mechanics in
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order to �nd a proper interpretation. Once the spin has been identi�ed as the

fundamental character in the previous sections, we have to inspect the way this

degree of freedom impact the behaviour of an ensemble of atoms constituting an

actual material. In order to do so, we will closely follow the argument developed

by Skomski [16], summarizing just the main results.

The simplest description is provided by a two-atom system, each one of them

possessing one electron. The starting point is the Pauli principle, which for-

bids the double occupancy of a quantum state by fermions (i.e. particles with

half-integer spin). Since the spin is associated to a quantum number, double

occupancy of an orbital is possible for antiparallel spins (antiferromagnetic con-

�guration, ↑↓) but forbidden for parallel spins (ferromagnetic con�guration, ↑↑).
To realize a parallel spin orientation, one electron must occupy an excited one-

electron orbital. The necessary energy comes from the Coulomb interaction

VC(r, r′) =
e2

4πε0 |r− r′|
(1.21)

between two electrons at r and r′. The Coulomb interaction is spin-independent

but larger for electrons in a common orbital (↑↓) than for electrons in di�er-

ent orbitals (↑↑). In other words, the Coulomb interaction favours parallel spin

alignment since it competes against an increase in one-electron energy.

Taking into account the Pauli principle for a system composed by two electrons

and two atomic sites (L and R), the exchange constant J is given by [16]:

J =
E↑↓ − E↑↑

2
= JD +

U

4
−
√
t2 +

U2

16
. (1.22)

The energy J can be used to de�ne the exchange interaction. This apparently

simple expression actually contains a lot of physical insight and it deserves a de-

tailed explanation. The Bethe-Slater curve [10,16], which predicts the emergence

of ferromagnetism in Fe, Co and Ni in terms of the distance between neighbour-

ing atoms, can be qualitatively �tted by Eq. (1.22). The energies E↑↓ and E↑↑
represent the energies of the antiferromagnetic and ferromagnetic con�gurations,

respectively: when J > 0, a ferromagnetic order is favoured over an antiferro-

magnetic con�guration. Regarding the last equality in Eq. (1.22), U represents

the Coulomb integral

U =

∫∫
Φ∗L(r)Φ∗L(r′)VC(r, r′)ΦL(r)ΦL(r′)dV dV ′ (1.23)



10 1 Magnetism and Plasmonics

and JD is the direct exchange integral

JD =

∫∫
Φ∗L(r)Φ∗R(r′)VC(r, r′)ΦR(r)ΦL(r′)dV dV ′. (1.24)

The Coulomb integral describes the strong repulsion between two electrons in

an atom and it is equal to the energy needed to add an electron to an already

occupied localized orbital. By comparison, the direct exchange has no classical

equivalent. Typical orders of magnitude are a few 0.01 eV for JD and a few eV

for U , so JD � U . Finally, t is the hopping integral and it is associated to the

hopping of an electron from an atom to the neighbouring one thanks to the e�ect

of the kinetic-energy operator. The considered wave functions in the integrals of

Eqs. (1.23) and (1.24) are Wannier functions, i.e. orthogonal wave functions for a

two-electron system which are well localized around a given atom (L or R in this

case). In conclusion, the balance between U , JD and t in Eq. (1.22) determines

the ground state of the two-electron system, and the Pauli principle applied to

the resulting wave function dictates the spin con�guration (↑↓ or ↑↑).
The relative weight of U , JD and t in Eq. (1.22) allows de�ning various approx-

imate models. The Heisenberg model considers the electrons as localized around

the atom it belongs to and, as such, this model works best for well-separated

atoms, where the number of electrons per atom is �xed. In terms of Eq. (1.23),

the electron localization can be imposed by considering U → ∞ and Eq. (1.22)

turns out to be [16]

J ≈ JD

(
1− 2t2

JDU

)
. (1.25)

This equation can be used to explain the sign of the exchange: the direct exchange

JD is ferromagnetic, but hopping yields an antiferromagnetic contribution. More

generally, it is possible to de�ne the Heisenberg model in terms of the Heisenberg

Hamiltonian:

H = − 2

~2

∑
i>j

JijSi · Sj −
gSµB
~

∑
i

Si · µ0Hi, (1.26)

where the summation includes all the atomic spins and Hi is the local magnetic

�eld acting on the i-th spin. From a quantum-mechanical point, Eq. (1.26) is

an approximation, but the model works surprisingly well for a broad range of

materials and phenomena. The exchange constants Jij , which are of the form

(1.25), relates any pair of spins (i, j) and, in practice, they are often treated

as phenomenological parameters. The most usual assumption is to consider

the exchange integral to be e�ectively di�erent from zero only between nearest-
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neighbour atoms, taking a common value Jij ≈ J (∀i, j). Combining statistical

mechanics with a mean-�eld approach [12, 17], J can be related to the Curie

temperature TC :

J =
3

2pS (S + 1)
kBTC , (1.27)

where p is the number of nearest neighbours and S is the total spin quantum

number. For body-centered cubic iron, the Curie temperature is 1043 K, p = 8

and we can consider S = 1 [17], so J ≈ 8.4 meV. To have an idea of the strength

of the exchange interaction, the magnitude of the magnetic induction needed

in order to have the same interaction energy with a magnetic moment µB is

B = J/µB ≈ 146 T.

1.2.3 The itinerant electron magnetism

Even if the obtained values are of the right order of magnitude for iron, the

Heisenberg model is not the most appropriate model for metals. A better de-

scription can be obtained by considering the weak-correlation limit (independent-

electron approximation), for which U → 0. The wave functions to be considered

represent delocalized states, and again the Pauli principle has to be respected.

Treating U and JD as small perturbations, the exchange constant J turns out to

be [16]

J ≈ U

4
+ JD − |t| . (1.28)

Consistently with previous �ndings, interatomic hopping destroys ferromagnetic

spin alignment. Since JD and |t| decrease with increasing interatomic distance

but U remains constant, Eq. (1.28) predicts ferromagnetism above some inter-

atomic distance. Considering that JD � U , in the end the phenomenon is regu-

lated by a competition between Coulomb repulsion and interatomic hopping. The

independent-electron approximation works best for transition-metal elements and

alloys, such as iron, cobalt and nickel. These materials exhibit pronounced inter-

atomic hopping and are often conductors with delocalized wave functions. The

considered approximation is the basis for the treatment of the itinerant electron

magnetism [13, 16].

In a simple one-electron picture, the electrons �ll the available delocalized

states until the Fermi level is reached. Non-magnetic metals have two equally

populated ↑ and ↓ sub-bands. In Pauli paramagnetism, an applied magnetic �eld

transfers a few electrons from (e.g.) the ↓ band to the ↑ band. This results in a

linear response of the magnetization as a function of the applied magnetic �eld.

For ferromagnetic metals, the energy (1.28) translates into an e�ective exchange
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�eld, which determines the transfer of electrons from one sub-band to the other

without the need of an applied magnetic �eld (exchange splitting e�ect). The

Stoner criterion, derived from the band structure of metals, allows predicting the

onset of ferromagnetism by knowing the density of states D(EF ) at the Fermi

level:

UD (EF ) > 1. (1.29)

As we have seen in the previous paragraph, the hopping energy (|t| ≈ 1/D(EF ))

competes against U and Eq. (1.28) predicts ferromagnetism for U/4 + JD > |t|,
in close analogy to the Stoner criterion.

1.3 The micromagnetic theory

Passing from an isolated one-electron atom to an ensemble of many-electron

atoms makes the description way more precise, but the equations governing the

system become too di�cult to be exactly solved. As far as ferromagnetism is

concerned, an ensemble of many-electron atoms can be seen as an ensemble of

interacting elementary magnetic moments δµj , for both localized and itinerant

electron magnetism. Then, the interactions give rise to energy terms which con-

cur in determining the equilibrium con�guration of any ferromagnetic body. By

identifying an appropriate size scale, a local magnetization M(r) can be intro-

duced [11]:

M(r) =

∑
j δµj

δVr
. (1.30)

The local magnetization represents the average magnetic moment contained in

a volume δVr centered at r. Such a volume has to be small enough to allow

a continuous medium approximation, but it has to contain enough elementary

moments in order to make M(r) a well-de�ned statistical quantity. Moreover,

the local magnetization provides a connection with Maxwell equations, since this

is the quantity to be used in Eq. (1.4b). All these considerations led to the

development of the micromagnetic theory (or micromagnetics) [12, 18]. For sim-

plifying the notation, the spatial dependence of M will be shown only in case of

ambiguities.

Micromagnetics deals with the total (Gibbs) free energy Etot [19]:

Etot = EZ + Eex + Emc + Ems. (1.31)

The Zeeman energy EZ is the interaction energy between a magnetized volume
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V and the applied magnetic �eld H:

EZ = −µ0

∫
V

M ·Hdr. (1.32)

The term Eex represents the exchange energy in the continuous medium approx-

imation:

Eex =

∫
V

A
(
|∇mx|2 + |∇my|2 + |∇mz|2

)
dr, (1.33)

where the exchange sti�ness A ∝ J describes the local strength of the exchange

interaction and m(r) = M(r)/MS . The saturation magnetization MS represents

the magnitude of M(r), so m(r) is a unitary vector. Eventually, the terms Emc
and Ems are the magnetocrystalline anysotropy energy and the magnetostatic

energy, respectively, and they will be described in the next two sections.

1.3.1 Magnetocrystalline anisotropy

The magnetocrystalline anisotropy is mainly due to spin-orbit coupling. Through

the coupling between the spin and the orbital motion of electrons, when an exter-

nal magnetic �eld tries to reorient the spin, the orbit also tend to be reoriented,

but, since the orbit is strongly coupled to the lattice, it resists the attempt to ro-

tate the spin direction. The symmetry of the lattice determines crystallographic

directions (easy axes) along which the spin system aligns at equilibrium. In the

continuous medium approximation, this translates to the fact that to rotate the

magnetization away from the easy axes costs energy. In the case of a cubic crys-

tal, the magnetocrystalline anisotropy energy density Emc can be expressed as a

series expansion of the direction cosines α1, α2, α3 of the magnetization relatively

to the crystal axes:

Emc = K0 + K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
+ K2

(
α2

1α
2
2α

2
3

)
+ · · · , (1.34)

where K0,K1,K2, . . . are the anisotropy constants, which are given for a partic-

ular material at a particular temperature and can be a function of the position.

The magnitude and the sign of the signi�cant anisotropy constants determine

what directions are easy axes. In the case of uniaxial anisotropy, which can be

found in hexagonal crystals (like cobalt), the energy density is a function of a

single angle ϑ:

Emc = K0 + K1 sin2 ϑ + K2 sin4 ϑ + · · · . (1.35)
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Depending on the relative value and the sign of the anisotropy constants, there

can be an easy axis of magnetization, an easy basal plane of magnetization or an

easy cone of magnetization. The magnetocrystalline anisotropy energy considered

in Eq. (1.31) can be obtained by integrating the relative energy density over the

volume V of the sample:

Emc =

∫
V

Emcdr. (1.36)

1.3.2 Shape anisotropy

The magnetostatic energy originates from the interaction among the elemen-

tary magnetic moments which constitute a ferromagnet: being the analogous of

the electrostatic energy for electric charges, it represents the energy contribution

coming from the fact that each magnetic moment is immersed in the magnetic

�eld Hd created by the surrounding magnetic moments (i.e. the demagnetizing

�eld). For a specimen with magnetization M, the magnetostatic energy Ems can

be evaluated as [12]

Ems = −µ0

2

∫
V

M ·Hddr, (1.37)

where the integration is over the volume V of the sample. The e�ect of this

energy term is mainly to de�ne the magnetic microstructure of an extended fer-

romagnetic body, but it can also be a source of anisotropy in small particles:

the magnetostatic energy depends on the direction of the magnetization because

the shape of the particle contributes in determining the �eld produced by the

magnetization itself.

In the case of an ellipsoidal particle with uniform magnetization M, the �eld

Hd can be expressed as

Hd = −NdM, (1.38)

where Nd is the demagnetizing tensor, characterized by a unitary trace. When

the Cartesian coordinates are chosen along the principal axes of the ellipsoid, the

energy density extracted from Eq. (1.37) becomes

Ems =
µ0

2

(
NxM2

x + NyM2
y + NzM

2
z

)
. (1.39)

The quantities Nx, Ny and Nz are called demagnetizing factors and, for a spher-

ical particle, it turns out that Nx = Ny = Nz = 1/3. If the ellipsoid has two axes
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(a) Prolate spheroid (b) Oblate spheroid

Figure 1.2: Ellipsoids. Adapted from Ref. [10].

of equal length a (see Fig. 1.2), the magnetostatic energy density is given by

Ems =
µ0

2

[
Nc (M cosϑ)

2
+ Na (M sinϑ)

2
]

=
µ0

2
NcM

2 +
µ0

2
(Na −Nc) M2 sin2 ϑ,

(1.40)

where ϑ is the angle between the magnetization M and the third axis of length

c. The quantities Na and Nc are the demagnetizing factors of the corresponding

axes, whose values depend on the ratio between c and a, but in general Nc < Na if

c > a (prolate spheroid) and the direction ϑ = 0 is an easy axis. This expression

for the magnetostatic energy density has an angle-dependent term of exactly the

same form as in the uniaxial magnetocrystalline anisotropy energy density. For

a general ellipsoid, the demagnetizing factors can be calculated according to the

formulas given by Osborn [10, 20], which have simple analytical expressions for

the cases depicted in Fig. 1.2:

• considering m = c/a > 1 for a prolate spheroid, then

Nc =
1

m2 − 1

[
m√

m2 − 1
ln
(
m+

√
m2 − 1

)
− 1

]
, (1.41a)

Na =
1 − Nc

2
. (1.41b)

• considering m = a/c > 1 for an oblate spheroid, then

Na =
1

2 (m2 − 1)

[
m2

√
m2 − 1

arcsin

(√
m2 − 1

m

)
− 1

]
, (1.42a)

Nc = 1 − 2Na. (1.42b)

In both cases, Na and Nc only depend on the aspect ratio m, a statement which
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(a) (b) (c)

Figure 1.3: Schematic diagrams showing the emergence of magnetic domains from (a)
to (c): according to the pole avoidance principle, the con�guration depicted in (c) is
characterized by lower magnetostatic energy than the ones in (a) and (b). In any case,
the whole domain structure of a specimen is governed by the total free energy expressed
by Eq. (1.31). Adapted from [22].

is true in general.

The competition between the exchange energy Eex and the magnetostatic

energy Ems is characterized by the exchange length lex [19, 21]:

lex =

√
2A

µ0M2
S

. (1.43)

This is the shortest scale on which the magnetization can be twisted in or-

der to minimize Ems. Considering iron, A = 2.1 · 10−11 J ·m−1 and MS =

1700 kA ·m−1, so lex ≈ 3.4 nm, whereas for Permalloy, A = 1.3 · 10−11 J ·m−1

and MS = 800 kA ·m−1, so lex ≈ 5.7 nm.

1.3.3 The Landau�Lifshitz�Gilbert equation

The microstructure of ferromagnetic materials is the result of minimizing the

total free energy (1.31). As shown in Fig. 1.3, magnetic domains tend to form in

the lowest energy state because the system wants to minimize its total self-energy,

which is represented by the magnetostatic energy Ems. Equation (1.37) can also

be expressed as [12]

Ems =
µ0

2

∫
all space

H′
2
dr, (1.44)

where H′ is the magnetic �eld generated by the magnetized material and the
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integration is over the whole space. This form of writing the magnetostatic energy

demonstrates the pole avoidance principle. The integrand is positive everywhere,

which makes the magnetostatic energy always positive. So, the smallest possible

value for this energy term is zero, a value that can only be achieved when H′ is

identically zero everywhere. This fact implies that the magnetostatic energy term

always tries to avoid any sort of volume (ρm) or surface (σm) magnetic charge,

since the H-�eld can be mathematically interpreted as generated by �ctitious

magnetic poles:

ρm = −∇ ·M, (1.45a)

σm = n̂ ·M, (1.45b)

where n̂ is the outward-pointing surface normal. A complete avoidance is usually

not possible, because the energy minimization is subjected to constrains imposed

by the exchange interaction, the external �eld and the anisotropies. Once the

domains are there, the exchange tries to keep a uniform magnetization inside

the domains and the anisotropy energy terms try to align the magnetization in

each domain along one of the easy axes. However, the domains are separated

by regions, the domain walls, where the magnetization rotates from one easy

direction to another. The presence of domain walls locally enhances the energy,

but at equilibrium this is compensated by a net decrease in the total free energy.

Mathematically speaking, the minimization of the total free energy (1.31)

requires a variational approach [19]. The solution of the problem takes the form

of a stability condition, known as Brown's equations, to be ful�lled at equilibrium:

m×Heff = 0, (1.46)

where m(r) = M(r)/MS and

Heff =
2

µ0MS
∇ · (A∇m) − 1

µ0MS

∂Emc
∂m

+ Hd + H. (1.47)

The e�ective �eld Heff exerts a torque on the magnetization and, for a system

to be in equilibrium, this torque has to be zero everywhere. However, Eq. (1.46)

does not describe how the system will approach the equilibrium after an external

perturbation. For this purpose, the Landau�Lifshitz�Gilbert (LLG) equation has

been introduced [23�25]:

∂m

∂t
= − µ0γ

1 + α2
(m×Heff + αm×m×Heff ) . (1.48)
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The parameter γ > 0 is the gyromagnetic ratio and the time dependence of

m and Heff is implicitly considered. The �rst term of Eq. (1.48) describes

a precession of the magnetization around the e�ective �eld direction. For an

electron spin, the (Larmor) precession frequency can be obtained by considering

that γ/(2π) = gSe/(4πm) ≈ 28 GHz · T−1. The dimensionless parameter α ≥ 0

controls the strength of the damping mechanism, necessarily involved in any

approach to equilibrium. In fact, m × m × Heff represents a torque which

bends the magnetization towards the equilibrium direction de�ned by Heff . As

a reference, a value often found in literature for Permalloy is α = 0.01. Equation

(1.46) implies that ∂m/∂t = 0, thus showing the compatibility between the LLG

equation and Brown's equilibrium condition. To be noted that, at any position,

the magnitude of the magnetization is conserved during the process, since [24]

∂

∂t

(
|m|2

)
= 2m · ∂m

∂t
= 0. (1.49)

1.4 Single-domain particles

As we have seen in the previous section, magnetic domains appear because

of the balance between the energy enhancement due to the presence of domain

walls and the reduction in magnetostatic energy. Thinking in these terms, it

appears clear that a su�ciently small particle cannot contain domain walls and

so it should consist of a single domain. In fact, the magnetostatic energy varies as

the volume of the particle, while the wall energy varies as the cross-sectional area

of the particle, determining a critical radius below which the single-domain state

is energetically favourable. Since there are no domain walls, the magnetization

process in an ideal single-domain particle only consists in the coherent rotation

of the magnetization. This process is described by the Stoner�Wohlfarth model

[10,26], which is worth to be discussed here because of its historical and physical

merit. Let us consider the following free energy ESW for an ideal single-domain

particle in form of a prolate spheroid (Na > Nc) of volume V :

ESW = KV sin2 ϑ − µ0MSHV cos (ψ − ϑ) , (1.50a)

K = K1 +
µ0

2
∆NM2

S , (1.50b)

where ∆N = Na − Nc and all the terms constant in ϑ have been neglected.

The angle ϑ is the angle between the magnetization MS and the easy axis, while

ψ is the angle between the applied magnetic �eld H and the easy axis. The

exchange energy is already taken into account in the assumption of considering an
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MS

H

ϑ

(a) Free energy (ψ = 180◦) (b) Hysteresis loops

Figure 1.4: (a) Normalized free energy as a function of the magnetization angle ϑ for
di�erent values of normalized �eld h. (b) Hysteresis loops for single-domain particles
with energy (1.50a) corresponding to di�erent ψ angles. The value mh is the normalized
component of the magnetization along the magnetic �eld direction.

ideal single-domain particle: the exchange interaction simply keeps all the spins

aligned, forming a sort of macrospin with magnetization equal to MS everywhere

in the particle. For a given H, the magnetization equilibrium position can be

obtained by considering

dESW
dϑ

= KV sin 2ϑ− µ0MSHV sin (ψ − ϑ) = 0 (1.51)

and looking for the solutions corresponding to minima for ESW . A normalized

�eld h = H/HK can be de�ned by introducing the anisotropy �eld HK :

HK =
2K

µ0MS
. (1.52)

Figure 1.4a illustrates the behaviour of ESW when MS is initially aligned with

the easy axis (ϑ = 0◦) and H starts to be reversed (ψ = 180◦). When h = 0 (blue

curve), both ϑ = 0◦ and ϑ = 180◦ are equilibrium positions for MS , separated

by an energy barrier KV . As the magnetic �eld ramps up, the minimum at

ϑ = 180◦ becomes deeper and deeper with respect to the minimum at ϑ = 0◦,

until h = 1 is reached. At this �eld value, ϑ = 0◦ is no longer a minimum

and the magnetization becomes energetically unstable, eventually �ipping over

to ϑ = 180◦ (magnetization reversal process). The evolution of the magnetization

as a function of H for this particular choice of ψ is given by the blue hysteresis

loop in Fig. 1.4b, where the normalized component of the magnetization along the

magnetic �eld direction is shown as a function of h. To �nd the critical �eld value
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Hcf at which the magnetization jumps to the opposite direction as a function of

ψ, we note that a solution of Eq. (1.51) does not necessarily correspond to a

minimum in ESW , but it can also correspond to an energy maximum, depending

on the sign of the second derivative: if it is positive the equilibrium is stable,

if it is negative the equilibrium is unstable, whereas if it is zero, a condition of

stability is just changing to one of instability. Thus the critical �eld is found by

imposing

d2ESW
dϑ2

= 2KV cos 2ϑ + µ0MSHV cos (ψ − ϑ) = 0. (1.53)

The simultaneous solution of Eqs. (1.51) and (1.53) leads to the following system

of equations, from which the critical �eld hcf = Hcf/HK and the corresponding

critical angle ϑcf for the magnetization can be calculated [10]:tan3 ϑcf = − tanψ,

h2
cf = 1 − 3

4
sin2 2ϑcf .

(1.54)

When ψ = 180◦, ϑcf = 0 and hcf = 1 (that means Hcf = HK): the hysteresis

loop is then rectangular, as shown in Fig. 1.4b. The values of hcf decreases

from 1 at ψ = 0 to a minimum of 0.5 at ψ = 45◦ and then increases again to

1 as ψ approaches 90◦. For the Stoner�Wohlfarth model, the critical �eld Hcf

coincides with the coercive �eld HC only when ψ ≤ 45◦, since HC is de�ned to be

the �eld value for which the component of the magnetization along the magnetic

�eld direction reduces to zero.

1.4.1 Superparamagnetism and stochastic LLG equation

Until now we have neglected the e�ect of temperature. If the particle becomes

small enough, the energy barrier (proportional to the particle volume) would

become so small that energy �uctuations due to thermal e�ects could help the

system in overcoming the energy barrier and spontaneously reverse the magneti-

zation, giving rise to superparamagnetism [27]. In order to quantify the e�ect of

temperature on a particle, we can statistically analyze the rate at which thermal

equilibrium is approached in an ensemble of particles. Let us consider an as-

sembly of N identical single-domain particles described by Eq. (1.50a) with their

easy axes all parallel to a common direction, which de�nes the z-axis. Since only

two equilibrium positions are de�ned in no applied magnetic �eld (ϑ = 0◦, 180◦),

we can divide the particles into two groups (see Fig. 1.5a):
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n1

n2

ν21

ν12

(a) Energy landscape (b) Time evolution

Figure 1.5: (a) Blue curve of Fig. 1.4a showing the two stable states for the magne-
tization characterizing the populations n1 and n2. These states are separated by an
energy barrier KV . (b) Time evolution of n1, n2 and Mz/MS as predicted by Eqs.
(1.57) and (1.58) for ν21 = ν12 and n1(0) = 1.

• n1 is the fraction of particles whose magnetization is ẑMS ;

• n2 is the fraction of particles whose magnetization is −ẑMS .

The evolution of these two populations (with n1(t)+n2(t) = 1 ∀t) is well described
by a master equation (see also Appendix D) [28,29]:ṅ1 = −ν21n1 + ν12n2

ṅ2 = ν21n1 − ν12n2

. (1.55)

The rates ν21 and ν12 are the relaxation frequencies associated with the particle

transition from group 1 to 2 and from group 2 to 1, respectively. The relaxation

frequency νij (or equivalently the relaxation time τij = 1/νij) is given by the

Néel�Arrhenius equation [28]:

νij = ν0 exp

(
−∆Eij
kBT

)
. (1.56)

The parameter ∆Eij is the energy barrier associated to the considered process

and ν0 represents the attempt frequency, which, at this stage, can be considered

as constant [28, 30] with a value of about 1010 Hz. The solution to the linear
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system (1.55) isn1(t) =
ν12

νMEq
+

[
n1(0)− ν12

νMEq

]
exp (−νMEqt)

n2(t) = 1 − n1(t)

, (1.57)

where νMEq = ν21 + ν12 and 0 ≤ n1(0) ≤ 1 fully speci�es the initial conditions.

The average magnetization M(t) can then be expressed as

M(t) = ẑMS [n1(t) − n2(t)] = ẑMS [2n1(t) − 1] . (1.58)

For H = 0, it turns out that ∆E21 = ∆E12 = KV and ν21 = ν12. In this case,

Eqs. (1.57) and (1.58) return M(t)→ 0 for t→∞, meaning that any initial order

imposed to the ensemble will be lost after a high-enough time (see Fig. 1.5b). As

a measure of this time scale, the value 2τMEq = 2/νMEq is usually chosen. So,

for a given energy barrier KV , the average experimental measurement time texp
has to be compared with 2τMEq in order to de�ne the thermal stability of the

considered system:

• if texp > 2τMEq, the performed measurement is able to record the statis-

tical nature of thermally activated processes, and each particle appears as

superparamagnetic;

• if texp < 2τMEq, the particle appears as �blocked� in the initial state during

the measurement, as if the temperature does not play any role.

Exploiting these considerations, a blocking temperature Tb can be de�ned as the

temperature for which texp = 2τMEq for a given particle:

Tb =
KV

kB ln (ν0texp)
. (1.59)

In this framework, the e�ect of an applied magnetic �eld is to modify the value

of the energy barrier. After being initially saturated in the positive z-direction

(n1(0) = 1), a �eld H is applied to the ensemble of particles in the negative

z-direction (ψ = 180◦), modifying the energy landscape of each particle as shown

in Fig. 1.4a. So, the energy barriers for reversal ∆Eij can be derived to be

∆E21 = KV

(
1 − H

HK

)2

, (1.60a)

∆E12 = KV

(
1 +

H

HK

)2

, (1.60b)
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where we have made use of Eq. (1.52). The �eld progressively reduces the energy

barrier for the transition from group 1 to group 2 until the process becomes

thermally active during the average experimental measurement time, and the

magnetization reversal can be e�ectively recorded. The e�ect of temperature is

then to reduce the magnetic �eld needed for switching the particle magnetization,

since the temperature allows the particle to explore larger portions of the energy

landscape around the minimum it resides in. So, the coercive �eld HC(T ) can

be calculated as the �eld at which (statistically) half of the particles can change

state during the average experimental measurement time texp, i.e. n1(texp) = 0.5

also implying M(texp) = 0. From Eqs. (1.57) and (1.58), this corresponds to

ν12

νMEq
+

(
1− ν12

νMEq

)
exp (−νMEqtexp) =

1

2
. (1.61)

An additional assumption has to be made in order to simplify the result [31].

Since ∆E21 becomes smaller and smaller with respect to ∆E12 as H increases,

we can neglect ν12, so

HC(T ) = HK

[
1 −

√
kBT

KV
ln

(
ν0texp
ln 2

)]
. (1.62)

Equation (1.62) is known as Sharrock equation [31, 32].

To be noted that the explicit T appearing in the Sharrock equation is not

the only source of temperature dependence for HC . The energy �uctuations

caused by temperature do not only act on the magnetization as de�ned by Eq.

(1.30), but there is a measurable e�ect on all the involved degrees of freedom

(i.e. the elementary magnetic moments δµj). For this reason, the saturation

magnetization magnitude itself is a function of temperature [12]. A far as this

thesis in concerned, we consider the following temperature dependence for MS :

MS(T ) = M0K
S

(
1 − T

TC

)β
, (1.63)

where M0K
S , TC and β are parameters to be experimentally determined and T <

TC .

In general, the thermal �uctuations above descibed can be taken into account

inside the framework provided by the micromagnetic theory. Indeed, the e�ect of

a �nite temperature can be included in the LLG equation by means of a stochastic

term, so identifying the stochastic LLG (sLLG) equation [25, 28, 33, 34]. In this
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formulation, the e�ective �eld HT
eff (t) to be used in Eq. (1.48) takes the form

HT
eff (t) = Heff (t) + Hfl(t), (1.64)

where a �uctuating �eldHfl(t) has been introduced. In order to provide the e�ect

of actual thermal �uctuations, Hfl(t) must be a Gaussian stochastic process, so

satisfying the following properties [35�38]:

〈Hfl(t)〉 = 0, (1.65a)

〈Hfl,i(t)Hfl,j(t
′)〉 =

2αkBT

γµ2
0MSV

δ (t− t′) δij , (1.65b)

where 〈·〉 denotes a time average and 〈··〉 a correlation, δ is either a Dirac delta

or a Kronecker delta (i, j = x, y, z), T represents the temperature, α is the LLG

damping parameter, γ is the gyromagnetic ratio, MS is the saturation magneti-

zation magnitude and V denotes the volume on which the thermal �uctuations

can be considered as spatially correlated. Actually, the absence of any spatial

correlation for Hfl is customarily assumed [35], so the elementary magnetic mo-

ment δµ should appear in Eq. (1.65b) instead of MSV , but the methods for

numerically solving the sLLG (see Appendix C) implement this requirement only

between the various simulation cells (being V their volume). A similar argument

can be applied to the time correlation expressed by δ (t− t′), since also time has

to be make discrete for obtaining a numerical solution. In the end, Hfl can be

assumed to be [25]

Hfl(i) = ηi

√
2αkBT

γµ2
0MSV∆ti

, (1.66)

where ∆ti is the i-th time step and ηi is a random vector generated using a

standard normal distribution whose value is changed after every i-th step. The

e�ect of thermal �uctuations inside the simulation cells can then be taken into

account by considering the MS(T ) value at the temperature of interest2 [40�42].

1.5 Spin waves

The dynamic response of the magnetization (for a ferromagnetic material) to

a small time-varying magnetic �eld can be analytically obtained by linearizing the

LLG equation (1.48) about a saturated equilibrium state in the approximation of

small oscillations [43]. For getting the resonance frequency, the damping term in

2However, close to the Curie temperature, an alternative approach can be considered: the
Landau�Lifshitz�Bloch equation [39].
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the LLG equation can be neglected (α = 0), since its main e�ect is to determine

a �nite width for the resonance peak without shifting the peak position (to lowest

order). Moreover, we also neglect the magnetocrystalline anisotropy contribution

to the e�ective �eld (Eq. (1.47)), since it is of no relevance in the framework of

this thesis. To solve the linearized LLG equation, we need to separate Heff and

M in terms of static and time-varying components:

Heff (t) = H0
eff + H∗effe−iωt, (1.67a)

M(t) = M0 + M∗e−iωt, (1.67b)

where the time dependence of the time-varying terms has been made explicit.

For de�niteness, we assume that the static equilibrium �elds lie along the z-

axis, namely H0
eff = ẑH0

eff , and the term given by the the externally applied

magnetic �eld (ẑH) constitutes a static bias �eld. Hence, for small deviations from

equilibrium (M∗ � M0 and H∗eff � H0
eff ), the z-component of the magnetization

results to be unchanged, so that M0 ≈ ẑMS . Making these assumptions and

neglecting second-order terms in small quantities, the no-damping linearized LLG

equation reads [43,44]

iωM∗ = ωMẑ×
(
H∗ − ωH

ωM
M∗ − NdM

∗ + λex∇2M∗
)
, (1.68)

where

ωM = µ0γMS , (1.69a)

ωH = µ0γ (H−NzMS) , (1.69b)

λex =
2A

µ0M2
S

. (1.69c)

The �eld H∗ denotes the term in H∗eff associated to the externally applied mag-

netic �eld, so it represents the external small perturbation we are exploiting for

getting the magnetization dynamic response. The tensorNd is the demagnetizing

tensor introduced in Sec. 1.3.2. For simplicity, we are considering the Nd prin-

cipal axes to be parallel to the coordinate axes, so that Nz is the demagnetizing

factor along the z-axis. Eventually, the quantity λexMS is called the spin-wave

sti�ness [45]. If the spatial dependence of H∗ and M∗ is of the form eik·r, the

operator ∇2 can be substituted by −k2 and Eq. (1.68) can be inverted to re-

turn the magnetic susceptibility tensor for the time-varying x- and y-components
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(generalized Polder tensor) [43]:

χm =
1

D

[
ωH + ωM

(
Ny + λexk2

)
−iω

iω ωH + ωM

(
Nx + λexk2

)] (1.70)

where

D =
[
ωH + ωM

(
Nx + λexk2

)] [
ωH + ωM

(
Ny + λexk2

)]
− ω2. (1.71)

The resonance frequency ω0 can be found by imposing D = 0 [43, 45,46]:(
ω0

µ0γ

)2

=
[
H + (Nx −Nz) MS + λexMSk2

] [
H + (Ny −Nz) MS + λexMSk2

]
.

(1.72)

In case λex = 0, Eq. (1.72) reduces to the Kittel equation for the ferromagnetic

resonance frequency [11, 47].

The tensor (1.70) can be applied both to bulk isotropic ferromagnetic mate-

rials (for which all the demagnetizing factors are zero) and to thin �lms (where

the demagnetizing factor corresponding to the �lm growth direction can be taken

as equal to one). As we have just seen, it de�nes the response of a ferromagnetic

material to a time-varying �eld. Hence, it can be combined with the Maxwell

equations (1.1) in order to describe the propagation of electromagnetic waves

within a ferromagnetic medium. Detailed solutions to this problem can be found

in Ref. [43]. The most interesting thing for us is the fact that such a material,

when perturbed out of equilibrium, can sustain magnetization oscillations, gener-

ally called spin waves. In case of con�ned dimensions, as in nanostructures, these

oscillations can give rise to standing-wave patterns which can give information on

the magnetization reversal process, as we will see in Chap. 6. As a reference, for

the materials and the geometries considered in this thesis, the relevant resonance

frequencies lie in the range 1− 10 GHz.

1.6 Optics in metals: plasmonics

Whereas magnetism mainly deals with the relation betweenM andH (see Eq.

(1.8)), plasmonics arose from the study of the optical properties of metals [48�50].

As such, Eq. (1.4a) is now the equation to be considered and the transfer function

for optical properties is represented by the dielectric susceptibility tensor χ, as

shown by Fig. 1.6:

P = ε0χE. (1.73)
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E

Material system

Pε0χ

Figure 1.6: Block diagram outlining the action of an electric �eld E on a material
system. To be compared with Fig. 1.1.

An expression for χ can be derived in the framework of classical physics by

considering the Drude�Lorentz model for an electron system [51]:

r̈ + Γṙ + ω2
0r = − e

m
E, (1.74)

where m is the electron mass, e is its charge, r denotes the displacement of the

electron from its equilibrium position, E is the electric �eld, Γ is the damping

parameter and ω0 is the resonance frequency. This model will be used in Chap.

2, where magnetism and optics are going to be combined in order to explain

the origin of magneto-optical e�ects [52]. In case of an optically isotropic and

homogeneous material subjected to an oscillating electric �eld, in the form of

E = E0e−iωt, the dielectric susceptibility tensor χ reduces to a diagonal tensor

whose non-zero elements are equals to

χ =
ne2

ε0m

(
1

ω2
0 − ω2 − iΓω

)
=

ne2

ε0m

[
ω2

0 − ω2 + iΓω

(ω2
0 − ω2)

2
+ Γ2ω2

]
, (1.75)

where n is the average number of electrons per unit volume. In the end, the

Drude�Lorentz model says that, when an electromagnetic wave impinges on a

material described as a system of electrons, the j-th electron responds to the

oscillating electric �eld E by developing an electric dipole moment δpj = −erj ,
where rj is solution of Eq. (1.74): r = −ε0χE/(ne). The net e�ect per unit

volume is expressed by the electric polarization P(r):

P(r) =

∑
j δpj

δVr
= n〈δp(r)〉, (1.76)

where the sum runs over the electric dipole moments contained in a volume

δVr centered at r and 〈δp(r)〉 represents the average electric dipole moment

contained in that volume. The j-th electric dipole moment δpj itself represent

a source of electromagnetic radiation, which is then emitted giving rise to the

scattered radiation. However, this is not the only process which can occur: due
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to the presence of damping, part of the energy the electron receives from the

incident �eld is dissipated through other mechanisms, eventually turning into

heat. This is what is usually de�ned as absorption. Scattering and absorption of

electromagnetic radiation are the two general categories in which the light-matter

interaction phenomena can be subdivided. While working with metals, Eq. (1.75)

can be expressed in a slightly di�erent way:

χ = −
ω2
p

ω2 + iΓDω
+ ω2

p

∑
j

fj
ω2

0j − ω2 − iΓjω
, (1.77a)

ωp =

√
ne2

ε0m
. (1.77b)

The �rst term in Eq. (1.77a) can be obtained by starting from the Drude model

and takes into account the e�ect of free electrons (i.e. conduction electrons), for

which the equation of motion does not contain the elastic term responsible for

the appearance of the resonance (i.e. ω0D = 0) and τD = 1/ΓD represents the

electron mean free time [53]. The parameter ωp denotes the plasma frequency and

represents the maximum frequency the system of free electrons can respond to.

Above this frequency, the metal becomes transmitting, a phenomenon known as

the ultraviolet transparency of metals [51]. The sum appearing in the second term

of Eq. (1.77a) can be used to �t any kind of transition (like interband transitions)

leading to a resonant behaviour described by a resonance frequency ω0j and a

lifetime proportional to 1/Γj . For this purpose, a phenomenological oscillator

strength fj can be assigned to each term in order to express the �relevance� of

the associated j-th process.

1.6.1 Plasmonics of metallic nanostructures

When a metal is moulded into a nanostructure, the con�nement of the con-

duction electrons starts playing a role. The surface of the nanostructure exerts

an e�ective restoring force on the driven electrons, so that a resonance can arise.

This resonance is called localized surface plasmon (LSP) resonance [48, 54, 55].

For the purpose of this thesis, the most interesting feature of LSPs is the fact that

hitting the resonance is the most e�ective way for transferring energy from the

incident electromagnetic �eld to the nanostructure. For better describing these

concepts, we can consider a homogeneous and isotropic metallic sphere whose

radius a is much smaller than the wavelength λ of the incident electric �eld

Eb = E0be
i(k·r−ωt). The magnitude of the wavevector k is given by k = 2π/λ,

since we are considering the sphere to be in vacuum. The condition a � λ en-
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sures that the electric �eld is approximately uniform through the volume of the

sphere, so a quasi-static approach can be used. The �eld Eint inside the sphere is

given by the superposition of the applied �eld Eb and the depolarization �eld Ed

given by Ed = −P/(3ε0). The �eld Ed plays, for optical phenomena, the same

role the demagnetizing �eld of Eq. (1.38) plays for magnetic nanostructures. So,

Eint can be retrieved by imposing

Eint = Eb + Ed = Eb −
εr − 1

3
Eint, (1.78)

having de�ned εr = 1 + χ (relative dielectric permittivity) and considering Eq.

(1.73). In case of a sphere, the electric polarization P is uniform through the

whole volume V = 4πa3/3, whence the total electric dipole moment p is

p = VP = 4πε0a
3 εr − 1

εr + 2
Eb = ε0αpEb, (1.79)

where αp is called polarizability . We introduced the electric dipole moment since

it is the source of the electromagnetic radiation produced by the nanostructure

in question, namely the scattered radiation. For a sphere embedded in a homoge-

neous and isotropic medium with relative dielectric permittivity εenv, Eq. (1.79)

has to be accordingly modi�ed:

p = 4πε0εenva
3 εr − εenv
εr + 2εenv

Eb = ε0εenvαpEb. (1.80)

All these formulas can be generalized considering an ellipsoid with semiaxes ax,

ay and az. The polarizabilities αp,i along the principal axes (i = x, y, z) turn out

to be [48,56]

αp,i = 4πaxayaz
εr − εenv

3εenv + 3Li (εr − εenv)
(1.81)

and the geometrical factors Li (depolarization factors) are given by

Li =
axayaz

2

∫ ∞
0

dr

(r + a2
i )
√

(r + a2
x)
(
r + a2

y

)
(r + a2

z)
. (1.82)

To be noticed that the factors Li are the same as the demagnetizing factors Ni
calculated according to Ref. [20]. The behaviour of αp,i re�ects both the optical

material properties and the nanostructure geometry. Even if the material does

not show a resonant behaviour at the considered frequencies, the size and the

shape of the nanostructure, leading to Eq. (1.81), can determine the appearance

of a resonance.
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(a) Scattering (b) Absorption

Figure 1.7: Cross sections for a gold ellipsoid of semiaxes ax = 20 nm, ay = 15 nm
and az = 10 nm in vacuum. The dashed lines in (b) indicate the peak positions. The
gold refractive index has been taken from Ref. [58].

From the viewpoint of optics (and for the sake of this thesis), it is much more

interesting to highlight the fact that a resonantly enhanced polarizability leads to

an enhancement in the e�ciency with which a metal nanostructure scatters and

absorbs light. For quantifying this e�ect, the scattering (σsca) and absorption

(σabs) cross sections can be calculated [48,57]:

σsca,i =
k4
env

6π
|αp,i|2 , (1.83a)

σabs,i = kenv= (αp,i) , (1.83b)

where kenv = 2π
√
εenv/λ. The sum of scattering and absorption cross sections

de�nes the extinction cross section σext:

σext,i = σsca,i + σabs,i. (1.84)

A cross section represents an �e�ective area� crossing the incident electromagnetic

wave. For a wave with intensity Ib and linearly polarized along the i-axis (i =

x, y, z), σsca,iIb returns the power scattered by the nanostructure, whereas σabs,iIb
corresponds to the absorbed power (eventually turning into heat). Figures 1.7a

and 1.7b show the scattering and absorption cross sections for a gold ellipsoid

of semiaxes ax = 20 nm, ay = 15 nm and az = 10 nm in vacuum. The peaks

denote the presence of a resonance (the LSP resonance) and the relative length

of the axes (i.e. the aspect ratio) determines both the peak position and the peak
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relative intensity: the longer the axis, the higher the peak and its position shifts

towards longer wavelengths.

All these results are valid as long as ai � λ. When the size of the nanostruc-

ture starts becoming comparable with the wavelength (few hundreds of nanome-

ters for visible radiation), the incident electric �eld cannot be considered uniform

through the whole nanostructure volume (retardation e�ects [5, 59]). Moreover,

the nanostructures are usually fabricated on top of a suitable substrate and so

they are not embedded in a uniform medium. All the general considerations de-

veloped through this section remain valid, but several simulation techniques have

been developed through the years in order to take into account all the experi-

mental conditions and to obtain a numerical solution when the analytical one is

not available [59]. After all, the whole problem �reduces� to �nd a solution to

the Maxwell equations (1.1), having (i) properly described the behaviour of the

materials under the in�uence of an electromagnetic �eld (see Eq. (1.4)) and (ii)

properly de�ned the boundary conditions.
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Chapter 2

Magneto-optical E�ects

Light interacts with matter in many di�erent ways. The phenomena that

occur as a result of this interaction can be a�ected by material properties and

external e�ects, like an applied magnetic �eld or the magnetization of the body

itself, giving rise in this case to magneto-optic e�ects. In 1845, Michael Faraday

was able to verify that the polarization plane of the light transmitted in a dielec-

tric medium in the direction of an external applied magnetic �eld was rotated

by an angle that depends on the strength of the magnetic �eld [60]. Almost 30

years later, in 1877, John Kerr showed that a change in the state of polarization

occurred on re�ection from a polished, soft iron pole-piece of a strong electromag-

net [61]. Although the physical origin is the same, they are called magneto-optical

Faraday e�ect and magneto-optical Kerr e�ect (MOKE), respectively, and they

became rapidly a mean to probe the magnetic properties of matter. Indeed,

theory and experiments have shown that, in ferromagnetic materials, magneto-

optical e�ects are proportional to the net magnetization of the sample and not

to the applied magnetic �eld as in the case of non-ferromagnetic specimens.

2.1 Classical approach to magneto-optical e�ects

in dielectrics

In order to better understand the physics behind these phenomena, it is useful

to start analyzing the explanation of the Faraday and Kerr e�ects in dielectric,

non-magnetic media in terms of the Drude�Lorentz model for dispersion, in which

an electron is considered harmonically bound to the nucleus and subjected to a

damping force [62]. The goal is to obtain the susceptibility tensor, from which one
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can determine how the electromagnetic �eld is modi�ed during the interaction

with such a material by the presence of an externally applied magnetic �eld.

2.1.1 The susceptibility tensor

The equation of motion for an electron of (e�ective) mass m and charge e

subjected to an oscillating electric �eld, in the form of E = E0e−iωt, and a static

magnetic �eld H is

mr̈ + bṙ + kr = − eE − eµ0ṙ×H, (2.1)

where r is the displacement of the electron from its equilibrium position, k is

the elastic-force constant, b is the damping coe�cient and µ0 is the vacuum

permeability, as we are working with non-magnetic media. E has been chosen in

this form in order to be compatible with the electric �eld of a propagating plane

wave. The solution we are looking for is the steady state condition for which

the displacement r has the same time dependence as the electric �eld, hence Eq.

(2.1) becomes

− mω2r − iωbr + kr = − eE0 + iωeµ0r×H. (2.2)

De�ning the z-axis as the direction of the applied magnetic �eld, Eq. (2.2) leads

to three equations, one for each Cartesian coordinate:

M ·

xy
z

 = − e

m

E0x

E0y

E0z

 , (2.3)

where

M =

ω
2
0 − ω2 − iΓω −iωωC 0

iωωC ω2
0 − ω2 − iΓω 0

0 0 ω2
0 − ω2 − iΓω

 . (2.4)

In writing the tensor M, we have used the following notations:

ω0 =

√
k

m
(resonance frequency),

Γ =
b

m
(damping parameter),

ωC =
eµ0H

m
(cyclotron frequency).
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If n is the average number of electrons per unit volume, the electric polarization

P of the medium is given by P = −ner and can be obtained from Eq. (2.3):

P =
ne2

m
M−1E0. (2.5)

The (dielectric) susceptibility tensor χ is the quantity relating the electric polar-

ization to the applied electric �eld through the relation

P = ε0χE0, (2.6)

where ε0 is the vacuum permittivity. Combining Eqs. (2.5) and (2.6), χ turns

out to be given by

χ =
ne2

ε0m
M−1 =

 χxx iχxy 0

−iχxy χxx 0

0 0 χzz

 , (2.7)

where

χxx = ω2
p

[
ω2

0 − ω2 − iΓω
(ω2

0 − ω2 − iΓω)2 − ω2ω2
C

]
, (2.8a)

χxy = ω2
p

[
ωωC

(ω2
0 − ω2 − iΓω)2 − ω2ω2

C

]
, (2.8b)

χzz = ω2
p

[
1

ω2
0 − ω2 − iΓω

]
. (2.8c)

The parameter ωp, expressed by Eq. (1.77b), represents the plasma frequency, a

quantity exclusively de�ned for a metal, but useful here since the model is quite

general. The e�ect of the applied �eld is to introduce non-diagonal antisymmetric

terms in the susceptibility tensor. In case of zero applied �eld, the susceptibility

is reduced to a diagonal tensor with all the elements equal to each other, a typical

form for isotropic media.

2.1.2 The indices of refraction

The propagation of the electromagnetic wave in a non-conductive, non-magnetic

and electrically neutral dielectric is determined by solving the relevant Maxwell
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equations [62]:

∇×E = − µ0
∂H

∂t
, (2.9)

∇×H = ε0
∂E

∂t
+

∂P

∂t
. (2.10)

The wave equation for E is obtained by taking the curl of Eq. (2.9) and the time

derivative of Eq. (2.10) and combining them to eliminate H:

∇×∇×E = − 1

c2
∂2E

∂t2
− χ

c2
∂2E

∂t2
, (2.11)

where we have used Eq. (2.6) to de�ne P and the fact that the speed of light in

vacuum c is related to µ0 and ε0 by means of 1/c2 = µ0ε0. In order to describe

the Faraday e�ect, we are interested in the propagation of a monochromatic

electromagnetic wave in the direction of the applied magnetic �eld, namely the

z-axis considering the susceptibility tensor expressed by Eq. (2.7). Therefore, we

can choose a solution in the form E = E0ei(kz−ωt), where the wave vector k is in

the z-axis direction. Equation (2.11) gives[
k2 − ω2

c2
(1 + χxx)

]
E0x −

(
ω2

c2
iχxy

)
E0y = 0, (2.12a)(

ω2

c2
iχxy

)
E0x +

[
k2 − ω2

c2
(1 + χxx)

]
E0y = 0, (2.12b)

ω2

c2
(1 + χzz)E0z = 0. (2.12c)

The last equation merely gives E0z = 0, while the determinant of the coe�-

cients of the �rst two equations must vanish for a non-trivial solution, giving the

condition [
k2 − ω2

c2
(1 + χxx)

]2

−
(
ω2

c2
χxy

)2

= 0. (2.13)

Solving for k, we �nd

k =
ω

c

√
1 + χxx ± χxy, (2.14)

that in combination with Eqs. (2.12a) and (2.12b) yields

E0y = ∓iE0x. (2.15)

The above result means that the two values of k given by Eq. (2.14) correspond

to right (R) and left (L) circularly polarized light, respectively. The indices of



2.1 Classical approach to magneto-optical e�ects in dielectrics 37

refraction are, accordingly,

nR =
√

1 + χxx + χxy, (2.16a)

nL =
√

1 + χxx − χxy (2.16b)

and allow describing how the polarization of the electromagnetic wave is a�ected

by the propagation in the medium. Through Eqs. (2.8a) and (2.8b), the indices

of refraction are given by

√
1 + χxx ± χxy ≈

√√√√1 +
ω2
p

ω2
0 −

(
ω ± ωC

2

)2 − iΓω , (2.17)

expressions valid under the assumption |χxy| � 1. The e�ect of the applied

magnetic �eld is to shift the dispersion curves for circularly polarized light by an

amount equal to ωC/2 (with respect to the unperturbed case) and so proportional

to H.

2.1.3 The Faraday and Kerr e�ects

Equation (2.12c) implies that the electric �eld vector E0 lies in the plane

normal to the direction of the applied �eld, namely the xy-plane in this case,

so we can consider as reference a monochromatic plane wave with wavelength

λ0 which at z = 0 is lineraly polarized in the x-direction. During propagation

in the presence of on applied magnetic �eld, the initial linear polarization state

is progressively distorted to an elliptical polarization state, characterized by a

rotation ϑ and an ellipticity ε [63]. The de�nition of these two parameters is

given in Sec. B.2.

A linearly polarized wave in the x-direction can be expressed through Jones

vectors and can be resolved into left and right circularly polarized waves (see Eq.

(B.10)):

E0

(
1

0

)
=

1

2
E0

(
1

i

)
+

1

2
E0

(
1

−i

)
. (2.18)

This means that we can analyze the propagation considering the superposition

of the propagation of circularly polarized waves, which can be described by using

the refractive indices given by Eqs. (2.16b) and (2.16a):

1

2
E0

(
1

i

)
ei

2πnL
λ0

z +
1

2
E0

(
1

−i

)
ei

2πnR
λ0

z = E0eiψ

(
cos (δ)

sin (δ)

)
, (2.19)
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where

ψ =
πz

λ0
(nR + nL) , (2.20a)

δ =
πz

λ0
(nR − nL) . (2.20b)

After propagating a distance l through the medium, the wave will be elliptically

polarized with the major axis of the ellipse rotated through the angle (see Eq.

(B.17a))

ϑF = < (δ) =
πl

λ0
< (nR − nL) (2.21)

and an ellipticity (see Eq. (B.17b))

tan (εF ) = tanh [= (δ)] = tanh

[
πl

λ0
= (nR − nL)

]
, (2.22)

where the subscript F points out that we are considering the Faraday e�ect. From

these equations, it can be seen that ϑF and εF come from a di�erence between

the indices of refraction for left and right circularly polarized light, which are the

propagation modes for a light wave traveling in the direction of the applied mag-

netic �eld through a dielectric medium characterized by the susceptibility tensor

(2.7). Equation (2.22) also leads to the fact that the light becomes elliptically

polarized only if the indices of refraction are complex quantities, namely if the

medium is absorbing. Expanding nL and nR for |χxy| � 1 and substituting them

back in Eq. (2.21), ϑF becomes

ϑF ≈
πl

λ0
<
(

χxy√
1 + χxx

)
= V lH, (2.23)

where the coe�cient V is the Verdet constant: it is a characteristic of the material,

it depends on the wavelength of the light and it may also depend on temperature

[63]. So, the amount of rotation is proportional to the applied magnetic �eld

intensity and to the distance travelled in the medium.

This analysis can also lead to the evaluation of rotation and ellipticity in

the case of the Kerr e�ect while considering normal incidence. The e�ect arises

from the re�ection a light wave undergoes when it impinges on a medium with

susceptibility given by Eq. (2.7). Such a phenomenon can be described through

the Fresnel coe�cient r for normal re�ection [62]:

r = − nr − 1

nr + 1
, (2.24)
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where nr is the ratio between the index of refraction of the medium the wave

impinges on and the index of refraction of the medium the wave initially prop-

agates into. In this case, we take as reference a monochromatic plane wave E0

with wavelength λ0 which is lineraly polarized in the x-direction and propagates

in vacuum (with nV acuum = 1). The re�ection is evaluated in terms of the

superposition (2.18), so using Eqs. (2.16b) and (2.16a) to calculate r we obtain

1

2
E0

(
1

i

)(
−nL − 1

nL + 1

)
+

1

2
E0

(
1

−i

)(
−nR − 1

nR + 1

)
∝

(
1

i
(
nR−nL
1−nRnL

)) , (2.25)

where we have disregarded a factor common to both the components. We can

rewrite Eq. (2.25) as (
1

i
(
nR−nL
1−nRnL

)) =

(
1

ϑK + iεK

)
, (2.26)

where

ϑK = −=
(
nR − nL
1− nRnL

)
≈ =

(
χxy

χxx
√

1 + χxx

)
, (2.27a)

εK = <
(
nR − nL
1− nRnL

)
≈ −<

(
χxy

χxx
√

1 + χxx

)
(2.27b)

and the subscript K points out that we are considering the Kerr e�ect. The

expansion used in obtaining Eqs. (2.27) implies that nR − nL is of the order of

χxy if |χxy| � 1. Under this assumption we can identify ϑK as the Kerr rotation

and εK as the Kerr ellipticity for the case of normal incidence. Again we see

that these e�ects are proportional to the applied magnetic �eld and that the

plane of polarization of light is rotated only if the interaction is occurring with

an absorbing medium.

2.1.4 The full susceptibility tensor

The susceptibility tensor in Eq. (2.7) has been obtained under the assumption

H = ẑH, but considering H = x̂Hx + ŷHy + ẑHz the full susceptibility tensor in

Cartesian coordinates can be derived [64]:

χ =
ω2
p

L (L2 − ω2ω2
C)

X, (2.28)
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where

L = ω2
0 − ω2 − iΓω,

X =

 L2 − ω2ω2
Cx iLωωCz − ω2ωCxωCy −iLωωCy − ω2ωCxωCz

−iLωωCz − ω2ωCxωCy L2 − ω2ω2
Cy iLωωCx − ω2ωCyωCz

iLωωCy − ω2ωCxωCz −iLωωCx − ω2ωCyωCz L2 − ω2ω2
Cz

 ,
ωCi =

eµ0Hi

m
(i = x, y, z).

By expanding the components of χ, we can get the relevant terms usually taken

into account while considering magneto-optical e�ects:

χ ≈ χ(0) + χ(1) + χ(2), (2.29a)

χ(0) =
ω2
p

ω2
0 − ω2 − iΓω

1 0 0

0 1 0

0 0 1

 , (2.29b)

χ(1) =
ω2
pω

(ω2
0 − ω2 − iΓω)

2

 0 iωCz −iωCy
−iωCz 0 iωCx

iωCy −iωCx 0

 , (2.29c)

χ(2) =
ω2
pω

2

(ω2
0 − ω2 − iΓω)

3

ω
2
C − ω2

Cx −ωCxωCy −ωCxωCz
−ωCxωCy ω2

C − ω2
Cy −ωCyωCz

−ωCxωCz −ωCyωCz ω2
C − ω2

Cz

 . (2.29d)

The term χ(0) represents the susceptibility of an isotropic dielectric which can be

obtained from Eq. (2.2) in case of no applied magnetic �eld. The term χ(1) is the

�rst order correction in ωCi (∀i) to χ(0). It introduces out-of-diagonal terms in

Eq. (2.29a) which depend on the applied magnetic �eld intensity and direction.

The term χ(2) is the second order correction to χ(0). It causes the appearance of

terms depending on the applied magnetic �eld also in χ's main diagonal. To be

noted that χ(1) is an antisymmetric tensor, whereas χ(2) is a symmetric tensor,

as it should be according to the symmetry properties of the magnetic �eld [64,65].

Moreover, until now the susceptibility tensor has only been derived for an

ideal material containing electrons characterized by the same resonance frequency

and damping parameter in the equation of motion (2.1). In general, an optical

medium will have many characteristic resonance frequencies and, given the lin-
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earity of the governing equations, the exhaustive form of Eq. (2.6) is

P = ε0

∑
j

χj

E, (2.30)

where the sum runs over all the susceptibility tensors χj of the involved os-

cillators. So, considering only the optical properties given by Eq. (2.29b) (for

simplicity), we have for each diagonal element [51]:

χ
(0)
ii = ω2

p

∑
j

fj
ω2

0j − ω2 − iΓjω
. (2.31)

This equation takes into account all the transitions in the medium and a set of

phenomenological oscillator strengths fj have been introduced to account for the

quantum mechanical transition probabilities (
∑
j fj = 1) in our classical model.

2.2 Magneto-optical e�ects in ferromagnets

The description of the magneto-optical e�ects in ferromagnets has been fo-

cused on the explanation of the unusual large e�ect showed by ferromagnetic

materials, for which magneto-optical e�ects are up to �ve orders of magnitude

more intense than in non-ferromagnetic bodies under the same external applied

magnetic �eld. These e�ects are de�nitely connected to the ferromagnetic prop-

erties of the specimen, since for temperature higher than the Curie temperature

of the materials they disappear along with the ferromagnetic behaviour.

The classical approach of Sec. 2.1.1 can be extended in order to evaluate

the electronic equations of motion in metallic media, for which the conduction

electrons play a fundamental role. In this case, the electrons are grouped into

two sets, bound electrons and conduction electrons. For ferromagnetic metals,

the e�ect of the magnetization M can be included thanks to the presence of

an e�ective magnetic �eld ηM proportional to the magnetization [66]. This

�eld, called Weiss �eld, was postulated by Weiss [15] in order to account for the

existence of ferromagnetic order and it is of the correct order of magnitude to

justify the observed e�ects [67]. The theory of itinerant electron magnetism (valid

for iron, cobalt, nickel and Permalloy as far as this thesis is concerned; see Sec.

1.2.3) allows us to include a Lorentz-force term only for the conduction electrons

whose spins are unbalanced. In view of these considerations, the equations of
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motion to be solved are, according to the notations used in Eq. (2.1),

mr̈1 + b1ṙ1 + k1r1 = − eE, (2.32a)

mr̈2 + b2ṙ2 = − eE, (2.32b)

mr̈3 + b3ṙ3 = − eE − eµ0ṙ3 × (ηM) , (2.32c)

for the bound electrons, the spin-balanced conduction electrons and the spin-

unbalanced conduction electrons, respectively. The polarization of the medium

can be obtained by the averaged e�ect given by the three groups of electrons, in

the form of P = − (1− α− β)ner1−αner2−βner3, where α(β) are the fraction

of spin-(un)balanced conduction electrons out of a total electron density n. This

leads to an antisymmetric susceptibility tensor, in which the o�-diagonal terms

are proportional to the various components of the magnetizationM, as in the case

of the tensor (2.7) obtained for a dielectric in an external applied magnetic �eld.

All the electrons contribute to the susceptibility tensor, but in the presence of

magnetism only the contribution from the spin-unbalanced conduction electrons

is a�ected by the presence of the e�ective magnetic �eld ηM.

After the advent of quantum mechanics, Heisenberg was able to ascribe the

Weiss �eld to the exchange interaction among electrons, providing an established

description for ferromagnetic phenomena in terms of an e�ective �eld capable

of aligning the individual spins. However, this e�ective �eld cannot be used to

explain magneto-optical e�ects, since it is not coupled to the electron motion

which determines the dielectric properties of a material and, consequently, the

optical behaviour. This problem was solved by Hulme [68] introducing the fact

that the spin-orbit interaction (see Sec. 1.2.1) couples the motion of an electron

to its spin, providing the connection between magnetic and optical properties of

a ferromagnetic material. Spin-orbit coupling results from the interaction of the

electron spin s with the magnetic �eld the electron �sees� as it moves through

the electric �eld −∇V (r) inside a medium with momentum p. This coupling is

expressed by a term proportional to S · (∇V (r)× p), which, to a certain extent,

can be thought of as an e�ective magnetic �eld of vector potential proportional

to S×∇V (r) acting on the motion of the electron [64,69,70]. For non-magnetic

materials, this e�ect is not strong, although the spin-orbit interaction is present,

because the equal number of spin-up and spin-down electrons cancels the e�ect.

For ferromagnetic materials, the e�ect manifest itself because of the unbalanced

population of electron spins. Kittel was able to show that in case of quenching

of the orbital angular momentum, which leads to a weak spin-orbit coupling, the

magneto-optic e�ects arise because of the change in the electronic wave function
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due to spin-orbit interaction and induced by an externally applied magnetic �eld.

2.2.1 Argyres' theory

A full derivation of these e�ects in ferromagnets was given by Argyres [69]

using the band theory of metals and the time-dependent perturbation theory in

order to evaluate the e�ect of the spin-orbit interaction on the optical properties

of ferromagnets, within the framework provided by the semiclassical theory of

radiation. The assumptions taken by Argyres make his theory applicable only to

visible and ultraviolet frequencies, which is not a limit, because this range of the

electromagnetic spectrum is characterized by energies that indeed allow probing

magneto-optical e�ects in ferromagnetic materials. To begin with, a one-electron

Hamiltonian H can be used for describing the ground and the excited states of

the system [69]:

H = H0 + H′ + H′′, (2.33)

where

H0 =
1

2m
p2 + V (r), (2.34a)

H′ =
1

2m2c2
S · (∇V (r)× p) , (2.34b)

H′′ =
e

m
A(r, t) · p. (2.34c)

In these expressions, m is the mass of the electron and −e is its charge, p =

−i~∇ is the momentum operator and S = ~σ/2 is the electron spin operator.

V (r) = −eφ(r) is the potential energy of an electron in the crystal in the absence

of radiation and it represents the averaged in�uence of the nuclei and all the other

electrons on the electron under consideration. A(r, t) is the vector potential of the

electromagnetic �eld inside the material. For a monochromatic wave of angular

frequency ω, such a potential is

A(r, t) = a(r) exp (−iωt) + a∗(r) exp (iωt) . (2.35)

Equation (2.34b) represents the spin-orbit interaction, whereas Eq. (2.34c) de-

scribes the interaction of an electron with the electromagnetic �eld in the mate-

rial (only the largest term being kept). So, Eq. (2.33) is a simpli�ed form of Eq.

(1.16a).

Since the Hamiltonian operator H in Eq. (2.33) has to be used for solving

the Schrödinger equation, H′′ can be treated as a perturbation of H0 + H′ by
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making use of the time-dependent perturbation theory [71]. The equation to be

considered is

i~
d

dt
|Ψ(t)〉 = (H0 + H′ + H′′) |Ψ(t)〉 . (2.36)

Let us assume we know a complete set of unperturbed eigenstates satisfying

(H0 + H′) |Φn〉 = E(0)
n |Φn〉 , (2.37)

where the kets |Φn〉 are taken to be time independent. So, the solution of Eq.

(2.36) is given by

|Ψ(t)〉 =
∑
n

cn(t) exp

(
− iE

(0)
n t

~

)
|Φn〉 , (2.38)

where we have expanded |Ψ(t)〉 in terms of the complete set of eigenstate |Φn〉
and

cn(0) = δnk, (2.39a)

cn(t) =
1

i~

∫ t

0

exp (iωnkτ) 〈Φn|H′′(τ) |Φk〉 dτ, (2.39b)

ωnk =
E

(0)
n − E

(0)
k

~
. (2.39c)

|Φk〉 represents the initial unperturbed state, whereas |cn(t)|2 (for n 6= k) is the

probability that at time t a measurement of the state |Ψ(t)〉 yields the quantum
numbers of the state |Φn〉. The matrix element 〈Φn|H′′(t) |Φk〉 takes into account
the transition between the states |Φn〉 and |Φk〉 induced by H′′(t) and its sym-

metry properties give rise to transition rules. The fact that the these transitions

occur between states whose energy is in�uenced by the spin-orbit interaction and

the presence of a spin-unbalanced electron population determine the appearance

of magneto-optical e�ects. Indeed, for calculating the total current density in-

duced in the system, the current density that can be obtained in the one-electron

approximation has to be summed over all the occupied states. Argyres divided

the sums over states into (i) an integral over all states occupied by electrons with

both spin directions (i.e. spin-balanced electrons) and (ii) an integral over states

occupied by electrons with only one spin direction (i.e. spin-unbalanced electrons,

which are responsible for the magnetic properties of the material), providing the

foundation for the division of electrons into groups carried out in order to obtain

Eqs. (2.32). In other words, the appearance of magneto-optical e�ects requires
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Figure 2.1: Coordinate system used in the description of the incidence of light which
travels through a non-magnetic medium (with complex index of refraction n1) and
impinges on a ferromagnetic medium (with complex index of refraction n2).

both the spin-orbit interaction and the exchange splitting e�ect.

From the conductivity and polarizability tensors relating the total current

density to the elecromagnetic �eld represented by Eq. (2.35), a dielectric tensor

ε for a ferromagnetic medium with magnetization M can be obtained, which for

a cubic crystal has the following form [72]:

ε = ε(0) + ε(1) = εxx

 1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQmx 1

 , (2.40)

where εxx is a factor independent from the magnetization and Q ∈ C is the

(Voigt) magneto-optical constant, which is proportional both to the magnitude

M of the magnetization and to the spin-orbit coupling strength, and it is frequency

dependent [69]. The mx, my and mz components of m are the direction cosines

of M in the coordinate system showed in Fig. 2.1. Actually, Agryres' theory has

been developed considering a saturated ferromagnetic domain and the integral

over the spin-unbalanced electrons returns a term proportional to the magnitude

MS of the saturation magnetization. So, Q results to be a material property.

Experimentally, this fact has been exploited in order to get the critical exponent

β through magneto-optical measurements of the temperature dependence of the

magnetization, obtaining values in agreement with the theory of phase transitions
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[73].

The tensor given in Eq. (2.40) for a cubic crystal can also be justi�ed from

considerations regarding the time reversal symmetry: the magnetic �eld changes

sign under the time reversal operation [64, 65]. It follows that the Onsager's

relation requires εij (M) = εji (−M) and expanding the dielectric tensor retaining

up to linear terms in M (and so in Q), it can be seen that the antisymmetric

part of ε is generated by the magnetization. Moreover, symmetries allows quickly

determining also the form of the quadratic (second order in M) magneto-optical

tensor ε(2):

ε(2) =

 B1m2
x B2mxmy B2mxmz

B2mxmy B1m2
y B2mymz

B2mxmz B2mymz B1m2
z

 − B∗1I, (2.41)

where B1 and B2 describe the Voigt e�ect , whereas B∗1 does not depend on the

magnetization direction and can be absorbed in the zero-order magneto-optical

tensor ε(0), so retrieving Eq. (2.41) in the form given by Ref. [72]. Equations

(2.40) and (2.41) have the same structure owned by Eq. (2.29a), which has been

obtained considering a classical approach to magneto-optical e�ects in dielectrics.

2.3 Macroscopic formalism for the MOKE

The MOKE is a powerful mean to probe the magnetization of ferromagnetic

media which are opaque to visible light. Since the magnetic information depth

of the MOKE is below 50 nm in metals, it can be employed to analyze the

super�cial region of bulk materials or to investigate magnetic thin �lms and

nanostructures. Kerr rotation and ellipticity can be obtained for an arbitrary

angle of light incidence, generalizing the approach described in Secs. 2.1.2 and

2.1.3, where only normal incidence is considered. Figure 2.1 shows the geometry

considered in order to solve Maxwell equations in the case of re�ection from a

boundary between a non-magnetic medium and a medium characterized by the

dielectric tensor (2.40). The polarization of the electromagnetic wave is described

in terms of the component of the electric �eld vector along the p-axis, that lies in

the scattering plane, and along the s-axis, that is normal to the scattering plane.

So, the electric �eld vector Ei of the incident wave is connected to the electric

�eld vector Er of the re�ected wave through the Fresnel re�ection matrix R:(
Erp

Ers

)
= R

(
Eip

Eis

)
=

[
rpp rps

rsp rss

](
Eip

Eis

)
, (2.42)
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where the Fresnel coe�cients are given by [74�76]

rpp =
n2 cosϑ1 − n1 cosϑ2

n2 cosϑ1 + n1 cosϑ2
− 2in1n2 cosϑ1 sinϑ2mxQ

(n2 cosϑ1 + n1 cosϑ2)
2 , (2.43a)

rps = − in1n2 cosϑ1 (my sinϑ2 −mz cosϑ2)Q

(n2 cosϑ1 + n1 cosϑ2) (n1 cosϑ1 + n2 cosϑ2) cosϑ2
, (2.43b)

rsp =
in1n2 cosϑ1 (my sinϑ2 + mz cosϑ2)Q

(n2 cosϑ1 + n1 cosϑ2) (n1 cosϑ1 + n2 cosϑ2) cosϑ2
, (2.43c)

rss =
n1 cosϑ1 − n2 cosϑ2

n1 cosϑ1 + n2 cosϑ2
. (2.43d)

In the above equations, n1 is the complex index of refraction of the non-magnetic

medium, n2 is the complex index of refraction of the ferromagnetic medium, ϑ1

is the complex angles of incidence and ϑ2 is the complex angle of refraction, as

given by Snell's law. Equation (2.42) has been derived by means of the dielectric

tensor (2.40) and only terms up to �rst order in Q has been considered [75]. The

Kerr rotation ϑK and ellipticity εK are de�ned through the Fresnel coe�cients

as

|ϑKp| = <
(
rsp
rpp

)
, (2.44a)

|ϑKs| = <
(
rps
rss

)
, (2.44b)

|εKp| = =
(
rsp
rpp

)
, (2.44c)

|εKs| = =
(
rps
rss

)
. (2.44d)

The subscripts p and s refer to the fact that this de�nition are strictly e�ective

only for linearly p-polarized and linearly s-polarized incident light, respectively.

Since a multiplicity of sign conventions for rotation and ellipticity appears in

literature, the above equations express only the modulus of the rotation and

ellipticity, while the sign must be chosen in agreement with the adopted conven-

tion [77]. The de�nitions in Eqs. (2.44) are strictly valid only if ϑK , εK � 1, as

derived in Sec. B.2. However, this is indeed the case for typical materials, as

shown in the next paragraphs.

As we have already seen, the e�ect of the magnetization is contained in Q:
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if Q = 0, only the Fresnel coe�cients rpp and rss are di�erent from zero and

they are reduced to the usual form valid for the re�ection between dielectric

media. In this case, the Kerr rotation and ellipticity are zero, for both p- and

s-polarization of the incoming light. When Q 6= 0, di�erent kind of MOKEs can

be distinguished, depending on the relative direction of the magnetization with

respect to the scattering plane:

• polar MOKE, characterized by mz = 1 and mx = my = 0, i.e. the

magnetization is parallel to the surface normal;

• longitudinal MOKE, characterized by my = 1 and mx = mz = 0, i.e.

the magnetization is parallel to the surface of the interface and lies on the

scattering plane;

• transversal (or equatorial) MOKE, characterized by mx = 1 and my =

mz = 0, i.e. the magnetization is parallel to the surface of the interface and

normal to the scattering plane.

According to the direction of the magnetization to be probed, the relevant Fresnel

coe�cients are di�erent, but in all cases the e�ects are proportional to the inten-

sity of the magnetization [76]. To be noted the fact that the trasversal MOKE

does not produce Kerr rotation and ellipticity for linearly s- or p-polarized im-

pinging light, but it only induces a change in the intensity of linearly p-polarized

light, since rss does not depend on Q and from my = mz = 0 follows that

rps = rsp = 0.

In order to point out the overall features of Eqs. (2.42) and (2.44) and the

strength of the e�ects, Figs. 2.2a, 2.2b, 2.3a and 2.3b show the dependence from

the incidence angle ϑ1 of Kerr rotation and ellipticity in both polar and longitu-

dinal con�gurations for red visible light of 635 nm wavelength in bulk Permalloy

(n2 = 1.93 + 3.11i, Q = 0.0094− 0.0081i) [78]. Since |Q| � 1, the assumption of

retaining terms up to �rst order in Q is valid. Polar ϑK and εK are even functions

of the incidence angle, for both p and s polarization of the incident light, while

longitudinal ϑK and εK are odd functions of the incidence angle and so they are

equal to zero for ϑ1 = 0, for both p and s polarization. These features are very

important in de�ning the geometry of the apparatus that can be used to measure

MOKEs. Indeed, through the dependence of ϑK and εK from ϑ1, the angle of

incidence of light can be optimized in order to maximize the measured e�ect: a

good general choice for the polar MOKE con�guration is to work with an angle

of incidence close to ϑ1 = 0, while this is a condition to be avoided for the longi-

tudinal MOKE con�guration, being the e�ect null in this case. Moreover, Figs.
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2.4a and 2.4b show the fact that (for bulk Permalloy at ϑ1 = 35◦) the Kerr rota-

tion and ellipticity in the longitudinal con�guration are function of the incidence

wavelength λ, since both n2 and Q are wavelength-dependent [78]. Generally, it

is true that (i) what e�ect should be measured (ϑK or εK), (ii) what polarization

of incident light should be employed (p or s polarization) and (iii) what incidence

wavelength has to be chosen are factors which are material-dependent and which

must be carefully taken into account during the design of the measurement setup.
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(a) p polarization (b) s polarization

Figure 2.2: Angular dependence in bulk Py of the polar Kerr rotation ϑK and elliptic-
ity εK for both p and s linearly polarized light of 635 nm wavelength (n2 = 1.93+3.11i,
Q = 0.0094− 0.0081i).

(a) p polarization (b) s polarization

Figure 2.3: Angular dependence in bulk Py of the longitudinal Kerr rotation ϑK and
ellipticity εK for both p and s linearly polarized light of 635 nm wavelength (n2 =
1.93 + 3.11i, Q = 0.0094− 0.0081i).

(a) p polarization (b) s polarization

Figure 2.4: Wavelength dependence in bulk Py of the longitudinal Kerr rotation ϑK

and ellipticity εK for both p and s linearly polarized light (ϑ1 = 35◦). The black vertical
lines correspond to λ = 635 nm.



Chapter 3

Fabrication and

Characterization

Nanotechnology, although envisioned almost sixty years ago, is at the fore-

front of the current technological and scienti�c innovation. In his famous talk

There's Plenty of Room at the Bottom (1959) [4], Richard P. Feynman discussed

�the problem of manipulating and controlling things on a small scale�. The word

�nanotechnology� was coined much later, but Feynman's words nicely introduce

two fundamental aspects of this �eld: manipulation and control. This chapter

deals with both of them, according to what has been done for achieving the results

summarized in this thesis. In particular, through advanced nanofabrication tech-

niques, we were able to fabricate arrays of magnetic nanostructures, which have

been properly characterized in order to verify the achievement of the designed

properties.

3.1 Nanofabrication: electron beam lithography

The study of nanostructures paved the way for the emergency of many inter-

esting behaviours not occurring while considering bulk materials. These emergent

properties are due to con�nement, i.e. the reduction of at least one dimension

of the considered structure down to nanometer size. Actually, the de�nition of

con�nement can be made more precise if stated in terms of the mesoscopic con-

dition [2]

L ≈ ρC , (3.1)
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where ρC is the characteristic length scale of the involved phenomenon and L

is the nanostructure con�nement length. So, it is the interplay between ρC and

L which determines the nanostructure properties. The phenomena we are in-

terested in include both ferromagnetism in metallic nanostructures and their in-

teraction with visible/NIR light, determining a con�nement length in the range

10−1000 nm. For this reason, fabrication techniques with a resolution of ≈ 10 nm

are required in order to produce ensembles of nanostructures showing the desired

properties.

Electron beam lithography (EBL) is the fabrication technique we selected for

this purpose, because of some key features matching our needs:

• nominal resolution of ≈ 20 nm, which is by far enough for the properties

we want to investigate (as shown in the following chapters);

• very high �exibility in the design of extended samples (maskless

lithography), which is of utmost importance in the fabrication of nanos-

tructures for research purposes;

• in-house availability of EBL systems (RAITH150 Two and eLINE by

Raith), which allowed us to produce sample batches in a reasonable amount

of time.

The EBL technique is conceptually derived from the scanning electron microscopy

(SEM) technique, which has been complemented with the hardware and elec-

tronics needed for generating arbitrary patterns by sweeping the electron beam

(e-beam) in a controlled way.

Appendix A contains a schematic work�ow of the nanofabrication process

(see Fig. A.1) and the recipes we used for fabricating the samples related to this

thesis. The following sections are devoted to summarize some relevant concepts

in EBL in order to properly understand the most important work�ow steps.

3.1.1 The role of electrons

EBL systems exploit the electron-matter interaction in order to deposit en-

ergy in the desired pattern in a sample covered by an e-beam resist �lm. As

the electrons produced in the EBL column enter the sample, they interact as

negatively charged particles with the electromagnetic �elds of the sample atoms.

The positive charge of protons is highly concentrated in the nucleus, while the

negative charge of the atomic electrons is much more dispersed in a shell struc-

ture. The interaction between beam electrons and sample atoms can de�ect the

beam electrons along new trajectories, causing them to spread out laterally from
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the incident beam footprint. This kind of scattering, which is elastic (no kinetic

energy loss), can result in beam electrons leaving the sample after numerous

events, a process called backscattering. The cross section for elastic scattering

increases along with the atomic number Z, approximately as Z2, since heavier

atoms possess a much stronger positive charge in their nucleus, and decreases as

the electron energy E increases, approximately as 1/E2 [79]. Backscattering is

quanti�ed by the backscatter coe�cient η, which is de�ned as

η =
nBSe
nbeam

, (3.2)

where nBSe is the number of backscattered electrons and nbeam is the number of

beam electrons incident on the sample.

Simultaneously with elastic scattering, the beam electrons lose energy and

transfer this energy in various ways to the sample atoms (inelastic scattering),

but the transfer takes place gradually, so that the beam electrons propagate

through many atom layers into the sample before losing all their energy and

getting trapped. The rate of energy loss dE with respect to the traveled distance

dr can be described by the Bethe formula for electrons [80], whose main features

are:
dE(r)

dr
∝ − nZ

E(r)
ln

(
E2(r)

c1Z2

)
, (3.3)

where n is the number of sample atoms per unit volume, Z is the atomic num-

ber, E(r) is the electron energy at point r and c1 is a constant with energy

dimensions. Both electrons (secondary electrons) and x-rays are emitted from

the sample atoms during inelastic scattering, but only secondary electrons are

of particular relevance in the EBL framework. Secondary electrons are loosely

bound outer shell electrons from the sample atoms which receive su�cient ki-

netic energy during inelastic scattering events to be ejected from the atom and

set into motion. The kinetic energy associated with these events is low (usually

less than 50 eV) with respect to the beam electrons energy (several keV) and so

50 eV represents the (arbitrary) limit below which electrons travelling in the sam-

ple are considered secondary electrons. Despite their low energy and depending

where they are generated (the closer to a surface, the better), secondary elec-

trons can reach the sample surface and escape from it, along with backscattered

electrons. Secondary electrons are produced along the entire beam electron tra-

jectories within the sample, so the path of beam electrons within the sample is a

continuous occurrence of elastic and inelastic scatterings, losing energy inside the

sample (production of secondary electrons) and changing direction, until they get
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trapped or can leave the sample (as backscattered electrons).

To clarify these concepts, let us consider two practical cases. An e-beam with

5 nm diameter and an energy E0 = 20 keV (typical parameters for EBL) strikes

the surface of both a silicon (Z = 14, n ≈ 5.0 · 1022 atoms · cm−3) and a gold

(Z = 79, n ≈ 5.9 · 1022 atoms · cm−3) sample. Figures 3.1a and 3.1b show the

interaction volume produced by the beam electrons as they enter the samples.

The interaction volume represents the sample volume in which the beam electrons

undergo elastic and inelastic scatterings, until they lose all their energy. Each

�gure has been obtained through a Monte Carlo electron trajectory simulator [81]

and shows 1000 traces out of the 500 000 simulated ones. The path color goes

from yellow to blue according to the reduction in the electron kinetic energy,

while the red traces represent electron trajectories emerging as backscattered

electrons. The �rst thing to be noted is the huge di�erence in the interaction

volume between silicon and gold (approximately two orders of magnitude). This

can be understood in terms of Eq. (3.3), which predicts higher energy losses for

gold and so a shorter path average length. Moreover, the simulations allow for

extracting the backscatter coe�cients (see Eq. (3.2)):

ηSi = 0.14,

ηAu = 0.45.

The obtained values re�ect the fact that the probability of elastic scattering events

increases along with the atomic number Z. The di�erence in the backscatter coef-

�cients can also be seen by comparing Fig. 3.1a and the inset of Fig. 3.1b (zoom in

of the gold interaction volume), where the number of red traces normalized to the

total number of depicted traces indeed represents the backscatter coe�cient (and

visually appears as a �density� of red traces). The last interesting information

on electron-matter interaction comes from Fig. 3.1c, where the normalized num-

ber of backscattered electron traces is shown as a function of the kinetic energy

these electrons possess when leaving the samples. Since the beam electrons in

silicon are characterized by longer paths with respect to gold, the backscattered

electrons emerging from the silicon sample have lost more energy with respect to

beam electrons travelling through gold, which instead corresponds to a peaked

distribution around an energy value of ≈ 0.93E0.
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(a) Silicon

(b) Gold

(c) Energy distribution

Figure 3.1: (a),(b) Calculated interaction volume for a 20 keV e-beam striking silicon
and gold, respectively. The green arrows show the striking point. The path color goes
from yellow to blue according to the reduction in the electron kinetic energy. The
beam electron trajectories emerging as backscattered electrons are shown as red traces.
(c) Backscattered electrons energy distribution for silicon (blue-dotted line) and gold
(red-dotted line).
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3.1.2 The role of e-beam resists

E-beam resists, composed by long polymer molecules, play an active and

fundamental role during the EBL process. The sample to be patterned has to

be covered by an e-beam resist �lm in order to generate the desired mask after

e-beam exposure. As in photolithograpy, the resist volume interacting with beam

electrons undergoes structural changes which modify the resist solubility in the

proper solvent (a process called development), so the patterned structures can be

imprinted in the resist �lm.

Resist materials are classi�ed into two broad categories, positive and nega-

tive [82]. Positive resists dissolve preferentially during development in regions

which have been exposed, while the reverse is true for negative resists. Positive-

resist materials consist of long polymer molecules which are degraded by chain

scission during exposure, thereby becoming more soluble in the developing so-

lution. Negative-resist materials also consist of polymer molecules, but, upon

exposure, the dominant reaction is the formation of bound polymer molecules

by cross linking, making the exposed volume more resistant to the developing

solution. To be noted that the developing time (and not only what happens dur-

ing the exposure process) is an important parameter for EBL fabrication, since

the time a sample is dipped in the developing solution determines the amount of

removed exposed resist.

Figure 3.2 helps in clarifying how the exposure process of e-beam resists works.

It shows the simulated interaction volume [81] determined by a 5 nm diameter

e-beam with 20 keV energy impinging on the surface of a silicon substrate covered

by a 100 nm thick polymethyl methacrylate (PMMA) layer, a widely used positive

resist [83]. As for Fig. 3.1, 1000 traces are depicted out of the 500 000 simulated

ones. Comparing the interaction volume in Fig. 3.2a with the one shown in Fig.

3.1a and extracting the backscatter coe�cient from the simulation (ηPMMA|Si ≈
0.14), it can be seen that such a thin PMMA layer is of little (or no) in�uence on

the scattering events occurring in the substrate material. This implies that the

substrate itself plays a fundamental role during e-beam exposure. In particular,

for insulating substrates, (i) the lack of a conductive path to ground, (ii) the

additional capacitance of the substrate and (iii) a signi�cant additional charge

coming from the stopping of beam electrons can lead to substrate charging [79].

It consists in the accumulation of negative charges, whose parasitic electric �elds

de�ect the impinging beam electrons making, in the worst case, the patterning

impossible, since the de�ection is time dependent and not practically predictable.

The quantity that controls the exposure (and so the change in solubility) of an
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(a) PMMA|Si traces

(b) PMMA|Si events

Figure 3.2: (a) Calculated interaction volume for a 20 keV e-beam striking a
PMMA(100 nm)|Si bilayer. The path color goes from yellow to blue according to the
reduction in the electron kinetic energy. The beam electron trajectories emerging as
backscattered electrons are shown as red traces. (b) Zoom in of (a) in which each open
dot (red for backscattered electrons) represents a scattering event. The green arrows
show the striking point.

e-beam resist is the total energy absorbed per unit volume (energy density E) and

each resist is characterized by a critical value EC needed to get a proper exposure.

Considering only the PMMA layer in Fig. 3.2b, the blue-open dots represent

the scattering events associated with the striking electrons in their �forward�

propagation through the resist. The inelastic subset of these events deposits the

average energy ∆EF per incident electron in the resist layer, contributing to its

structural modi�cation. Moreover, the red-open dots in Fig. 3.2b represent the

scattering events associated with backscattered electrons. Because of the oblique

trajectories of backscattered electrons and their lower energies with respect to

impinging electrons, they are a factor β (≈ 4 − 5) more e�cient at generating

secondary electrons, and so on depositing energy in the resist layer [82]. For this
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reason, the average energy loss ∆EBSe per backscattered electron in the resist

layer is given by ∆EBSe = βη∆EF , where η is the backscatter coe�cient from

Eq. (3.2). Assuming that the energy is absorbed uniformly in a resist volume V

during the exposure time ∆texp, the absorbed energy density E can be obtained

by the expression [82]

E =
(1 + βη) ∆EF

e V
Ibeam∆texp, (3.4)

where e is the electron charge magnitude and Ibeam is the current associated with

the impinging electron beam. The assumption related to a uniform absorption of

energy in the resist, justi�ed in case of a thin resist layer, allowed transforming

the integration of elementary events in a simple sum: at each point, the relevant

absorbed energy density dE is given by the forward energy deposited in that

point and the energy deposited by the backscattered electrons produced while

scanning the e-beam over the resist surface S designed for patterning. In this

case, the average e�ect is precisely given by Eq. (3.4). Hence, considering a resist

of thickness z, the interaction volume V can be expressed as V = S · z, and Eq.

(3.4) can be modi�ed to

E =
(1 + βη) ∆EF

e z
· Ibeam∆texp

S
≡ (1 + βη) ∆EF

e z
·D, (3.5)

where we have de�ned the exposure dose D. In the contest of EBL, the compact

forward-scattered energy distribution determines the ultimate resolution. How-

ever, a limiting factor for the EBL resolution is given by the proximity e�ect ,

caused by the exposure of the resist by backscattered electrons and constituting

a background on which the designed pattern is superimposed. The proximity ef-

fect can be mitigated by varying the dose according to the position on the sample

and by optimizing the development time.

The exposure dose allows quantifying two important properties which can be

used to further classify e-beam resists and to express their performances. Figure

3.3 shows a typical plot of the fraction of positive e-beam resist thickness left

after its development as a function of D (for �xed development time). In case

of a negative resist, the blue curve is mirrored with respect to a symmetry plane

parallel to the y-axis and intersecting the curve at y = 0.5 (i.e. all the negative

resist thickness is retained for high doses). For a positive resist, the critical dose

(related to EC) is the D value at which, for a given development time, all the

exposed resist volume dissolves and the resist thickness left in the patterned area

is zero. Actually, the transition from exposed to unexposed resist is not abrupt,
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Figure 3.3: Typical plot of the fraction of positive e-beam resist thickness left (y)
after development as a function of the exposure dose (for �xed development time). D1

and D2 are determined by the intersection between the line having the slope of the blue
curve in its central part and the y = 0, y = 1 lines. Ds is the point corresponding to
y = 0.5 according to the blue curve.

but it occurs with a certain slope. So, the dose D2 can be taken as a measure

of the critical dose and the values D1 and D2 allow de�ning the contrast γ of an

e-beam resist [82]:

γ =

[
log10

(
D2

D1

)]−1

. (3.6)

The contrast of a resist determines its capacity of producing arrays of steep and

close nanostructures. The sensitivity of an e-beam resist indicates the �ease�

of being modi�ed by the exposure process: an high sensitivity resist needs a

lower value of E (and so of D) with respect to a low sensitivity resist in order

to be properly exposed. To quantify this aspect, the dose Ds in Fig. 3.3 is

usually considered and it corresponds to a fraction of resist thickness left after

development of 0.5. It can be seen that [82]

Ds =
√
D1D2. (3.7)

Fixing the e-beam current and the exposed area, high sensitivity resists require a

lower exposure time than low sensitivity resists, so allowing for faster patterning.

PMMA is a high-resolution high-contrast resist and it constitutes the stan-

dard positive resist for EBL. The blue-open dots in the PMMA layer depicted in

Fig. 3.2b show an interesting phenomenon: the volume exposed by the forward-

scattered beam electrons has a conical shape, since the beam diameter at the

PMMA|Si interface is larger than the striking diameter. This feature leads to

a conical shape of the developed patterned structures, where the base of the
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trench (or pillar for negative resist) results wider than the top. The resulting

pro�le (undercut) is helpful during the lift-o� process (the resist removal after

depositing the target material), since it allows for a safe and fast resist detach-

ment. Nonetheless, a too pronounced undercut can lead to the merging of the

developed structure bases in case of a densely packed array of repeated entities.

Better results in this respect can be achieved by using the ZEP positive e-beam

resist [84], the choice for most of the samples described in this thesis. Moreover,

ZEP is characterized by higher sensitivity than PMMA, so allowing for shorter

exposure times.

3.2 The MOKE measurement technique

The interaction of an electromagnetic wave with a ferromagnetic body pro-

duces a change in the wave polarization whose extent is proportional to the

magnetization of the probed volume (see Chap. 2). Since the penetration depth

of visible/NIR light is below 50 nm in metals, the measurement of the magneto-

optical Kerr e�ect (MOKE) is an e�ective mean for obtaining information about

the magnetic properties of the surface of bulk metallic materials or to investigate

magnetic thin �lms and nanostructures. It is possible to design experimental se-

tups that allow performing a quantitative evaluation of the magneto-optic e�ects

and the complete magneto-optical characterization of a sample, in terms of both

magnetization orientation and magneto-optical constants [66,67,85�87]. The ex-

perimental MOKE setup used in order to obtain the measurements presented in

this thesis is based on the polarization modulation technique [86], in which the

polarization state of the light re�ected from the sample is modulated in order

to extract both the rotation and the ellipticity coming from the interaction with

the sample. The de�nition of these two parameters is given in Sec. B.2. Be-

fore describing in detail the polarization modulation technique, it is quite useful

considering the basic aspects of the MOKE measurement technique.

The MOKE is described by Eq. (2.42), where the e�ect of the light-sample

interaction is contained in each one of the Fresnel coe�cients, whose main features

can be summarized (at �rst order) as:

rpp = A−Bmx, (3.8a)

rps = −Cmy +Dmz, (3.8b)

rsp = Cmy +Dmz, (3.8c)

rss = E, (3.8d)
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where A,B,C,D,E ∈ C are proportionality factors depending on the angle of

incidence and on material properties, whereas the mx, my and mz components

of m are the direction cosines of the magnetization M in the coordinate system

showed in Fig. 2.1. All the magnetization components appear in the Fresnel co-

e�cients, so by selecting a proper MOKE con�guration is possible to de�ne an

appropriate sensitivity direction (in the scattering plane or perpendicular to it)

and to perform magneto-optical vectometry [66, 86, 87]. However, in the frame-

work of this thesis, the most relevant magnetization components are the ones

lying in the scattering plane (i.e. corresponding to my and mz), so we restrict our

description to impinging s-polarized light. Making use of Jones calculus for mod-

elling the optical path (see Sec. B.1), the interaction between a monochromatic

linearly s-polarized incident wave Ei and the sample gives rise to an elliptically

polarized re�ected wave Er expressed by(
Erp

Ers

)
=

[
rpp rps

rsp rss

](
0

Eis

)
= Eis

(
rps

rss

)
∝

(
rps
rss

1

)
, (3.9)

having neglected a factor common to both the components which does not depend

on the magnetization. From Eqs. (2.44b) and (2.44d) follows that(
rps
rss

1

)
=

(
ϑKs + iεKs

1

)
, (3.10)

where ϑKs and εKs are the Kerr rotation and ellipticity for impinging s-polarized

light, respectively. The analysis of the light polarization state is performed

through optical elements which allow modifying the polarization of the wave

in a controlled way, in order to extract information from a subsequent intensity

measurement through a photodetector. The direct evaluation of the intensity

of the vector (3.10) provides a signal that is proportional to the square of the

magnetization, losing the distinction between the two saturation states. A �rst

improvement consist in the insertion of a linear polarizer between the sample and

the detector. The e�ect of this optical element is described by the Jones matrix

in Eq. (B.12) and the intensity I of the resulting vector is given by

I ∝

∣∣∣∣∣
[

cos2 α cosα sinα

cosα sinα sin2 α

](
ϑKs + iεKs

1

)∣∣∣∣∣
2

, (3.11)

where α is the angle of the polarization axis of the polarizer with respect to the

direction of extinction for linearly s-polarized light. The evaluation of Eq. (3.11)
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gives

I ∝
(
ϑ2
Ks + ε2

Ks

)
cos2 α + sin2 α + ϑKs sin (2α) , (3.12)

showing that, up to �rst order in ϑKs and εKs, the intensity is proportional to the

Kerr rotation and so to the magnetization. However, through this setup only the

Kerr rotation is attainable and it can be a limit either when the Kerr ellipticity is

dominant over the Kerr rotation (as in the case of Permalloy) or when both these

e�ects have to be measured for the same sample. In order to achieve sensibility

to both the components, a linear retarder can be inserted between the sample

and the polarizer. If the Jones matrix in Eq. (B.13) is inserted in the optical

train of Eq. (3.11), the intensity of the resulting vector is given by

I ∝

∣∣∣∣∣
[

cos2 α cosα sinα

cosα sinα sin2 α

][
1 0

0 eiφ

](
ϑKs + iεKs

1

)∣∣∣∣∣
2

, (3.13)

where the fast-axis of the linear retarder is parallel to the s-axis and the phase

of the fast-axis wave advances the slow-axis wave by φ. Equation (3.13) becomes

I ∝
(
ϑ2
Ks + ε2

Ks

)
cos2 α + sin2 α

+ (ϑKs cosφ+ εKs sinφ) sin (2α) .
(3.14)

When φ = 0 or φ = π/2, a signal proportional to the Kerr rotation or to the Kerr

ellipticity can be obtained, respectively, and for each choice of the retardation,

the intensity is proportional to the magnetization, up to �rst order in ϑKs and

εKs. Moreover, given ϑKs and εKs, the maximum detected intensity as a function

of α occurs when

tan (2α) =
2 (ϑKs cosφ+ εKs sinφ)

ϑ2
Ks + ε2

Ks − 1
, (3.15)

which corresponds to Eq. (B.5), showing that in this case the polarization axis of

the polarizer coincides with the major axis of the ellipse swept by the electric �eld

vector of the re�ected light during its propagation towards the photodetector.

3.2.1 The polarization modulation technique

The polarization modulation technique provides a powerful way for measuring

and quantifying both ϑKs and εKs. Equation (3.15) suggests a possible method:

the angle α, which can be experimentally controlled and determined, is directly

related to ϑKs and εKs, depending on the considered φ value. However, there

are two major drawbacks:
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• rotation and ellipticity needed to be measured are small, usually below 1

mrad, and directly measuring such small angles with enough resolution for

probing the MOKE (of the order of 0.01 mrad) is not possible;

• the measure of small electric signals requires a technique capable of distin-

guishing them from noise.

Both these issues can be addressed and solved by the polarization modulation

technique: instead of �xing the phase retardation φ in Eq. (3.14), this parameter

is modulated at a constant frequency ω. By doing so, both ellipticity and rotation

can be obtained during the same measurement and two lock-in ampli�ers can be

utilized to reject all the electronic signals lying out of a narrow frequency band

around ω and 2ω, respectively.

The modulation of the phase φ can be experimentally performed by means of a

photoelastic modulator (PEM). It relies on birefringence, i.e. the optical property

related to the variation of the refractive index of a crystalline material according

to the di�erent crystallographic directions. When light of arbitrary polarization

propagates through a crystal, it can be considered to consist of two independent

waves that are polarized orthogonally with respect to each other and characterized

by di�erent refractive indices in case of a birefringent crystal [62]. These two

directions de�nes the fast and slow axes, whose names recall the fact that a

refractive index variation corresponds to a speed di�erence in the propagation

of monochromatic light. Consequently, the speed di�erence produces a phase

di�erence between the electric �eld components along these two axes at the crystal

exit point, and the resulting action in terms of Jones calculus is the one given

by Eq. (B.13). In this framework, the phase modulation capability comes from

the fact that a mechanical stress can induce birefringence and, by coupling the

active crystal with a piezoelectric transducer, the extent of the modulation can

be electronically controlled through the control of the stress. In a PEM, the

piezoelectric transducer is driven by an oscillating voltage, determining a phase

retardation φ having the form [66]

φ =
2πAl

λ
cos (ωt) ≡ φm cos (ωt) , (3.16)

where A is proportional to the amplitude of the driving voltage, l is the thickness

of the PEM birefringent crystal, λ is the wavelength of the considered light and

φm is de�ned to be amplitude of the phase modulation at frequency ω. Plugging
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Signal Frequency Measured amplitude

S0 DC comp. RI∗ sin2 α

Sω ω
√

2RI∗εKs sin (2α) J1

(
φ0
m

)
S2ω 2ω −

√
2RI∗ϑKs sin (2α) J2

(
φ0
m

)
Table 3.1: Amplitudes of the measured signals in the polarization modulation tech-
nique listed according to their frequency.

Eq. (3.16) into Eq. (3.13), the intensity I to be calculated becomes

I = I∗

∣∣∣∣∣
[

cos2 α cosα sinα

cosα sinα sin2 α

][
1 0

0 eiφm cos(ωt)

](
ϑKs + iεKs

1

)∣∣∣∣∣
2

, (3.17)

where we introduced the proportionality factor I∗ which depends both on the

incident intensity and on |rss|2. Making use of the Jacobi-Anger expansion and

considering only up to the second harmonic of ω, Eq. (3.17) returns

I = I∗{
(
ϑ2
Ks + ε2

Ks

)
cos2 α + sin2 α

+ 2εKs sin (2α) J1 (φm) cos (ωt)

+ ϑKs sin (2α) [J0 (φm)− 2J2 (φm) cos (2ωt)]},

(3.18)

where J0 (φm), J1 (φm) and J2 (φm) are Bessel functions of the �rst kind evaluated

at φm. Equation (3.18) can be simpli�ed by neglecting second order terms in ϑKs,

εKs and by considering a phase modulation amplitude φ0
m such that J0

(
φ0
m

)
= 0:

I = I∗ sin2 α + 2I∗εKs sin (2α) J1

(
φ0
m

)
cos (ωt)

− 2I∗ϑKs sin (2α) J2

(
φ0
m

)
cos (2ωt) .

(3.19)

The voltage signal at the output of the photodetector is proportional to the in-

tensity corresponding to Eq. (3.19) and it is the sum of three parts, corresponding

to three di�erent frequencies, as summarized in Table 3.1. The R proportionality

factor (responsivity) introduced in the table accounts for the photodiode work-

ing principle: the generation of a photocurrent (and so a voltage on a load) in

response to incident light power. At this stage, the use of two lock-in ampli�ers

phase-locked to the photodiode voltage signal at frequency ω and 2ω allows mea-

suring the amplitudes Sω and S2ω corresponding to the respective modulation

frequencies. Since lock-in ampli�ers are programmed to return the root mean

square of the measured voltage, a further factor
√

2/2 has been introduced in

Table 3.1. Finally, through the value of the S0 DC component is possible to
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Figure 3.4: Scheme of the longitudinal MOKE setup used for obtaining the measure-
ments presented in this thesis.

normalize the measured amplitudes Sω and S2ω in order to get a quantitative

evaluation of ϑKs and εKs:

εKs =
tanα

2
√

2J1 (φ0
m)

Sω
S0
, (3.20a)

ϑKs = − tanα

2
√

2J2 (φ0
m)

S2ω

S0
. (3.20b)

3.2.2 The experimental setup

The experimental setup implementing the optical train described by Eq. (3.17)

and corresponding to a longitudinal MOKE setup is schematically shown in Fig.

3.4. The light coming from a CW diode laser (λ = 532 nm or λ = 635 nm)

passes through a Glan�Thompson polarizer to be subsequently focused on the

sample by means of a converging lens. The angle of incidence is about 35◦.

The sample can be mounted inside a quadrupole electromagnet allowing for the

generation of a magnetic �eld up to 2000 Oe (per axis) in the plane of the sample.

Both the magnetic �eld and the sample can be rotated around the sample surface

normal, in order to perform measurements along di�erent directions on the sample

without modifying the scattering plane, which de�nes the sensitivity plane for the

considered MOKE con�guration. The re�ected light is then collimated using a

second converging lens in order to avoid the light spot diameter to be bigger

than the diameter of the photodetector active area (3.6 mm). Before reaching

the photodetector, the light beam passes through the PEM optical head and

through a second Glan�Thompson polarizer, usually de�ned �analyzer�. The

PEM modulation frequency is ω = 50 kHz, so the bandwidth of the photodetector
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Figure 3.5: The thermoplasmonic heating stage designed to be combined with our
MOKE setup, as shown in the inset.

have to be broad enough to resolve the signal component at 2ω = 100 kHz. The

analyzer angle is usually kept in a range of ±10◦ with respect to the extinction

position (i.e. when the polarization axis of the incident radiation is at 90◦ with

respect to the transmission axis of the analyzer), since it has been demonstrated to

be the best compromise in terms of signal-to-noise ratio [88]. The signal coming

from the photodetector is fed both to two lock-in ampli�ers, phase-locked at ω

and 2ω, and to a digital multimeter for the measurement of S0 (see Table 3.1).

The whole systems is controlled by a LabVIEW software, which synchronizes the

applied magnetic �eld with the measured signal in order to get hysteresis loops.

The typical time for sweeping a complete hysteresis loop is of the order of 60 s.

For the thermoplasmonic heating of arti�cial spin ice systems (see Chap. 5),

we developed an heating stage to be �tted in our MOKE setup, as shown in

Fig. 3.5. The (pump) light produced by a CW diode laser (λ = 785 nm or

λ = 808 nm) has to be focused onto the sample in order to convey energy in

selected sample region. The whole setup is mounted on a XYZ translation stage

in order to move the pump beam independently from both the sample and the

MOKE setup (probe) beam. The active area of the photodetector in the MOKE

setup has to be covered by a laser-line optical �lter, in order to pick only the

probe beam, so avoiding any unwanted signal coming from the pump beam.
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The pump spot diameter can be adjusted in the range 1 − 30 µm for varying

the illuminated area and so the delivered intensity (i.e. power density per unit

area). A drawback of working with such a small spot diameter is the necessity

of using a microscope objective which makes the distance between the objective

front lens and the sample of about 2 mm. A Glan�Laser polarizer placed after

the laser source allows having a well de�ned polarization axis, since working

with linearly polarized light is mandatory for getting a proper thermoplasmonic

heating in our implementation, as we will see in Chap. 5. In case of using the

linearly polarized λ = 785 nm laser source, a polymer zero-order half-wave plate

(at λ = 780 nm) rotates the polarization axis of the incident light in order to

avoid a loss of intensity while changing the polarizer orientation (see Eq. (B.14)).

For the λ = 808 nm laser source, an unpolarized light exits from a multi-mode

optical �ber, so the zero-order half-wave plate would have no e�ect. Through

a beamsplitter, part of the light coming back from the sample can be deviated

towards a CCD camera, allowing for the formation of an image of the sample. An

integrated system of view is convenient when working with nanostructure arrays,

since it helps in observing where the beams are impinging on and makes the beam

alignment easier.

3.3 Anti-re�ection coating for ultrafast MOKEmea-

surements

Following the development of intense, coherent laser-based sources of terahertz

radiation [89], the past decade has witnessed an increased interest in the use of

this type of radiation to control the properties of materials on the sub-picosecond

time scale. Terahertz photons (with energies in the meV range) can drive nonlin-

ear dynamics without signi�cantly increasing the entropy of the system [90�94].

In the �eld of condensed matter physics, the investigation of ultrafast dynamics

driven by strong terahertz �elds is frequently performed using terahertz pump

radiation (usually in the 1−10 THz range, 300 to 30 µm in wavelength) and visi-

ble or NIR probing light (typically a sub-100 fs pulse). To study the e�ects in the

strong-�eld limit, the strength of the terahertz �eld can be locally enhanced ex-

ploiting near-�eld e�ects in meta-materials [90,95�101], which typically consist of

micrometer-sized metallic structures deposited on the sample surface. However,

since the area of the sample to be measured is often signi�cantly smaller than the

area of the metallic structures composing the meta-materials, the re�ectivity of

the probe in the visible/NIR frequency range is dominated by the meta-material



68 3 Fabrication and Characterization

building blocks. As a consequence, it is extremely challenging to isolate the sam-

ple response, despite the enhancement provided by the meta-material itself. This

problem can be mitigated by using dielectric and absorbing coatings, for instance

to enhance the magneto-optical activity in magnetic thin �lms and to reduce the

background re�ections [102�104]. This solution greatly boosts the signal up to a

point where single nano-structures can be measured [105�107]. The drawback of

this approach is that it imposes constraints on the choice of the layers underneath

the target structure. This limitation can become crucial if these underlayers are

utilized to tune the important properties of the investigated thin �lms. In this

case, a more suitable solution is to deposit an anti-re�ection (AR) coating only

on the metal structures forming the meta-material, to minimize the re�ection

from those areas, which is the main factor a�ecting the intensity of the measured

signal. At the same time, the AR layer should not perturb the terahertz radiation

that still needs to be enhanced by the metal layers.

In this framework, we propose a simple single-layer anti-re�ection coating de-

sign that can be implemented on arbitrary meta-material structures comprising

highly conducting and re�ective metallic layers. The coating suppresses the NIR

re�ection typically utilized to probe the response of the sample, without notice-

ably a�ecting the terahertz radiation at much larger wavelengths. The work has

been mainly performed during a four-month research stay at Stockholm Univer-

sity (Sweden), in the �Ultrafast Dynamics in Condensed Matter� group led by

Dr. Stefano Bonetti. The following discussion, which derives from Ref. [108],

is of relevance for this chapter, since the experimental veri�cation of the AR

coating working principle has been performed through MOKE measurements. In

other words, the introduced AR coating represents a simple solution that can be

implemented (during the sample fabrication stage) in order to prevent unwanted

re�ections in general MOKE measurements.

3.3.1 The design of the anti-re�ection coating

Terahertz meta-materials can be fabricated by depositing metallic (typically

gold) layers that can locally enhance the electromagnetic �eld of the incident

radiation. One of the simplest realization of such structure consists of two metallic

strips separated by a small gap, i.e. a dipole antenna, as the ones shown in Fig.

A.2. For a suitable geometry of the antenna and polarization of the incident

radiation, opposite charges can be induced by the electromagnetic �eld at the

opposite edges of the gap, producing a local enhancement of the electric �eld

within the gap [54].
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Figure 3.6: Design of the dipole antenna for terahertz near-�eld enhancement in the
gap between two metallic electrodes, covered by an AR coating for NIR and visible
radiation. A single-cycle of the terahertz �eld, with the suitable polarization for the
optimal coupling to the antenna, is sketched. The pink arrows schematically show the
working principle of the AR coating for a metal, where destructive interference (zig-zag
arrows within the top layer) is combined with dielectric losses to compensate for the
forbidden transmission through the metallic electrodes (crossed-out arrows in the metal
layer), as detailed in the body of the text. Adapted from [108].

In the standard AR coatings, designed to minimize the re�ection from di-

electric materials, one exploits the phenomenon of destructive interference of the

waves re�ected at the two interfaces, to cancel out the total electric �eld that

propagates in the backward direction. Since the energy of the electromagnetic

wave is conserved, the transmission through the dielectric is maximized. How-

ever, this mechanism cannot be implemented for coatings on metals, since the

wave cannot propagate through the metal, and hence the re�ection cannot be

eliminated. For an AR coating to work for a metal, it is necessary to create

destructive interference (to suppress Fresnel re�ections) and to simultaneously

absorb the radiation, as shown schematically in Fig. 3.6. In other words, the di-

electric layer needs to be su�ciently lossy in the visible/NIR region, so that the

wave decays after multiple re�ections at the interfaces. This idea was proposed

decades ago by Hass et al. [109], who demonstrated that lossy double dielectric

layers can suppress the re�ectivity of aluminum and copper in the visible range,

while maintaining high re�ectivity in the mid-infrared range, up to a wavelength

of 10 µm. Moreover, they also highlighted the fact that absorption in single-layer

AR coatings is necessary to reduce the high re�ectance of metals in the visible

range. In a later related work by Yoshida [110], a single-layer AR coating for met-

als was described mathematically. He considered a non-absorbing dielectric layer
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with real refractive index n1 > 1 and thickness d1, deposited on top of a metallic

substrate characterized by a complex refractive index n2 + ik2. The re�ectance R

for monochromatic light impinging at normal incidence on the three-layer stack

composed by air (n0 = 1), the non-absorbing dielectric coating and the metal

substrate can be analytically evaluated and it turns out [108, 110, 111] it can be

reduced to zero for a proper d1 value when

n1 =

√
n2 +

k2
2

n2 − 1
. (3.21)

Equation (3.21) imposes a constraint on the n2 and k2 values, since n1 > 1. The

e�ect of this constraint is that, according to Yoshida [110], �zero re�ection cannot

be achieved with a single dielectric �lm coating for metals with large extinction

coe�cient k ' 3, such as silver and gold�. In this case, zero re�ectance can be

obtained by allowing the dielectric coating to be slightly absorbing.

Indeed, in the following, we experimentally con�rm that the re�ection from

gold (and hence from any good metal) can be suppressed by using a single layer of

sputtered amorphous silicon (α-Si). In the visible/NIR range, a thin α-Si �lm acts

as a dielectric with a relatively large imaginary part of the refractive index, since

the electronic states are not characterized by well-de�ned momentum, enhancing

the radiation absorption in α-Si as compared to its crystalline form [112]. On the

other hand, low absorption in the terahertz range (for wavelengths ' 100 µm)

and the small thickness compared to the radiation wavelength make these layers

practically invisible, thus maintaining the high re�ectivity characteristics of gold

in this frequency range.

We �rst used the transfer matrix method (TMM) [6] to simulate the feasibil-

ity of this approach. We simulated the Air|α-Si|Au|Si(substrate)|Air multilayer,

where the outermost air layers were semi-in�nite and the substrate was 500 µm

thick. The radiation was assumed to be monochromatic with a wavelength of

800 nm (the typical center-wavelength of a Ti:sapphire laser) and impinging at

normal incidence onto the multilayer stack. We considered the refractive indices

nAir = 1, nα−Si ≈ 3.90 + 0.11i, nAu ≈ 0.15 + 4.91i and nSi ≈ 3.681 + 0.005i [113].

In Fig. 3.7 we plot the re�ectance of the stack as a function of the α-Si thickness,

for two gold layers of di�erent thickness. For thin gold (20 nm), part of the radi-

ation can be transmitted into the substrate and ≈ 30 nm of amorphous silicon on

top of it can e�ciently suppress the re�ectance. For thick gold (100 nm), enough

to prevent any transmission, a thicker amorphous silicon layer (≈ 230 nm) is

needed to achieve the same suppression. In the same �gure, we also plot the
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Figure 3.7: Solid curves: calculated re�ectance at a wavelength of 800 nm for the
Air|α-Si|Au|Si(substrate)|Air multilayer, as a function of the α-Si thickness, for two
di�erent Au thickness values at normal incidence. Dashed curve: calculated re�ectance
at a wavelength of 800 nm for an ideal dielectric on top of a 100 nm thick gold layer,
characterized by n = 3.9 and zero imaginary part of the refractive index. Adapted
from [108].

re�ectance (dashed line) of a �ctitious dielectric layer with zero imaginary part

of the refractive index, but with magnitude equal to that of the the amorphous

silicon, so representing a conventional dielectric with negligible losses. It is evi-

dent that such a dielectric on top of a 100 nm thick gold layer cannot e�ciently

suppress the re�ectance, demonstrating that cumulative losses after multiple re-

�ections are necessary to realize the anti-re�ection con�guration. We also noted

that a single α-Si AR coating remains e�cient over a broad range of incidence

angles, as shown in Fig. E.1. We used the TMM to check that, when varying

the incidence angle from 0◦ to 37.5◦ in case of thin gold (20 nm), the optimal

thickness for the α-Si layer varies by less than 2 %. Furthermore, at the opti-

mal α-Si thickness (≈ 30 nm), the 800 nm re�ectance remains below 0.05 (an

acceptable value for the coating to properly work) at angles of incidence as high

as 50◦. This can be understood as a consequence of the large refractive index of

silicon, which causes the electromagnetic wave to strongly refract when entering

the AR coating layer. As a result, the optical path in the silicon layer noticeably

increases only at very large angles of incidence.

3.3.2 Experimental and numerical veri�cation

Figure 3.8 shows the calculated and the measured re�ectances for several

Air|α-Si(t)|Au(20 nm)|Si(substrate)|Air multilayers, as a function of t, both for
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Figure 3.8: Experimental (symbols) and calculated (lines) re�ectances for several α-
Si|Au(20 nm)|Si(substrate) samples at wavelengths of 800 nm (magenta) and 300 µm
(black), the latter corresponding to a radiation frequency of 1 THz. Adapted from [108].

the 800 nm light and the terahertz radiation impinging on the sample at an

incidence angle of 10◦. The 800 nm radiation was produced by a Ti:sapphire-

based regenerative ampli�er in 40 fs pulses, corresponding to a 30 nm FWHM

bandwidth around the central 800 nm wavelength, as measured by a grating spec-

trometer. The re�ectance at 800 nm was measured directly using a photodiode.

The signal was scaled using the known re�ectance value of a commercial gold

mirror. On the other hand, the re�ectance R of the terahertz radiation, gener-

ated by optical recti�cation in a OH1 organic crystal [114], was determined from

the measured transmittance T , using the relation R = 1 − A − T , where the

absorption A was calculated through the TMM. The transmittance was taken

to be proportional to the square of the normalized amplitude of the maximum

electro-optical sampling signal in a 100 µm thick, 110-cut GaP crystal. The ex-

cellent agreement between the data and the calculations directly demonstrates

the functionality of the proposed design in suppressing the NIR re�ectivity, with

the appropriate thickness of α-Si, i.e. 27 nm and 127 nm in the considered case

of 800 nm radiation. We emphasize the fact that the experiment demonstrates

e�cient suppression of the broadband 40 fs pulses of 800 nm radiation. This is

not surprising, considering that the bandwidth-to-carrier ratio is less than 4 %.

This result con�rms the suitability of this design for conventional ultrafast exper-

iments. At the same time, the terahertz re�ectance results to be unchanged by

the α-Si layer, suggesting that the terahertz near-�eld enhancement is also likely

to be una�ected by the α-Si layer. However, since the measured re�ectance is a
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(a) (b)

Figure 3.9: (a) Frequency-domain, �nite element analysis of the enhancement map
for a monochromatic electromagnetic �eld with frequency f = 1 THz incident on two
gold plates separated by a gap. (b) Time-domain �nite element simulations of the
x-component of the electric �eld for a single-cycle (broadband) terahertz �eld at the
center of the gap, without gold plates (black-solid curve), with gold plates (gray-solid
curve) and with α-Si|Au plates (gray-�lled dots). In all the calculations, the electric
�eld of the incident radiation is linearly polarized along the x−axis and the propagation
direction is along the z−axis, normal to the sample plane. Adapted from [108].

far-�eld property and near-�eld properties are in general very sensitive to inter-

face e�ects, one needs to perform a more detailed investigation of the possible

e�ects of the AR coating on the terahertz radiation in the near-�eld regime.

Hence, to analyze the near-�eld e�ects of the coating, we have performed

�nite-element numerical calculations using COMSOL Multiphysics [115]. In Fig.

3.9a, we plot the electric �eld enhancement at a frequency of 1 THz, for a set

of two in�nitely long, 65 µm wide, 20 nm thick gold plates separated by a gap

of 2 µm. The terahertz electric �eld is applied along the x−axis in this �gure.

The �eld enhancement is computed by dividing the electric �eld value in the

gap region by the electric �eld value at the Air|Si interface, in the absence of

gold plates. Figure 3.9b shows the time dependence of the x-component of the

terahertz electric �eld in the middle of the gap (x = 0) and at z = 10 nm above

the silicon substrate. For this simulation, we used the experimental time pro�le

of the impinging terahertz �eld, measured by electro-optical sampling, with a

peak value of ≈ 300 kV · cm−1. For the bare Air|Si interface, the terahertz �eld

is reduced to approximately half of its free-space magnitude, consistent with the

relative amplitude t of the transmitted wave at an Air|Si interface computed as
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t = 2/(n + 1), with n ≈ 3.41. The presence of the gold plates introduces a

slight temporal shift and enhances the amplitude of the terahertz �eld to more

than 500 kV · cm−1, consistent with the ≈ 4 times enhancement observed in

the frequency domain simulations of Fig. 3.9a2. Most importantly, the addition

of the α-Si layer on top of the gold plates does not noticeably a�ect the �eld,

con�rming the intuitive conclusion based on the negligible e�ect of the α-Si layer

on the terahertz re�ectance (see Fig. 3.8).

To test the functionality of the AR coating in a practical situation, we mea-

sured the polar MOKE hysteresis loops (exploiting the polarization modulation

technique of Sec. 3.2.1) from a 3 nm thick CoNi �lm patterned into a 1 µm wide,

100 µm long wire. The CoNi stack is formed by a Ta(3)|Ni(0.5)|[Ni(1)|Co(0.2)]3|

Cu(2)|Ta(2) multilayer (from top down, thickness in nm) with perpendicular mag-

netic anisotropy. As shown in Fig. 3.10a, the wire is located in the 2 µm wide gap

between two 100 µm long and 65 µm wide gold plates, coated with a 27 nm thick

α-Si layer. By analyzing the magneto-optical response, we can unambiguously

identify the signal coming from the embedded CoNi wire, with no contribution

from the non-magnetic electrodes. As the MOKE signal typically results in a tiny

intensity variation on top of a large background, this speci�c system implemen-

tation also demonstrates the general suitability of the proposed design for the

detection of small e�ects other than the magneto-optical ones. The polar MOKE

hysteresis loops from the embedded wire are plotted in Figs. 3.10b and 3.10c for

two di�erent wavelengths of the probing radiation, 550 nm and 800 nm. The AR

coating is expected to completely suppress the re�ectivity of the gold electrodes

at 800 nm (since it has been optimized for this wavelength), while at 550 nm

a substantial re�ection from the gold plates is expected. Using radiation of dif-

ferent wavelengths is geometrically equivalent to studying samples with di�erent

AR coating thickness (as shown in Fig. E.2), with the advantage that the very

same sample can be used and the wavelength can be tuned very accurately. The

data plotted with symbols in Fig. 3.10c clearly show that the AR coating signif-

icantly enhances the signal-to-background ratio, resulting in a ten-fold increase

of the relative amplitude of the hysteresis loops at the design wavelength (with

respect to a non-optimized case). We have checked that the increase in the rela-

tive signal is not caused by the di�erence between the magneto-optical constants

1Since we were impinging on the Air|Si interface at normal incidence with a wavelength of
≈ 300 µm, the amplitude of the electric �eld at z = 10 nm above the silicon substrate is almost
equal to the amplitude of the transmitted electric �eld, because of the n̂ × (ESi −EAir) = 0
boundary condition.

2The discrepancy between the two simulated enhancement values has to do with the fact
that the single-cycle �eld is broadband and so di�erent frequencies are ampli�ed di�erently by
a �xed-geometry design.



3.3 Anti-re�ection coating for ultrafast MOKE measurements 75

(a) (b) (c)

Figure 3.10: (a) Optical microscopy image of the measured structure, consisting in a
CoNi wire located in the 2 µm wide gap between two 100 µm long and 65 µm wide gold
plates, coated with a 27 nm thick α-Si layer. (b) Polar MOKE hysteresis loops for the
550 nm (blue lines) and 800 nm (red lines) wavelengths of the probing light. Symbols:
average of 25 hysteresis loops for the CoNi wire. Solid curves: average of 4 hysteresis
loops for a reference 100 µm×100 µm CoNi square, at the same wavelengths. (c) Zoom
in on the CoNi wire hysteresis loops depicted in (b). Adapted from [108].

of CoNi between the considered wavelengths (550 nm and 800 nm) by measuring

the polar MOKE signal from a 100 µm× 100 µm CoNi square of 3 nm thickness,

with no gold electrodes surrounding the structure. The resulting hysteresis loops

are shown as solid curves in Fig. 3.10b.

To quantitatively analyze our observations, we noted that when the areas

and the re�ectivities of di�erent re�ecting regions are known, one can predict the

ratio in the total measured Kerr ellipticity εK between the CoNi square (which

is larger than the probing spot) and the wire-shaped sample, according to [105]

η ≡ εwire
K

εsquare
K

=
Awire

Awire +ASi
RSi

RCoNi
+Aα−Si|Au

Rα−Si|Au

RCoNi

, (3.22)

where Aj is the total area occupied by a certain material j illuminated by the

laser beam and Rj denotes the corresponding re�ectance that can be measured

experimentally or calculated using the Fresnel equations. Table 3.2 summarizes

the relationship between the ellipticity of the wire and the ellipticity of the square,

assuming that the probing light is focused into a uniform circular spot with diam-

eter φ = 75 µm and the various probed areas are Awire = ASi ≈ φh = 75 µm2 (h =

1 µm), Aα−Si|Au ≈ π(φ/2)2 − 2φh ≈ 4300 µm2. The area occupied by the wire

is therefore about 2 % of the total area. Indeed, for the 550 nm wavelength, at

which the gold re�ectivity is not suppressed by the AR coating, the ellipticity
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Wavelength RCoNi RSi Rα−Si|Au η

550 nm � theory 0.49 0.40 0.50 0.017
550 nm � experiment 0.46 0.40 0.50 0.016

800 nm � theory 0.47 0.36 0.020 0.24
800 nm � experiment 0.49 0.34 0.031 0.19

Table 3.2: Summary of the ellipticity ratios (η) between a CoNi wire and a CoNi
square calculated according to Eq. (3.22). Adapted from [108].

signal for the wire is about 1.6 % of that for the large square, both theoreti-

cally and experimentally. In contrast, for the 800 nm wavelength, we expected

and observed an increase of this ratio by an order of magnitude. The deviation

between the theoretically expected value (η = 0.24) and the experimental value

(η = 0.19) can be explained by a combination of (i) a few-nm uncertainty in the

deposited material thickness, (ii) deviations of the optical properties of the vari-

ous layers from their nominal values and (iii) the e�ect of the wire and gold plates

edges, whose scattering properties were not taken into account in the calculations

reported in Table 3.2.

3.3.3 Conclusions

We have designed and experimentally demonstrated an AR coating for highly

re�ective metals, which are typically utilized in the fabrication of terahertz meta-

materials. The AR coating can e�ciently suppress the re�ection of light in the

visible/NIR range, typically used in the studies of ultrafast phenomena by pump-

probe techniques. At the same time, the coating does not perturb the propagation

of terahertz radiation and it does not a�ect the near-�eld enhancement in the con-

sidered meta-material. Our results are expected to open a path for time-resolved

experiments aimed at probing the ultrafast dynamics driven in nanostructures

by strong terahertz �elds, by using table-top femtosecond NIR laser sources.



Chapter 4

Thermal Simulations of

Arti�cial Spin Ice Systems

Arti�cial spin ice systems represent model systems for the study of geometri-

cal frustration. They consist in arrays of close-enough magnetic nanostructures

subjected to magnetostatic interactions, a key ingredient for the appearance of

frustration. The strength of these systems resides in the fact that all the rel-

evant parameters in�uencing the global behaviour can be easily tuned through

the advanced fabrication techniques described in Chap. 3. Hence, a systematic

study of geometrical frustration can be performed, and the acquired knowledge

can be exploited to provide active control on the system behaviour for future

frustration-based devices. After reviewing the birth of the �eld devoted to the

study of arti�cial spin ice systems, this chapter describes our approach to the

simulation of the thermally-activated magnetization reversal events occurring in

the nanostructures forming geometrically-frustrated arrays.

This chapter will constitute the frame for setting-up a research article in col-

laboration with J. Leliaert, S. Koraltan, D. Suess, D. De Sancho, and P. Vavassori.

4.1 Geometrical frustration

Frustration in physics is the inability of a system to simultaneously satisfy

(i.e. energetically minimize) all the pairwise interactions within it [116�118]. To

better clarify this de�nition, we can inspect the behaviour of three Ising-like

magnetic moments with magnitude µ disposed on the vertices of a triangular

lattice with lattice parameter a. The triangular lattice de�nes the xy-plane,
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Figure 4.1: (a) Ferromagnetic order in a triangular lattice as given by Eq. (4.2). (b)
Frustrated system in a triangular lattice as determined by the local antiferromagnetic
interaction imposed by Eq. (4.1). Along the vertical axes, the energies of the eight
possible states are shown. The numbers in parenthesis represent the degeneracy of the
corresponding con�guration.

while the magnetic moments are aligned along the z-direction and only the up-

down orientations are allowed. Considering the magnetic moments as point-like

magnetic dipoles, their interaction energy Eij is given by [5]

Eij =
µ0

4π

[
µi · µj

r3
ij

− 3
(µi · r̂ij)

(
µj · r̂ij

)
r3
ij

]
, (4.1)

where rij represents the distance vector between the i-th and j-th dipoles. For

the sake of this example, we neglect the exchange interaction (if any) and we can

de�ne a �ctitious �anti-dipolar� interaction, whose interaction energy Ēij consists

in

Ēij = −Eij =
µ0

4π

[
3

(µi · r̂ij)
(
µj · r̂ij

)
r3
ij

−
µi · µj

r3
ij

]
. (4.2)

Figure 4.1a shows the ground state (GS) determined according to Eq. (4.2):

the minimum energy is achieved for a parallel alignment of magnetic moments,

favouring ferromagnetic ordering. In case of a triangular lattice composed by N

sites, the ferromagnetic order can be extended to the whole lattice, so determining

a doubly degenerate GS, with a zero-point entropy per site of kB ln 2/N (negli-

gible for macroscopic systems as N → ∞). On the other end, the equilibrium

con�guration induced by Eq. (4.1) is completely di�erent. Two magnetic mo-

ments can be easily accommodated as shown in Fig. 4.1b, since the anti-parallel

alignment in now favoured. But what about the third magnetic moment? In both

cases (up or down alignment), either E13 or E23 is not minimized, so determining

a GS with higher energy than the ferromagnetic GS of Fig. 4.1a. Moreover, the

GS is more degenerate than before, since all the six con�gurations with two par-
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(a) Proton arrangement in water ice

(b) Pyrochlore lattice

E1 E2 E3

E4 E5 E6

(c) Six-vertex model

Figure 4.2: (a) The proton arrangement in water ice can be mapped into a system
of arrows in a tetrahedral unit. Adapted from [121]. (b) Scheme of the pyrochlore
lattice. Adapted from [122]. (c) Allowed con�gurations for the six-vertex model, each
one associated to an interaction energy Ej , for j = 1, . . . , 6. Adapted from [123].

allel magnetic moments and one anti-parallel to them are valid GSs with equal

energy. Extending these �nding to a lattice with N sites results in a very pe-

culiar behaviour, which can happen in frustrated systems: the GS degeneracy

grows along with N , so resulting in a �nite zero-point entropy per site S(0) given

by [119]

S(0) =
2kB
π

∫ π
3

0

ln (2 cosx) dx ≈ 0.338kB . (4.3)

In general, frustration can be caused either by competing interactions [120]

or by the lattice structure as in Fig. 4.1b, de�ning the concept of geometrical

frustration in the latter case. A typical example of geometrical frustration in a

real system is given by the proton arrangement in water ice (see Fig. 4.2a), where

both GS degeneracy and �nite zero-point entropy can be retrieved [121]. The

oxygen atoms form a periodic lattice with coordination number 4, isomorphic to

the center of the tetrahedra in the pyrochlore structure shown in Fig. 4.2b. Each

hydrogen nucleus (a proton) is placed between two neighbouring oxygen atoms

along the line connecting them. Because of the equilibrium O�O and O�H bond
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lengths, the lowest energy state has two protons positioned close to the oxygen

and two protons positioned farther away, forming a so-called two-in�two-out state

(ice rule) [124]. For every tetrahedron, there are six ways of achieving this state

and, since the tetrahedra are corner-sharing, the associated degeneracy cannot

be lifted by long-range order [125]. The arrangement of protons determined by

this rule can be mapped into a system of arrows lying along the axes connecting

the centers of adjacent tetrahedra, as shown in Fig. 4.2a. This one-to-one cor-

respondence between protons and arrows has to be completed by pointing each

arrow towards the oxygen atom closer to the proton the arrow represents. So, the

equilibrium properties of such a system of arrows can be studied by considering

the six-vertex model, a well-known two-dimensional model in statistical mechan-

ics which can be exactly solved in order to get the relevant thermodynamical

quantities [123]. This model considers arrow arrangements on a two-dimensional

square lattice. At each lattice vertex, four arrows meet and only six out of the

sixteen possible vertex con�gurations satisfy the two-in�two-out rule, as depicted

in Fig. 4.2c. For the behaviour of water ice to be reproduced, the energies of the

six possible con�gurations have to be considered equal, i.e. E1 = . . . = E6. With

this prescription, the zero-point entropy per proton (i.e. per arrow) in water ice

can be calculated [126]:

S(0) =
3

4
kB ln

(
4

3

)
≈ 0.216kB . (4.4)

4.2 Spin ice and arti�cial spin ice systems

The mapping of water ice into a system of arrows can be made, in a certain

sense, more �real� and not only a mere mathematical strategy for the calculation

of statistical quantities. Being the arrows in Fig. 4.2a representative of magnetic

moments, a ferromagnetic coupling between neighbouring arrows would deter-

mine the same type of frustration and GS degeneracy described by the six-vertex

model. This has been demonstrated to be the case for the rare-earth titanate

pyrochlores Dy2Ti2O7 and Ho2Ti2O7 [125, 127], whence the name spin ice sys-

tems. In these compounds, the rare-earth magnetic moment (with magnitude

µ ≈ 10µB) resides on the sites of the pyrochlore lattice (with a nearest-neighbour

distance a ≈ 3.54 Å) and points along the axis joining the centers of the two

tetrahedra it belongs to [128]. Because of the size of a and the magnitude of µ,

both the exchange interaction and the dipolar (magnetostatic) interaction have

to be taken into account. At the level of nearest-neighbour interactions, the

balance between exchange and dipolar interactions determines a ferromagnetic
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coupling, which is necessary for obtaining geometrical frustration in the rare-earth

titanate pyrochlores. Indeed, when the ferromagnetic coupling is not present (as

for Tb2Ti2O7), the spin arrangement does not show geometrical frustration [128].

Even if the situation gets more complicated because of the long-range nature of

the dipolar interaction, this long-range nature has been demonstrated to be a

needed condition for having frustration in spin ice systems and so GS degener-

acy [128,129].

The speci�c-heat measurement performed by Ramirez et al. on Dy2Ti2O7 be-

low 20 K [125] shows a zero-point entropy of ≈ 0.232kB per magnetic moment,

in good agreement with Eq. (4.4). Moreover, as the temperature grows, the mea-

sured entropy per magnetic moment approaches the value of kB ln 2 ≈ 0.693kB ,

which corresponds to the full entropy per magnetic moment, since there are only

two possible orientations. This fact suggests that, even if the low-temperature

equilibrium GS can be described by the six-vertex model, all the possible sixteen

con�gurations can occur when T > 0 K. So, the most general sixteen-vertex

model (see Fig. 4.3), obtained by removing the ice rule, has to be considered

for a proper description of the static properties of the system at an arbitrary

temperature [130�133].

A drawback of spin ice systems is the fact that the interesting features given

by frustration are not easy to inspect, since they occur close to a temperature of

0 K and on a scale of few tens of angstrom. In 2006, Wang et al. introduced the

square arti�cial spin ice (ASI) system [3], consisting in a planar array of elongated

magnetic nanostructures arranged along the edges of a square lattice, as shown in

Fig. 4.4a. The mapping between ASI vertices and the sixteen-vertex model can

be de�ned by identifying each nanostructure with a magnetic moment, and the

dipolar interactions between these magnetic moments create a two-dimensional

analogue to spin ice. This has been achieved thanks to a proper tuning of the ASI

system parameters through the use of advanced fabrication techniques (EBL, see

Sec. 3.1). In fact, as discussed in Sec. 1.3.2, the shape of a magnetic nanostructure

is a source of anisotropy. By fabricating elongated structures (small enough to be

single domain), it is possible to obtain a magnetic entity behaving like a �giant�

magnetic moment (macrospin) with only two stable directions (along the major

axis of the nanostructure). The typical magnitude of the macrospin magnetic

moment in ASI systems is µ ≈ 107µB , so the macrospins can e�ectively interact

by means of the dipolar interaction (4.1) at distances of few tens of nanometers.

Then, the coupling strength can be varied by modifying the distance between

adjacent nanostructures, up to a regime where each entity can be considered as

isolated. In the end, the high �exibility in the design of ASI systems results in
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Figure 4.3: The sixteen possible con�gurations considering four Ising-like magnetic
moments. They are divided in 4 groups (T1, T2, T3, T4) according to the energy
they can be associated to. Only T1 and T2 vertices satisfy the two-in�two-out rule.
In the upper row, each group has been marked with a color (the �lled dot inside the
vertices). The vertex numbering (from 0 to 15) represents the convention adopted
during this thesis. In the bottom row, the description in terms of e�ective vertex charge
is depicted. Here, a red-�lled dot represents a magnetic charge qm, while a blue-�lled
dot represents a magnetic charge −qm. The numbers correspond to the total charge
sitting on the vertex center. Moreover, T2 and T3 vertices also posses a net magnetic
moment, represented by green arrows only for T2 vertices.

the capability of building systems where the interesting low-temperature states

of spin ices can be obtained at the desired temperature, even at room temper-

ature. Moreover, the size of the involved magnetic nanostructures (hundreds of

nanometers) allows using well-established imaging techniques in order to record

the con�guration of an extended system at the level of the single nanostructure,

in some cases also as a function of time. These techniques comprise magnetic

force microscopy (MFM) [3], Lorentz transmission electron microscopy [134] and

x-ray photoemission electron microscopy [135,136].

The emergence of frustration in square ASI systems can be seen at a single-

vertex level. The di�erent distances between �rst nearest-neighbours and second

nearest-neighbours remove part of the degeneracy characteristic of spin ice sys-

tems, so separating the six vertices satisfying the ice rule in T1 and T2 vertices.

The minimum energy is achieved by T1 vertices, but not all the pairwise inter-

action energies are minimized, since the minimum energy con�guration for the

second nearest-neighbours is the one depicted in the bottom part of Fig. 4.4b.

The impossibility of simultaneously satisfying all the interaction �ts with the
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Figure 4.4: (a) SEM image of a square ASI system, where the scale bar displays a typ-
ical size-scale. The coloured arrows show how the mapping to the sixteen-vertex model
works: each nanostructure can be identi�ed with a magnetic moment. Inset: de�nition
of the lattice parameter a and of the nearest-neighbours. For the blue nanostructure, the
four red islands represent the �rst nearest-neighbours (with distance a

√
2/2), whereas

the two green ones are the second nearest-neighbours (with distance a). (b) Minimum
energy con�gurations for �rst and second nearest-neighbours.

de�nition of frustration given at the beginning of this chapter. However, the GS

of square ASI systems is not highly degenerate, since it consists in a full T1 tiling

formed by an alternation of T1− 5 and T1− 10 vertices (see Figs. 4.3 and 4.6a),

and there are only two extended con�gurations associated with this type of tiling.

So, the zero-point entropy per nanostructure is kB ln 2/N , which is negligible as

N →∞.

Besides the square ASI, many other geometries have been investigated [135,

137�144]. Of these, the arti�cial kagome spin ice consists in placing the magnetic

nanostructures on the edges of a honeycomb lattice. The resulting GS is highly

degenerate, since each vertex is formed by three nanostructures meeting at an

angle of 120◦, so determining the equivalence of the three pairwise interactions

and an energy hierarchy similar to the one depicted in Fig. 4.1b. Farhan et

al. [135, 145] have been able to image the time evolution of the kagome ASI GS

in few basic units of the honeycomb lattice, so exploring for the �rst time the

energy landscape of a thermally active ASI system.

4.2.1 Energy levels in the sixteen-vertex model

Figure 4.5b shows the energies of all the sixteen basic vertices for a square

ASI system in the macrospin approximation: the interaction energy is calculated
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according to Eq. (4.1) as if the macrospin would reside in the center of the

corresponding nanostructure. The general model for the calculation of the vertex

energies is schematically depicted in Fig. 4.5a, where a rectangular lattice of

lattice parameters a and b with a height o�set h is considered. According to this

model, the vertex energies are:

ET1 =
µ0µ

2

2π

[
1

a3
+

1

b3
− 48ab

(a2 + b2 + 4h2)
5
2

]
, (4.5a)

ET2 = −µ0µ
2

2π

(
1

a3
+

1

b3

)
, (4.5b)

EAT3 =
µ0µ

2

2π

(
1

b3
− 1

a3

)
, (4.5c)

EBT3 =
µ0µ

2

2π

(
1

a3
− 1

b3

)
, (4.5d)

ET4 =
µ0µ

2

2π

[
1

a3
+

1

b3
+

48ab

(a2 + b2 + 4h2)
5
2

]
. (4.5e)

Figure 4.5b has been obtained by considering a = b and h = 0 (planar square

ASI system). In this case, the four normalized energy levels (with respect to ET4)

take values which are independent from a: 0, 1/2− 2
√

2/12, 1/2−
√

2/12 and 1.

The high degeneracy of the spin ice system GS can be retrieved by introducing

a height o�set h∗ in a square ASI system, which can be calculated by imposing

ET1 = ET2 in Eqs. (4.5) [146�148]:

h∗ = a

√(
3

8

) 2
5

− 1

2
≈ 0.419a. (4.6)

The vertex energies calculated considering a = b and h = h∗ (three-dimensional

square ASI system) are shown in Fig. 4.5c. Now, there are only three energy

levels and the corresponding normalized energies are 0, 1/4 and 1. By further

increasing the height o�set (e.g. to 2h∗ as in Fig. 4.5d), the second nearest-

neighbour interactions become prevalent, and so the T2 vertices result to be in

a lower energy state than the T1 vertices. Moreover, ET1 = ET2 can also be

obtained for a planar system (h = 0) in case of a rectangular lattice (rectangular

ASI system). If we de�ne K = a/b, the condition to be ful�lled is [149]

(
1 +K3

) (
1 +K2

) 5
2 − 24K4 = 0. (4.7)
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(b) Planar square ASI (c) 3D square ASI � h∗

(d) 3D square ASI � 2h∗ (e) Planar rectangular ASI � a = K1b

Figure 4.5: Normalized vertex energies in the macrospin approximation. The �lled-
dot colors correspond to Fig. 4.3. (a) De�nition of a, b and h considering the T1 − 10
vertex. (b) Normalized energies for a planar square ASI system (a = b and h = 0). (c)
Normalized energies for a three-dimensional square ASI system (a = b and h = h∗). (d)
Normalized energies for a three-dimensional square ASI system with h > h∗ (a = b and
h = 2h∗). The T2 vertices are now energetically favoured with respect to T1 vertices.
(e) Normalized energies for a planar rectangular ASI system (a = K1b and h = 0).
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(a) Square ASI GS

-2qm

2qm

(b) Dirac string

Figure 4.6: (a) Square ASI system GS formed by an alternation of T1−5 and T1−10
vertices. (b) On top of the GS, a couple of T3 excitations can be formed, corresponding
to two e�ective magnetic charges of magnitude 2qm and −2qm. These charges can be
separated, but they remain connected by a string of magnetic moments belonging to
T2 vertices (magenta-�lled arrows).

The solutions of interest are K1 ≈ 0.556 and K2 = 1/K1 ≈ 1.797. For a = K1b,

the normalized energies are depicted in Fig. 4.5e and it is apparent that the high

degeneracy related to the ice rule is again recovered. Both h∗ obtained according

to Eq. (4.6) and the values for K obtained from Eq. (4.7) are exact only in the

macrospin approximation. The �nite size of the considered nanostructures and

their internal structure do play a role in the vertex energy landscape, as we will

see in the following sections.

An alternative way of modelling square ASI consists in the dumbbell approxi-

mation [122]. A uniformly magnetized nanostructure can be seen to host a ±qm
magnetic charge at its far ends according to Eq. (1.45b), so resembling a charge

dumbbell. Obviously, the net magnetic charge owned by a nanostructure is zero,

but there could be an e�ective magnetic charge located in the region where four

islands meet to form a vertex, as schematically depicted in the bottom row of

Fig. 4.3. A compensation e�ect leads to zero e�ective charge for both T1 and

T2 vertices, but whereas the T1 vertex charge shows a quadrupole con�guration,

the T2 vertex charge distribution determines the appearance of a net magnetic

moment, represented by the green arrows in Fig. 4.3. On the other hand, T3

vertices can be associated to an e�ective charge of ±2qm (and to a net magnetic

moment), whereas T4 vertices correspond to ±4qm. This description, also valid

for spin ice compounds, allowed for studying the magnetic properties of ASI sys-

tems in terms of magnetic monopoles joined by Dirac strings [122, 150]. Figure
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4.6a shows the GS for square ASI system composed by twenty-�ve vertices. By

�ipping the magnetization of a nanostructure, a couple of T3 excitations can

be formed, corresponding to two e�ective magnetic charges of magnitude 2qm

and −2qm. These e�ective charges behave like magnetic monopoles, interact-

ing according to Coulomb's law. When the ±2qm charges separate, they remain

connected by strings (Dirac strings) composed by a sequence of magnetic mo-

ments oriented from the negative charge to the positive charge, as shown by the

magenta-�lled arrows in Fig. 4.6b. The string formation is associated with the

appearance of T2 vertices, a fact that further enhances the energy above the GS.

This additional energy can be associated to the string tension and constitutes a

correction to a pure coulombic interaction between magnetic charges [150].

4.2.2 Vertex-frustrated lattices

The high degeneracy characteristic of spin ice systems resides in the exist-

ing degeneracy at the vertex level. Indeed, the energy degeneracy between T1

and T2 vertices goes beyond a simple magnetic moment inversion, and the GS

of such a system is characterized by a highly-degenerate mixture of T1 and T2

vertices. On the contrary, the fact that ET1 < ET2 in planar square ASI systems

leads to a well-de�ned antiferromagnetic GS (i.e. a full T1 tiling). A part by

introducing geometrical modi�cation to the planar square ASI as shown in the

previous section, an higher level of degeneracy can be recovered by decimating

the full lattice, removing properly de�ned nanostructures as suggested by Mor-

rison et al. [151]. According to the authors, �the zero-point entropy follows not

from a freedom of choice at the vertex level, but from the non-trivial relative

arrangement of the non-degenerate vertices themselves�. In this kind of systems,

it is impossible to �nd a global arrangement of magnetic moments such that all

the vertices are in their lowest energy con�guration. Equivalently, the GS must

contain excited vertices. However, these excited vertices are not excitations of

the global system, but they are excited by the topology of the lattice, since their

energy is constrained to be higher than the minimum energy for a vertex. In

a sense, they are topologically-protected excitations which cannot be eliminated

from the GS. This form of frustration is called vertex frustration, because it arises

from the frustrated attempt to allocate each vertex of the array in its minimum

energy con�guration, rather than from the frustration in the local pairwise inter-

actions. So far, two vertex-frustrated systems have been experimentally realized:

the shakti lattice of Fig. 4.7a [152] and the tetris lattice of Fig. 4.7b [153].
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1 µm

(a) Shakti lattice

1 µm

(b) Tetris lattice

Figure 4.7: (a) Shakti lattice, obtained by properly removing 1/4 of the nanostruc-
tures composing the planar square ASI system. Adapted from [152]. (b) Tetris lattice,
obtained by properly removing 3/8 of the nanostructures composing the planar ASI
system. Adapted from [153].

4.3 Accessing the ground state

The �rst square ASI systems were designed to be in a �frozen� state at room

temperature, which is one of the interesting features of ASIs. Indeed, since these

systems are thermally stable (or frozen) at room temperature, the interesting low-

temperature states can be obtained and imaged already at ambient conditions,

without the need of approaching a temperature of 0 K as for spin ice compounds.

Once the desired pattern has been fabricated, it retains its magnetic con�guration

for an average relaxation time t given by Eq. (1.56):

t =
1

ν0
exp

(
KV

kBT

)
, (4.8)

where T is the considered temperature, V is the nanostructure volume and K is

determined by Eq. (1.50b). For typical nanostructures considered in ASIs, only

the shape anisotropy has to be included (K1 = 0 in Eq. (1.50b)) and it turns

out that t >> 108 s at room temperature [3], so the pattern can practically

be considered as thermally stable (i.e. as if T = 0 K). Even if this stability is

desired for probing the frozen state, the involved energy barriers prevent any kind

of observable thermal evolution towards the GS, which is the low-temperature

equilibrium state. To stimulate the evolution of a frozen pattern towards the

GS, Wang et al. [154] proposed a protocol based on �eld demagnetization. The

target sample is initially saturated in a fully polarized T2 tiling by applying a
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high-enough magnetic �eld along a main diagonal of the square ASI pattern.

Then, the sample is rotated at constant speed inside an alternate magnetic �eld

of decreasing amplitude. However, this protocol turned out to be not suitable

for bringing the square ASI to its GS. Indeed, Nisoli et al. [155] demonstrated

that the demagnetization protocol generates a well-de�ned (albeit not thermally

equilibrated) disordered state which restores the macroscopic degeneracy, but

on a manifold characterized by higher energy than the GS. Starting from a full

T2 tiling, the demagnetization protocol does not signi�cantly reduce the average

vertex energy, but it moves the con�guration about within the energy manifold

the initial state resides in. So, the end result consists in the formation of a

disordered mixture composed by T1, T2 and T3 vertices in de�ned proportions,

resulting in a �nal state with extensive frozen-in zero-point entropy. Despite the

achievements of this approach, the demagnetization protocol failed in obtaining

the square ASI GS.

In 2011, Morgan et al. [156] discovered that a carefully-prepared as-fabricated

Py sample showed a frozen state very closely approaching the GS, as displayed in

Fig. 4.8a. In the �gure, it is possible to identify large ordered areas of alternating

T1− 5 and T1− 10 vertices (the GS signature) separated by domain walls com-

posed by T2 and T3 vertices. The considered pattern (with a lattice parameter

of 400 nm) was formed by Py bars of 280 × 85 nm2 area and 26 nm thickness.

For such islands, the stability time at room temperature is practically in�nite.

However, during the evaporation of Py in the last part of the fabrication process

(with a deposition rate of 0.6 Å · s−1), the volume of each nanostructure goes

from zero to the �nal value, so determining a variation of the energy barrier in

Eq. (4.8). At the �rst stage of the material deposition, the very thin Py islands

are free to �uctuate at the growth temperature (estimated to be 350 K), so hav-

ing the possibility of sampling their whole energy landscape. At a certain point,

the volume will be big enough to determine sizeable interactions but still leaving

the nanostructures free to �uctuate. Hence, the vertices try to order according to

their Boltzmann factors [158], which dictate GS ordering for this particular sam-

ple. A further increase in the island volume causes the freezing of the obtained

order, which can be imaged at the end of the process. The formation of domains

is due to the double degeneracy of the GS: the nucleation of a T1 tiling can

happen anywhere in the pattern and two colliding T1 domains can merge only

if they have a compatible stacking (i.e. the same kind of alternation of T1 − 5

and T1 − 10 vertices). This process resembles the order-disorder transition in a

two-component system [159,160].

The drawback of Morgan's discovery is that one sample corresponds to just
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(a) As-fabricated square ASI

T1

T2

T3

T4

(b) MFM legend

Figure 4.8: (a) MFM image of a 30× 30 µm2 region of the as-fabricated square ASI.
Large ordered areas of alternating T1−5 and T1−10 vertices are separated by domain
walls composed by T2 and T3 vertices. Adapted from [156]. (b) Legend for interpreting
MFM images of square ASI systems. Adapted from [157].

one measurement, since the order is imposed during fabrication, preventing fur-

ther con�guration evolutions at room temperature. In 2013, both Porro et

al. [157] and Zhang et al. [161] proposed a method for thermalizing ASI sys-

tems based on an actual heating of existing patterns, so not just relying on what

happens during the material deposition stage. While reaching a temperature

close to TC , the huge decrease in the saturation magnetization almost suppresses

the shape anisotropy barrier, leaving the nanostructures composing the pattern

in the superparamagnetic state. This process corresponds to a �melting� of the

ASI system and the islands are free to �uctuate and sample their whole energy

landscape. Upon cooling down, the �uctuation dynamics slows down, until the

system sits in a con�guration that turns out to be quite similar to that obtained

in as-fabricated samples, as shown in Fig. 4.9a, where once again large T1 do-

mains appear. By comparing this �gure with Fig. 4.9b (state generated by �eld

demagnetization), it is possible to note a di�erent behaviour between the heat

thermalization process and the demagnetization protocol: the thermalization by

heating is more e�ective in getting states close to the GS (a full T1 tiling), as

also highlighted by the fractional vertex populations in Fig. 4.9c. Moreover, this

thermally-induced melting-freezing protocol can be repeated as many times as
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(a) Thermalization by heating (b) Demagnetization protocol

(c) Vertex populations

Figure 4.9: (a) MFM image of a 15×15 µm2 region of a square ASI sample subjected
to the heat thermalization process. (b) MFM image of a 15×15 µm2 region of a square
ASI sample which underwent the demagnetization protocol. Image (a) shows ordered
GS domains, whereas (b) is characterized by a disordered state mainly formed by T1,
T2 and T3 vertices. (c) Fractional vertex populations corresponding to protocol (a)
(red columns) and protocol (b) (blue columns). The error bars come from the analysis
of various regions on the samples. Adapted from [157].

desired on the same sample, since the needed temperature is not high enough to

determine structural modi�cations1 [157]. Thereby, this approach paved the way

for the systematic experimental study of thermally-induced frozen states in ASI

systems. In literature, various materials, nanostructure sizes and shapes and lat-

1Actually, the �rst annealing can determine an irreversible change in the magnetic proper-
ties. However, the results of subsequent heat thermalization processes have been veri�ed to be
reproducible.
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tice parameters have been considered, but an extended GS in square ASI systems

has been obtained only in few cases [136, 161]. Most of the time, the end state

is similar to Fig. 4.9a, where T1 domains are separated by domain walls whose

distribution, composition and evolution might be exploited for the realization of

nanodevices [140].

4.4 Design of square arti�cial spin ice systems

Giving (i) the importance of the thermalization process by heating, whose

outcomes strongly depend on the parameters governing the systems, and (ii) the

need for predicting and controlling these outcomes, a method for properly design-

ing the involved nanostructures is mandatory. For square ASI systems, the GS

and the equilibrium con�guration are determined by the energy associated to the

vertex con�gurations in Fig. 4.3, while the energy barriers for the magnetization

reversal of the considered nanostructures set the time-scale for the evolution. The

evaluation of the relevant energies requires the de�nition of few aspects governing

the whole system:

• the size and the shape of the nanostructures;

• the choice of the (magnetic) material;

• the lattice parameter of the square grid.

Even if they are all of utmost importance, the work connected to this thesis

deeply explored the impact of the nanostructure size and shape on the global

behaviour, as we will se in what follows. Regarding the material, a model for

MS(T ) has been obtained by �tting the experimental data from Ref. [157]:

MS(T ) = M0K
S

(
1 − T

TC

)β
, where


M0K
S = 725 kA ·m−1

TC = 764 K

β = 0.35

. (4.9)

This set of parameters is not intended to describe the behaviour of MS close

to TC (as for the de�nition of critical exponents [12]), but it has been obtained

by �tting the experimental data in a broad temperature range, namely from

300 K to TC . The lattice parameter controls the strength of interactions. At this

stage, we would like to have as strong as possible interactions, to be far from the

isolated nanostructure behaviour and to have sizeable interactions even at high

temperatures. The limit we pose is to work with a minimum separation between
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neighbouring nanostructures that can be safely fabricated by EBL, so of the order

of 50 nm.

4.4.1 The single-vertex approximation

The most common approach found in literature for calculating the energy

barriers is the one described by Farhan et al. [135]:

∆E = ∆E0 +
Ef − Ei

2
. (4.10)

To get the actual energy barrier ∆E, the isolated island energy barrier ∆E0

(calculated following Ref. [20] or Ref. [162]) is linearly modi�ed according to the

initial (Ei) and �nal (Ef ) con�guration energies. These energies usually refer to

vertex energies and can be calculated through Eqs. (4.5) in the macrospin approx-

imation. Even if Eq. (4.10) can indeed be derived inside the framework provided

by the macrospin approximation, things start changing when considering (i) the

actual shape of the involved nanostructures and (ii) the fact that each island is

shared between two vertices.

As a �rst step in our design strategy, we analyzed the energy landscape of

a single vertex by relaxing one of the hypothesis associated to the macrospin

approximation in order to take into account the actual nanostructure shape.

Nonetheless, at this stage each island is still considered to be uniformly mag-

netized and to reverse by coherent rotation of the magnetization. The energies

evaluated in this single-vertex approximation (SVA) are improved with respect

to the values obtained by means of Eqs. (4.5), but the validity of the uniform

magnetization assumption strongly depends on the nanostructure size, shape and

temperature.

To illustrate the results of the SVA, we considered a shape frequently encoun-

tered in literature, namely the stadium-like shape. The size of each nanostruc-

tures has been tuned to be easily fabricated by EBL and to show a superpara-

magnetic behaviour far from TC (see the material parameters in Eq. (4.9)): the

major axis is 150 nm, the minor axis is 100 nm and the thickness is 3 nm. The

resulting lattice parameter is a = 260 nm, as described in Fig. 4.10. The process

to be analyzed, as shown in Fig. 4.11a, is the magnetization reversal of one of the

nanostructures composing the vertex (single-�ip event), from ϑ = 0◦ to ϑ = 180◦

and viceversa. The magnetostatic energy has been calculated according to the

method developed by Newell at al. [162], which allows taking into account the

actual nanostructure shape (cell-size of 5 nm× 5 nm× 3 nm), while the interac-
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g

d

b

a

Figure 4.10: Stadium-like nanostructures composing a vertex. If the major axis is
150 nm and the minor axis is b = 100 nm, a gap g = d

√
2 + b(

√
2− 1) ≈ 110 nm results

in a separation d between neighbouring nanostructures of 50 nm, so justifying the value
a = 260 nm. Playing with the nanostructure shape, g can be further reduced while
maintaining the d target value.

tion energy between islands has been evaluated as described in Sec. C.2. All the

above parameters lead to a relaxation time of 1 s at Tb = 388 K for an isolated

nanostructure (corresponding to an energy barrier of ≈ 23kBTb for ν0 = 1010 Hz),

considered to be the relevant blocking temperature criteria for these systems.

Figure 4.11b shows the energies involved in the single-�ip magnetization rever-

sal and allows us to describe several general aspects. The energy barriers can be

calculated by subtracting the energy of the starting state (ϑ = 0◦ or ϑ = 180◦)

from the maximum energy obtained during the reversal process (ϑ = 90◦ or

ϑ = 270◦). These barriers can be compared with the purple bar in Fig. 4.11b,

representing the energy barrier in case of an isolated nanostructure. Moreover,

it turns out that not all the sixteen possible con�gurations associated to a ver-

tex can be connected by means of a single-�ip event. Despite the chosen island,

only three base transitions can be identi�ed: T1 ↔ T3, T2 ↔ T3 and T3 ↔ T4.

Hence, the T3 vertices result to be key states for the achievement of a full T1

tiling, since T2 and T4 vertices can be converted in T1 vertices only passing

through T3. The T2 ↔ T3 transition points out another interesting feature: the

energy barriers for ϑ = 90◦ or ϑ = 270◦ are not always equal, meaning that the

neighbouring nanostructures can induce a preferential rotation direction for the

reversal.

From the energy barriers, Eq. (4.8) allows calculating the switching frequen-

cies (as the inverse of the relaxation time). Figure 4.11c shows their values ob-

tained for ν0 = 1010 Hz and considering all the possible con�gurations involving

the three black nanostructures in Fig. 4.11a. Each one of the eight con�gurations

is associated to four switching frequencies, since there are two starting states and
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T1− 10 T3− 2
ϑ = 0◦, 360◦ ϑ = 180◦

ϑ = 90◦

ϑ = 270◦

ϑ

(a) Magnetization reversal � Single-�ip event

T1

T2

T3

T4

(b) SVA � Energies

0 1

2 3

4 5

6 7

(c) SVA � Switching frequencies

Figure 4.11: (a) Schematic of a single-�ip event showing the magnetization reversal
leading to a T1 ↔ T3 transition. This event corresponds to the blue-dashed curve in
(b) and to con�guration 2 in (c). (b) Calculated SVA energies at Tb = 388 K for the
four con�gurations depicted in (a) when the three possible transitions connected to a
single-�ip event are considered. The value ϑ = 360◦ has been repeated for clarity. The
purple bar corresponds to the energy barrier of the isolated nanostructure. (c) Switching
frequencies for all the possible con�gurations involving the three black nanostructures in
(a). The numbers in the legend represent �initial-state angle � barrier angle � �nal-state
angle� for the gray nanostructure.
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Figure 4.12: Comparison between the SVA and Eq. (4.10). The continuous lines
represent the combined switching frequencies taken from Fig. 4.11c (the SVA), whereas
the dashed lines show the switching frequencies calculated according to the energy
barriers given by Eq. (4.10) and Ref. [162]. More details are given in the body of the
text.

two rotation directions for the reversal, as indicated by the legend. The vertical

order of the coloured dots is related to the symmetry of the con�gurations (what

equilibrium state and what rotation direction are preferred), whereas their posi-

tions indicate the transition type. Indeed, neglecting the colors, there are only

three scenarios (e.g. con�gurations 0, 1 and 2), corresponding to the three base

transitions in Fig. 4.11b. Moreover, four distinct switching frequencies (see, e.g.,

con�guration 1) are the signature of a preferential rotation direction as in the

case of T2 ↔ T3 transitions.

The switching frequencies so calculated can be compared to the approach

described by Eq. (4.10) and Ref. [162] for the calculation of energy barriers.

Since Eq. (4.10) does not provide a distinction between �ipping events occurring

through ϑ = 90◦ and through ϑ = 270◦, the two transitions corresponding to

the same starting state in the SVA have been combined by summing the relative

switching frequencies. This assumption can be justi�ed by considering these

events as independent transition channels, as stated in Eq. (D.2).

4.4.2 The double-vertex approximation

When calculating energy barriers for nanostructures composing a square ASI

system, the SVA does not take into account neither the lattice geometry (i.e. the

fact that each island is shared between two vertices) nor the long-range nature

of the dipolar interaction. However, it turns out to be enough to consider only
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bj = 1 if

1 2

j = 0 3
5

4 bj = 0 if
ϑ

(a) DVA � Considered nanostructures

(b) DVA � Transitions

Figure 4.13: (a) Considered nanostructures in the DVA. Energy barriers and switching
frequencies can be calculated for all the sixty-four possible con�gurations involving
the six black nanostructures. The island index j and the island coe�cient bj help in
assigning a unambiguous con�guration index, as explained in the body of the text.
(b) The twelve allowed transitions TiTj ↔ TkTl in the DVA (so considering single-�ip
events). The node colors represent the less energetic vertex involved in the pair, whereas
the numbers identify the vertex types i, j and k, l.

�rst and second nearest-neighbours (see Fig. 4.4a) for the evaluation of proper

interaction energies [163, 164]. This fact led us to introduce a second step in

our design strategy, the double-vertex approximation (DVA). Retaining all the

assumptions leading to the SVA, we are now considering the interactions between

all the seven nanostructures in Fig. 4.13a in order to evaluate energies and energy

barriers. Hence, the switching frequencies can be calculated as before for all the

sixty-four possible con�gurations for the six considered neighbours, as shown in

Fig. 4.14. A rule has been devised in order to classify all the con�gurations: an

index j has been associated to each one of the six neighbouring nanostructures,

as depicted in Fig. 4.13a. Then, a coe�cient bj has been de�ned, according to

the magnetization direction of each black nanostructure along its major axis:

bj = 1 if the magnetization lies either at ϑ = 0◦ for horizontal nanostructures

or at ϑ = 90◦ for vertical nanostructures, whereas bj = 0 if the magnetization

lies either at ϑ = 180◦ for horizontal nanostructures or at ϑ = 270◦ for vertical

nanostructures. Hence, the con�guration index ci (for i = 0, . . . , 63) can be found
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Figure 4.14: Switching frequencies at Tb = 388 K with ν0 = 1010 Hz for all the possible
con�gurations involving the six black nanostructures in Fig. 4.13a. The numbers in the
legend represent �initial-state angle � barrier angle � �nal-state angle� for the gray
nanostructure, as detailed in Fig. 4.11a.
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according to

ci =

5∑
j=0

bj2
j . (4.11)

Once the DVA calculation strategy has been implemented, it is possible to

easily vary all the relevant parameters governing square ASI systems (see the

beginning of Sec. 4.4), in order to see the impact on the switching frequencies.

Figure 4.14 also allows visualizing some general symmetries, which are related

to the distribution of the magnetization in the six neighbouring islands rather

than to the system parameters. Indeed, it turns out there are only twelve tran-

sitions to be considered (i.e. twelve signi�cant arrangements of coloured dots),

corresponding to all the possible transitions involving two adjacent vertices for

single-�ip events taking place in the shared island, as shown in Fig. 4.13b. More-

over, regarding the number of distinct switching frequencies associated with each

con�guration, there are only three cases. Four di�erent switching frequencies

(e.g. con�guration ci = 4) mean that the four transitions are characterized by

di�erent energy barriers. Two di�erent switching frequencies indicate a certain

symmetry in the process. Con�guration ci = 12 shows a case in which �ipping

through ϑ = 90◦ is equivalent to pass through ϑ = 270◦, but one of the two

minima (here ϑ = 180◦) is more stable than the other (ϑ = 0◦). On the con-

trary, for con�guration ci = 16 the two minima correspond to the same energy,

but �ipping through ϑ = 270◦ is a more probable process than �ipping through

ϑ = 90◦. Eventually, for con�gurations like con�guration ci = 28 the four transi-

tions are associated with the same switching frequency, which does coincide with

the switching frequency determined by considering the isolated nanostructure

energy barrier ∆E0.

4.4.3 The time evolution of the vertex populations

The calculation of energy barriers and switching frequencies is driven by the

need for investigating the thermalization process by heating. Starting from a

given initial state for a square ASI system at a given temperature, the idea

is to predict the evolution of the vertex populations as a function of time, in

order to see the impact of the various system parameters on the formation of the

equilibrium state. Some questions can be posed: what determines the appearance

of GS domains instead of a complete T1 tiling? How do the domain boundaries

(composed by T2 and T3 vertices) form and develop? To provide answers, we

decided to employ kinetic Monte Carlo (kMC) simulations [29,165�167].

The usual goal in Monte Carlo simulations is the calculation of the expecta-
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tion value of some observable quantity at thermal equilibrium [165]. In the past,

Monte Carlo simulations have been used for obtaining the equilibrium state for

square ASI systems [168, 169]. However, not all the Monte Carlo algorithms are

suitable for a dynamical interpretation of the results, i.e. for extending the �nd-

ings to out-of-equilibrium states. For this purpose, the kMC algorithm proved

to be an invaluable method for investigating the thermal behaviour of ASI sys-

tems [131, 135, 136, 170�172]. As detailed in Appendix D, the kMC needs the

switching frequencies to be formulate as rates with physical meaning [167]. This

requirement nicely match with our DVA, which has been precisely developed for

providing actual switching frequencies.

The main limitation of the DVA resides in the assumption regarding the

considered magnetization reversal process: the coherent rotation of a uniformly

magnetized magnetic nanostructure. While this mechanism allows us to quickly

calculate all the needed switching frequencies, it is unlikely to happen in a real

sample. Indeed, it is well known that the �eld-induced magnetization reversal

process in magnetic nanostructures does depend on their size and shape, demon-

strating the existence of reversal paths characterized by lower energy barriers

than the coherent rotation process [173�175]. Even if the magnetization rever-

sal is not �eld-induced while considering the thermal behaviour of ASI systems,

there are experimental evidences pointing out the existence of low-energy reversal

paths. In two related works (Kapaklis et al. [176] and Andersson et al. [177]),

the comparison between calculations and experimental data required the use of

a reduced nanostructure magnetization with respect to the value obtained for a

continuous thin �lm of the same material. The reduction (about 65 % [177]) has

been ascribed to the non-collinearity of the magnetization close to the edges of

a magnetic nanostructure, resulting in a smaller e�ective magnetic moment for

the islands. For nanostructures fabricated with isotropic materials, the bend-

ing of the edge magnetization originates from the balance between exchange and

magnetostatic interaction energies. This balance is not only responsible of the

magnetization equilibrium state, but it also has a deep impact on the develop-

ment of the reversal mechanism [45]. Similar conclusions have been obtained also

by Morley et al. [178], according to whom �whilst reduced magnetization or vol-

ume can explain some of this discrepancy, it seems clear once again that a pure

coherent rotation mechanism is unlikely to be strictly followed�.

For these reasons, we decided to investigate the thermally-activated magne-

tization reversal mechanism by making use of micromagnetic simulations per-

formed at �nite temperature.
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4.4.4 Micromagnetic simulations at �nite temperature

As we have seen in Sec. 1.3, micromagnetics is the theory describing magne-

tization processes [12]. Through micromagnetic simulations (i.e. the numerical

solution of the LLG equation (1.48)), it is possible to get an insight into the mag-

netization time evolution in magnetic nanostructures, both isolated and interact-

ing. In particular, the sLLG equation (see Sec. 1.4.1) allows taking into account

the e�ect of temperature by adding a properly-de�ned �uctuating magnetic �eld

(given by Eq. (1.66)) to the LLG e�ective �eld. The goal of this analysis is to

obtain a quantitative evaluation of the discrepancy between the coherent reversal

mechanism and what could happen in a real magnetic nanostructure because of

temperature. In other words, the calculation of the DVA switching frequencies

provides a way of quickly getting input values for kMC simulations, but the level

of approximation provided by the DVA has to be improved in order to include

the e�ect of thermal �uctuations on the energy barriers. Hence, we simulated

what happens to the magnetization of an isolated nanostructure (the same one

described in Sec. 4.4.1) in no applied magnetic �eld as a function of time and

temperature, for obtaining switching frequencies in case of a thermally-activated

magnetization reversal process. As simulation parameters, we considered the

saturation magnetization given by Eq. (4.9) [41], A = 13 pJ ·m−1 as exchange

sti�ness, α = 0.01 and a cell size of 5.234 nm× 5.125 nm× 3 nm.

The micromagnetic simulation program we decided to use was mumax3 [25],

because of its key characteristics. The capability of performing simulations at

�nite temperatures, by solving the sLLG equation, is one of its core functionalities

[36]. Moreover, being GPU-based, it is faster than conventional micromagnetic

solvers relying exclusively on the CPU (e.g. OOMMF [179]). This is of extreme

importance for us, since we need to simulate long time intervals (at least 10 µs)

in order to have enough statistics (i.e. enough reversal events) for extracting

the switching frequencies. All the micromagnetic simulations performed for this

chapter have been realized in collaboration with Dr. Jonathan Leliaert (Ghent

University, Belgium), who is member of the mumax3 development team.

Figure 4.15 shows the time evolution of the normalized x-component of the

magnetization (mx) at T = 700 K. Since the x-axis coincides with the easy axis

induced by the shape anisotropy, the jumps between stable states (mx ≈ 1 and

mx ≈ −1) clearly appears in the plotted stream. By counting how many times

the mx value crosses the line given by mx = 0, it is possible to count the number

of switching events and the time distance between successive crossing points is a

measure of the switching time for the corresponding jump. It is worthwhile to
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Figure 4.15: Simulated magnetization evolution for an isolated nanostructure at T =
700 K. The normalized x-component of the magnetization mx has been plotted in a
time interval of 1 µs to show the jumps between stable states. The A, B and C frames
correspond to the red-�lled dots depicted in the plot.

stress here the fact that �switching time� refers to the time the magnetization

resides close to an equilibrium state and not to the duration of the reversal it-

self (i.e. the sharp jumps in Fig. 4.15). In case of an isolated island, there is no

need for identifying the transition type, since the absence of neighbouring islands

makes the four switching frequencies all equal and so all the jumps contribute

to the statistical analysis of the same event. Figure 4.15 also shows three mag-

netization con�gurations corresponding to a jump from ϑ = 0◦ (A) to ϑ = 180◦

(C). The non-uniformity of the magnetization comes from the fact that here we

are considering both all the relevant energy terms (the exchange energy and the

magnetostatic energy) and the e�ect of thermal �uctuations, as described by Eq.

(1.66). The actual simulated stream at T = 700 K corresponds to a time interval
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(a) Switching time cCDF at T = 700 K

(b) Switching frequency as a function of temperature

Figure 4.16: (a) cCDF for the switching times extracted from the simulation shown in
Fig. 4.15 and best �t according to Eq. (D.10b). The black vertical line corresponds to
t = 5 ns. (b) Switching frequency νT as a function of temperature and best �t according
to the Néel�Arrhenius equation. More details are given in the body of the text.

of 10 µs, allowing us to get 1061 switching events. Each event has been associated

to a switching time ∆t as described above and Fig. 4.16a shows the complemen-

tary cumulative distribution function (cCDF). As explained in Appendix D, the

expected cCDF can be derived from Eq. (D.10b), but the obtained cCDF is char-

acterized by two modes. Below a switching time of 1 ns, the recorded events

re�ect both the statistics of the thermally-activated magnetization reversal and

the presence of �immediate switch-back� events. As noted by Brown [180], the

thermal energy leading to the reversal process can be high enough to determine

a double reversal, bringing the magnetization con�guration back to the starting
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state. Having no net e�ect, this double events can be neglected in our analysis (in

�rst approximation). Anyway, the two contributions are di�cult to disentangle,

but the mode we are interested in extends to long switching times (i.e. the tail of

the simulated cCDF). Hence, the �t can be performed according to the equation

a · exp(−νt) for the data satisfying t ≥ 5 ns, a limit chosen by looking for the

best agreement. The quantity to be retrieved is the average switching frequency

ν, whereas a only takes into account the fact we are considering a portion of the

simulated cCDF in order to exclude the contribution from immediate switch-back

events. All the analysis so far described has been repeated at multiple tempera-

tures, in order to extract the switching frequency νT as a function of temperature

(see Figs. F.1�F.7). Table 4.1 and Fig. 4.16b summarize the main results. The

errors for νT correspond to one standard deviation and have been calculated as

the square root of the diagonal elements of the covariance matrix returned by the

�tting function [181]. For νT as a function of T , the Néel�Arrhenius equation

(1.56) represents the proper �tting function, since we are dealing with thermal

activated events. However, we considered a slightly di�erent form, since we are

interested in capturing the di�erence with respect to a coherent magnetization

reversal:

νT = ν0 exp

(
−c∆E0

kBT

)
, (4.12)

where ∆E0 is the energy barrier for an isolated nanostructure in case of coherent

reversal and (ν0, c) are the �tting parameters. So, we calculated ∆E0 with

mumax3 at the needed temperatures (where the only temperature e�ect is given

by the fact that M = M(T )) for using the quantity ∆E0/(kBT ) as the �tting

T tSim NTot NFit νT ∆E0/(kBT )
(K) (µs) (Hz)

575 50 62 37 (8.3 ± 0.3) · 105 9.17
600 10 34 20 (2.10 ± 0.12) · 106 7.96
625 10 70 42 (4.90 ± 0.11) · 106 6.80
650 10 195 98 (1.025 ± 0.010) · 107 5.69
675 10 449 187 (2.273 ± 0.015) · 107 4.61
700 10 1061 339 (4.367 ± 0.011) · 107 3.53
725 10 2183 540 (9.901 ± 0.018) · 107 2.41
750 10 4391 560 (1.992 ± 0.003) · 108 1.14

Table 4.1: Switching frequency νT as a function of temperature T . The parameter
tSim refers to the total time considered in the micromagnetic simulations, NTot is the
total number of switching events occurred in tSim, NFit denotes the number of events
contributing to the �t (i.e. with a switching time greater than 5 ns) and ∆E0 is the
energy barrier for an isolated nanostructure in case of coherent magnetization reversal.
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independent variable (see the last column in Table 4.1). By considering ln(νT ) as

the dependent variable, we were able to exploit the weighted linear regression [182]

in order to give more relevance to the high-temperature data, supported by the

highest number of events (re�ecting in the lowest relative errors). Eventually, we

obtained

ν0 = (3.84 ± 0.07) · 108 Hz, (4.13a)

c = 0.576 ± 0.013. (4.13b)

The main result of this analysis is the fact that c < 1: the thermally-activated

magnetization reversal is associated with an energy barrier lower than the coher-

ent rotation energy barrier by a factor of c. As discussed in Sec. 4.4.3, c < 1

qualitatively agrees with the results reported in literature. Another interesting

conclusion emerges from this analysis: the energy barrier reduction factor c has

been found while considering perfectly de�ned nanostructures in our simulations,

i.e. without considering defects. So, the fact that c < 1 both in simulations

and in experiments seems to be primarily related to the nature of the thermally-

activated magnetization reversal. Defects certainly contribute in lowering the

energy barrier, but, according to our analysis, to a much lesser extent. In the

following, we will refer to the corrected-energy-barrier version of the DVA (SVA)

as corrected DVA (SVA).

Nonetheless, the value for c has been obtained for a certain combination of ge-

ometrical shape and material parameters, and the requirement of having enough

jumps in the simulated time interval restricted the range of possible simulation

temperatures (T > 575 K in this case). Then, up to this point, we cannot say too

much on how c and ν0 could be in�uenced by the temperature range of analysis

and by geometrical and material parameters. Regarding ν0, it is well known it

can depend on several parameters (see, e.g., Ref. [183]) and a recent analysis on

similar nanostructures returned a ν0 value of the same order of magnitude as Eq.

(4.13a) [184]. However, we are mainly interested in the behaviour of c, since it

resides inside the exponential function and it can determine huge changes in the

switching frequency order of magnitude.

4.4.5 Comparison with literature data

Our �ndings allowed us to analyze and interpret the experimental results

available in Ref. [136]. This research article has been chosen since it provides a

complete set of data we can try to reproduce by using our approach, namely the
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(a) Initial and �nal states

(b) Experimental data (c) KMC simulations

Figure 4.17: (a) Initial (left) and �nal (right) XMCD images recorded during the
experiment reported in Ref. [136]. The dark and bright contrast in the images is a
measure of the orientation of the nanostructure magnetization, as schematically shown
in the insets. In 8 hours at T = 350 K, the array evolved from a full T2 tiling to a full
T1 tiling. (b) Time evolution of the vertex populations extracted from the recorded
XMCD images. (c) KMC simulations aimed at obtaining a reasonable agreement with
the experimental data. Adapted from [136].

calculation of the energy barriers in the DVA, the use of a correction factor c and

the simulation of the time evolution of the vertex populations through the kMC

method.

The considered sample consists in a 40 µm×30 µm square ASI system formed

by stadium-like Permalloy (Ni83Fe17) nanostructures whose major axis is 470 nm,

the minor axis is 170 nm and the thickness is 3 nm. The lattice parameter is

a = 600 nm, corresponding to a g = 130 nm gap size. The array has been

brought to a full T2 tiling by applying a saturating magnetic �eld along the

[11] direction, as shown in the left part of Fig. 4.17a. Then, the time evolu-

tion of the vertex populations has been recorded by collecting x-ray magnetic

circular dichroism (XMCD) images [185] while the sample was left for 8 hours

at T = 350 K in no applied magnetic �eld. The XMCD image taken at the
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end of the experiment (right part of Fig. 4.17a) shows the formation of a full

T1 tiling, which corresponds to the GS. The inspection of the obtained images

allowed the authors to calculate the relative vertex populations and to extract

the time evolution for T1, T2 and T3 vertices, as shown in Fig. 4.17b. The ex-

perimental data have been compared with kMC simulations, where the relevant

parameters have been adjusted in order to get a reasonable agreement with the

experiment: MS = 350 kA ·m−1, ν0 = 5 · 1011 Hz and ∆E∗0 = 0.168 aJ. The

simulation results are shown in Fig. 4.17c. The parameter ∆E∗0 represents the

intrinsic energy barrier for the considered nanostructures, which indeed is the

parameter we considered in the micromagnetic analysis performed in Sec. 4.4.4.

Moreover, for better reproducing the experimental data, the authors introduced a

certain degree of disorder by randomly varying the intrinsic energy barrier of each

nanostructure using a Gaussian distribution centered on ∆E∗0 with a standard

deviation of σ∗ = 0.05∆E∗0 . If we now calculate the ∆E0 value (i.e. the energy

barrier for an isolated nanostructure in case of coherent reversal) to be used in

the DVA by considering the geometrical and material parameters above declared,

we obtain ∆E0 = 0.346 aJ, which corresponds to ∆E∗0/0.49. The use of a re-

duced energy barrier for the magnetization reversal, which was introduced in the

research article for getting a reasonable agreement with the experimental results,

can possibly be justi�ed through the micromagnetic analysis described in Sec.

4.4.4. It is not surprising we �nd here a di�erent value (c = 0.49) with respect

than before (c = 0.58), since c can depend on size, shape, material parameters,

defects and temperature.

Knowing all the relevant parameters, we were able to run kMC simulations in

the framework provided by the corrected DVA to test all our �ndings. For this

purpose, we considered a square array having the same size as the fabricated one

(40 µm×30 µm) and we took into account its �nite size by calculating the switch-

ing frequency of the nanostructures composing the boundaries according to the

corrected SVA, given that the boundary nanostructures are not shared between

two adjacent vertices. Since c and ν0 have been obtained in Sec. 4.4.4 for con-

siderably di�erent nanostructures, we decided to maintain the values extracted

form the research article: c = 0.49 and ν0 = 5 · 1011 Hz. Figure 4.18a shows

four images extracted form the XMCD measurement sequence. By combining

them with the time evolution reported in Fig. 4.17b, it is possible to identify two

regimes:

• in the string regime, chains (or strings) composed by T1 vertices form along

the [11] direction and tend to merge with neighbouring strings;
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(a) XMCD images

(b) KMC simulation results

Figure 4.18: (a) XMCD images corresponding to the time evolution shown in Fig.
4.17b. The labels �string regime� and �domain regime� indicates di�erent steps in the the
array evolution, as described in the body of the text. Adapted from [136]. (b) Sequence
of images extracted from our kMC simulations and corresponding to the regimes in (a).
The colors associated to each vertex type can be found in Fig. 4.3.

• after joining together, the strings cluster and form extended domains of

T1 vertices. We already saw this phenomenon, e.g. in Fig. 4.8a, since two

colliding T1 domains can merge only if they have a compatible stacking.

This stage is called domain regime.

If the domain walls could shrink or be expelled from the (�nite-size) array, the

�nal state would be the GS, i.e. a full T1 tiling, as happened in the experiment.

For comparison, Fig. 4.18b shows four images extracted from our kMC simula-

tions and corresponding to the above-described regimes. Each dot corresponds

to a vertex, according to the color-legend depicted in Fig. 4.3, and the �eld of

view has been adjusted to match the experimental one. In the �rst image, small

T1 strings (green-�lled dots) can be seen to develop along the [11] direction. The

strings grow and merges until T1 domains appear in the third image, and they are

separated by domain walls composed by T2 and T3 vertices (blue- and red-�lled

dots, respectively). Finally, also the kMC simulations show the formation of the

GS. Although the sequence of regimes seems to be well reproduced, this is not

the case for the corresponding time-scale, as shown in Fig. 4.19. The curves refer

to the time evolution of the vertex populations in the whole array and they have

been obtained as the average of the results coming form �ve kMC simulations.

Basically, our method is able to predict the formation of the GS, but on a wrong
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Figure 4.19: Time evolution of the vertex populations. The parameter PTj (j = 1, 2, 3)
denotes the occupation probability for each vertex type. The curves have been obtained
as the average of �ve kMC simulations. The black vertical line corresponds to 8 hours.

time-scale, since the equilibrium is reached in ∆t ≈ 107 s and not in 8 hours.

The reasons leading to this discrepancy can be several, since the path to kMC

simulations goes through many stages. However, the fact that the various regimes

are well reproduced (including the GS) but on a too long time-scale seems to imply

that something went wrong in the energy barrier calculations. Indeed, we were

forced to use parameters coming from the research article (c = 0.49 and ν0 =

5·1011 Hz) instead of calculating them through our approach (the corrected DVA),

and this could determine the observed discrepancy. It is true that the parameters

given in the research article have been derived from the experiment, but there is

not a unique way for tuning c and ν0 in order to get a reasonable agreement with

the measured data. What we would like to achieve is the determination of these

parameters through our approach (i.e. giving them a physical justi�cation), which

resulted to be impossible because of the considered temperature: the statistical

analysis of the switching frequency cannot be performed through micromagnetic

simulations for a stadium-like 470 nm × 170 nm × 3 nm nanostructure at T =

350 K. For this purpose, we identi�ed a di�erent method which provides the

direct evaluation of energy barrier values: the string method.

4.4.6 The string method

The time evolution of the thermally-activated magnetization reversal allowed

us to get a statistical evaluation of the energy barrier. On the other hand, the

energy barrier considered for the DVA is based on a direct calculation: since the

whole reversal path is known in the magnetization con�guration space (whose co-
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(a) Initial string (b) Intermediate string (c) Final string

Figure 4.20: String method applied to the Müller potential [186] considering a string
composed by 25 states (the white-dotted lines). The red dots represent the energy
minima to be considered. Adapted from [187].

ordinates are given by the components of M(r) ∀r), the energy at each relevant

point can be calculated according to Eq. (1.31), which represents the micromag-

netic energy as a function of the magnetization. However, as we have seen, the

advantage of a direct calculation is overshadowed by the fact that the con�gu-

ration path associated to the lowest energy barrier cannot be easily identi�ed:

the assumption of a coherent magnetization reversal mechanism has been found

to be not correct (from the micromagnetic simulations at high temperature and

from the reduction in the energy barrier needed for reproducing the experimental

results). By considering only two coordinates (x and y), a similar situation can be

visualized in form of a two-dimensional color plot, as depicted in Fig. 4.20a. This

plot represents the value of the Müller potential [186], a two-parametric model

potential having three minima and two saddle points constituting a benchmark

for this kind of problems. The white dotted line corresponds to the initial string :

a guessed sequence of 25 states in the con�guration space connecting two de�ned

states at opposite boundaries. Neither the string is associated to the minimum

energy barrier, nor the boundary states constitute equilibrium states sitting in

energy minima (marked as red dots in Fig. 4.20a). However, being this problem of

general interest (i.e. the search of minima and minimum energy paths in a multi-

dimensional space), mathematical methods have been developed for numerically

solving this task. In particular, we considered the string method [187�189] and its

application to magnetic nanostructures [190, 191]. The working principle of this

method is explained in detail in the former references, but Fig. 4.20 again helps in

sketching the general idea. Starting from the guessed string shown in Fig. 4.20a,

the string method provides a recipe for evolving each one of the states composing

the string towards a path (i) joining two energy minima and (ii) corresponding to

the minimum energy barrier between them. Essentially, considering a potential
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energy V (x, y), a minimum energy path ϕ : R → R2 is a curve connecting two

minima and satisfying [188]

∇V ⊥|ϕ = 0, (4.14)

where ∇V ⊥ is the component of ∇V normal to ϕ. So, the initial curve is iter-

atively evolved under the action of −∇V until Eq. (4.14) results to be satis�ed.

For micromagnetic problems, the stopping criterion is based on the energy di�er-

ence between each state and the corresponding state calculated in the previous

iteration [191]. Figure 4.20c shows the obtained minimum energy path, whereas

Fig. 4.20b shows an intermediate string still evolving towards the �nal path.

Back to our system, a string composed by states extracted from the coherent

magnetization reversal mechanism constitutes the starting string, and the string

method described in Ref. [190] can be applied to it in order to calculate the

magnetization reversal path associated to the minimum energy barrier. This path

is of particular relevance, since the energy barrier resides inside the exponential

function for the calculation of the switching frequency, and so it corresponds

to the most probable process for the thermally-activated magnetization reversal.

Moreover, the e�ect of temperature can be taken into account just by considering

the appropriate saturation magnetization value at the temperature of interest,

changing nothing in the string method recipe. This part is still work in progress,

so no results will be presented here. All the string method calculations we are

considering will be performed in collaboration with Sabri Koraltan and Dr. Dieter

Suess (TU Wien, Austria).

4.5 Conclusions

Through this chapter, we outlined a consistent method for the calculation of

the switching frequencies related to thermally-activated processes in ASI systems.

For this kind of processes, the switching frequency is well described by the Néel�

Arrhenius equation, so the associated energy barrier is a key quantity to be

determined. Our �rst step, leading to the SVA, consisted in evaluating the energy

barrier at a vertex level taking into account the correct shape of the involved

nanostructures. We soon recognized that this approximation was too stringent,

since each nanostructure is shared in between two adjacent vertices. Hence, we

introduced the DVA and we calculated all the 64× 4 switching frequencies to be

used as input for kMC simulations. However, both the DVA and the SVA are

based on the magnetization reversal by coherent rotation, since this is the fastest

way for calculating the quantities we need. To check this fact, the magnetization
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reversal process to be considered was inspected by micromagnetic simulations

at �nite temperature, which returned an interesting conclusion: even if we were

simulating perfectly de�ned nanostructures, the thermal activation of the reversal

process caused the reduction of the energy barrier value to be used in the Néel�

Arrhenius equation for retrieving the simulated switching frequencies. Then, we

coded this information in form of an energy barrier reduction factor c. The fact

that c < 1 can often be encountered in literature, but we tried here to give a more

robust physical justi�cation despite the presence of defects in real samples.



Chapter 5

Thermoplasmonic Heating of

Arti�cial Spin Ice Systems

Chapter 4 has been devoted to the analysis of thermally-induced processes

in square ASI systems. In literature, all the experiments involving the heating

of ASI systems are performed through the use of conventional heaters [157,161],

namely by putting the sample in contact with a surface whose temperature can

be precisely controlled. Here, we exploit the principles of plasmonics to optimize

the absorbed power in metallic nanostructures that can be used as building blocks

for ASI systems. The heating process is given by the dissipation of the absorbed

power in form of heat. Such kind of mechanism o�ers several advantages with

respect to the conventional heating by contact. First of all, the anisotropy in

the optical properties of elongated metallic nanostructures allows controlling the

delivered heat by means of the polarization direction of the incident electromag-

netic radiation, providing selective heating: the extent of the absorbed power

depends on the relative orientation between the light polarization and the major

axis of the nanostructures. Furthermore, by focusing the beam to small spots

(up to 1 µm in diameter) a local heating can be obtained. Finally, the thermal

inertia, which sets an upper limit to the heating (or cooling) rate, is not given by

bulky heating devices, but it is determined by the sample thermal properties, so

allowing for studies on a wider temporal scale. All these features are of interest

both for fundamental research and for possible opto-activated ASI-based devices.

This chapter will constitute the frame for setting-up a research article in

collaboration with C. Rufo and P. Vavassori.
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5.1 Thermoplasmonics

The �eld of thermoplasmonics deals with heating metal nanostructures with

light [59, 192, 193]. This apparently simple sentence contains all the elements

we need for the heating of ASI systems. The key physical principle consists

in what happens when light is shone on a metal nanostructure: the electric

�eld of the incident light put the free electrons in an oscillatory motion (i.e.

an oscillatory electric current) and a resonance, called localized surface plasmon

(LSP) resonance, can appear. As brie�y discussed in Sec. 1.6.1, the interaction

with the electromagnetic radiation is enhanced when a LSP resonance is excited

and energy is transferred to the nanostructure in the most e�cient way. Part of

this energy is re-emitted in form of electromagnetic waves (scattered radiation)

and part is dissipated inside the nanostructure in form of heat via the Joule e�ect.

We are interested in this second mechanism (i.e. absorption) for our purposes.

The most important quantity to be determined in order to compute the resulting

temperature �eld is the total (heat) power absorbed by the nanostructure, which

is given by σabsIb for an incident electromagnetic wave with intensity Ib, since

we de�ned the absorption cross section σabs as an �e�ective area� crossing the

incident electromagnetic wave and quantifying the absorbed power. By using

linearly polarized light and elongated nanostructures, it is possible to tune the

absorbed power by changing the direction of the polarization axis, as shown in

Fig. 1.7b.

When delivering energy to a metal nanostructure fabricated on top of a sub-

strate, the main mechanism governing the temperature �eld evolution is heat

di�usion. For a medium with thermal conductivity κ, mass density ρ and spe-

ci�c heat at constant pressure cp, the heat di�usion equation reads [59]

ρcp
∂T (r, t)

∂t
− ∇ · κ∇T (r, t) = qh(r, t), (5.1)

where qh(r, t) is the heat power density (per unit volume). The steady-state

solution of Eq. (5.1) provides the equilibrium temperature �eld for a metallic

nanostructure embedded in a homogeneous medium with thermal conductivity κ

and illuminated with CW radiation. For a spherical nanostructure of radius a,

the temperature variation with respect to the reference boundary temperature is

given by [59]

∆T (r) =


Qh

4πκa
for r ≤ a,

Qh
4πκr

for r > a,

(5.2)
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where r denotes the distance with respect to the center of the sphere and Qh is

the integral of the heat power density qh over the volume of the sphere. Actually,

Eq. (5.2) neglects temperature variations inside the sphere itself, but this is a

very good approximation in case the thermal conductivity of the nanostructure

was much higher than the thermal conductivity of the surrounding medium. The

validity of this assumption, which actually is not limited to spherical nanostruc-

tures, is a general trend for metallic nanostructures and it is rather independent

from size or morphology [59]. From the viewpoint of thermoplasmonics, the

power absorbed by the incident �eld constitutes the heating source, so we can

take Qh = σabsIb. In case of a nanostructure array, we consider N identical

spherical nanostructures of radius a, delivering the heath power σabsIb at the

position rj (j = 1, . . . , N), and so the steady-state temperature increase ∆Tj

experienced by each nanostructure results to be [59]

∆Tj = ∆T selfj + ∆T extj =
σabsIb
4πκa

+

N∑
i=1
i 6=j

σabsIb
4πκ |rj − ri|

, (5.3)

whereas the temperature increase anywhere in the surrounding medium is

∆T (r) =

N∑
i=1

σabsIb
4πκ |r− ri|

. (5.4)

The term ∆T selfj in Eq. (5.3) represents the self-contribution to the temperature

increase of the j-th nanostructure and the term ∆T extj contains the temperature

variation induced by the other N − 1 nanostructures at the position rj . The

interplay between ∆T selfj and ∆T extj determines the appearance of two regimes:

• if ∆T selfj is dominant, the temperature signi�cantly increases only in the

vicinity of each nanostructure (localization regime);

• if ∆T extj is dominant, thermal collective e�ects occur and tend to homog-

enize the temperature through the whole array, despite the nanometric

nature of the heat sources (collective regime).

For a two-dimensional array of nanostructures, a dimensionless parameter ξ2 can

be de�ned for discriminating between the two regimes [59,194]:

ξ2 =
p2

3La
, (5.5)

where p is the average neighbouring nanostructure period (i.e. center-to-center
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distance) and L stands for the characteristic size of the illuminated area, namely

the beam diameter in case of a circular uniform beam or the beam FWHM for

Gaussian illumination. So, ξ2 � 1 identi�es the localization regime, whereas

for ξ2 � 1 the temperature tends to be homogeneous through the whole array.

Another interesting fact is that, for practical samples, the nanostructures are not

embedded in a homogeneous medium, but they are usually fabricated on top of

a suitable substrate, so residing at the interface between two media. In this case,

the thermal conductivity κ in all the above formulas has to be substituted by the

average thermal conductivity κ̄ [195]:

κ̄ =
κ1 + κ2

2
, (5.6)

where κ1 and κ2 are the thermal conductivities of the two media. According to

Ba�ou [59], �this important conclusion is at the basis of a current assumption in

thermoplasmonics: when conducting numerical simulations involving plasmonic

structures lying on a substrate, one can consider the structures as embedded in a

uniform medium with thermal conductivity κ̄, simplifying a lot the simulations�.

When illuminating a portion of the whole array and for uniformly distributed

nanostructures, it is possible to �nd an approximate solution to Eq. (5.3) repre-

senting the temperature increase ∆T0 at the center of the illuminated region (see

also Appendix G) [59,194]:

∆T0 ≈
σabsP

π2D2κ̄a
+

σabsP

πκ̄DS

(
1− 2

√
S

D
√
π

)
, (5.7a)

∆T0 ≈
σabsP ln(2)

π2H2κ̄a
+

σabsP

2κ̄HS

√
ln(2)

π

(
1−

4
√
S ln(2)

πH

)
, (5.7b)

where P is the source power reaching the sample and S denotes the unit cell

area of the nanostructure array. Equation (5.7a) applies for a circular uniform

beam of diameter D, whereas Eq. (5.7b) is valid for a Gaussian beam having a

FWHM of size H. A last extension to the theory has to be done while considering

non-spherical nanostructures. It turns out the radius a in the above formulas has

to be substituted with the factor βa0, where the correction factor β usually lies

in the range 1− 2 and a0 is the radius of a sphere having the same volume as the

considered nanostructure [59,195,196].

Equations (5.7) can be used both in the localization regime and in the col-

lective regime, only changing the weight of the various terms. However, for very

packed nanostructure arrays, optical interactions might also play a role, and the
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array is no more constituted by an ensemble of optically independent heaters,

as Eqs. (5.3) and (5.7) assume. The regime of near-�eld optical interactions in

thermoplasmonics has been poorly explored until now, but it is quite relevant to

us when considering ASI systems, as we will see in Sec. 5.3.

5.2 Heating of isolated nanostructures

To implement the thermoplasmonic heating of ASI systems in a reliable way,

the process has to be investigated by steps. We started from the elementary

unit usually composing these systems, which consists in an elongated magnetic

nanostructure designed according to what we reported in Chap. 4. As discussed

in Sec. 1.6.1, an elongated metal nanostructure shows an anisotropic behaviour

in the optical properties. In particular, the absorption cross section can be tuned

depending on the nanostructure aspect ratio (AR), i.e. the ratio in between the

nanostructure geometrical axes. The main idea consists in exploiting this optical

anisotropy for providing selective heating: in case of linearly polarized light, both

the resonance peak position and the absorbed power depend on what nanostruc-

ture axis the polarization direction is parallel to, as shown in Fig. 1.7b. Hence,

the selectivity comes from the fact that, by changing wavelength and polarization

direction, the power transferred to a metallic elongated nanostructure (and thus

the delivered heat power) can be properly tuned.

For testing this principle, we fabricated arrays of magnetically and optically

non-interacting metallic nanostructures characterized by sizes and shapes usually

encountered in ASI systems. Figure 5.1 shows SEM images of six arrays fabricated

on top of the same glass substrate. The geometrical parameters are detailed in

Table 5.1. This sample has been fabricated according to recipe A.3. In particular,

the whole surface of the substrate has been coated with a 4 nm thick titanium �lm,

Array name Array size dx dy x-axis pitch y-axis pitch
(µm2) (nm) (nm) (nm) (nm)

A1− 1.50 200× 200 100 150 330 380
B1− 1.75 200× 200 100 175 330 405
C1− 2.00 200× 200 100 200 330 430
A2− 1.50 200× 200 100 150 330 760
B2− 1.75 200× 200 100 175 330 810
C2− 2.00 200× 200 100 200 330 860

Table 5.1: Geometrical parameters for the arrays shown in Fig. 5.1. The parameters
dx and dy are the nanostructure diameters along the x- and y-axis, respectively.



118 5 Thermoplasmonic Heating of Arti�cial Spin Ice Systems

(a) Array A1−1.50 (b) Array B1−1.75
(c) Array C1−2.00

(d) Array A2−1.50 (e) Array B2−1.75 (f) Array C2− 2.00

Figure 5.1: SEM images of the arrays fabricated for testing the thermoplasmonic
heating of nanostructures to be used in square ASI systems. The material stack for each
nanostructure is, from top down, Au(5 nm)|Py(10 nm)|Au(25 nm). The geometrical
parameters are detailed in Table 5.1.

in order both to avoid the charging e�ect during the EBL process and to improve

the nanostructure adhesion. After the EBL patterning and the resist development

steps, a trilayer �lm has been deposited: Au(5 nm)|Py(10 nm)|Au(25 nm), listed

from top down. The 5 nm thick gold layer on top serves as a protective capping

layer, whereas the 25 nm thick gold bottom layer constitutes an e�cient nanoan-

tenna interacting with the incident electromagnetic �eld. The chosen thickness

for gold and Permalloy comes from the theoretical and experimental search of

the best stack for optimizing the interaction with the electromagnetic �eld in the

wavelength range we are interested in. The optical properties have been tested

by measuring the extinction spectra in case of linearly polarized light for samples

A1−1.50, B1−1.75 and C1−2.00. The quantity 1−T shown in Fig. 5.2a (and rep-

resenting extinction) comes from the measurement of the transmittance T , which

has been normalized to the transmittance of a substrate region without arrays.
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(a) Experimental 1 − T (b) Simulated σabs

Figure 5.2: (a) Experimental extinction spectra (1 − T ) measured using linearly po-
larized light. The incident electric �eld Eb was parallel either to the major axis dy or to
the minor axis dx of the nanostructures composing the arrays. (b) Simulated absorption
cross section σabs corresponding to the cases shown in (a). In both images, the black
vertical lines correspond to λ = 532 nm and λ = 785 nm.

Considering, e.g., array A1−1.50 in case of perpendicular polarization directions

(blue-solid line and blue-dashed line in Fig. 5.2a), the resonance peak obtained

when the incident electric �eld Eb is parallel to the major axis dy (Eb ‖ dy) cor-
responds to higher extinction than the resonance peak obtained for Eb parallel

to the minor axis dx (Eb ‖ dx). Moreover, the Eb ‖ dy resonance peak sits at a

longer wavelength, as expected according to the theory discussed in Sec. 1.6.1.

This general behaviour is also followed by the other two arrays (i.e. B1 − 1.75

and C1− 2.00), even if with relevant di�erences. In particular, when comparing

the Eb ‖ dy resonance peak for the three arrays (coloured solid lines in Fig. 5.2a),

we can see the expected peak-position shift towards higher wavelengths which

mirrors the growth in the AR. The theory also predicts the enhancement of the

resonance-peak height according to the AR (and the volume) trend, as indeed

observed. Hence, from these measurements, the concept of selective heating can

be clearly understood. Let us suppose our sample consists in a B1− 1.75 array.

If we shine the array with a linearly polarized light corresponding to λ = 785 nm,

the nanostructures can either e�ciently remove energy form the incident beam

or become almost transparent, depending on the orientation of the nanostructure

with respect to the polarization direction. For λ = 785 nm, we are very close to

the major-axis resonance (Eb ‖ dy), but we are quite far from it when Eb ‖ dx
(as marked by the black-�lled dots in Fig. 5.2a), and the extinctions di�er by

an order of magnitude. This is what we mean by selectivity in this context: the
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ability of varying the optical behaviour by changing the polarization direction

of the incident light. Even if we discussed the principle for sample B1 − 1.75,

the conclusion is valid for all the three samples we considered, the only di�er-

ence being the resonance wavelength. Actually, this kind of selectivity is nothing

new [52,197], but what is interesting for us is the fact that the reported behaviour

is mirrored by the absorption cross section σabs, which is the quantity appearing

in Eqs. (5.7) and quantifying the temperature increase. Indeed, Fig. 5.2b shows

the σabs curves simulated using COMSOL Multiphysics [115] and corresponding

to the cases depicted in Fig. 5.2a. The refractive indices have been taken from

Ref. [58] for gold and from Ref. [198] for Permalloy. Through σabs, the selectivity

in the optical properties transfers to a selectivity in the nanostructure heating,

since the temperature increase results to be dependent on the light polarization

direction. In other words, at a given wavelength, not only the incident power P

determines the amount of heat power delivered by the nanostructures, but also

the polarization direction through the behaviour of σabs. In case of optimal con-

ditions, as for array B1 − 1.75 at λ = 785 nm, the polarization direction plays

the role of a �switch� due to the huge di�erence in the σabs values, so allowing us

to basically turn on and o� the interaction. A fundamental role is played by the

25 nm thick gold layer, since the optical properties of gold determine sharp and

strong LSP resonances for the geometries and wavelengths we are interested in.

This fact translates into an e�cient coupling with the incident electromagnetic

�eld, providing the basis for the e�ective selective heating just described. This is

not the case for Permalloy alone, for which the interaction with the electromag-

netic �eld is too weak to provide e�ective heating under the same experimental

conditions, as shown in Fig. G.1.

The validity of our statements has been veri�ed by exploiting the temperature

dependence of the coercive �eld HC , as described by the Sharrock equation (1.62).

The measurement of the temperature increase has been indirectly performed by

measuring the coercive �eld variation ∆HC as a function of the incident power.

For each array, eight hysteresis loops have been recorded through the experimen-

tal setup described in Sec. 3.2.2. The wavelength of the probe laser (λ = 532 nm)

lies in a region of ine�cient thermoplasmonic heating for both polarization di-

rections (see Fig. 5.2a), in order to not perturb the measurement results. The

pump laser (λ = 785 nm) was linearly polarized along the major axis of the

nanostructures composing the arrays and its power has been varied between 0

and 60 mW. By �xing the pump wavelength, we veri�ed the e�ect of the nanos-

tructure AR on the heating. Considering a pump beam FWHM of H = 30 µm

as L in Eq. (5.5), it turns out that ξ2 < 0.075 for all the fabricated arrays, so
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(a) A1 − 1.50 (b) B1 − 1.75 (c) C1 − 2.00

Figure 5.3: Hysteresis loops recorded along dy at increasing incident power (λ =
785 nm). The inset in (a) shows the polarization axis of the incident electric �eld
Eb, which is parallel to dy. For each sample, the blue hysteresis loop corresponds
to P = 0 mW, whereas the red hysteresis loop corresponds to P = 60 mW. The gray
hysteresis loops contained between the limiting loops have been obtained at intermediate
powers, as summarized in Fig. 5.4.

we always are in the collective regime, corresponding to a homogeneous heating.

The probe beam was made smaller (H = 15 µm) than the pump beam in order

to probe only the central region of the pump spot, where the temperature (given

by Eq. (5.7b)) is most likely to be uniform. An image of these spots can be found

in Fig. G.2. The measured hysteresis loops are shown in Fig. 5.3. As expected

from the AR dependence of the demagnetizing �eld (shape anisotropy, see Sec.

1.3.2), at room temperature (blue hysteresis loops, P = 0 mW) sample C1−2.00

shows the highest coercive �eld (HC ≈ 263 Oe), followed by sample B1 − 1.75

(HC ≈ 178 Oe) and then by sample A1 − 1.50 (HC ≈ 105 Oe). At maximum

power (red hysteresis loops, P = 60 mW), all the samples are characterized by

narrower hysteresis loops, but sample B1− 1.75 shows the largest variation, fol-

lowed by sample C1− 2.00 and then by sample A1− 1.50, as summarized in Fig.

5.4. If the heat power delivered by the nanostructures was the same at �xed in-

cident power (i.e. same σabs for the three cases), the temperature increase would

be the same and, from the Sharrock equation, we would get a higher ∆HC for the

nanostructures characterized by the highest AR (sample C1 − 2.00). Nonethe-

less, this is not the case, and the ∆HC behaviour follows the 1− T hierarchy at

λ = 785 nm (see Fig. 5.2a).

Even if a quantitative evaluation of the correspondence between temperature

and ∆HC is very di�cult, a �t to the Sharrock equation (1.62) could express

the consistency of our results. The incident power P can be considered as the
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Figure 5.4: Coercive �eld variation as a function of the incident power. For each
sample, the reference coercive �eld at zero power corresponds to the one extracted by
the blue hysteresis loop in Fig. 5.3. The coe�cients returned by the �tting function are
summarized in Table 5.2.

independent parameter (instead of the temperature) by noticing that Eq. (5.7b)

returns ∆T ∝ P. If we stay far from the nanostructure blocking temperature,

the coercive �eld variation is mainly given by the temperature dependence of the

saturation magnetization in the anisotropy �eld HK , so Eq. (1.62) can be recast

to provide a reasonable �t function in the form

∆HC(P) = c1

[(
1− P

c2

)β
− 1

]
, (5.8)

having considered Eq. (1.63) for the temperature dependence of MS (β = 0.35)

and imposing ∆HC(0) = 0. The black-dashed lines in Fig. 5.4 show the �t results

and Table 5.2 lists the returned values for c1 and c2. The errors correspond to

one standard deviation and have been calculated as the square root of the di-

agonal elements of the covariance matrix returned by the �tting function [181].

The parameter c2 represents a power scale for the coercive �eld variation ∆HC :

the smaller c2, the higher the variation that can be produced at a given inci-

Array name c1 c2
(Oe) (mW)

A1− 1.50 (3.5 ± 0.8) · 102 (1.9 ± 0.4) · 102

B1− 1.75 (4.3 ± 0.7) · 102 (1.3 ± 0.2) · 102

C1− 2.00 (5.1 ± 1.4) · 102 (1.7 ± 0.4) · 102

Table 5.2: Coe�cients returned by the �tting function (5.8).
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Figure 5.5: Measured hysteresis loops along dy on array B1 − 1.75. The blue and
red hysteresis loops have been taken from Fig. 5.3b and correspond to measurements
performed at P = 0 mW and at P = 60 mW for Eb ‖ dy. The green-dotted hysteresis
loop has been recorded on the same sample at P = 60 mW, but considering Eb ‖ dx.
The same incident power (at λ = 785 nm) determines di�erent ∆HC according to the
polarization direction, as marked by the black-�lled dots in Fig. 5.2a.

dent power. Indeed, the c2 values re�ect the 1 − T hierarchy, being the array

B1−1.75 characterized by the lowest c2 value and the highest coercive �eld vari-

ation. Moreover, since we are considering a model taking only into account the

temperature variation of the anisotropy �eld HK in the Sharrock equation, the

parameter c1 should grow along with the AR of the considered nanostructures.

Indeed, this is what the �ts return: the smallest c1 value corresponds to array

A1− 1.50 and the value gets bigger for bigger ARs. The maximum temperature

variation we have induced can be estimated from the incident power P through

Eq. (5.7b). At λ = 785 nm, for the nanostructures forming array B1 − 1.75 we

can consider σabs = 5 · 104 nm2, κ̄ = 0.7 W ·m−1 ·K−1 (the average between the

values for glass and air), an e�ective radius a0 = 50 nm and a correction factor

β = 1. So, for H = 30 µm and P = 60 mW, the �rst term in Eq. (5.7b) gives

∆T0,1st ≈ 7 K, whereas the second term gives ∆T0,2nd ≈ 248 K, corresponding

to a total temperature variation of ∆T0 ≈ 255 K.

After having analyzed the e�ect of the nanostructure AR on the heating,

we inspected the dependence of σabs from the light polarization direction. The

blue and red hysteresis loops in Fig. 5.5 have been taken from Fig. 5.3b and

represent the hysteresis loops measured at P = 0 mW and at P = 60 mW on

array B1− 1.75 when it is illuminated by a λ = 785 nm light, linearly polarized

along dy. When rotating the polarization direction to bring it parallel to dx, the

nanostructures are no more in resonance (as shown by the black-�lled dots in Fig.

5.2a) and the heating should be much less e�cient in this con�guration. Indeed,
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(a) Experimental 1 − T (b) B2 − 1.75

(c) ∆HC vs P

Figure 5.6: In�uence of the array �lling factor on the thermoplasmonic heating: com-
parison of arrays B1− 1.75 and B2− 1.75. (a) Experimental extinction spectra (1−T )
measured using linearly polarized light. (b) Hysteresis loops recorded along dy at in-
creasing incident power (λ = 785 nm) for array B2−1.75 and Eb ‖ dy. (c) Coercive �eld
variation as a function of the incident power. The coloured dots represent experimental
data, the black-dashed line is a �t to the B1− 1.75 data and the red-dashed line shows
the prediction discussed in the body of the text.

this is demonstrated by the green-dotted hysteresis loop in Fig. 5.5, which has

been obtained at P = 60 mW, but for linearly polarized light along dx: the ∆HC

variation with respect to the unperturbed hysteresis loop is minimal.

However, the absorption cross section is not the only parameter in�uencing the

temperature increase. Also the �lling factor (i.e. the fraction of array area covered

by the nanostructures) does play a role. This dependence appears in S, the unit

cell area of the nanostructure array. The parameter S resides in the second term

of Eq. (5.7b), which is the most relevant term in case of homogeneous heating:

by doubling S, the corresponding ∆T0 should be halved. Hence, all the previous

analysis has been repeated for array B2−1.75, fabricated as array B1−1.75, but
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with a unit cell area as twice as big. Figure 5.6a shows the comparison between

the extinction spectra of arrays B1−1.75 and B2−1.75. The values for B2−1.75

are approximately half of the values for B1 − 1.75 and, since the nanostructure

size and shape are the same, the di�erence can be ascribed to the di�erence in

S, which is indeed a factor of 2 smaller for B2 − 1.75. Figure 5.6b shows the

hysteresis loops performed under the same conditions of those in Fig. 5.3b, and

Fig. 5.6c summarizes the behaviour of ∆HC as a function of the power P. For

comparison, the ∆HC values for array B1−1.75 have been taken from Fig. 5.4 and

repeated here. The black-dashed line represents the same �t performed before,

but now the red-dashed line corresponds to a prediction we made in order to test

our assumptions on the �t parameters. Basically, the red-dashed line has been

calculated through Eq. (5.8) by considering the following observations. Since the

parameter c1 mainly depends on the AR, we chose to maintain the same value

we found for array B1 − 1.75, being the involved nanostructures characterized

by the same AR. On the other hand, the parameter c2 represents a power scale

for the coercive �eld variation. Because of the variation in S, we estimated that

twice the power should be needed in order to get for array B2 − 1.75 the same

e�ects we saw in B1 − 1.75. Hence, we considered c2(B2) = 2c2(B1). The end

result is given by the red-dashed line in Fig. 5.6c, which is in good agreement

with the experimental data.

5.3 Heating of isolated vertices

After having investigated the thermoplasmonic heating of non-interacting

nanostructures, we focused on isolated vertices formed by the nanostructures

in array B1 − 1.75 (dx = 100 nm, dy = 175 nm). A vertex is composed by four

nanostructures, aligned in pairs along two perpendicular directions. Figure 5.7

shows SEM images of three arrays fabricated on top of the same glass substrate.

The geometrical parameters are detailed in Table 5.3. This sample has been fab-

Array name Array size Gap Pitch
(µm2) (nm) (nm)

V 1− 100 200× 200 100 680
V 2− 150 200× 200 150 730
V 3− 200 200× 200 200 780

Table 5.3: Geometrical parameters for the arrays shown in Fig. 5.7. The gap refers to
the edge-to-edge distance g shown in Fig. 4.10. The pitch denotes the side of the square
lattice formed by the vertex centers.
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(a) Array V 1 − 100 (b) Array V 2 − 150 (c) Array V 3 − 200

Figure 5.7: SEM images of the arrays fabricated for testing the thermoplasmonic
heating of isolated vertices. The material stack for each nanostructure is, from top
down, Au(5 nm)|Py(10 nm)|Au(25 nm). The geometrical parameters are detailed in
Table 5.3.

ricated according to the same recipe used for the previous sample. Each vertex

can be considered as magnetically and optically isolated from the other vertices

in the array. As shown in Fig. 5.8a, we measured the extinction spectra for arrays

V 1 − 100 and V 3 − 200 in case of linearly polarized light along the side of the

square lattice formed by the vertex centers. Since both the nanostructure orienta-

tions considered before are present in the array, both the resonance peaks appear

during the same measurement. However, a slightly shift in the peak positions

can be observed: the peak corresponding to the nanostructure minor axis blue-

shifts, whereas the peak corresponding to the nanostructure major axis red-shifts.

This fact is the signature of a near-�eld optical interaction occurring in between

the nanostructures forming the vertex. Indeed, the peak separation increases as

the gap size decreases [54], being larger for array V 1 − 100. For matching the

V 1 − 100 resonance peak, the thermoplasmonic heating of isolated vertices has

been performed with a λ = 808 nm pump beam and the same wavelength has

been used for array V 3− 200 in order to make easy the side-to-side comparison.

For consistency with all the previous analysis, Fig. 5.8b shows the simulated ab-

sorption cross sections σabs, but it is much more interesting to disentangle the

contributions coming from the two pairs of nanostructures composing a vertex.

So, the absorption cross sections characterizing the nanostructure pair parallel to

the incident electric �eld Eb have been extracted from the simulations and shown

in Fig. 5.9 as coloured solid lines. On the other hand, the coloured dashed lines

represent the absorption cross sections for the nanostructure pair perpendicular

to the incident electric �eld Eb. At an incident wavelength of λ = 808 nm the
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(a) Experimental 1 − T (b) Simulated σabs

Figure 5.8: (a) Experimental extinction spectra (1− T ) measured using light linearly
polarized along the side of the square lattice. As a reference, the green-dashed lines
represent the extinction spectra for array B1−1.75 taken from Fig. 5.2a. (b) Simulated
vertex absorption cross section σabs corresponding to the cases shown in (a). In both
images, the black vertical lines correspond to λ = 808 nm.

optical selectivity is preserved, being the σabs values di�erent by more than one

order of magnitude for both the simulated vertices. In Sec. 5.2, we saw that

a certain degree of optical selectivity also implies heating selectivity, but this

was true in case of elongated nanostructures oriented along the same direction.

However, when working with isolated vertices, the nanostructures composing the

array are arranged along two perpendicular directions. The pair arranged along

the pump beam polarization direction interacts more e�ectively with the inci-

dent �eld and so it absorbs more energy, but the heat is di�usively redistributed

until a steady state is reached. The net result is that, even if only a pair of

nanostructures operates as an active heater, the whole vertex temperature will

substantially raise. The hysteresis loops shown in Fig. 5.10 seem to con�rm this

view, both for array V 1− 100 and for array V 3− 200. The blue hysteresis loops

represent measurements performed with no pump beam (P = 0 mW), so corre-

sponding to room-temperature hysteresis loops. The red hysteresis loops have

been measured for a P = 60 mW, λ = 808 nm pump beam whose electric �eld

Eb1 lies in the MOKE setup sensitivity plane. Eventually, the green hysteresis

loops show the measurements obtained by rotating the pump beam polarization

direction by 90◦. In case of Eb1 pumping (red hysteresis loops), the coercive

�eld variation for array V 1− 100 results to be ∆HC ≈ 25 Oe, whereas for array

V 3− 200 we get ∆HC ≈ 30 Oe. Indeed, the extinction values for the two arrays

at λ = 808 nm coming from Fig. 5.8a are not too di�erent and thus the corre-
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(a) V 1 − 100, simulated σabs (b) V 3 − 200, simulated σabs

Figure 5.9: Contributions to the simulated absorption cross section σabs coming from
the two orthogonal nanostructure pairs forming an isolated vertex, for (a) array V 1−100
and (b) array V 3 − 200. In both images, the black vertical lines correspond to λ =
808 nm.

sponding ∆HC values are expected to be the same. Another interesting fact is

that, for each array, there is almost no di�erence in between the coercive �elds

obtained for the two pump polarization directions (the red and the green hystere-

sis loops). This fact is a direct consequence of being in the homogeneous heating

regime. The coercive �eld is mainly determined by the jump in the elementary

hysteresis loop characterizing the nanostructures whose major axis lies in the

MOKE setup sensitivity plane. Indeed, the hysteresis loops collected during the

performed measurements (in longitudinal con�guration) represent the average

magnetization behaviour coming from the component of the nanostructure mag-

netization lying in the sensitivity plane, which also contains the applied magnetic

�eld. For this reason, the nanostructures whose major axis lies in the sensitivity

plane contribute to the average magnetization with an easy-like hysteresis loop,

characterized by a jump in correspondence of the coercive �eld. On the other

hand, the nanostructures whose major axis is perpendicular to the sensitivity

plane show (on the average) no hysteresis and so no contribution to the average

coercivity. Despite the fact we made measurements with the pump beam linearly

polarized both in the sensitivity plane (Eb1) and perpendicular to it (Eb2 ⊥ Eb1),

the coercive �eld variation we measure is almost the same, meaning we are reach-

ing a similar temperature for the nanostructures lying in the sensitivity plane for

both the heating conditions.

To prove this fact, we performed a COMSOL Multiphysics [115] simulation

of the temperature �eld in case of a �nite array (7× 7 vertices) designed to have
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(a) V 1 − 100 (b) V 3 − 200

Figure 5.10: (a) Measured hysteresis loops along the direction parallel (red) and
perpendicular (green) to Eb1 on array V 1 − 100 for a λ = 808 nm pump beam. (b)
Measured hysteresis loops along the direction parallel (red) and perpendicular (green)
to Eb1 on array V 3− 200 for a λ = 808 nm pump beam.

the same geometrical parameters as V 1− 100. Since the simulated array is much

smaller than the measured one, we aim at understanding the general behaviour

without expecting to get the actual array temperature. However, the performed

simulation can be well representative of what happens when working with very

focused pump beam, so that few vertices are involved. For each nanostructure,

the thermal properties needed for the simulations (i.e. the thermal conductivity,

the mass density and the speci�c heat at constant pressure) have been calculated

as a volume average of the characteristic values for gold and nickel. Regarding the

substrate, the value κ = 1.4 W ·m−1 ·K−1 has been considered. Moreover, all

the ∆T values returned by the simulation have to be referred to T0 = 300 K. The

nanostructures lying along the simulation y-axis and x-axis have been associated

to half the σabs values corresponding to the upper black-�lled dot and to the lower

black-�lled dot in Fig. 5.9a, respectively. By doing so, we de�ne a preferential

direction (the y-axis) for the interaction with the incident electromagnetic �eld,

so implementing the optical selectivity. The incident power has been spatially

modulated with a Gaussian pro�le of growing FWHM, but the average beam in-

tensity has been kept �xed to the maximum value used during the measurements,

corresponding to a total power P = 60 mW for a beam FWHM of 30 µm. Fig-

ures 5.11a-5.11d show the ∆T temperature �eld when the pump beam FWHM

corresponds to 680 nm, 1360 nm, 2720 nm and 5440 nm, respectively. The wider

the area in which the incident power is distributed, the higher the number of

structures contributing to the total heating. In the homogeneous heating regime,
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(a) FWHM ×1 (b) FWHM ×2

(c) FWHM ×4 (d) FWHM ×8

(e) Temperature pro�les

Figure 5.11: (a)-(d) Simulation of the temperature �eld for a �nite array with the
same geometrical parameters as V 1− 100. The light-blue dashed-line circles represent
the considered pump beam FWHM in each case, in units of the array pitch (i.e. 680 nm).
(e) Temperature pro�les along the black lines depicted in panel (d).
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this fact re�ects in the increase of the background temperature, which is made

visible by the yellow halo in Fig. 5.11d. This point can be further clari�ed by ex-

tracting the temperature pro�les along the black lines depicted in Fig. 5.11d: line

1 crosses a row of nanostructures which are actively interacting with the incident

�eld, while line 2 is associated to the orthogonal nanostructures. The resulting

pro�les are shown in Fig. 5.11e. Even if the growing number of involved vertices

determines the rise of the average ∆T , the temperature di�erence in between

the nanostructures composing the central vertex (i.e. the di�erences in between

the values marked by black-�lled dots in Fig. 5.11e for a given beam FWHM

choice) seems to be constant. This temperature di�erence is quite relevant since

it quanti�es the degree of heating selectivity.

To better inspect this point, we simulated one more time the temperature

�eld corresponding to Fig. 5.11c, but after having removed the central vertex.

The result is shown in Fig. 5.12a, where the central vertex has been drawn only

as a guide. On the other hand, Fig. 5.12b shows the �complementary� simula-

tion, namely a simulation only involving the central vertex, but maintaining the

same beam FWHM. The temperature pro�les along the white lines marked in

Fig. 5.12a are depicted in Fig. 5.12c, where also the pro�les relative to the single

vertex case have been traced. By looking at the region where the central vertex

resides (|y| < 225 nm), it can be seen that all the other vertices produces the

di�use temperature background, which is almost constant in all the central vertex

region, while the temperature di�erence is mainly determined by what happens

inside the vertex itself. This �nding is in agreement with Eq. (5.3), where the self-

contribution can be separated from the contribution coming from the rest of the

array. Moreover, the additivity of the two contributions can be veri�ed by adding

together the retrieved pro�les and by comparing the result with the outcome of

the full simulation, as we did for getting Fig. 5.12d. If we performed the same

simulations with a power N times higher, we would get the same results, but all

the values would be N times bigger. All these conclusions helped us in identify-

ing the most important control parameters for a useful selective heating process.

The beam intensity determines the temperature di�erence in between the nanos-

tructures forming a vertex, so the intensity is the parameter to be considered in

order to tune the heating selectivity at a vertex level. For the case depicted in

Fig. 5.12c, the intensity used in the simulation led to a vertex temperature dif-

ference of 3.6 K for a background ∆T of 6.8 K. Increasing ten times the intensity

would return a vertex temperature di�erence of 36 K. Nonetheless, for a given

FWHM, the intensity also controls the background temperature caused by the

response of all the other illuminated nanostructures. Considering the ten-fold
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(a) No central vertex (b) Only central vertex

(c) Temperature pro�les (d) Comparison

Figure 5.12: (a) Simulation of the temperature �eld corresponding to Fig. 5.11c
(FWHM ×4) obtained by removing the central vertex (drawn here only as a guide).
(b) Simulation of the temperature �eld under the same conditions, but considering only
the central vertex. The colors still refer to the color bar in Fig. 5.11a. (c) Temperature
pro�les along the white lines depicted in panel (a) for both the simulations. (d) Recon-
structed temperature pro�les (i.e. sum of the appropriate pro�les) and comparison with
the result obtained for the full 7× 7 array (green and light-green plots in Fig. 5.11e).

intensity increase just discussed, we would also get a background ∆T of 68 K.

Even if there would be an increase in the heating selectivity at the vertex level,

the background ∆T could become too high to ensure the proper functioning of

our approach (e.g. by reaching the Curie temperature of the nanostructure mag-

netic material). The solution is then to play with the FWHM at �xed intensity:

by reducing the illuminated area (i.e. by further focusing the beam), the num-

ber of involved nanostructures is reduced, so it is the background temperature.
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However, the restriction on the FWHM is not a limit, since it allows us to get a

local selective heating, concentrating the e�ect of the thermoplasmonic heating

approach on a reduced number of vertices.

Going back to Fig. 5.10, what we learnt from the simulations on a �nite array

can anyway explain why, despite we performed measurements with the pump

beam linearly polarized along two perpendicular directions, the coercive �eld

variation was almost the same. The reason is that, for a pump beam FWHM

of 30 µm, the temperature di�erence at the vertex level (estimated to be below

10 K) results to be much smaller than the background ∆T (estimated to be above

100 K), so there is almost no selectivity as long as ∆HC is concerned.

5.4 Conclusions

The work summarized in this chapter represents a preliminary but complete

investigation paving the way for the thermoplasmonic heating of ASI systems.

The �rst step of the study consisted in identifying the proper nanostructure ge-

ometry and material to be used. The planar size and shape have been chosen

according to what is usually found in ASI systems, whereas the Au|Py|Au stack

has been derived from the optimization of the optical properties. The measure-

ments performed on arrays of non-interacting nanostructures showed we could

achieve the most important feature we were looking for: selective heating. By

fabricating arrays characterized by nanostructures of di�erent AR and �lling fac-

tor, we were able to verify all the e�ects predicted by the theory regarding the

temperature increase, so becoming aware of the fact we were considering a ro-

bust and reliable method. However, this was not enough, since ASI systems are

characterized by densely-packed nanostructures aligned along di�erent directions

(perpendicular in case of square systems). Hence, as a next step, we studied the

behaviour of non-interacting vertices composed by four nanostructures, where we

found signatures of optical interaction and the loss of heating selectivity. Anyway,

supported by measurements and guided by simulations, we identi�ed the param-

eters which can play a fundamental role in the selective heating of ASI systems:

the beam intensity determines the degree of selectivity, but the beam FWHM has

to be accordingly adjusted to get the right temperature scale, since the heating

regime is also determined by the beam size. The restriction on the FWHM size

is not a limit, but, rather, it goes hand in hand with the requirement of having

a local heating. This feature is of interest when thinking at the possibility of

fabricating opto-activated ASI-based devices, where the thermal properties can

be locally altered by scanning a focused beam on the desired region.
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Chapter 6

The Role of Asymmetric

Magnetostatic Interactions

When a magnetic nanostructure is immersed in an externally applied mag-

netic �eld, spatially uniform over the length-scale of the nanostructure, a wide

variety of �eld-induced behaviours are observed, both experimentally and us-

ing micromagnetic simulations. They include reversal via vortex nucleation and

annihilation [175], domain wall nucleation and motion [199] and coherent rota-

tion [173]. The sequence of stable and metastable states through which a mag-

netic nanostructure evolves during �eld-induced processes depends on and can

be controlled by size, shape, material parameters and �eld history. However, it is

important to realize that, under the action of a uniform (according to the above-

mentioned de�nition) applied magnetic �eld, a magnetic nanostructure can only

explore a limited portion of the energy landscape determined by geometry and

material properties. Whatever the �eld history would be, some of the possible

reversal paths and metastable (in zero �eld) magnetization con�gurations can-

not be induced in a magnetic nanostructure using a spatially uniform applied

magnetic �eld. In this chapter, we show that, by subjecting a magnetic nanos-

tructure to properly designed competing magnetostatic interactions leading to

asymmetric and inhomogeneous local magnetic �elds, the magnetization rever-

sal process can be tuned beyond geometry and material properties engineering.

This study is not con�ned to academic interest alone, but it might also have a

relevant technological impact, since magnetostatic interactions have been success-

fully exploited to provide interconnectivity in arrays of closely-spaced magnetic

nanostructures, as in nanomagnetic logic devices [200] and in ASI systems. In
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particular, vertex-frustrated lattices (see Fig. 4.7) have been derived from the

decimation of full square ASI systems: the vertices are no more all constituted

by four nanostructures, but a subset of them is formed by removing either one

or two nanostructures, so leaving those vertices subjected to asymmetric and

inhomogeneous local magnetic �elds.

This chapter will constitute the frame for setting-up a research article in

collaboration with A. Crespo, J. M. Porro, P. Landeros, V. Metlushko, A. Berger,

and P. Vavassori.

6.1 The magnetization energy landscape

As we saw in Sec. 1.3, the balance between the exchange and the magne-

tostatic interactions determines the equilibrium magnetization con�guration in

magnetic nanostructures1. While the exchange interaction tries to keep parallel

all the magnetic moments, the magnetostatic interaction favours the reduction

of the stray �eld spatial extent, so forcing the magnetization to be parallel to

the nanostructure surface. Through Eq. (1.31), each magnetization con�gura-

tion can be associated to a scalar value which represents its (free) energy, and

the set of all the possible energies for a given nanostructure represents its en-

ergy landscape. The factors governing the form of the energy landscape are the

nanostructure size, shape and material. Once the material has been �xed, the

nanostructure geometry de�nes the stable (and metastable) magnetization con-

�gurations [173�175]. In case of elongated magnetic nanostructures, two stable

con�gurations are of particular relevance: the quasi-uniform (QU) magnetization

state and the magnetic vortex state. Figure 6.1a shows a QU magnetization state

in a stadium-like Permalloy nanostructure of 710 nm× 180 nm× 25 nm size: the

average magnetization along the major axis (i.e. the easy axis determined by the

shape anisotropy) corresponds to ≈ 0.97MS . On the other hand, for the magnetic

vortex state in Fig. 6.1b, the average magnetization along both the major and

the minor axes is close to zero. Despite the di�erences, both these con�gurations

constitute stable magnetization con�gurations for the considered nanostructure,

but their energy values allow separating the ground state from the metastable

one. Hence, we started our study by performing a systematic analysis of the mag-

netization energy landscape for stadium-like Permalloy nanostructures of 25 nm

thickness as a function of both the length of the minor axis and the aspect ra-

tio (AR). We �xed the thickness to a smaller value than the planar dimensions

1As we have done until now, for the sake of this thesis we continue neglecting any kind of
magnetocrystalline anisotropy.
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(a) Quasi-uniform magnetization state

(b) Magnetic vortex state

Figure 6.1: Energetically stable magnetization states in no applied magnetic �eld for
a stadium-like Permalloy nanostructure of 710 nm× 180 nm× 25 nm size.

we are interested in, which typically are above 100 nm due to fabrication limi-

tations (i.e. in order to be able to fabricate nanostructures with a well-de�ned

shape). The analysis of the energy landscape in no applied magnetic �eld has

been conducted by using the OOMMF micromagnetic solver [179], since the LLG

equation (1.48) describes the magnetization evolution towards the e�ective �eld

Heff , which corresponds to the equilibrium condition stated by Brown's equa-

tions (1.46). Clearly, by introducing a prede�ned magnetization con�guration as

an input for the simulation, the evolution ended up in the closest energy mini-

mum, since the simulations have been performed at zero temperature. For this

reason, we proceeded according to the following steps [201]:

• chose the nanostructure minor axis length and AR;

• initialize the magnetization con�guration with a uniform magnetization

state and let the system evolve according to the LLG equation. If the �nal

state corresponds to a QU magnetization state, record the energy value,

otherwise it does not represent a stable magnetization con�guration for the

chosen geometric parameters;

• initialize the magnetization con�guration with a magnetic vortex state. If

the �nal state still corresponds to a magnetic vortex state, record the energy

value, otherwise it does not represent a stable magnetization con�guration

for the chosen geometric parameters;
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(a) No applied magnetic �eld (b) Applied magnetic �eld

Figure 6.2: (a) Magnetization state phase diagram in no applied magnetic �eld for a
stadium-like Permalloy nanostructure of 25 nm thickness. Four regions can be identi�ed,
as indicated by the schematics. In the coloured regions (orange and green), either the
QU magnetization or the magnetic vortex are stable states, whereas both can coexist in
the white region, but they are associated to di�erent energy values E. (b) Magnetization
states that can be induced through a uniform applied magnetic �eld: in the light-red
region, only the QU magnetization can be obtained at remanence, while in the light-
blue region also the magnetic vortex can be produced. In both the diagrams, the points
marked with a black cross correspond to the case depicted in Fig. 6.1. The insets in (b)
show both a SEM image of the corresponding fabricated nanostructure and the MFM
image relative to the QU magnetization state.

• repeat all the previous steps for the needed minor axis lengths and ARs.

As simulation parameters for Permalloy, we considered MS = 860 kA ·m−1,

A = 13 pJ ·m−1, α = 0.05, a stopping criterion given by maxj∈{cells} |∂mj/∂t| <
0.1◦ · ns−1 and a cell size of 5 nm × 5 nm × 25 nm. The end result has been

summarized in the phase diagram shown in Fig. 6.2a, and four regions can be

identi�ed. In the orange region, corresponding to the smallest minor axis lengths,

the QU magnetization is the only energetically stable con�guration, meaning that

when we input the magnetic vortex as the initial con�guration for the simulation,

it always evolves towards the QU magnetization states. In the green region, the

same behaviour applies to the magnetic vortex: it results to be the only sta-

ble state, being the �nal state also when starting from uniform magnetization.

In the white region, representing intermediate sizes, both the states can coexist

at equilibrium, but with di�erent energies. In particular, the QU magnetization

state possesses higher energy than the magnetic vortex state (at any given dimen-

sion) in the white region to the left of the black line. The opposite is true on the

right-hand side, where the QU magnetization represents the ground state and the

magnetic vortex is only energetically metastable. Even if this phase diagram has



6.1 The magnetization energy landscape 139

been obtained for a particular choice of shape and thickness, the extracted gen-

eral behaviour is the same that can be found in literature for elongated Permalloy

nanostructures [174].

For practical applications, the nanostructure magnetization state is usually

user-controlled through an applied magnetic �eld. Considering the length-scale

of a typical nanostructure, the most common situation corresponds to the use of

a magnetic �eld that can be considered uniform in the space region where the

nanostructure resides. So, upon introducing a uniform applied magnetic �eld,

the Zeeman energy term modi�es the previously described energy landscape, in a

way that depends on the applied magnetic �eld intensity and direction. However,

we are interested in the nanostructure magnetization state at remanence, being

the applied �eld just the mean we have for exploring the energy landscape related

to the phase diagram in Fig. 6.2a. So, we simulated hysteresis loops performed at

various in-plane angles in order to see, for each one of the previous regions, what

magnetization con�guration can be induced by an uniform magnetic �eld. In

other words, we perturbed the non-interacting nanostructure energy landscape

in order to open paths towards one of the energy minima characterizing the

considered geometry. The results are summarized in Fig. 6.2b, which shows the

partition of the phase diagram in Fig. 6.2a into two further regions. In the light-

red region, no matter what sequence of uniform applied magnetic �eld we used,

we could only get the QU magnetization state at remanence. On the other hand,

for nanostructures lying in the light-blue region it is possible to �nd at least one

�eld sequence leading to a magnetic vortex state when the �eld is removed. The

main conclusion emerging from this analysis is that, both in the light-red and in

the light-blue regions of Fig. 6.2b, not all the energy landscape minima can be

reached by applying a uniform magnetic �eld.

In this framework, the nanostructure whose size corresponds to the black cross

in Fig. 6.2 (710 nm× 180 nm× 25 nm) has been chosen to demonstrate that, by

subjecting it to properly designed competing magnetostatic interactions leading

to an asymmetric and inhomogeneous local magnetic �eld, its magnetization re-

versal process can include the magnetic vortex state as a stable state after the

removal of the applied �eld. This choice for the size has been dictated by the

fact that the black cross lies well inside the light-red region we just identi�ed,

since the considered parameters for the micromagnetic simulations might lead to

variations in the region boundaries. The MFM image shown as an inset in Fig.

6.2b represents a QU magnetization state at remanence for the non-interacting

nanostructure, which also experimentally results to be the only stable remanent

magnetization state irrespective of the direction of the uniform applied magnetic
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(a) (b)

Figure 6.3: (a) Chiral square unit composed by four Py nanostructures of speci�ed
size. The color-map shows the spatial distribution of the x-component of the stray �eld
produced by the vertical nanostructures being uniformly magnetized in the direction
speci�ed by the white arrows. (b) SEM image of the array considered for the MOKE
and MFM measurements reported in Ref. [202]. Adapted from [201].

�eld. The chiral square unit shown in Fig. 6.3a and composed by four nanos-

tructures could provide the local magnetic �eld distribution we need for proving

our claim. The target nanostructures in which we want to induce the magnetic

vortex state are the two horizontal bars (i.e. the nanostructures aligned along the

x-axis), whereas the vertical bars are the local magnetic �eld sources. Indeed,

from the color-map in Fig. 6.3a representing the x-component of the stray �eld

Hstray produced by the vertical bars, the local magnetic �eld in the region where

the target bars reside results to be asymmetric and spatially inhomogeneous.

6.2 The experimental evidence

By means of MOKE and MFM measurements carried out on the array shown

in Fig. 6.3b, Porro et al. [202] demonstrated that the above described chiral unit

indeed facilitates the formation of a magnetic vortex state, in combination with

a uniform applied magnetic �eld. For this reason, we brie�y go over the exper-

imental study reported in Ref. [202]. The magnetization reversal process in the

chiral unit has been examined by performing hysteresis loops while applying the

magnetic �eld Happl close to the y-axis, so almost perpendicular to the target

bars. For collecting the magnetization signal, the transverse MOKE con�gura-

tion has been employed, so p-polarized light impinged on the sample and the

scattering plane was perpendicular to the y-axis. In order to be more sensitive to

small changes in the magnetization distribution during the hysteresis loop, the

di�racted MOKE (DMOKE) geometry [203] has been implemented by collecting

the intensity coming from the di�racted beams. As shown in Ref. [204], the in-
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tensity of the n-th order di�racted beam is proportional to the magnetic form

factor fn (H) given by

fn (H) =

∫∫
S

my (x, y,H) exp (inGxx) dxdy, (6.1)

where S denotes the unit cell of the probed array, my (x, y,H) is the component

of the magnetization spatial distribution which is perpendicular to the scattering

plane and Gx = 2π/Lx, with Lx being the lateral pitch between neighbouring chi-

ral units composing the array (2.2 µm in this case). The upper part of Figs. 6.4a

and 6.4b contains the hysteresis loops measured on the 2nd-order di�racted beam

(2nd-order DMOKE loops), whereas the lower part contains the corresponding

simulated 2nd-order DMOKE loops, obtained by calculating the magnetic form

factor f2 (H) from the simulated magnetization distribution. Figure 6.4a refers to

the case in whichHappl was slightly misaligned (by ϑ = −2.5◦) with respect to the

y-axis, whereas Fig. 6.4b refers to the aligned case (identi�ed as ϑ = −0.1◦ for ex-

perimental reasons). Despite the small angular variation, the 2nd-order DMOKE

experimental loops show marked di�erences. Indeed, the applied magnetic �eld

angle ϑ has been chosen for revealing these di�erences, and we will further dis-

cuss this aspect in the next sections. Since it is quite di�cult to give a direct

interpretation of the features appearing in DMOKE hysteresis loops, the micro-

magnetic simulations can provide the needed support. Indeed, the side-by-side

comparison of the simulated and experimental DMOKE loops permits to con�rm

the validity of the micromagnetic con�gurations provided by the simulations or,

if required, to revise the assumptions considered in the simulations (i.e. shape

details and material parameters) until agreement is achieved. In other words,

the agreement between simulated and experimental hysteresis loops allows us to

trust the magnetization evolution returned by the micromagnetic simulations.

The relevant micromagnetic con�gurations, characterizing the two cases de-

picted in Fig. 6.4 and corresponding to the points marked by letters in the bottom

panels, are shown in Fig. 6.5. Starting from positive saturation where the con�g-

uration is substantially the same for both cases (A), the magnetization reversal

follows two completely di�erent paths after reducing the �eld. In the misaligned

case (ϑ = −2.5◦), the formation of an S-state can be observed in the horizontal

bars (B). As the �eld is further reduced, the S-state rotates according to what is

shown in con�gurations C, D, E and F. As a result, all the elements in the chiral

unit remain in a single-domain state during the complete reversal process. The

bottom-left MFM image in Fig. 6.5 shows the magnetization state at remanence

(C) and can be interpreted as corresponding to four nanostructures in a QU
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(a) Misaligned Happl (ϑ = −2.5◦) (b) Aligned Happl (ϑ = −0.1◦)

Figure 6.4: (a) Measured (top panel) and simulated (bottom panel) 2nd-order
DMOKE loops for misaligned Happl. (b) Measured (top panel) and simulated (bot-
tom panel) 2nd-order DMOKE loops for aligned Happl. The SEM images appearing as
insets in the top panels help in visualizing the applied magnetic �eld direction. In both
the simulated hysteresis loops, the letters refer to the micromagnetic con�gurations
shown in Fig. 6.5. Adapted from [202].

magnetization state. These �ndings demonstrate that, in the misaligned case,

the magnetostatic interaction is not enough relevant in order to cause a devia-

tion from the behaviour induced in a non-interacting nanostructure by a uniform

applied magnetic �eld. A completely di�erent picture emerges in the aligned case

(ϑ = −0.1◦). Here, the magnetostatic interaction is able to induce a C-state into

each one of the horizontal bars (B') rather than a S-state as the applied magnetic

�eld is reduced from positive saturation. The C-state subsequently nucleates a

single magnetic vortex in each horizontal bar as the applied �eld goes to zero

(C'). The presence of magnetic vortex states at remanence is con�rmed by the

MFM image shown in the bottom-right part of Fig. 6.5. As the external �eld

reverses, the vortex cores are displaced horizontally towards the opposite end

of each horizontal bar (C�), a process which produces the notable peaks in the

2nd-order DMOKE loop. By further increasing the �eld in the reverse direction,

the magnetization in the vertical bars switches (D' and E') and then the vor-
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Figure 6.5: OOMMF simulations of the magnetization states corresponding to the
marked points in the hysteresis loops of Fig. 6.4 and characterizing the magnetization
reversal process for the misaligned (left) and aligned (right) cases. The upper inset
contains sketches of the magnetization color-scale and of the applied magnetic �eld
direction. The lower inset shows the evolution of the horizontal bar magnetic state for
the misaligned and aligned cases. The sequence begins with the seed S-state (misaligned)
and C-state (aligned), followed by their corresponding remanent states, the calculated
MFM images of these magnetic states and the experimental MFM images showing a
QU magnetization state (misaligned) and a magnetic vortex state (aligned). Finally,
the lower MFM images show the magnetic states at remanence for the whole chiral unit.
Adapted from [202].
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tices annihilate before reaching saturation (F). In conclusion, this experimental

study con�rmed the presence of two magnetization reversal paths. In particular,

the asymmetry and spatial inhomogeneity of the magnetostatic interaction �eld

causes the formation of magnetic vortex states in the nanostructures having the

minor axis �su�ciently� parallel to the uniform applied magnetic �eld.

6.3 The detailed study of the magnetization re-

versal process

6.3.1 Further MOKE measurements

The analysis performed in the framework of the Ph.D. project leading to this

thesis started by associating a quantitative meaning to the word �su�ciently�.

For this purpose, we designed further MOKE measurements in order to perform

a systematic study of the angles characterizing the separation in between the two

above-mentioned reversal paths. The array shown in Fig. 6.3b has been mounted

inside the gap of the quadrupole electromagnet which is part of the longitudi-

nal MOKE setup described in Sec. 3.2.2. Before starting the measurements, we

ran micromagnetic simulations2 for identifying the best �eld protocol to be em-

ployed, which resulted to be the one schematically shown in Fig. 6.6a. At the

beginning, the unit cell is rotated at an angle ϑ with respect to the y-axis, since

the Happl magnetic �eld sequence will be applied by using the two depicted elec-

tromagnet poles, which are perpendicular to the scattering plane. Then, the four

electromagnet poles are used to apply a saturating magnetic �eld at ϑ = 45◦, in

order to bring (or to �reset�) the horizontal bars to the QU magnetization state

at remanence, providing a reproducible starting state for the following �eld se-

quence. Eventually, the �eld generated by the vertical poles is swept from zero

to Happl
max and then back to zero, simultaneously measuring a signal proportional

to the average magnetization component mt lying in the scattering plane. We

decide to measure mt, i.e. the magnetization component transverse to the applied

�eld direction, since it lies along the major axis of the horizontal bars, allowing

us to be more sensitive to magnetization changes in our target nanostructures

without having to deal with the vertical bars. Indeed, for the considered �eld

protocol, the vertical bars remain saturated along the major axis, being sub-

jected to almost no magnetization changes. On the other hand, the horizontal
2As simulation parameters, we considered the values reported in Sec. 6.1, a part for modifying

the cell size to 10 nm × 10 nm × 25 nm. We veri�ed that the use of a bigger cell size does not
a�ect the conclusions of our analysis by simulating few selected cases with the previous cell size
(5 nm × 5 nm × 25 nm).
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(a) Setup

(b) Simulated curves

Figure 6.6: Description and simulation of the performed longitudinal MOKE mea-
surements. (a) After resetting the magnetic con�guration of the horizontal bars to the
QU magnetization state, a magnetic �eld is applied to the array in Fig. 6.3b at an angle
ϑ with respect to the y-axis. The schematic inside the electromagnet poles shows the
starting magnetization con�guration after the reset. (b) The four curves (swept as indi-
cated by the �lled triangles) depict the simulation results obtained at the corresponding
angles. The insets show the x-component of the �nal magnetization con�gurations: the
horizontal bars are either in the magnetic vortex state or in the QU magnetization state.

nanostructures go through major changes, since the �nal con�guration can be

either the magnetic vortex state or the QU magnetization state. The simulated

curves reported in Fig. 6.6b show the expected results. The angles ϑ = −0.2◦

and ϑ = −0.1◦ constitute the boundary between the two reversal paths: below

ϑ = −0.2◦, at the end of the �eld sequence the horizontal bars result to be in the

QU magnetization state, whereas above ϑ = −0.1◦ the �nal con�guration is the

magnetic vortex state, as indicated by the magnetization con�gurations shown

as insets. Moreover, another boundary appears between ϑ = 0.8◦ and ϑ = 0.9◦.

From these simulations, an interesting aspect emerged, namely the existence of

two critical angles ϑ−C and ϑ+
C separating the two reversal paths: for an applied

magnetic �eld angle ϑ−C < ϑ < ϑ+
C (the �aligned� condition of Sec. 6.2), the rema-

nent con�guration is the magnetic vortex state, whereas for ϑ < ϑ−C ∨ ϑ > ϑ+
C

(the �misaligned� condition of Sec. 6.2), the horizontal bars are characterized by

a QU magnetization state. However, the measured experimental curves would
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(a) σC = 0.015◦ (b) σC = 0.15◦

(c) mt variation as a function of ϑ at remanence

Figure 6.7: (a)-(b) Simulated experimental curves in case of two di�erent σC values
for the unit cell y-axis direction distribution. In each plot there are 32 curves (from blue
to red, gradually), corresponding to ϑ ranging from −1.2◦ to 1.9◦ with a step size of
0.1◦. (c) �Angular speed� of variation of mt at remanence, i.e. how �fast� mt is changing
at remanence between subsequent curves.

correspond exactly to the behaviour shown by the simulated curves only in case

of perfect (and perfectly aligned) unit cells composing the array. Actually, the

limitations in the fabrication process when dealing with arrays of repeated unit

cells translate into the statistical distribution of the observed quantities: in this

case, the sharp critical angles returned by the simulations will correspond to

smooth transitions. To match this fact, we introduced a critical angle distribu-

tion in form of a distribution in the unit cell y-axis direction. When considering

a measurement to be obtained at angle ϑ, the corresponding simulated experi-

mental curve is the weighted average of the simulated �exact� curves (from Fig.

6.6b) which can be found in an angular range dictated by a Gaussian distribution

of standard deviation σC around ϑ. Figures 6.7a and 6.7b show the simulated

experimental curves corresponding to σC = 0.015◦ and σC = 0.15◦, respectively.

In each plot there are 32 curves (from blue to red, gradually), corresponding to
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(a) Experimental curves (b) ∆εK as a function of ϑ at remanence

Figure 6.8: (a) Measured (single-shot) experimental curves (from blue to red, grad-
ually) corresponding to ϑ ranging from −0.05◦ to 3.05◦ with a step size of 0.1◦. (b)
Normalized �angular speed� of variation of εK at remanence, i.e. how �fast� the signal
is changing at remanence between subsequent curves.

ϑ ranging from −1.2◦ to 1.9◦ with a step size of 0.1◦. When σC is much smaller

than the angular step size (Fig. 6.7a), the simulated measurement sequence is not

able to capture the y-axis direction distribution, so the resulting average curves

still show the abrupt jumps while crossing the critical angles. On the other hand,

if we consider an higher σC , comparable with the angular step size (Fig. 6.7b),

the average curves are characterized by smoother changes, as can be seen from

the mt trend when Happl = 0 Oe. However, despite the di�erences, the signature

left by the critical angles is still present in these plots. Indeed, Fig. 6.7c shows

the �angular speed� of variation of mt at remanence, allowing us to quantify how

�fast� mt is changing at remanence with respect to a variation in ϑ. The red line

corresponds to σC = 0.015◦: the two visible peaks at ϑ = −0.15◦ and ϑ = 0.85◦

are consequence of the big changes in the curves depicted in Fig. 6.7a when pass-

ing through the critical angles. Even if changes are smoother (i.e. �slower�) when

considering σC = 0.15◦, two peaks are still present (the blue line), and they cor-

respond to the same angles as for σC = 0.015◦, con�rming that ∆mt/∆ϑ is a

meaningful quantity to calculate for retrieving the critical angle values.

After having identi�ed how to proceed, we performed the designed MOKE

measurements, for which the reset �eld was 2800 Oe and Happl
max = 2000 Oe. Fig-

ure 6.8a shows the experimental curves, obtained by recording the Kerr ellipticity

εK . For superimposing all the curves, we subtracted the �rst εK value to each

one of them, since the applied �eld sequence always started from a common and

reproducible magnetization con�guration. The fact that Fig. 6.8a well compares
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with Fig. 6.7b validates all the conclusions inferred from the simulations. Indeed,

the �angular speed� of variation of εK at remanence plotted in Fig. 6.8b shows

two peaks at ϑ = 1.0◦ and ϑ = 1.9◦, which can be interpreted as corresponding

to the critical angles. However, a clari�cation is mandatory: when working with

simulations, we could detect the absolute critical angle values since all the con-

sidered angles were referred to ϑ = 0◦ as the angle of perfect alignment between

the unit cell y-axis and Happl. For the measured curves, all the considered ϑ

values were referred to an arbitrary ϑ = 0◦ reference angle, so we could estimate

the critical angles by assuming that the ratio in between the experimental critical

angle magnitudes was the same as the simulated one, hence obtaining

ϑ−C ≈ −0.13◦,

ϑ+
C ≈ 0.77◦.

6.3.2 A simple, but misleading, explanation

To try to �gure out the reason of such a sharp transition between the two

reversal paths, we started by considering the external magnetic �eld Hext felt by

the horizontal bar:

Hext = Happl + Hstray, (6.2)

where Happl is the uniform applied magnetic �eld and Hstray denotes the stray

�eld produced by the vertical bars. The color-maps in Fig. 6.9a help in visualizing

what is going on. For the sake of clarity and for speeding up further simulations,

we introduced a modi�ed unit cell obtained by removing the bottom horizontal

bar, an operation which does not alter the general behaviour. For the three-

bars unit cell, the (positive) critical angle resulted to be ϑ+
C = 0.94◦ (named

ϑC from now on), slightly bigger than the value obtained when considering four

nanostructures (ϑ+
C = 0.85◦). The magnetization reversal in con�ned structures

is known to nucleate at the edges [45] and, for the case considered here where

Happl lies close to the y-axis, the top and bottom edges of the horizontal bar (TE

and BE, respectively) are the relevant ones. For Hext being determined by the

uniformHappl alone (e.g. as for a non-interacting bar), the net result would be the

formation of a magnetic S-state, which is the seeding state for the formation of a

QU magnetization state at remanence. On the other hand, when considering the

three-bars unit cell, the stray �eld generated by the right vertical nanostructure

in the bottom-right part of the horizontal bar has a strong negative x-component

(�lled-green arrow in Fig. 6.9a), whereas in the top-left part the main contribution

is given by the strong positive Hstray
x coming from the left vertical nanostructure
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(a) Modi�ed unit cell and relevant quantities

(b) TE �eld pro�les (c) BE �eld pro�les

Figure 6.9: (a) Schematic representation of the relevant characters involved in the
magnetization reversal process: according to the applied �eld angle ϑ, either a magnetic
C-state or a magnetic S-state can be nucleated in the horizontal bar, so giving rise to
a critical angle ϑC separating these two di�erent behaviours. (b) Top-edge (TE) �eld
pro�les showing the x-component of Hext for two applied �eld angles. (c) Same as
(b), but for the bottom-edge (BE) pro�les. The �eld values in the legend refers to the
magnitude of Happl.

(�lled-orange arrow in Fig. 6.9a). Hence, in the horizontal bar region, Hstray

possesses a chirality bestowed by the chiral con�guration of the nanostructures

composing the unit cell, potentially leading to the formation of a magnetic C-

state which is the seeding state for the formation of a magnetic vortex state

at remanence. In the end, when considering both these contributions to Hext,

each one of them will tend to impose its own symmetry on the magnetization

con�guration of the horizontal bar and the most relevant term should depend

on their relative magnitude. By increasing the angle ϑ, we are increasing the

magnitude of Happl
x and, at a certain point, this component will be big enough

to counteract the chiral behaviour imposed by the stray �eld, in particular by

balancing the negative Hstray
x in the bottom-right part of the horizontal bar.

This mechanism, corresponding to a sharp change in the symmetry of Hext,
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Figure 6.10: Angle ϑ needed for fully balancing Hstray
x as a function of Happl. In the

blue region, Hext maintains a chiral character, whereas in the white region Hext
x ≥ 0 in

all the horizontal bar volume. The borderline in between the two regions is determined
according to Eq. (6.3). The red horizontal line corresponds to ϑ = ϑC = 0.94◦ and
completely lies in the blue region.

could explain the existence of a critical angle as the angle at which Hext
x loses its

chiral nature in all the region occupied by the horizontal bar for a given Happl

value. To �nd a con�rmation of our reasoning, we plotted the values of Hext
x

along both TE and BE for ϑ = 0.9◦(< ϑC) and for ϑ = 1.0◦(> ϑC), as shown

in Figs. 6.9b and 6.9c. For the unit cell here considered, saturation corresponds

to Happl = 3500 Oe, whereas at 1500 Oe either the S-state (for ϑ = 1.0◦) or the

C-state (for ϑ = 0.9◦) have already been nucleated. Therefore, we can identify

the 1500− 3500 Oe range as the �eld range in which the symmetry character of

Hext can have an impact on the choice of the magnetization reversal path to be

taken. For ϑ = 0.9◦ (solid lines), the chiral behaviour of Hext is present for the

whole above-mentioned �eld range, since Hext
x < 0 in the BE pro�le for x > 0

and Hext
x > 0 in the TE pro�le for x < 0. Nevertheless, for ϑ = 1.0◦ (dashed

lines), the chiral character of Hext is substantially the same, so in the end the

alternative formation of either a C-state or an S-state is not evident from this

picture. Indeed, the angle ϑ at which Hext
x ≥ 0 in all the region occupied by the

horizontal bar (i.e. the minimum angle needed for fully balancing Hstray
x ) is given

by:

ϑ = arcsin

[
|min (Hstray

x )|
Happl

]
. (6.3)

Figure 6.10 shows the two regions identi�ed by Eq. (6.3): only in the blue region

Hext maintains a chiral character and, for Happl in the 1500 − 3500 Oe range,

the minimum angle needed for suppressing the Hext chirality is always greater

than 1.3◦. Thereby, the existence of the calculated ϑC = 0.94◦ (in particular its
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small value) is not simply justi�able through the chiral character of Hext, which

appears to be a necessary but not su�cient condition for the observed behaviour.

6.3.3 The dynamical analysis

Since the chirality of Hext (or, more generally, its symmetry) is certainly a

prerequisite for the observed behaviour but it is not su�cient to justify the actual

ϑC value, we decided to investigate in more details the magnetization dynamics

related to the reversal process. According to Leaf et al. [205], changes in the

magnetization state can be inferred and identi�ed by analyzing the frequency

evolution and the symmetry of the magnetic normal modes of the considered

nanostructure during the magnetization reversal process. In Sec. 1.5, we saw

that a ferromagnetic material, when perturbed out of equilibrium, can sustain

magnetization oscillations, generally called spin waves. For waves in con�ned

dimensions, as happens in nanostructures, the resulting standing-wave patterns

constitute the nanostructure normal modes. However, in case of spin waves,

the balance between exchange and magnetostatic interactions determines the

appearance of more complex modes [46, 206] which do not �t the standing-wave

model description and which can be of utmost importance for the magnetization

reversal process. So, for calculating the magnetic normal modes, we implemented

the dynamical matrix method (DMM) described in Refs. [207, 208]. A magnetic

nanostructure can be seen as a collection of N cells characterized by a magnetic

moment MSmj (j = 1, . . . , N) and subjected to various interactions, as described

by the following energy density Etot:

Etot = −µ0MSH
appl·

N∑
j=1

mj +
A

d2

N∑
j=1

n.n.∑
n

(1−mj ·mn)

+
µ0M2

S

2

N∑
i=1

N∑
j=1

mi ·Nij ·mj .

(6.4)

The description of the three contributions to Etot can be found in Sec. C.1. By

expanding the above-de�ned energy density in power series around the equilib-

rium magnetization con�guration and retaining only the leading terms (2nd-order

in the cell magnetization), the search for the magnetic normal modes converts

to the calculation of the normal modes associated to a small oscillations prob-

lem [9]. Hence, the Hamilton equations lead to an eigenvalue problem, where the

eigenvalues represent the involved frequencies and the corresponding eigenvectors

describe the normal modes, i.e. they give a map of the oscillation amplitude of
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the magnetization around the equilibrium con�guration. The DMM returns all

the normal modes allowed by the geometry and the interactions, but it does not

provide any insight regarding the relative amplitude of the modes. This latter

information can be retrieved through the Fourier analysis of the time evolution

of the nanostructure magnetization obtained by solving the LLG equation [209].

The DMM has been carried out both on the non-interacting bar (as a refer-

ence, since there is only one remanent magnetization con�guration and no critical

angle) and on the three-bars unit cell depicted in Fig. 6.9a. The uniform mag-

netic �eld Happl has been applied at a given angle ϑ and its magnitude has been

gradually reduced from saturation (3500 Oe) to zero. From micromagnetic sim-

ulations, we could extract the equilibrium magnetization states at any needed

(ϑ,Happl) combination, since the equilibrium state is the input con�guration to

be used in the DMM calculations. For the non-interacting bar, the input con�g-

uration represents a single nanostructure of size 710 nm×180 nm×25 nm, which

corresponds to N = 1242 micromagnetic cells and to a calculation time of about

2 minutes. On the other hand, the input con�guration for the interacting case

should include the three nanostructures composing the unit cell, corresponding

to N = 3726 and to a calculation time of about 16 minutes. However, since we

were interested in the dynamic behaviour of the horizontal bar, the calculations

have been substantially speeded up by performing the analysis taking only into

account the 1242 mj vectors composing the horizontal bar and then consider-

ing Hstray as a background �eld. In other words, the energy density (6.4) only

included mj vectors belonging to the horizontal bar and Happl has been sub-

stituted by Hext. The DMM can return all the allowed normal modes, but we

are only interested in the lowest frequency modes, since they are the relevant

ones, driving the magnetization con�guration changes [205, 210]. For this rea-

son, Figs. 6.11a and 6.11b show the out-of-plane component δmz of the lowest

frequency normal modes relative to the non-interacting bar for ϑ = 0.9◦: the

edge mode 1 (EM1) and the edge mode 2 (EM2). The dynamical magnetization

δmz represents the initial out-of-plane amplitude of the magnetization oscillation

around the equilibrium position in each micromagnetic cell. For both EM1 and

EM2, the dynamical magnetization is mainly localized at the edges perpendicular

to Happl [210, 211], but these two modes di�er regarding the relative oscillation

phase. Whereas the regions of maximum amplitude oscillate in phase for EM2,

they are 180◦ out of phase for EM1, corresponding to a di�erent type of symme-

try. The evolution of the edge mode frequencies as a function of Happl is reported

in Fig. 6.11c, where the EMs up to EM6 are labelled and the behaviour of EM1

and EM2 is highlighted by blue lines. However, only EM2 results to be active
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(a) ϑ = 0.9◦ � EM1 (b) ϑ = 0.9◦ � EM2

(c) EMs frequency evolution for ϑ = 0.9◦

Figure 6.11: DMM results for a non-interacting bar when Happl is applied at ϑ = 0.9◦.
(a) and (b) represent the δmz mode pro�les for the lowest frequency normal modes, i.e.
EM1 and EM2. (c) Edge modes frequency evolution as a function of Happl. The blue
lines highlight the behaviour of EM1 (dashed line) and EM2 (solid line), for which the
mode pro�les are shown at 3500 Oe, 2750 Oe and 2000 Oe as insets. The black vertical
line corresponds to 2750 Oe.

during the magnetization reversal process, as con�rmed by the Fourier analysis

of the magnetization evolution performed according to Ref. [209]. The blue-solid

line associated with EM2 in Fig. 6.11c allows describing two regions of interest:

in the range 2750 − 3500 Oe, the frequency decreases while decreasing Happl,

indicating the building up of an instability area inside the nanostructure (mode

softening). Indeed, the frequency trend re�ects the strength of the restoring force

(i.e. the e�ective �eld Heff entering the LLG equation): the lower the frequency,

the lower the restoring force on the oscillating magnetic moments and the system

is more prone to be in�uenced by external stimuli. Energetically speaking, the

comparison with a simple harmonic oscillator allows the frequency to be iden-
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ti�ed with the width of the potential energy well: a higher frequency is related

to a narrower potential well, which implies more limited oscillations around the

equilibrium position and higher stability (having �xed the total energy). Dur-

ing the mode softening, the localization of this instability area does not change

appreciably in this �rst region. However, below 2750 Oe, the frequency starts

rising while decreasing Happl, indicating the recovery of a substantial restoring

force. In this region, the spatial localization of the EM2 dynamical magnetiza-

tion changes, moving towards the lateral edges and becoming more concentrated,

following the formation of a magnetic S-state. Thereby, we can identify 2750 Oe

as the Happl value corresponding to the S-state nucleation for the non-interacting

bar at ϑ = 0.9◦. The edge mode softening has also been observed in transversely

magnetized Py stripes, which correspond to the practical realization of in�nitely

long bars [212�214]. In this case, the complete softening (i.e. the achievement of

zero restoring force) is related to the onset of saturation along the applied mag-

netic �eld direction and it occurs at the applied �eld value needed for balancing

the demagnetizing �eld and aligning the magnetization normal to the edge.

While the DMM calculations for the non-interacting bar constitute a useful

reference case, the most interesting information comes from the analysis of the

interacting bar. Figure 6.12 shows the summary of the main results, both for the

non-interacting bar and for the horizontal (interacting) bar composing the unit

cell. For the latter case, the calculations have been performed at ϑ = 0.9◦(< ϑC)

and at ϑ = 1.0◦(> ϑC), in order to track the di�erences in the magnetization

dynamical evolution leading to two distinct reversal paths. Each one of the three

sections in the �gure contains, for selected Happl values, the color-maps repre-

senting the x-component of the magnetization mx and also the δmz mode pro�les

for the lowest frequency EMs. As we discussed for the non-interacting bar, EM1

has been greyed out since it is not active during the actual dynamical evolution.

The �rst thing to be noticed is the fact that the nature of the lowest frequency

modes for the interacting bar is quite di�erent with respect to what discussed

until now: EM1 and EM2 have been replaced by EM1' and EM2', in which

the interaction leads to a physical splitting of the modes, so that the maximum

for δmz is mainly concentrated either in the top (EM2') or in the bottom edge

(EM1'). As shown in Fig. 6.12 by the blow-up of EM1' and EM2' at ϑ = 0.9◦

and Happl = 3500 Oe, for the interacting bar at saturation these two modes re-

semble EM1 and EM2. It is then appealing to consider EM1' and EM2' as a

hybridization [211, 215] of the non-interacting bar modes due to the fact that

(i) EM1 and EM2 are nearly degenerate in frequency and (ii) the asymmetry

introduced by Hstray can determine the activation of EM1. Even though this is
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Figure 6.12: Summary of the DMM results for selected Happl values. For each one of
the three cases shown here, the �rst column contains the mx color-maps, while the two
following columns contain the δmz mode pro�les for the lowest frequency EMs. The
dashed lines indicate the evolution of the edge mode localization. Two mode pro�les
(EM1' and EM2' for the interacting bar at ϑ = 0.9◦ and Happl = 3500 Oe) have
been enlarged for showing the similarities with EM1 and EM2 (non-interacting bar) at
saturation. For the interacting bar case, the critical angle is ϑC = 0.94◦.



156 6 The Role of Asymmetric Magnetostatic Interactions

(a) (b)

Figure 6.13: (a) Edge modes frequency evolution as a function of Happl for the cases
depicted in Fig. 6.12. (b) Blow-up of the region marked by black-dashed lines in (a).
Two more angles have been added for showing the approach towards the critical angle.
The black vertical lines in (b) correspond to 1560 Oe, 1690 Oe and 2010 Oe.

generally true for the interacting bar case, a di�erence in the orientation of the

externally applied magnetic �eld leads to a di�erent magnetization evolution. To

better understand what is going on, let us focus on the top edge δmz for the in-

teracting bar case, essentially corresponding to the region where the EM2' mode

is con�ned. The orange-dashed lines in Fig. 6.12 show how the EM2' localization

changes as a function of Happl. For both ϑ = 0.9◦ and ϑ = 1.0◦, EM2' gets more

and more localized and moves towards the left-hand side of the bar as the Happl

magnitude is reduced. This is the same evolution undergone by the top-edge

part of EM2 for the non-interacting bar case. A con�rmation of this similarity

can be found in Fig. 6.13a, which shows the edge modes frequency evolution as

a function of Happl for the cases depicted in Fig. 6.12. Indeed, the dashed curves

are qualitatively associated to the same kind of frequency evolution. Both the

green-dashed curve and the red-dashed curve (EM2' modes) go through a mode

softening at 2800 Oe, resembling what happens for EM2 (blue-dashed line) and

corresponding to the S-state nucleation. A di�erent picture emerges by looking

now at EM1' in Fig. 6.12 (as marked by black-dashed lines). This mode tends

to be con�ned in the horizontal bar bottom edge and the existence of a critical

angle translates into a variation in its spatial evolution. For ϑ = 1.0◦, EM1'

progressively concentrates and moves towards the right-hand side of the bar, as

happens for the bottom part of EM2. So, the combined �eld evolution of EM1'

and EM2' mirrors the formation of a magnetic S-state. For Happl ' 2500 Oe,

this is the same behaviour characterizing EM1' for ϑ = 0.9◦, but, by further

reducing the applied magnetic �eld, EM1' shifts towards the left-hand side of
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the bar, �nally indicating the formation of a magnetic C-state. The di�erent

end states obtained above and below the critical angle translate into a peculiar

behaviour for the EM1' frequency evolutions, as shown by the solid lines in Fig.

6.13a. The green-solid EM1' curve (interacting bar for ϑ = 0.9◦) goes through a

discontinuous transition at 1560 Oe, where the frequency approaches zero. As a

consequence of this extreme softening, the magnetization oscillation associated to

EM1' gets wider and wider (as con�rmed by the above-mentioned Fourier anal-

ysis), giving rise to a major rearrangement of the magnetization con�guration

and then to the formation of the C-state. The red-solid curve (interacting bar

for ϑ = 1.0◦) shows a similar behaviour down to ≈ 2500 Oe, but a substantial

restoring force is recovered before reaching the complete softening and the fre-

quency starts rising again (with no discontinuity). Phenomenologically speaking,

the emerging picture seems to suggest the horizontal bar magnetization has to be

�instructed� on the magnetization reversal path to pursue before overcoming the

frequency turning point at ≈ 2500 Oe. The way we have to control this process

is through the applied magnetic �eld orientation, since there is a critical angle

separating the two paths. If we identify 2500 Oe as the �eld corresponding to

the ultimate reversal path choice, form the simplistic argument developed in Sec.

6.3.2 and leading to Fig. 6.10, the obtained critical angle would be 1.8◦, a value

twice as big as the actual critical angle. Moreover, Fig. 6.13b shows a blow-up

of the region marked by black-dashed lines in Fig. 6.13a. Two more angles have

been added (ϑ = 0.5◦ and ϑ = 0.75◦) for better showing the approach towards

the critical angle. By reducing the angle magnitude, the complete softening oc-

curs at progressively growing Happl values, indicating that the formation of the

C-state is anticipated (when coming from saturation).

All this facts further con�rm that the chirality of Hext alone is not su�cient

to justify the observed behaviour and the reversal path choice seems to have a

dynamical origin. The overall picture emerged so far is quite complex and rather

descriptive, but it can be summarized by the following list:

• for the non-interacting bar, EM1 is not active during the magnetization

evolution, so we can focus on EM2. During the process, while decreasing

the magnitude of Happl from 3500 Oe to 2750 Oe, we see a decrease in

the EM2 frequency, signature of the fact that this mode is getting soft.

Since soft modes are characterized by wider oscillation amplitudes with

respect to the other modes, they are more prone to in�uence changes in the

magnetization con�guration. Indeed, for the non-interacting bar, EM2 is

strictly related to the formation of a magnetic S-state, which possesses the

same symmetry properties [210];
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• when asymmetric and inhomogeneous interactions are introduced, both

EM1 and EM2 can in principle be excited. However, since they are al-

most degenerate in frequency at high Happl values (see the blue curves in

Fig. 6.11c), they can hybridize and give rise to di�erent mode pro�les. This

seems to be the case for the interacting bar, where the EM1' and EM2'

appear. These new modes resemble EM1 and EM2 at high �elds (e.g. at

3500 Oe), but they get localized either in the top (EM2') or in the bottom

edge (EM1') as Happl decreases;

• by looking at the EM1' and EM2' spatial localization in Fig. 6.12 and at

their frequency evolution in Fig. 6.13a, it is clear that the dynamics of the

bottom and top edges become uncorrelated and, according to the value of

ϑ, the bottom and top magnetization evolutions can proceed in di�erent

ways. When ϑ < ϑC , both EM1' and EM2' evolve towards the left-hand

side of the horizontal bar, following the formation of a C-state. On the

other hand, the evolution of these two modes for ϑ > ϑC is similar to

what happens to EM2 in the non-interacting bar, and the magnetization

con�guration ends up in an S-state. The existence of a critical angle results

to be associated with the chirality of Hext, but the actual ϑC value seems

to have a dynamical origin.

6.3.4 MFM measurements on the unit cell

As a last test on the role of asymmetric and inhomogeneous magnetostatic

interactions in the magnetic vortex formation, we decided to fabricate (according

to recipe A.2) a sample in which the interaction strength has been properly tuned

by playing with the gap size g in between the Py nanostructures composing the

unit cell. The �rst row of Fig. 6.14 shows SEM images of the fabricated nanos-

tructures. We keep calling the target nanostructure as the �horizontal� bar even

if it is now the vertical bar for representation purposes. On the same substrate,

we placed both the asymmetric unit cell described along the previous sections

and a �symmetric� unit cell, where the lateral bars are not displaced relative to

one another. In both the cases, the size of the stadium-like nanostructures is still

710 nm × 180 nm × 25 nm, but the gap size has been modi�ed from 110 nm to

75 nm, 150 nm, 225 nm and 300 nm. As a reference, a control isolated bar of the

same size has been placed close to the unit cells to be measured. A saturating

magnetic �eld (2000 Oe) has been applied to the sample at various angles ϑ, and

the remanent magnetization con�gurations obtained by reducing the magnetic

�eld to zero have been inspected by recording MFM images (to be interpreted
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Figure 6.14: MFM measurements as a function of the gap size g and ϑ. The g values
are reported in the upper part of the �gure and allow identifying columns corresponding
to di�erent unit cells. On the other hand, the rows are de�ned on the basis of the
applied magnetic �eld angle (ϑ). The white-dashed line separates the asymmetric unit
cells where the magnetic vortex state can be observed from the ones corresponding to
a QU magnetization state.

according to the images reported in the central inset of Fig. 6.5). The results of

the MFM measurements as a function of ϑ are shown in Fig. 6.14. Considering

the asymmetric unit cell (left-hand part of the �gure), when ϑ = 0.20◦ all the

horizontal bars show the formation of the magnetic vortex state, meaning that

ϑC > 0.20◦ for all the fabricated unit cells. However, when ϑ = 0.30◦ the mag-

netic vortex state is still the remanent con�guration for most of the unit cells,

but not for the one corresponding to g = 300 nm. Then, if we focus on this unit

cell (g = 300 nm), we can see that for ϑ ≥ 0.30◦ there is no more evidence of

the magnetic vortex state at remanence, being the measured state corresponding

to a QU magnetization state. This fact indicates the presence of a critical angle

0.20◦ < ϑC < 0.30◦ for the g = 300 nm unit cell. As marked by the white-dashed

line in Fig. 6.14, the same behaviour can be found for all the other asymmetric

unit cells, but the critical angle value results to depend on the gap size. On

the contrary, neither the non-interacting control bar nor the symmetric unit cells

show the formation of the magnetic vortex state at remanence. From these mea-

surements, we can conclude that (i) the formation of the magnetic vortex state

is linked to the asymmetry in the magnetostatic interaction due to the relative

displacement of the lateral bars and (ii) the value of the critical angle increases

as the gap size decreases (corresponding to a stronger interaction �eld).
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6.4 Conclusions

A combination of MOKE measurements, MFM imaging and micromagnetic

simulations has been used to investigate the role of asymmetric and spatially

inhomogeneous magnetostatic interactions onto the magnetization reversal of

elongated Permalloy nanostructures arranged in chiral unit cells. Despite we

considered magnetic nanostructures where the magnetic vortex state cannot be

induced at remanence by a uniform applied magnetic �eld because of the chosen

geometry, two behaviours have been identi�ed, separated by a critical angle char-

acterizing the direction of the applied magnetic �eld. Below the critical angle, a

magnetic vortex state can be found, at remanence, in the nanostructures whose

major axis lies almost perpendicular to the applied magnetic �eld direction. On

the other hand, above the critical angle, the remanent magnetic con�guration

is the QU magnetization state, as in the case of non-interacting nanostructures.

From a di�erent point of view, this study, by unveiling fundamental aspects of

the interplay between magnetization dynamics and magnetostatic interactions,

demonstrates that localized magnetic �eld sources can be used to actively induce

and �nely control the magnetization states and reversal paths of magnetic nanos-

tructures, and that such localized �eld sources can be easily facilitated within

the appropriate array structure.
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Conclusions and Outlook

The results contained in this thesis derive from the most relevant part of

the work carried out during my Ph.D. project, so they basically represent the

conclusions reached during a productive four-year period. Before summing them

up, it is worth explicitly mentioning the most important result, since it is always

there but quite hidden: the fact of having absorbed a methodology of work based

on the scienti�c method. Besides the achievements, also the way they have been

obtained contributes to build the Ph.D. student's background.

Back to the thesis, Chaps. 1, 2 and 3 collected the basic notions on mag-

netism needed for understanding the following chapters. In particular, Chap. 2

reported a detailed description of magneto-optical e�ects in matter and Chap.

3 showed how it is possible to fabricate magnetic nanostructures and then how

their behaviour can be characterized.

In Chap. 4 we learnt how to consistently calculate the switching frequencies

related to thermally-activated reversal processes in arti�cial spin ice systems,

eventually designing a multiscale simulation scheme. The statistical analysis per-

formed through micromagnetic simulations at �nite temperature showed the need

for reducing the energy barrier associated to the thermally-activated magnetiza-

tion reversal with respect to the energy barrier that can be simply calculated by

coherent magnetization reversal. This result �nds a con�rmation in literature,

since the magnetization of the involved nanostructures has often to be arti�cially

reduced in order to obtain calculations matching with the measured time scale.

However, our analysis is still not complete, since the energy barrier reduction

could depend on the considered nanostructure shape/material and the micro-

magnetic simulations we employed are con�ned to the high temperature regime,

where the switching time is of the order of hundred of nanoseconds. For solving
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this issue, we identi�ed a di�erent method (i.e. the string method), which directly

calculates energy barrier values instead of relying on the statistical analysis of

the switching events. The integration of the string method in our multiscale

simulation scheme constitutes the outlook of this research line.

Chapter 5 described the development of a non-standard heating technique

for arti�cial spin ice systems: the thermoplasmonic heating of magnetic nanos-

tructures. Instead of using conventional heaters, the energy is delivered to the

nanostructures by exploiting the light-matter interaction and the excitation of

localized surface plasmon resonances. A careful choice of the materials and the

elongated shape of the involved nanostructures allowed us to implement a selec-

tive heating method, since the deposited energy depends both on the radiation

wavelength and on the polarization direction. This fact is of extremely interest

when considering arti�cial spin ice systems, where the magnetic nanostructures

are aligned along di�erent axes. Moreover, a great advantage of working with

light beams is the fact that the illuminated sample area can be controlled by

simply focusing or defocusing the beam itself, so providing localized heating.

Through the fabrication of nanostructure arrays of progressive complexity, we

demonstrated the validity of our approach and we identi�ed the key parameters

to be considered for applying this technique to arti�cial spin ice systems, where

the nanostructures are densely packed. Besides the experimental veri�cation, we

realized a thermoplasmonic heating stage to be combined with a MOKE setup,

for the in-situ heating of samples while tracking the evolution of their magnetic

properties. The next step will consist in making this heating stage more com-

pact, in order to be �tted in a MFM setup for the direct imaging of the obtained

magnetic con�gurations.

In the last chapter, Chap. 6, we further highlighted the fundamental role of

magnetostatic interactions. Indeed, by subjecting a magnetic nanostructure to

properly designed competing magnetostatic interactions (leading to asymmet-

ric and inhomogeneous local magnetic �elds), the magnetization reversal process

can be tuned beyond geometry and material properties engineering. In other

words, the combination of asymmetric and inhomogeneous magnetostatic inter-

actions with a uniform applied magnetic �eld can induce a magnetic vortex state

(metastable) into a magnetic nanostructure designed to behave as a magnetic

needle, i.e. whose stable state is given by a quasi-uniform magnetization state.

Moreover, the ability of reaching the magnetic vortex state was experimentally

found to depend on the direction of the uniform applied magnetic �eld, so deter-

mining the appearance of a critical angle separating two regimes. The transition

between these two regimes was investigated by means of the dynamical matrix
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method, exploiting the fact that changes in the magnetization state can be in-

ferred and identi�ed by analyzing the frequency evolution and the symmetry of

the magnetic normal modes during the magnetization reversal process. It turned

out the two reversal mechanism characterizing the regimes are associated to well

de�ned features in the frequency evolution as a function of the applied magnetic

�eld magnitude, which we are planning to measure thanks to a ferromagnetic

resonance setup based on a vector network analyzer.
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Appendix A

Recipes for Nanofabrication

This appendix contains a list of useful nanofabrication recipes, most of them

used for fabricating the samples related to this thesis. Each recipe (from the

bare substrate to the �nal sample) is organized in sequential stages, which are

summarized in Fig. A.1. When referring to dry, �to gently blow the sample

surface with nitrogen� is meant. In the EBL patterning step, �base dose� means

the suggested central value for performing a dose test on the given substrate,

since the proper dose also depends on the structures to be patterned. Regarding

the material deposition step, e-beam evaporation has been generally employed

(PVD 75 by Kurt J. Lesker Company). Detailed information on the e-beam

evaporation technique can be found in Ref. [216].

Abbreviation Full name / composition

IPA Isopropyl alcohol (2-Propanol)
PMMA Polymethyl methacrylate
MIBK Methyl isobutyl ketone

ZED-N50 n-Amyl acetate
ZDMAC N,N -Dimethylacetamide
NMP N -Methylpyrrolidone

ma-D 525 based on tetramethylammonium hydroxide
mr-Rem 400 based on N -Ethylpyrrolidone

Table A.1: List of abbreviations for chemical products.
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Figure A.1: Block diagram summarizing the nanofabrication fabrication work�ow,
starting from the bare substrate and arriving at the �nal sample.

A.1 Double-layer PMMA on silicon substrate

1. Substrate cleaning

1.1 Ultrasonic bath in acetone for 5 min

1.2 Ultrasonic bath in IPA for 5 min and dry

1.3 Plasma ashing in oxygen atmosphere for 3 min

2. Spin-coating of resist (total estimated thickness of ≈ 150 nm)

2.1 PMMA 495K A2 : 60 s at 2000 rpm

2.2 Hot plate baking for 5 min at 180 ◦C

2.3 PMMA 950K A2 : 60 s at 4000 rpm

2.4 Hot plate baking for 5 min at 180 ◦C

3. EBL patterning
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Accelerating voltage Objective aperture Base dose
(kV) (µm) (µC · cm−2)

10 10 120

4. Resist development

4.1 Dip in MIBK/IPA 1:3 for 40 s

4.2 Dip in IPA for 20 s and dry

5. Material deposition

6. Lift-o� process

6.1 Dip in acetone (overnight if needed)

6.2 Dip in IPA for washing and dry

A.2 ZEP on silicon substrate

1. Substrate cleaning

1.1 Ultrasonic bath in acetone for 5 min

1.2 Ultrasonic bath in IPA for 5 min and dry

1.3 Plasma ashing in oxygen atmosphere for 3 min

2. Spin-coating of resist (total estimated thickness of ≈ 240 nm)

2.1 ZEP520A-7 : 60 s at 6000 rpm

2.2 Hot plate baking for 5 min at 180 ◦C

3. EBL patterning

Accelerating voltage Objective aperture Base dose
(kV) (µm) (µC · cm−2)

20 10 108

4. Resist development

4.1 Dip in ZED-N50 for 30 s

4.2 Dip in IPA for 30 s and dry

5. Material deposition



168 A Recipes for Nanofabrication

6. Lift-o� process

6.1 Dip in ZDMAC or NMP (overnight if needed)

6.2 Dip in acetone for washing

6.3 Dip in IPA for washing and dry

A.3 ZEP on glass substrate

1. Substrate cleaning

1.1 Ultrasonic bath in acetone for 5 min

1.2 Ultrasonic bath in IPA for 5 min and dry

1.3 Plasma ashing in oxygen atmosphere for 3 min

2. Material deposition

2.1 Deposit a thin titanium �lm (≈ 4 nm)

3. Spin-coating of resist (total estimated thickness of ≈ 240 nm)

3.1 ZEP520A-7 : 60 s at 6000 rpm

3.2 Remove part of the resist with acetone in order to create a conductive

path to ground (not needed, but suggested)

3.3 Hot plate baking for 5 min at 180 ◦C

4. EBL patterning

Accelerating voltage Objective aperture Base dose
(kV) (µm) (µC · cm−2)

20 10 108

5. Resist development

5.1 Dip in ZED-N50 for 30 s

5.2 Dip in IPA for 30 s and dry

6. Material deposition

7. Lift-o� process

7.1 Dip in ZDMAC or NMP (overnight if needed)

7.2 Dip in acetone for washing

7.3 Dip in IPA for washing and dry
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Figure A.2: SEM image of cobalt nanostructures (of 1 µm diameter) placed in the 2
µm wide gap of gold dipolar antennas (of 4 µm width).

A.4 Recipe for negative resist

Negative resists are extremely useful when the designed structures have to be

obtained by etching, i.e. the removal of previously deposited material. The fol-

lowing recipe describes the fabrication of an actual sample, since the development

of a general and reproducible recipe for negative EBL is still in progress. The

chosen negative e-beam resist for this application has been the ma-N 2403 [217].

In this sample, circular cobalt nanostructures have been fabricated starting from

a continuous cobalt �lm deposited on a glass substrate and, subsequently, gold

dipolar antennas have been patterned around them. Figure A.2 shows a SEM

image of the resulting device. The small residues visible on the image re�ects the

fact that the recipe is not fully optimized yet.

1. Substrate cleaning

1.1 Ultrasonic bath in acetone for 5 min

1.2 Ultrasonic bath in IPA for 5 min and dry

1.3 Plasma ashing in oxygen atmosphere for 3 min

2. Material deposition

2.1 Deposit a cobalt �lm (10 nm thick)

3. Spin-coating of negative resist (total estimated thickness of ≈ 320 nm)

3.1 ma-N 2403 : 60 s at 3000 rpm
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3.2 Remove part of the resist with acetone in order to create a conductive

path to ground

3.3 Hot plate baking for 60 s at 90 ◦C

4. EBL patterning for cobalt nanostructures and alignment markers

Accelerating voltage Objective aperture Dose
(kV) (µm) (µC · cm−2)

20 10 25

5. Negative resist development

5.1 Dip in ma-D 525 for 50 s

5.2 Dip in distilled water for 30 s and dry

6. Physical etching

6.1 Argon ion milling for 200 s at 15 rpm

Material Ar �ow Beam voltage / current Acc. voltage Milling rate
(sccm) (V / mA) (V) (Å · s−1)

Co 15 300 / 80 100 1

7. Lift-o� process

7.1 Dip in mr-Rem 400 (overnight)

7.2 Ultrasonic bath in mr-Rem 400 for 2 min

7.3 Dip in acetone for washing

7.4 Dip in IPA for washing and dry

8. Spin-coating of positive resist (total estimated thickness of ≈ 240 nm)

8.1 ZEP520A-7 : 60 s at 6000 rpm

8.2 Hot plate baking for 5 min at 180 ◦C

9. Material deposition

9.1 Deposit a thin gold �lm (≈ 2.5 nm) in order to create a conductive

path to ground

10. EBL patterning for gold antennas
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Accelerating voltage Objective aperture Dose
(kV) (µm) (µC · cm−2)

20 10 108

11. Chemical etching for removing gold

11.1 Dip in gold etchant (nickel compatible) for 5 s

11.2 Dip (sequentially) in two di�erent beakers containing distilled water

(few seconds each) and dry

12. Positive resist development

12.1 Dip in ZED-N50 for 30 s

12.2 Dip in IPA for 30 s and dry

13. Material deposition

13.1 Deposit a thin titanium �lm (≈ 2.5 nm) as an adhesion layer

13.2 Deposit gold (150 nm thick)

14. Lift-o� process

14.1 Dip in ZDMAC or NMP (overnight if needed)

14.2 Dip in acetone for washing

14.3 Dip in IPA for washing and dry
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Appendix B

Matrix Representation of

Polarization

B.1 Jones calculus

An electromagnetic wave whose electric �eld vector variates temporally and

spatially in a regular manner rather than with random oscillations in direction

and amplitude is said to be a polarized wave [62,218].

For a polarized plane harmonic wave with wavenumber k and angular fre-

quency ω travelling along the z-axis, a general way of expressing the electric �eld

vector E is, in terms of the unit vectors x̂ and ŷ,

E = x̂Ex + ŷEy, (B.1)

where

Ex = E0xei(kz−ωt+φx), (B.2a)

Ey = E0yei(kz−ωt+φy). (B.2b)

The parameters E0x and E0y are real quantities representing the projections of

the electric �eld vector along the coordinate axes, whereas φx and φy represent

the initial phases of the two components. Equation (B.1) can also be written as

E =
[
x̂E0x + ŷE0yei(φy−φx)

]
ei(kz−ωt+φx) = Ẽ0ei(kz−ωt+φx). (B.3)

The bracketed quantity represents the complex vector amplitude Ẽ0 for the po-
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larized wave. Since the state of polarization is completely determined by the

relative amplitude and phase between the components of the electric �eld vector,

it can be described by Ẽ0, which can be expressed as a two-element matrix called

Jones vector :

Ẽ0 =

(
Ẽ0x

Ẽ0y

)
=

(
E0x

E0yeiδ

)
, (B.4)

where δ = φy−φx is the relative phase between the components. The normalized

form of the Jones vector is obtained by dividing by the norm of the vector,

namely
∣∣∣Ẽ0

∣∣∣ =
√

E2
0x + E2

0y. Any information on light intensity is lost by using

normalized Jones vectors. In general, Eq. (B.4) represents an elliptically polarized

wave: at a given position in space, the electric �eld vector describes an ellipse,

whose major axis is inclined at an angle ϑ with respect to the x-axis given by

tan 2ϑ =
2E0xE0y cos δ

E2
0x − E2

0y

. (B.5)

When viewed against the direction of propagation, if 0 < δ < π the electric

�eld vector rotates counter-clockwise, whereas if −π < δ < 0 the electric �eld

vector rotates clockwise; these modes are called left elliptical polarization and

right elliptical polarization, respectively.

Two special cases are of particular importance, namely when the polarization

ellipse degenerates into a straight line or a circle. In the case of linearly polarized

light (δ = 0,±π), the electric �eld vector oscillates along a constant direction.

The normalized Jones vector representing this state takes the form

1√
E2

0x + E2
0y

(
E0x

E0y

)
=

(
cosϑ

sinϑ

)
, (B.6)

where ϑ (given by tanϑ = E0y/E0x) is the angle between the direction of polar-

ization and the x-axis. When E0x = E0y and δ = ±π/2, the light is said to be

circularly polarized and the normalized Jones vectors are given by

1√
2

(
1

i

)
left circularly polarized, (B.7a)

1√
2

(
1

−i

)
right circularly polarized. (B.7b)

One of the application of the Jones notation is calculating the result of adding

two or more waves with given polarization: the result is obtained simply by adding
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the Jones vectors. Through this property, light of arbitrary polarization can be

resolved into orthogonal components. Two waves whose states of polarization

are represented by the complex vector amplitudes Ẽ1 and Ẽ2 are orthogonally

polarized if

Ẽ†1Ẽ2 = 0, (B.8)

where the dagger denotes the Hermitian conjugate. For linearly polarized light,

orthogonality merely means that the electric �eld vectors are polarized at right

angles to one another. In the case of circular polarization, it can be seen that

right circular and left circular polarizations are mutually orthogonal states. Thus,

resolution into linear components is written (for A,B ∈ C)(
A

B

)
= A

(
1

0

)
+ B

(
0

1

)
(B.9)

and into circular components is written(
A

B

)
=

1

2
(A− iB)

(
1

i

)
+

1

2
(A+ iB)

(
1

−i

)
. (B.10)

Another use of the matrix notation is that of computing the e�ect of inserting

a train of linear optical elements into a beam of light of given polarization. The

optical elements are represented by 2×2 matrices called Jones matrices. If Ẽ0 is

the Jones vector of the light incident on an optical train composed by n linear

optical elements, the emerging light is characterized by a Jones vector Ẽ′0 given

by

Ẽ′0 = Jn · · · J2J1Ẽ0, (B.11)

where Jj is the 2×2 Jones matrix of the j-th optical element.

The optical elements that are of interest in MOKE microscopy are the linear

polarizer and the linear retarder [219]. A linear polarizer is a device which

modi�es any polarization state to the state of linear polarization. The transmitted

wave is linearly polarized in the direction of the polarization axis of the polarizer.

If ψ is the angle between the polarization axis and the x-axis, the Jones matrix

JLP of a linear polarizer is expressed by

JLP (ψ) =

[
cos2 ψ cosψ sinψ

cosψ sinψ sin2 ψ

]
. (B.12)

The action of a linear retarder is to introduce a phase shift φ between linearly

polarized waves with orientations along two orthogonal directions determined by
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the physical structure of the retarder and called fast and slow axes. If α represents

the angle between the fast axis and the y-axis and the phase introduced on the

fast axis advances the slow axis one by φ, the Jones matrix JLR of a linear retarder

is

JLR (φ;α) = ei
φ
2

cos
(
φ
2

)
− i sin

(
φ
2

)
cos 2α −i sin

(
φ
2

)
sin 2α

−i sin
(
φ
2

)
sin 2α cos

(
φ
2

)
+ i sin

(
φ
2

)
cos 2α

 .
Choosing α = 0, a linear retarder with the fast axis parallel to the y-axis can be

obtained, whose Jones matrix is given by

JLR (φ; 0) =

[
1 0

0 eiφ

]
, (B.13)

whereas considering φ = ±π/2 a quarter-wave plate can be obtained, a device

that allows to produce circularly polarized light starting from linearly polarized

light. A phase shift of φ = ±π determines a half-wave plate, an optical element

that can change the polarization direction for a linearly polarized wave passing

through it. Considering the normalized Jones vector expressed by (B.6) and

characterizing an arbitrary linear polarization state, the e�ect of JLR (π;α) on it

is given by

JLR (π;α)

(
cosϑ

sinϑ

)
=

(
cos (2α− ϑ)

sin (2α− ϑ)

)
. (B.14)

Since the angle between the initial and the �nal linear polarization states is

2α− 2ϑ, the choice α−ϑ = 45◦ determines a rotation of the polarization axis by

90◦.

B.2 Rotation and ellipticity

A general elliptical polarization state as expressed by Eq. (B.4) can also be

described in terms of two angles related to the ellipse itself, as shown in Fig. B.1:

• the rotation is the angle ϑ between the major axis and the x-axis (see Eq.

(B.5));

• the ellipticity is the angle ε whose tangent expresses the ratio between the

minor and the major axis.

In order to show how to extract these parameters from magneto-optical measure-

ments, let's express Eq. (B.4) in a slightly di�erent way, having in mind that
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Figure B.1: Ellipse swept by the electric �eld vector at a given position in space in
case of a general elliptical state of polarization. The angle ϑ represents the rotation of
the ellipse, while the angle ε is its ellipticity.

a factor common to both the components of a Jones vector does not alter the

polarization state and can be neglected:

(
E0x

E0yeiδ

)
∝

 1
E0y

E0x
eiδ

 ≡

(
1

x+ iy

)
=

(
1

tan(z)

)
∝

(
cos(z)

sin(z)

)
, (B.15)

where z is a proper complex number (z ∈ C). The equality in Eq. (B.15) states

that, given an arbitrary complex number x+iy (x, y ∈ R), it is always possible to
�nd z ∈ C such that x+ iy = tan(z). This is true since the image of the complex

tangent function is C \ {±i} and the two excluded values (±i) correspond to left

and right circular polarization, respectively (which are trivial cases). According

to the de�nition of complex sine and cosine functions, it can be seen that(
cos(z)

sin(z)

)
=

[
cos [<(z)] − sin [<(z)]

sin [<(z)] cos [<(z)]

](
cosh [=(z)]

i sinh [=(z)]

)
, (B.16)

where the matrix corresponds to a 2-dimensional rotation matrix of angle <(z)

and the vector acted on by the matrix represents an ellipse aligned with the

coordinate axes, highlighting the fact that

ϑ = < [arctan(x+ iy)] , (B.17a)

tan(ε) = tanh{= [arctan(x+ iy)]}. (B.17b)

When both rotation and ellipticity are small (ϑ, ε� 1), as in the case of magneto-

optical e�ects, arctan(x+ iy) can be expanded in a Taylor series and the leading
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terms give

ϑ = <(z) ≈ x, (B.18a)

ε ≈ =(z) ≈ y. (B.18b)

These results have been validated by means of the analytic formulas provided in

Ref. [219] for the ellipsometric angles:

ϑ =
π

2
− 1

2
arctan (tan 2ψ cos δ) , (B.19a)

ε =
1

2
arcsin (sin 2ψ sin δ) , (B.19b)

where tanψ = E0x/E0y (see Fig. B.1).
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Micromagnetics on a Regular

Lattice

The LLG equation (1.48) is a partial di�erential equation relating time and

spatial partial derivatives. The two most spread micromagnetic simulation soft-

wares (OOMMF [179] and mumax3 [25]) solve it by means of the �nite di�erence

method (FDM), in which ratios between �nite di�erences approximate deriva-

tives [220]. The FDM needs the space to be discretized according to a regular

lattice (i.e. to be meshed) in order to perform the above mentioned di�erences

in a consistent way. Since all the terms composing the LLG equation involve

the normalized magnetization m(r) = M(r)/MS , particular care has to be taken

when meshing magnetic bodies. The most usual choice is to consider cubic cells

(or square-base prisms) where the side is shorter than the exchange length (see

Eq. (1.43)) in order to consider an ensemble of uniformly magnetized entities.

Hence, this condition allows substituting each cell with a macrospin mi placed

at the center of the corresponding cell. To work within this framework, all the

micromagnetic energies in Eq. (1.31) have to be expressed in a discrete form, sub-

stituting integrals with sums. Since the discrete form of the magnetocrystalline

anisotropy energy depends on the kind of anisotropy to be considered and it is

not needed in this thesis, it will not be mentioned here.

C.1 Micromagnetic energies

Let us consider a magnetic structure meshed in N cells, each of which of

height t and with a square base of side d, so corresponding to a volume V = d2t.
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The Zeeman energy EZ is given by

EZ = −µ0MSV

N∑
j=1

Hj ·mj , (C.1)

where MS is the saturation magnetization and Hj is the external magnetic �eld

applied to the j-th cell. The exchange energy Eex is given by [25]

Eex =
AV

d2

N∑
j=1

n.n.∑
n

(1−mj ·mn) , (C.2)

where A is the exchange sti�ness and n.n. represents the nearest-neighbours to

be considered in the sum (usually six, i.e. two for each Cartesian axis). The

magnetostatic energy Ems is given by

Ems =
µ0M2

SV

2

N∑
i=1

N∑
j=1

mi ·Nij ·mj , (C.3)

where Nij is a tensor expressing the demagnetizing e�ect of the j-th cell on the

i-th cell. Considering that the interaction energy between magnetic moments is

of the form (4.1), the tensor Nij is given by

Nij =



3V

4πr3
ij


1

3
−
(
r̂xij
)2 −

(
r̂xij
) (

r̂yij
)
−
(
r̂xij
) (

r̂zij
)

−
(
r̂yij
) (

r̂xij
) 1

3
−
(
r̂yij
)2 −

(
r̂yij
) (

r̂zij
)

−
(
r̂zij
) (

r̂xij
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 for i = j

, (C.4)

where rij is the distance between mi and mj . However, this approach does

not take into account the fact that the magnetostatic interaction acts between

magnetized cells and not between macrospins. This limitation can be overcome

by following the approach developed by Newell at al. [162], where the �nite size

of the cells is actually considered in the calculation of Nij .
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(a) (b)

Figure C.1: (a) Net magnetic charge (positive in red and negative in blue) appearing
at the opposite ends of a meshed nanostructure uniformly magnetized along its major
axis. (b) Net magnetic charge (positive in red and negative in blue) appearing at the
opposite ends of a meshed nanostructure uniformly magnetized along its minor axis.

C.2 Interaction energy in case of uniform magne-

tization

Equation (C.3) is quite general and it can also be used when the various mj

belong to di�erent structures, in order to evaluate their interaction energy. In

fact, the quantity Nij ·MSmj is the magnetic �eld produced by the magnetic

moment MSmj in the i-th site, and µ0M2
SVmi ·Nij ·mj is the corresponding

Zeeman energy. However, in case of uniformly magnetized bodies, an alternative

and faster method can be envisaged. Figure C.1 shows two slices of a meshed

magnetic nanostructure considered to be uniformly magnetized (either along its

major axis or along its minor axis). According to Eq. (1.45a), the magnetic charge

inside the volume is zero, but a net charge appears at the opposite nanostruc-

ture's ends. Each one of the border cells has a lateral surface (perpendicular to

the depicted slices) of area td, where t is the height of the cell and d its side.

Hence, a magnetic charge (qm)j (represented by the �lled dots in Fig. C.1) can

be associated to the center of each j-th border cell surface:

(qm)j = tdMSn̂ ·mj = ±tdMS , (C.5)

where where n̂ is the outward-pointing surface normal. Now, for obtaining the

interaction energy Eint between multiple nanostructures, it is enough to evalu-

ate the interaction energy between all the surface magnetic charges, instead of
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considering the interaction energy between all the cells according to Eq. (C.3):

Eint =
µ0

8π

∑
i 6=j

(qm)i(qm)j
rij

, (C.6)

where rij is the distance between the i-th and the j-th magnetic charges. For the

geometrical arrangements (vertices) analyzed in this thesis, the energies so calcu-

lated di�er by less than 0.01 % with respect to the same evaluations performed

by OOMMF [179].



Appendix D

The Kinetic Monte Carlo

Method

The kinetic (or continuous-time) Monte Carlo (kMC) method is a Monte

Carlo algorithm allowing for the simulation of dynamical phenomena [29, 165�

167]. Through this method, both the equilibrium expectation values and their

time evolution during a thermalization process can be retrieved. Indeed, the kMC

method provides a numerical solution to the master equation, which is a system

of linear di�erential equations describing the evolution of the probabilities for

Markov processes in systems that jump from one state to another in continuous

time [29].

To clarify these concepts, we can consider a generic system characterized by

two states (A, C) with energies EA and EC separated by two energy barriers EB
and ED, as depicted in Fig. D.1a. In this case, the stochastic process of interest

involves the transition between the A state and the C state, as indicated by the

coloured arrows in Fig. D.1a. We are considering two energy barriers separating

the equilibrium states in order to resemble what occurs in our DVA. For this

system, the probabilities PA(t) and PC(t) of being in state A or C, respectively,

are given by the following master equation:ṖA = −νCAPA + νACPC

ṖC = νCAPA − νACPC
, (D.1)

where νjidt represents the probability of having a transition i → j in the time

interval [t, t+dt). In order to combine the two transitions (i.e. from i to j through

either the B state or the D state, with i = A,C and j = C,A, respectively) into a
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Figure D.1: (a) Generic energy landscape representing transitions between A and C
states over the EB and ED energy barriers. The coloured arrows highlight the four
possible transitions. (b) Schematic representation of the kMC algorithm steps 2 and
3. The key quantities here depicted are the sequences Rj (j = 1, . . . , N) of the partial
sums of the switching frequencies and the uniform random number ξ1 ∈ [0, 1).

unique switching frequency, we consider them as independent, parallel transition

channels, hence summing their corresponding switching frequencies:

νji = ν(i→ B → j) + ν(i→ D → j). (D.2)

The solution to the linear system (D.1) is given by Eq. (1.57):

PA(t) =
νAC
νMEq

+

[
PA(0)− νAC

νMEq

]
exp (−νMEqt) , (D.3)

where νMEq = νCA + νAC and PA(t) + PC(t) = 1 ∀t. So, the equilibrium proba-

bilities can be obtained by setting t→∞:
PA(t→∞) =

νAC
νMEq

PC(t→∞) =
νCA
νMEq

. (D.4)

Alternatively, the equilibrium probabilities can be retrieved by extracting the

eigenvector corresponding to the zero eigenvalue of the coe�cient matrix associ-

ated to Eq. (D.1), a useful method for more complicated situations. From Eq.

(D.4), it is possible to see that a proper de�nition of the switching frequencies is

mandatory in order to get the physically correct probabilities for the equilibrium

state (i.e. the values predicted by equilibrium statistical mechanics). This condi-

tion is usually referred to as detailed balance criterion and expressed by setting
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the time derivatives in Eq. (D.1) equal to zero [165]:

νCAPA = νACPC . (D.5)

In dealing with switching frequencies in form of the Néel�Arrhenius equation

(1.56), the detailed balanced criterion is satis�ed for the case depicted in Fig.

D.1a, and the Boltzmann distribution is retrieved at equilibrium:
νAC = ν0

[
exp

(
− EB
kBT

)
+ exp

(
− ED
kBT

)]
exp

(
EC
kBT

)
νCA = ν0

[
exp

(
− EB
kBT

)
+ exp

(
− ED
kBT

)]
exp

(
EA
kBT

)
⇓

PA(t→∞) =

exp

(
− EA
kBT

)
exp

(
− EA
kBT

)
+ exp

(
− EC
kBT

)

PC(t→∞) =

exp

(
− EC
kBT

)
exp

(
− EA
kBT

)
+ exp

(
− EC
kBT

)

, (D.6)

where we made use of Eqs. (D.2) and (D.4).

All these considerations can be mode more general, in order to be extended

to any kind of systems described by Markov processes [29, 165]. In particular,

we can apply the master equation approach to square ASI systems, where a

state consists in specifying the direction of the magnetization in every nanos-

tructure composing the array. For a square system formed by n × n vertices,

the number of involved nanostructures1 N is given by N = 2n(n + 1) and the

number of states m is m = 2N . This implies that the corresponding master

equation would involve a huge number of terms, even for relatively small arrays

(n = 3 ⇒ m = 224 ≈ 16.8 · 106). Anyway, under the approximations char-

acterizing the DVA, the Markov process consists in the single �ip of a selected

nanostructure and, since we are only considering interactions with respect to �rst

and second nearest-neighbours, the switching frequencies are indeed representa-

tive of the transitions between states in extended square ASI systems. Regarding

the assumption of dealing with single-�ip events, we have seen that νjidt repre-

sents the probability of having a transition i → j in the time interval [t, t + dt).

In case of independent events, the multiple-�ip transitions would occur with a

1For square ASI systems only composed by full vertices (also on the array edges).
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O(dt2) probability, which can be neglected in the limit dt → 0 performed for

obtaining the master equation (D.1) [29]. However, we are neglecting any kind

of statistical and physical correlations between transitions. Nonetheless, single-

�ip events allows satisfying another de�ning condition for the master equation

approach, which is ergodicity : some of the switching frequencies of the above-

described Markov process can be zero, but there must be at least one path (no

matter how many events it involves) between any two states of the system [165].

The solution of the master equation for a system characterized by m states

requires the solution of a system of m − 1 independent linear di�erential equa-

tions, a task which can be computationally hard since the number of states for

square ASI systems exponentially grows. The kMC method does provide a recipe

for iteratively solving this kind of systems. Essentially, it belongs to the family of

Monte Carlo methods, but the fact of producing (i.e. sampling) the states accord-

ing to switching frequencies endowed with a physical meaning allows calculating

proper time increments (in physical units). The kMC algorithm consists in the

following steps [165,166]:

1. initialize the square ASI system composed by N nanostructures. The j-th

nanostructure is characterized by the switching frequency νj obtained in the

DVA according to the con�guration of the neighbouring nanostructures;

2. calculate the sequence Rj (j = 1, . . . , N) of the partial sums of the switching

frequencies:

Rj =

j∑
i=1

νi. (D.7)

Visually, Rj corresponds to the height of a stack of j blocks, whose length

is proportional to the switching frequency they represent, as shown in Fig.

D.1b;

3. select the J-th transition by generating a random number ξ1 uniformly

distributed in the [0, 1) interval and using the following criterion:

RJ−1 =

J−1∑
i=1

νi < ξ1RN ≤
J∑
i=1

νi = RJ . (D.8)

Visually, this selection process corresponds to the chosice of any transition

with a probability proportional to the length of the relative block (see Fig.

D.1b), which in turn is proportional to the switching frequency: the higher

the switching frequency, the more probable the associated transition;
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4. perform the transition by �ipping the magnetization in the selected island

(rejection-free algorithm) and generate a time step ∆t for the occurred

event according to

∆t = − ln (ξ2)

RN
, (D.9)

where ξ2 is a random number uniformly distributed in the [0, 1) interval.

The time step ∆t is then used to increment the total simulated time;

5. since a new state has been obtained, repeat steps 2 to 4 until needed

(reached thermal equilibrium, relevant features discovered in the time evo-

lution, ...).

Equation (D.9) can be justi�ed by considering the single-�ip events as a Poisson

process [221] with rate RN , a statement consistent both with a master equation

approach [167] and with what happens in square ASI systems. In this case, the

distribution of time intervals between events (∆t) is described by the exponential

distribution [221], whose probability distribution function f∆t(t; ν) and cumulative

distribution function F∆t(t; ν) are

f∆t(t; ν) = ν exp (−νt) , (D.10a)

F∆t(t; ν) = 1 − exp (−νt) , (D.10b)

for t ≥ 0. Hence, Eq. (D.9) corresponds to the random generation of a time

interval according to the exponential distribution characterized by ν = RN .

Fou our purpose, the great advantage of the kMC algorithm resides in the

fact that the geometrical arrangement of nanostrucures in a square ASI system

is naturally taken into account, without the need of writing a master equation

connecting all the states of the system. Moreover, in the DVA, the switching fre-

quencies can be calculated and stored before running the kMC simulation (at any

�xed temperature). Since each event only a�ects a limited number of switching

frequencies (given the �nite range of interaction in the DVA), not all the partial

sums in Eq. (D.7) have to be recalculated every iteration. The Python code de-

veloped for performing the kMC simulations reported in Chap. 4 is available as

a GitHub repository [222].
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Appendix E

Supplementary Information

for Section 3.3

Figure E.1: Re�ectance as a function of the amorphous Si (α-Si) thickness t for
an Air|α-Si(t)|Au(20 nm)|Si(500 µm)|Air multilayer system. S-polarized light with a
wavelength of 800 nm has been considered. Each curve corresponds to a di�erent ϑi

angle of incidence.
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Figure E.2: Re�ectance as a function of the amorphous Si (α-Si) thickness t for an
Air|α-Si(t)|Au(20 nm)|Si(500 µm)|Air multilayer system. S-polarized light at 25◦ of
incidence has been considered. Each curve corresponds to a di�erent λ wavelength
of the impinging light, while the vertical black line corresponds to the deposited α-Si
coating thickness (27 nm). The black-�lled dots highlight the experimental working
points. As shown by the horizontal black line, the 550 nm re�ectance for a 27 nm thick
α-Si coating is the same as the 800 nm re�ectance for a 14 nm (or 45 nm) thick α-Si
coating. This implies that using radiation of a di�erent wavelength, having �xed the
α-Si thickness, is equivalent to consider samples with di�erent α-Si thickness.



Appendix F

Supplementary Information

for Chapter 4

Figure F.1: Switching time cCDF at T = 575 K.
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Figure F.2: Switching time cCDF at T = 600 K.

Figure F.3: Switching time cCDF at T = 625 K.

Figure F.4: Switching time cCDF at T = 650 K.
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Figure F.5: Switching time cCDF at T = 675 K.

Figure F.6: Switching time cCDF at T = 725 K.

Figure F.7: Switching time cCDF at T = 750 K.
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Appendix G

Supplementary Information

for Chapter 5

Equations (5.7a) and (5.7b) can be written in terms of the beam intensity Ib
instead of the beam power P:

• circular uniform beam

Ib =
4P

πD2
, (G.1a)

∆T0 ≈
σabsIb
4πκ̄a

+
σabsIbD

4κ̄S

(
1− 2

√
S

D
√
π

)
; (G.1b)

• Gaussian beam (with standard deviation σIb)

Ib(r) =
4P ln(2)

πH2
exp

(
−4r2 ln(2)

H2

)
where H = 2

√
2 ln(2)σIb , (G.2a)

∆T0 ≈
σabsIb(0)

4πκ̄a
+

σabsIb(0)H

8κ̄S

√
π

ln(2)

(
1−

4
√
S ln(2)

πH

)
. (G.2b)

See Sec. 5.1 and Ref. [194] for the de�nition of the various parameters. Concerning

Ib and H, the �rst term in Eq. (G.2b) (i.e. the self contribution) only depends

on the beam intensity Ib, whereas the second term (i.e. the contribution of the

surrounding structures) also depends on the beam FWHM H.
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(a) Experimental 1 − T (b) Hysteresis loops

Figure G.1: A control array corresponding to array B1 − 1.75 has been fabricated
by only depositing a 15 nm thick Permalloy �lm, so avoiding the gold layers below
and above it. (a) Experimental extinction spectra (1 − T ) measured using linearly
polarized light. The incident electric �eld Eb was parallel either to the major axis dy
or to the minor axis dx of the nanostructures composing the array. The black vertical
line corresponds to λ = 740 nm, the wavelength considered to be the best compromise
between heating e�ciency and selectivity. (b) Measured hysteresis loops along dy while
pumping with linearly polarized light at λ = 740 nm. The red and green hysteresis
loops correspond to measurements performed at P = 60 mW for Eb ‖ dy and Eb ‖ dx,
respectively. Both the reduced coercive �eld variation (∆HC < 25 Oe) and the small
di�erence between the Eb ‖ dy and Eb ‖ dx cases (≈ 10 Oe) con�rm the loss of heating
e�ciency and selectivity.

(a) Probe spot (b) Pump spot

Figure G.2: (a) Image of the probe spot (λ = 532 nm). Its FWHM is 15 µm. (b)
Image of the pump spot (λ = 785 nm). Its FWHM is 30 µm. The horizontal bars
appearing in both the images have been fabricated on each sample in order to have a
�visual� estimate of the spot size during the measurements.
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