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ABSTRACT 

 

In this work I have studied the effect of an ultrathin Pt overcoat onto epitaxial Co 

(101̅0) films with an in-plane easy axis of magnetization. Our samples are 8-cm-long strips, on 

which we have deposited epitaxial Co by means of sputter deposition. On top of the Co film, 

we have deposited an ultrathin Pt overcoat. The Pt overcoat has been deposited in a wedge-

shaped form, with 0.3 nm of Pt thickness on one end, 1.8 nm of Pt on the other end, and an 

almost linear increase of Pt thickness in between, along the 8 cm of the strip. This particular 

sample choice has enabled a systematic measurement and allowed for an excellent 

homogeneity of the Co-film quality due to the simultaneous fabrication of entire sample sets. I 

have fabricated two different sets of samples, one of them with 20 nm Co, and the other with 

100 nm Co, in order to study magneto-optical and magnetocrystalline effects. Reference 

samples have also been fabricated, deposited under the very same conditions, but without the 

Pt overcoat, to check for possible inhomogeneities along the strip induced by the growth or 

misalignments during the magneto-optical characterization measurements.  

The effect of the thickness of the Pt overcoat on the magneto-optical anisotropy of Co 

has been studied by means of generalized magneto-optical ellipsometry (GME), a robust 

magneto-optical method. For a consistent explanation of the measured data, my analysis of 

the results incorporates magneto-optical anisotropy (MOA), allowing for a different coupling 

factor between light and magnetization depending on the orientation of the magnetization 

with respect to the easy axis of the material. Even if in most studies metallic ferromagnets are 

assumed to be magneto-optically isotropic, my experiments show a considerable level of 

magneto-optical anisotropy in Co, which is very substantially enhanced by depositing an 

ultrathin Pt overcoat layer. The approximation of magneto-optical isotropy is no longer good 

and leads to an inaccurate description of the magnetization vector. By means of the approach 

explained in this thesis, I have been able to quantify the degree of MOA, and to separate its 

effects from the rotation of the magnetization vector. 

I have also studied how the Pt overcoat affects the magnetocrystalline anisotropy. For 

this I have combined GME and vibrating sample magnetometry (VSM). An increase in 

magnetocrystalline anisotropy is observed as the Pt overcoat thickness increases. This effect 

could be of potential interest for technological applications.  
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INTRODUCTION 

 

Magnetism has fascinated humankind throughout the ages. From the first reported 

observations of lodestone by Greek philosophers in 600 B.C. to the studies by Oersted in 1820 

that proved that an electric current creates a magnetic field, people were using the magnetic 

properties of materials to build compasses for navigation. But it was not until the XIXth 

century, after Oersted's discovery, that the science of magnetism took off, when the works of 

Oersted, Faraday and Maxwell, among others, unified electricity and magnetism. Ever since, 

the research field of magnetism and magnetic materials has not stopped advancing and is 

nowadays a very relevant field in condensed matter physics. Of course, the interest in 

magnetism is not only of fundamental character, as this phenomenon has a large number of 

applications, ranging from the already mentioned compasses to transformers, detectors or 

information storage, to name a few.  

The topic that I have studied in my master thesis is magneto-optical anisotropy (MOA), 

an effect that arises in magneto-optics, but to which not much attention has been paid. As we 

have studied in this work, though, the consequences of MOA can be very relevant for a broad 

branch of research. Indeed, characterization methods based on magneto-optical effects [1] 

such as the magneto-optical Kerr effect (MOKE) [2,3], which are well-established tools for the 

study of magnetism, virtually always assume that the magneto-optical coupling 𝑸 which 

defines the magnetization-dependent elements in the dielectric tensor of the material does 

not depend on the orientation of the magnetization. This means that 𝑸, which is a tensor, is 

assumed to be isotropic, neglecting the crystallographic structure and the symmetry of the 

system. This assumption is understood to be reasonable for metals, which display weak optical 

anisotropies [4]. Nevertheless, deviations from this assumption of magneto-optical isotropy 

have been studied in some systems such as FeSi and Ni [5], Co [6-8], Fe/Au superlattices [9] or 

permalloy structures [10]. Recently, MOA has been related to strain in epitaxial hcp Co films, 

and substantial differences between the magneto-optical couplings along different 

crystallographic directions have been reported for the type of Co films that I have fabricated in 

this work [11]. Neglecting MOA can thus lead to a misinterpretation of MOKE data, and it could 

be necessary to correct for its effect in future studies. 

In this thesis, sputter-deposited epitaxial Co (101̅0) films have been coated with an 

ultrathin Pt film, whose thickness ranges from 0.3 to 1.8 nm, and the effect of this overcoat on 

the MOA has been systematically studied as a function of the Pt thickness via GME. I have 

observed that Pt enhances very substantially the MOA present in pure Co very significantly, 

obtaining a difference of 100% between the magneto-optical coupling factor for two 

nonequivalent crystallographic directions. The enhancement effect saturates once the 

overcoat is thick enough, of the order of 1.5 nm. The degree of MOA in our samples is very 

high and we see that neglecting this effect leads to an important error in the interpretation of 

the angle of magnetization.  
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Apart from the MOA, I have also studied the effect of the Pt overcoat on the 

magnetocrystalline anisotropy of Co, a property arising from spin-orbit coupling which leads to 

a preferred orientation of the magnetization along specific directions in the crystal. It is already 

known that the alloying of Pt with Co increases the magnetocrystalline anisotropy of Co [12] 

due to the large spin-orbit coupling of Pt, and this kind of alloys are widely used in magnetic 

storage media [13]. Indeed, as magnetic storage requires the stability of the information high 

anisotropy is desirable, because this makes it more difficult to switch the magnetization via 

thermal fluctuations, which would correspond to a thermal erasure of information. The effect 

of an individual Pt overcoat layer on a Co-film now allows for a very detailed study in how far 

Pt influences magnetic properties of an adjacent ferromagnetic film, and can enable to 

elucidate the underlying interface physics. This is an interesting and relevant subject, 

potentially even for magnetic storage applications, because Co/Pt and other magnetic 

multilayers are considered relevant candidates for information storage technology [14]. The 

studies of overcoat materials on Co, to my knowledge, have not investigated the effect on the 

magnetocrystalline anisotropy directly. However, overcoats in general are very important 

because they are needed for chemical protection of the magnetic materials and hence, their 

role is of great relevance in technology. An example of one of the overcoat materials that have 

been studied is hydrogenated amorphous carbon, which shows very good tribology and 

corrosion-resistance performance [15]. 

 To sum up, this work supports previous results about MOA, and furthermore it 

demonstrates the possibility to enhance MOA to very substantial levels by adding an ultrathin 

Pt overcoat to Co. On the other hand, this work also shows a possible pathway to explore and 

modify magnetocrystalline anisotropy of ferromagnetic thin films. 

This work is organized as follows. In Chapter 1 I will present basic concepts of 

ferromagnetism and magnetocrystalline anisotropy. I will also explain the simple Stoner-

Wohlfarth model for a homogeneously magnetized particle, which I shall utilize to describe the 

behavior of our samples. In Chapter 2 I will explain the experimental techniques that I have 

used to fabricate and characterize my samples. Hereby, I will focus especially on the technique 

of generalized magneto-optical ellipsometry (GME). After that, in Chapter 3, I will explain how I 

have fabricated my samples, including the relevant calibrations that I have performed. Chapter 

4 will be focused on the results obtained from GME measurements, showing that MOA is 

necessary to explain them consistently. I will present the measured values of the MOA and the 

magnetocrystalline anisotropy. In Chapter 5 I will present VSM results, which also probe the 

magnetocrystalline anisotropy. Finally, I will present the conclusions of this work and suggest 

possible future work.  
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Chapter 1  

BASIC CONCEPTS OF MAGNETISM 

 

In this chapter I will review the basic concepts of magnetism and magnetic ordering, 

discussing the most important energy contributions that give rise to magnetic order and to the 

hysteretic behavior of ferromagnetic materials. I will also introduce the Stoner-Wohlfarth 

model of ferromagnetism, a very simple model for hysteresis in a single-domain nanoparticle 

which describes the main parts of the field response curve in monocrystalline thin films.  

 

1.1- Ferromagnetism and its energy contributions 

Ferromagnetic materials are materials that possess spontaneous net magnetization 

below a certain critical temperature, called Curie temperature 𝑇𝑐, even in the absence of an 

applied magnetic field. The origin of magnetic ordering is the alignment of spins and lies in the 

fact that parallel and antiparallel configurations of spins have different energies. It is crucial to 

point out that the origin of this energy difference is not the dipolar interaction among the 

magnetic moment of the spins. Indeed, the energy difference between the parallel and 

antiparallel spins is several eV, an order of magnitude that cannot be accounted for with 

dipole-dipole interactions, which are only of the order of meV. Instead, the energy difference 

between the parallel and antiparallel configurations comes from the so-called exchange 

interaction, which is the basis of magnetic order [16].  

Exchange interaction is a quantum phenomenon that arises from the combination of 

pure electrostatic interactions between electrons with the fact that two electrons (which are 

fermions) with the same spin cannot be in the same orbital quantum state, i.e., the Pauli 

exclusion principle. This quantum-mechanical principle constrains the wave-function of the 

electronic system to switch sign upon the exchange of two particles. As the wave-function has 

both spatial and spin parts, the symmetry properties of one of the parts affect the other one: 

the spin state of the system will thus influence the spatial distribution of the electrons and vice 

versa. So, even if electrostatic energy only depends directly on spatial coordinates and not on 

spins, the Pauli exclusion principle makes the spin affect the spatial coordinates [17]. 

Accordingly, the energy will eventually depend in an indirect manner on the spin state of the 

system. 

 A way to map this effective influence of the spin alignment in the case of a two-

electron system is the Heisenberg Hamiltonian [17]  
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𝐸𝑥 =  −𝐽 �̂�𝟏 · �̂�𝟐,     (1.1)  

where �̂�𝟏 and �̂�𝟐 are the dimensionless quantum-mechanical operators for the spin 

(normalized to ℏ), and 𝐽 is the exchange integral, which accounts for the energy difference 

between the antiparallel and parallel states1. The sign of 𝐽 determines the type of coupling. If 

𝐽 > 0, the parallel alignment of the spins is favored, and their coupling is said to be 

ferromagnetic. Instead, if 𝐽 < 0, the system prefers the antiparallel alignment and the coupling 

is antiferromagnetic. If one assumes a pairwise interaction of spins, Eq. (1.1) can be 

generalized to a sum of terms 

𝐸𝑥 =  − ∑ 𝐽𝑖𝑗𝑖<𝑗  �̂�𝒊 · �̂�𝒋.    (1.2) 

Even if this energy contribution has the form of a dipolar interaction, one should always 

remember that its origin is purely quantum-mechanical.  

Exchange interaction explains the origin of the spin alignment but does not account for 

the hysteretic behavior of magnetic materials. If there were no other energy contributions, the 

magnetization could take any direction in the material, i.e., it would be isotropic. However, this 

is not the case due to other energy contributions, such as magneto-crystalline anisotropy 

(MCA) and magnetostatic energy.  

In crystalline materials, MCA occurs due to the fact that it is energetically more 

favorable for the magnetization to lie along a certain crystallographic axis, a phenomenon that 

arises from spin-orbit coupling [18]. There are certain crystal structures that due to their 

symmetry favor the alignment of the magnetization along a single given axis: such systems are 

called uniaxial. Other crystalline orders could give rise to biaxial, triaxial etc. anisotropy. In the 

case of the films grown for this work, the crystal structure is hexagonal close packed (hcp), 

which shows uniaxial MCA. In this case, it is energetically favorable for the magnetization to lie 

along the crystallographic c-axis of the Co, which is the so-called easy axis (EA). There is an 

energy cost to divert the magnetization away from the EA, and for the case of hcp-type crystals 

this contribution can be written as [17] 

𝐸𝑀𝐶𝐴 = 𝐾0 +  𝐾1 sin2 𝛾 + 𝐾2 sin4 𝛾 + higher order terms,    (1.3)      

where 𝐾1 and  𝐾2 are anisotropy constants and 𝛾 is the angle between the magnetization and 

the easy axis.  

Another energy contribution we have to consider is magnetostatic energy, which arises 

from the interaction of a magnetic moment with other magnetic moments in the same sample 

and can be expressed as follows: 

𝐸𝑠 =  −
1

2
∫ 𝑴 · 𝑯𝒔 dV.     (1.4) 

The effect of the distribution of magnetic moments is introduced via the magnetic field 

it creates. This field is the magnetostatic field 𝑯𝒔 . In order to understand its origin, consider a 

                                                           
1
 If the spin state is a singlet (antiparallel) then �̂�𝟏 · �̂�𝟐 = −

1

4
, if it is a triplet (parallel), �̂�𝟏 · �̂�𝟐 =

3

4
. Thus 

𝐸(singlet) − 𝐸(triplet) = 𝐽.  
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uniformly magnetized finite sample without any applied external field. At the surface, the 

sudden change in the magnetization produces a non-vanishing divergence. From Maxwell’s 

equations we know that 𝛁 · 𝑯 =  −𝛁 · 𝑴, so that a field opposing the magnetization is created 

at the surface. This field depends strongly on the shape of the magnet and only has analytical 

solutions for particular geometries, such as ellipsoids of thin films. In the latter case, the one 

we are interested in, the magnetostatic energy favors an in-plane alignment of the 

magnetization, thus giving rise to an extra source of anisotropy, the so-called shape 

anisotropy.   

The last term to consider in this discussion2 is the energy contribution that arises from 

the interaction of the magnetized sample with an externally applied magnetic field 𝑯. This is 

the so-called Zeeman energy, which can be written as 

𝐸𝑍 =  − ∫ 𝑴 · 𝑯 dV.     (1.5) 

This energy term favors the alignment of the magnetic moments of the magnet with the 

external field. 

The sum of these four contributions 𝐸𝑥, 𝐸𝑀𝐶𝐴, 𝐸𝑆 and 𝐸𝑍 is the total energy of the 

magnetic system, which has to be minimized to obtain the equilibrium state. Several aspects 

have to be considered when tackling the problem. First, the problem cannot be solved 

analytically in most of the cases. One should note that the 𝐸𝑠 term has to be calculated self-

consistently, because 𝑯𝒔  depends on the magnetization of the system. Second, a 

ferromagnetic sample tends to separate into domains. The domains are regions of the material 

in which the microscopic magnetic moments are aligned in a parallel manner, as favored by 

the exchange energy for 𝐽 > 0, thus giving rise to a non-zero magnetization. However, this has 

a cost in magnetostatic energy and systems tend to minimize it by creating other regions in 

which the magnetization is in another direction. Eventually, if the applied field is zero, the net 

magnetization of the material, taking into account all its domains, will be zero in most of the 

cases. Creating these domains reduces magnetostatic energy, but it has a cost in exchange 

energy (it increases it because in the boundaries of the domains the magnetic moments are 

not parallel, as would be favored by 𝐸𝑥), and forces appear in the domain walls. Finally, as we 

shall see, minimizing the total energy is not enough to determine the state of the system, 

because the magnetization also depends on the history of the system. It may happen that the 

absolute minimum of the energy is not accessible because the system is in a local minimum 

and the energy barrier is too high to be overcome by thermal fluctuations. Under such 

circumstances the system will be in a metastable state.  

The fact that the state of the system depends on its history is reflected in the well-

known 𝑀 vs 𝐻 hysteresis loop exhibited by ferromagnetic materials, which is schematized in 

Fig. 1.1. Here, the value of the magnetization projected onto the axis along which the magnetic 

field 𝐻 is applied (𝑀∥) is plotted as a function of 𝐻. Relevant quantities in a hysteresis loop are  

                                                           
2
 There are other energy terms that might be necessary to include in certain circumstances, such as 

terms that couple the magnetic degree of freedom to others, e.g. magnetoelastic energy. 
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Fig. 1.1: Schematics of a hysteresis loop in a ferromagnetic material. Dotted lines represent the 

saturation magnetization. Green dots indicate the remanence magnetization, orange ones the coercive 

field. The curve that appears inside the hysteresis loop and that begins at the (0,0) point is the virgin 

magnetization curve. 

 

the saturation magnetization 𝑀𝑠, which is the maximum value the magnetization can achieve, 

the remanence magnetization 𝑀𝑟, which is the value of the magnetization at 𝐻 = 0, and the 

coercive field 𝐻𝑐, the value of the field needed to get zero magnetization. When the sample is 

initially unmagnetized one can magnetize it by applying a magnetic field. 𝑀∥ vs 𝐻 then follows 

the curve in Fig. 1.1 that passes through the (0,0) point and is enclosed inside the hysteresis 

loop.  This path is called the virgin magnetization curve. 

 

1.2- Stoner-Wohlfarth model of ferromagnetism 

A simple model for a single-domain uniaxial ferromagnetic material under the 

influence of an external magnetic field was proposed by Stoner and Wohlfarth in 1948 [19,20]. 

The model assumes that the material has homogeneous magnetization 𝑀 = 𝑀𝑠 which rotates 

upon applying an external field 𝐻, an approximation that is suitable for small particles whose 

magnetic state has a single domain. Assuming only first order anisotropy, the energy of the 

system can be expressed as 

𝐸𝑆𝑊 = 𝐾 sin2 𝛾 − 𝑀𝑠𝐻 cos(𝛾 − 𝛿).   (1.6) 

   

In this equation 𝛾 is the angle between the EA and the magnetization, and 𝛿 is the angle 

between the EA and the external field (see Fig. 1.2). With the assumption of homogeneous 

magnetization the exchange coupling is isotropic so it does not appear in this expression 

because it is just a constant term, independent of the angle. The anisotropy constant 𝐾 takes 

into account both the 𝐾1 term in equation (1.3) and the effect of the shape anisotropy. The 

term 2𝐾/𝑀𝑠 is called the anisotropy field 𝐻𝐾 and is the field needed to saturate the 

magnetization along the hard axis. The second term is the Zeeman energy, which tends to align 

the magnetization with the applied field. 
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Fig. 1.2: Representation of the Stoner-Wohlfarth model. 

 

The Stoner-Wohlfarth model is very useful to account for hysteresis loops. In the 

absence of an applied field, the system has two stable configurations with the magnetization 

along the EA direction. If the magnetic field is applied along the EA, i.e., if 𝛿 = 0, the resultant 

hysteresis loop can be explained via the diagrams in Fig. 1.3. If the field is initially positive and 

has a large value, the magnetization is pointing in the field direction (I), because in this case 

there is only one minimum in the energy landscape. As the field is decreased and reverses its 

sign, the absolute minimum of the system corresponds to the magnetization pointing in the 

field direction, but there is a range of fields in which the initial state is still metastable and the 

system cannot overcome the energy barrier to jump to the most stable state (IV). As the field 

is further decreased, the absolute minimum is populated (V). The point at which the 

magnetization switches (V and X) is determined by the value of the anisotropy field 𝐻𝐾.   

For the general case where 𝛿 ≠ 0 the minimization of the energy leads to hysteresis 

loops of different shapes. Figure 1.4 shows two examples where the angle between the 

applied field and the EA is 45º and 90º. This last one corresponds to the hard axis (HA), i.e., the 

axis along which the magnetization is least favored energetically. In this case, the 

magnetization undergoes a rotation and does not jump. The area of the hysteresis loop is zero 

and the curve passes through (0,0). By looking at equation (1.6) we see that when 𝐻 = 0 the 

magnetization is favored to lie along the EA (𝛾 = 0). Now, remember that the magnitude 

plotted in the hysteresis loop is the projection of the magnetization along the field axis. Thus, 

when the field is along the HA, zero field will lead to zero magnetization along the field axis. 

For any other orientation of the field that is not parallel to the EA or the HA, a combination of 

rotation and switching will occur, giving rise to hysteresis loops of different shapes.  

The films I have fabricated have a very well-defined uniaxial anisotropy, and as long as 

one avoids the immediate vicinity of the coercive field they are in a homogeneous 

magnetization state. Vibrating sample magnetometry results indicate that from saturation to 

remanence the samples are well described by the Stoner-Wohlfarth model. Hence, this model 

will be utilized in this work to analyze the behavior of the samples.  
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Fig. 1.3: Schematics of the energetic landscape and corresponding hysteresis loop for the Stoner-

Wohlfarth model when the field is applied along the EA. The last figure shows the resulting hysteresis 

loop, showing the magnetization parallel to the applied field vs the magnitude of the applied field. 

 

 

 

Fig. 1.4: Calculated hysteresis loops with the Stoner-Wohlfarth model, for angles between magnetic 

field and EA of 45º and 90º [21]. 
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Chapter 2  

EXPERIMENTAL TECHNIQUES 

 

This chapter describes the different experimental techniques that have been used 

during the thesis. The chapter is divided in three sections. In the first one I will discuss the 

technique I have used to fabricate our samples, namely, sputter deposition. In the second 

section, structural characterization techniques will be explained, namely, X-ray diffractometry 

and X-ray reflectivity, as well as spectroscopic ellipsometry. Finally, vibrating sample 

magnetometry (VSM) and generalized magneto-optical ellipsometry (GME) will be discussed, 

which have been used to characterize the samples magnetically and magneto-optically.  

 

2.1- Fabrication techniques: sputter deposition 

The growth of our samples has been made by means of the sputter deposition 

technique [22]. Sputtering can be classified as a physical vapor deposition (PVD) technique, as 

no chemical reaction is involved in the procedure. This technique is very suitable for thin film 

growth due to its robustness and stability. The basic principle of the sputter process is to 

bombard with ions a target which, as a consequence of the collision, will eject atoms. These 

atoms are then deposited on a substrate for the purpose of film or multilayer growth. 

A schematic picture of the sputtering process can be seen in Fig. 2.1. The target of the 

material that is to be deposited is placed in a gun, facing a holder in which the substrate is 

placed. The system is inside a vacuum chamber. A suitable gas (in this work chemically inert Ar 

has been used) is introduced in the chamber and is kept at a suitable pressure3. Then a 

negative voltage (with respect to the chamber walls, which are grounded) is applied to the 

target that is going to be sputtered, and which correspondingly works as an electrode. Free 

electrons that are present in the chamber are thus accelerated away from the target and some 

of them collide with the neutral atoms of the gas inside the chamber. The interaction of the 

free electrons with the outer shell electrons of the gas atoms provokes the ionization of such 

gas atoms and, in the case of Ar, we will have Ar+.  

Hence, a plasma containing positively charged ions is created in the neighborhood of 

the gun. Now, these positively charged ions are accelerated towards the target and the 

subsequent energy and momentum transfer are enough to expel atoms (or other neutral 

                                                           
3
 Unless otherwise stated, the Ar pressure that has been used in this work is 3 mtorr.  
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entities such as clusters of atoms) from the surface of the material. These target atoms then 

move ballistically away from the target, in arbitrary directions. Some of the atoms will reach 

the substrate and will contribute to the process of film growth.  

In the process of extracting the target atoms, free electrons are also created, which in 

turn are able to produce more positive ions out of the gas molecules. The process is thus self-

sustained as long as the potential of the cathode (the target) is sufficient. This avoids the use 

of an external ion gun, making this type of sputter deposition setup efficient and compact. 

Meanwhile, some free electrons interact with the gas ions and either recombine with them or 

produce excitations that decay afterwards. In these processes photons are emitted, making 

the plasma glow.  

 

Fig. 2.1: Schematics of the sputtering process by an Ar plasma [21]. 

 

The most commonly used sputtering technique is magnetron sputtering. This 

technique uses a magnetic field to trap the free electrons. By doing so, electrons ionize more 

efficiently the gas around the gun and the plasma can be generated using lower gas pressures. 

As there is less gas in the chamber, the possibility to incorporate atoms of the gas into the film 

we are growing is reduced and, moreover, the collisions of the atoms ejected from the target 

with the gas atoms or ions are minimized, resulting in higher deposition rates. The magnetic 

field around the gun is created by a set of hard magnets placed behind the target. One pole is 

positioned in the axis of the target, and a second one is formed by a ring of magnets that are 

located around the outer edge of the target.  

For the sputtering of metals, DC voltages are usually applied to the targets. As 

explained above, neutral entities as well as electrons are removed from the surface of the 

target, leaving in principle the system positively charged. However, in a metal, electrons 

coming from the circuit will be able to flow to the surface and neutralize it. Instead, if DC 

voltages were used to sputter insulators, there would be a positive charge accumulation at the 

surface. To avoid this, one needs to use AC voltages, specifically radiofrequency (RF) voltages. 

During the negative half cycle, positive ions of the gas will collide against the target and 

produce erosion, leaving the surface positively charged. This charge at the surface of the target  
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Fig. 2.2. AJA Sputter deposition system. (a) Outside view of the main chamber and the load lock 

chamber. (b) Inside view of the main chamber. The seven guns are visible.  [21] 

 

is neutralized during the positive cycle, when the target attracts free electrons that are present 

in the chamber towards it. As a consequence, sputtering only occurs in the negative half 

cycles, leading to lower deposition rates than in DC sputtering.  

The sputter instrument available at nanoGUNE is the ATC series UHV sputtering system 

from AJA International, Inc. Company (Fig. 2.2), which uses the magnetron sputtering 

technique mentioned above. It has seven sputtering guns with automatized shutters and 6 

power supplies (4 DC and 2 AC), so it has the capability to deposit simultaneously 6 materials, 

having thus a great potential to create novel compounds. Alternatively, it allows the deposition 

of multilayer structures without having to change the power supply from one gun to the other, 

thus minimizing the time between subsequent layer depositions. 

The instrument has an ultrahigh vacuum (UHV) chamber that enables pristine 

cleanliness of the process and a better quality growth of the films. In addition to the main 

chamber, the instrument has a load lock chamber that can attain 10-7 mtorr. This chamber is 

used to load the substrate into the main chamber and to set up the configuration to start the 

deposition in a fast manner. Indeed, for the low volume load lock chamber, it takes only about 

2 minutes to achieve a pressure of 10-7 mtorr starting from ambient pressure and when the 

sample is then introduced into the main chamber, the pressure of the latter is not altered in 

any significant way. If one were to load the substrate by opening the main chamber instead, 

the waiting time for the pressure inside it to be low enough to ensure a good deposition 

conditions would be several hours.  

The AJA sputter also allows the manual control of the tilt of the seven guns while the 

deposition is ongoing. This permits the growth of wedge structures as the ones fabricated in 

this thesis (Secs. 3.1 and 3.2). Also, the sample holder can rotate, allowing for a very 

homogeneous deposition, if this is required by the intended sample structure.  

 

2.2- Structural characterization techniques 

The films grown by sputter deposition have to be calibrated and characterized in order 

to determine the thickness of each of the layers and their crystalline structure. This is crucial to 
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ensure that the samples meet the required properties, such as that the Co has been grown 

with an in-plane c-axis, as desired, or that the wedge overcoat has an appropriate thickness 

gradient. For the crystalline structure characterization, X-ray diffractometry has been used.  

For the thickness calibrations we have used X-ray reflectivity and spectroscopic ellipsometry 

techniques.  

 

2.2.1- X-Ray diffractometry (XRD) 

X-ray diffraction is a phenomenon that arises from the interaction of X-ray 

electromagnetic waves and matter. If the material under study has a crystalline structure, i.e., 

if its atomic structure has a periodicity, the scattering of X-ray waves with the atoms in the 

system will have a well-defined interference pattern [23,24]. Depending on the direction in 

which the scattering is observed, the interference will be constructive or destructive, 

producing a diffraction pattern of spatially varying intensity. The analysis of the diffraction 

pattern gives information about the symmetries of the crystal and the interatomic distances in 

it, which makes X-ray diffraction a widely used tool for the characterization and identification 

of crystal structures in a non-destructive way. 

The measurement configuration is shown in Fig. 2.3(a). The X-ray tube forms an angle 

𝜔 with the plane of the sample, and the detector forms an angle 𝜃. The angle the sample 

rotates around the normal to its plane is called the azimuthal angle 𝜑. The polar angle 𝜓 

(which is not shown in Fig. 2.3) is defined as the angle between the sample normal and the 

plane of incidence. 

The configuration that has been used in this work to determine the crystallographic 

quality of the structures we have grown is the so-called 𝜃 − 2𝜃 configuration. In this 

case, 𝜔 = 𝜃, 𝜓 = 0, and the azimuthal angle 𝜑 is fixed. Figure 2.3(b) is showing this 

configuration. The condition for the constructive interference between the waves scattered at 

different planes is the so-called Bragg’s law: 

𝑛 𝜆 = 2 𝑑 sin𝜃.     (2.1) 

In this equation 𝑛 is an integer that gives the interference order and 𝜆 is the wavelength of the 

X-rays. 𝑑 and 𝜃, both represented in Fig. 2.3(b), are, respectively, the interplanar distance and 

the angle of incidence of the wave with respect to the sample plane. With 𝑛 and sin𝜃 being of 

the order of 1, 𝜆 should be of the order of the interatomic distances in order to be able to 

observe a diffraction pattern. As 𝑑 is of the order of angstroms, 𝜆 has to be as well. That is why 

X-rays are being used for the structural characterization of crystals.  
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Fig. 2.3. (a) Perspective image of XRD measurement configuration with the representation of 𝜔, 𝜃 and 𝜑 

angles. (b) Schematic representation of the 𝜃 − 2𝜃 measurement scheme. 𝒌𝟎 is the wave vector of the 

incident wave, 𝒌 the one of the scattered wave, and 𝑮 = 𝒌 − 𝒌𝟎. 

 

The vector 𝒌𝟎 in Fig. 2.3(b) is the wave vector of the incident wave, and 𝒌 the wave 

vector of the outgoing wave. In the 𝜃 − 2𝜃 configuration, considering that the scattering is 

elastic (and thus |𝒌𝟎| = |𝒌|), one can easily prove that the vector 𝑮 = 𝒌 − 𝒌𝟎 is normal to the 

plane. An equivalent of Bragg’s law is the von Laue condition, which asserts that the diffracted 

amplitude has a maximum when 𝑮 is a reciprocal lattice vector. As a consequence, when 

performing 𝜃 − 2𝜃 scans on thin films, the reciprocal lattice vectors to which we are sensitive 

are the ones that are normal to the surface of the film. In other words, we are detecting 

interplanar distances among planes parallel to the sample surface. As an example of an XRD 

measurement we have Fig. 2.4, which shows a 𝜃 − 2𝜃 scan of a 100 nm thick epitaxial (101̅0) 

Co sample. 

 

Fig. 2.4. X-ray 𝜃 − 2𝜃 diffraction measurement of a 100 nm thick epitaxial (101̅0) Co film. The first and 

second order Co peaks are visible at 2𝜃 = 41.89º and 91.27º respectively. The rest of the peaks 

correspond to the other elements present in the sample, which are necessary to obtain the desired 

crystal structure of Co (see Secs. 3.2 and 3.3). 
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A more detailed analysis of the crystallographic quality of the samples is achieved via 

𝜑-scans. These measurements allow the determination of the azimuthal orientation of the 

crystallites. In the case of the structures we have grown, a given plane of diffraction that is not 

parallel to the sample surface has been chosen. The sample is thus tilted by an appropriate 𝜓 

angle, specifically chosen for each element, and the 𝜃 and 𝜔 angles (with 𝜔 = 𝜃) are fixed to a 

given value to obtain a specific diffraction peak. After setting 𝜓, 𝜃 and 𝜔 = 𝜃, the sample is 

rotated along the surface normal, scanning the 𝜑 angle. A diffraction peak will appear when 

the plane of incidence of the X-rays is perpendicular to the selected plane of diffraction. 

Depending on the symmetry of the crystal the number of peaks that we find can vary, but 

there will be a peak at least for two different values of 𝜑, with a shift of 180º.  Only this 

measurement can provide information about the in-plane order, in order to distinguish 

epitaxial growth from an accidental texture and order in one direction that has nothing to do 

with the underlying crystals or template layers.  

The X-ray diffractometer at nanoGUNE is an X’Pert PRO PANalytical. It uses a copper 

anode for the generation of X-rays. The radiation that is used corresponds to the 𝐾𝛼 transition 

of Cu and has a wavelength of 𝜆 = 1.54 Å.  Both the X-ray tube and the detector can be moved 

scanning the angles 𝜔 and 𝜃. The sample can be rotated around the 𝜑 angle and the plane of 

the sample can also be tilted by changing the polar angle 𝜓. A database of the crystallographic 

phases of different materials and the angular position of their corresponding diffraction peaks 

is available via the software of the instrument. This tool has allowed me to identify the 

crystallographic structure of our samples and to confirm that the desired epitaxial growth has 

been achieved. 

 

2.2.2- X-Ray reflectivity (XRR) 

X-rays may also be used to determine the thickness of a thin film. The basis of the 

technique is to measure the interference pattern generated by reflected waves from the top 

and the bottom interfaces of a layer of thickness 𝑡 as is shown schematically in Fig. 2.5(a). This 

distance is typically one, two or even three orders of magnitude larger than the interatomic 

distance. So, by looking at equation (2.1) and knowing that 𝜆 is kept constant and that it is of 

the order of angstroms, we infer that one has to look at very low angles to determine the 

thickness of thin films. For this reason, XRR uses grazing angle of incidence. The configuration 

in this case is also 𝜃 − 2𝜃. The interference pattern arising from the constructive and 

destructive interference of the waves reflecting on both interfaces (which in this context are 

called Kiessig fringes) gives information about the thickness of the layer [24,25]. 

The index of refraction of a material for electromagnetic waves in the range of X-rays 

is less than 1. Accordingly, when the X-ray wave travels from the air into the material, a critical 

angle 𝜃𝑐 exists, below which complete reflection will occur at the first interface, preventing 

any wave to penetrate the material. For angles above 𝜃𝑐, reflections in the air-film and film-

substrate interfaces are possible. Upon moving symmetrically the tube and the detector one 

obtains as a function of 2𝜃 the kind of measurement that is depicted in Fig. 2.5(b). The period 

of the observed oscillations is related to the thickness of the thin film, which can be extracted 

by Fourier analysis or by means of a more elaborate fitting process.  
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Fig. 2.5. (a) Grazing incidence configuration for XRR measurements. (b) Detected X-ray intensity as a 

function of the 2𝜃 angle, giving rise to the so-called Kiessig fringes [21]. 

 

2.2.3- Spectroscopic ellipsometry 

This technique has been used to provide information about the thickness of wedge 

sample structures I have grown. In this kind of samples the thickness of the deposited material 

changes with the position. The spectroscopic ellipsometer available at nanoGUNE can perform 

automatized measurements of the thickness in locations 1 mm apart, thus enabling one to 

obtain detailed profiles of wedge-shaped samples.  

The basis of spectroscopic ellipsometry is the change in the polarization of light upon 

reflection from a sample. In Jones matrix formalism, the sample is represented by a reflection 

matrix. If the sample is nt magnetized, as it is the case for this set of measurements, the 

reflection matrix can be written as 

𝑹 =  (
𝑟𝑠 0
0 𝑟𝑝

),     (2.2) 

where 𝑟𝑠 and 𝑟𝑝 are the Fresnel reflection coefficients for the 𝑠- and 𝑝- polarized waves 

(perpendicular and parallel to the plane of incidence, respectively). In spectroscopic 

ellipsometry a linearly polarized beam is reflected from the sample and the polarization 

becomes elliptic4. To measure the polarization change, the specific instrument at nanoGUNE 

utilizes a rotating compensator with a fixed analyzer. The amount of light allowed to pass will 

depend on the orientation of the compensator. This information is compared to the known 

input polarization to determine the polarization change caused by the sample reflection. The 

magnitude that is measured is the complex reflectance ratio 

𝜌 =
𝑟𝑝

𝑟𝑠
= tan(Ψ) 𝑒𝑖Δ.    (2.3) 

tan(Ψ) is the amplitude ratio between the 𝑝 and 𝑠 reflected components of the beam, while Δ 

is the phase difference in between them [26]. This ratio is measured for each photon energy, 

                                                           
4
 If the incoming polarization is 𝑠 or 𝑝, the polarization will not change upon reflection, because they are 

eigenstates of the reflection matrix (2.2). If the polarization is a combination of both, though, the 
reflected light will be elliptically polarized.  
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which ranges from 1.3 to 7.4 eV. By means of a model that includes the sequence of 𝑖 

materials and their optical constants (𝑛𝑖(𝜔), 𝜅𝑖(ω)), a fitting of tan(Ψ) and cos(𝛥) permits 

one to obtain, amongst other quantities, the thickness of the layers, which has been the 

primary purpose of using this technique in this thesis.  

 

2.3- Magnetic and magneto-optical characterization techniques 

The magnetic characterization of the samples has been performed by means of two 

methods, namely Vibrating Sample Magnetometry (VSM) and Generalized Magneto-optical 

Ellipsometry (GME). The latter has also been used for the magneto-optical characterization. 

Both methods are explained in the following sections. 

 

2.3.1- Vibrating sample magnetometry (VSM) 

This method of characterization of magnetic samples is based on the well-known 

Faraday-Lenz law. A magnetized material is moved in between four pickup coils that detect the 

magnetic flux. The vibration of the sample makes the magnetic flux vary with time, which 

produces a potential difference that is proportional to the total magnetic moment of the 

sample [27]. VSM systems are typically equipped with electromagnets that generate an 

external magnetic field to enable measurements of the magnetization as a function of the 

applied field.  One then makes the approximation that the applied field 𝐻 varies so slowly as 

compared to the vibration frequency of the sample that it does not contribute to the time 

derivative of the magnetic flux. 

 The VSM system at nanoGUNE is The Princeton Measurements Corp. Model 3900 

MicroMagTM VSM can apply up to 21000 Oe. In the case of this instrument, the pickup coils are 

aligned parallel to the applied field, so the setup is sensitive to the magnetic moment parallel 

to the applied field, although fundamentally VSM does not have to be like this. Our tool can 

measure signals as small as 0.5 µemu for an acquisition time of 1 s per point. In order to place 

the sample, whose size is limited to 8 x 8 mm2, in the proper position, the VSM system has 

linear translation stages in the three directions of the space. Additionally, the instrument also 

enables the automatic rotation of the sample about the axis perpendicular to the applied field 

(and normal to the surface) by 360º, allowing for the measurement of hysteresis loops for 

different alignments of 𝑯 and the EA.  

 

 

2.3.2- Generalized magneto-optical ellipsometry (GME) 

This characterization technique uses light as a probe and has its basis in the magneto-

optical Kerr effect (MOKE). This effect was discovered by John Kerr in 1877, who observed that 

the polarization of light changes upon reflection from a magnetized sample [2]. A similar effect 

had been found in 1845 by Michael Faraday, although in this case the change in polarization 

was observed in the transmitted light. As metals exhibit strong light absorption, and thus the 

penetration depth Λ of visible light is rather small, of the order of 50 nm for Co, the Kerr effect 
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is more widely used for their magnetic characterization than the Faraday effect. 

Correspondingly, MOKE can be considered a surface-sensitive technique. 

The macroscopic description of the MOKE is most useful for the purpose of the 

characterization of our samples. In the linear approximation, the effect that the magnetization 

of the material has with respect to light propagation can be described by introducing 

antisymmetric off-diagonal elements in the dielectric tensor. Assuming an optically and 

magneto-optically isotropic medium and only first order magneto-optical effects the dielectric 

tensor can be written as 

�̅� = 𝜀 (

1 −𝑖𝑄𝑚𝑧 𝑖𝑄𝑚𝑦

𝑖𝑄𝑚𝑧 1 −𝑖𝑄𝑚𝑥

−𝑖𝑄𝑚𝑦 𝑖𝑄𝑚𝑥 1
),   (2.4) 

where 𝜀 is the dielectric constant of the material, 𝑄 is the magneto-optical coupling constant, 

also called Voigt constant, and 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are the components of the normalized 

magnetization vector 𝒎 = 𝑴/𝑴𝒔. It should also be stressed that when writing down the 

dielectric tensor (2.4) magneto-optical isotropy has been assumed. As we shall see later, 

however, the samples that I have grown and characterized in this work show magneto-optical 

anisotropy. This effect will be introduced in due time, and here we consider the simplest 

possible case to illustrate the theory of the MOKE. 

The three types of MOKE depending on the direction of the magnetization with respect 

to the plane of incidence are depicted in Fig. 2.6. The longitudinal Kerr effect is shown in (a). In 

this case, the sample is magnetized parallel both to the sample surface and the plane of 

incidence. Transverse MOKE is shown in (b), where the magnetization is parallel to the sample 

surface and perpendicular to the plane of incidence. Finally, the polar MOKE is shown in (c), in 

which the magnetization is perpendicular to the sample surface and contained in the plane of 

incidence. In the most general case there will be a combination of all three effects, which can 

even be present simultaneously. 

By solving Maxwell’s equation with the appropriate boundary conditions for a system 

with a dielectric tensor given by (2.4) one can obtain the magneto-optical Fresnel reflection 

matrix [1,3,29,30] 

 

 

Fig. 2.6. The three types of MOKE. (a): longitudinal, (b): transverse, and (c): polar [28]. 
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𝑹 = (
𝑟𝑠𝑠 𝑟𝑠𝑝

𝑟𝑝𝑠 𝑟𝑝𝑝
).     (2.5) 

Here 𝑟𝑠𝑠, 𝑟𝑝𝑝, 𝑟𝑠𝑝 and 𝑟𝑝𝑠 are the Fresnel reflection coefficients. 𝑟𝑠𝑝 and 𝑟𝑝𝑠 are zero if the 

material is not magnetized, and 𝑟𝑝𝑝 has a magnetically induced component as well.   

The change in polarization upon reflection in MOKE arises from a combination of a 

rotation of the plane of polarization and a change in the ellipticity. Figure 2.7 represents the 

case where the incident beam is 𝑠 polarized. Upon reflection on a magnetized sample, the 

polarization plane is rotated by an angle 𝜃𝐾 and the ellipticity, which was originally 0 for the 

linearly polarized incident light, becomes 𝜖𝐾. If the sample were not magnetic, the off-diagonal 

elements of the reflection matrix (2.8) would be zero and the outgoing light would also be 𝑠 

polarized, because 𝑠-polarized light would be an eigenstate of such reflection matrix (See 

footnote 4 in Sec. 2.2.3). Conventional MOKE magnetometry is used as a hysteresis loop tracer 

by measuring the detected light intensity as a function of 𝐻. The intensity changes because, as 

𝐻 magnetizes the sample, the Kerr rotation and ellipticity change, as they depend on the 

magnetic state of the sample. Thus, making the reflected light pass through a polarizer, which 

is commonly referred to as an analyzer, the intensity collected at a detector will depend on 𝐻. 

GME goes beyond the standard magneto-optical measurement techniques and aims at 

the characterization of the complete reflection matrix 𝑹 [31,32], which is the maximum 

information one can extract in a reflection experiment with polarization degree conservation. 

Using a simple reflection experiment, 𝑹 can be determined up to a constant. In the case where 

there is no polar MOKE component5 the reflection matrix in (2.5) can be written as 

𝑹 =  (
𝑟𝑠 𝛼

−𝛼 𝑟𝑝 + 𝛽) = 𝑟𝑝 (
𝑟�̃� �̃�

−�̃� 1 + �̃�
) = 𝑟𝑝�̃�,  (2.6) 

where 𝑟𝑠 and 𝑟𝑝 are the Fresnel coefficients that also arise when the reflection from a 

nonmagnetic planar sample is studied [29], as explained in Sec. 2.2.3, and 𝛼 and 𝛽 are 

magnetically induced reflection elements. 𝑟𝑠 and 𝑟𝑝 are independent of the magnetization, but 

𝛼 and 𝛽 are not. Specifically, 𝛼 depends on the longitudinal MOKE, while 𝛽 depends on the 

transverse one. An important property that holds in the linear approximation is that 𝛼 and 𝛽 

switch their sign upon magnetization reversal, i.e., 𝛼(−𝑴) =  −𝛼(𝑴) and 𝛽(−𝑴) =  −𝛽(𝑴).  

With the procedure that we shall now describe to extract the information of �̃� and by 

means of the appropriate optical modeling, one can extract the index of refraction 𝑛 + 𝑖𝜅 and 

the magneto-optical coupling constant 𝑄 = 𝑄𝑟 + 𝑖𝑄𝑖  of the medium. Furthermore, the 

knowledge of �̃� allows one to determine the orientation of the magnetization because, 

importantly, each of the components of the magnetization affects the reflection coefficients in 

a different manner, so GME is also a precise vector magnetometry technique [33].  

 

                                                           
5
 We can restrict ourselves to the longitudinal and transverse cases, because as our thin films have an in-

plane EA, the shape anisotropy favors in-plane magnetization and the magnetic field is applied parallel 
to the film surface, the polar component is virtually zero. 
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Fig. 2.7. Schematics of the MOKE when the incident wave is 𝑠 polarized. Upon being reflected in a 

magnetized sample the plane of polarization rotates by an angle 𝜃𝐾 and light acquires an ellipticity 𝜖𝐾. 

 

The basic GME setup is sketched in Fig. 2.8. A laser providing linearly polarized light is 

used as a source. This light passes through a rotating linear polarizer 𝑃1 before the sample. 

After being reflected by the sample, which is placed between the poles of an electromagnet, 

the light passes through a second rotating linear polarizer 𝑃2. Finally, the light is detected in a 

photodetector. 

The intensity 𝐼 measured at the detector is  

𝐼 = 𝑬𝑫 · 𝑬𝑫
∗ ,     (2.7) 

where 𝑬𝑫 is the electric field at the detector. 𝑬𝑫 can be computed by using Jones’ formalism. 

For this, we need to multiply the Jones matrices of each optical element in the appropriate 

order: 

   𝑬𝑫 = 𝑷𝟐 · 𝑹 · 𝑷𝟏 · 𝑬𝑳,     (2.8) 

where 𝑬𝑳 is the electric field vector of the light before passing the first polarizer, and 𝑷𝟏 and  

 

 

Fig. 2.8. Schematics of the GME setup. 𝜃1 and 𝜃2are the polarizer angles, Ω is the angle of incidence. 
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𝑷𝟐 are the Jones matrices for the linear polarizers 𝑃1 and 𝑃2, which can be written as 

       𝑷𝒊 =  (
cos2 𝜃𝑖 sin 𝜃𝑖 cos 𝜃𝑖

sin 𝜃𝑖 cos 𝜃𝑖 sin2 𝜃𝑖
).      (2.9) 

Here, 𝜃𝑖 is the angle of the polarizer axis with respect the 𝑠 polarization orientation.  

Let us call 𝐼+ the detected intensity when the magnetization is +𝑴 and 𝐼− the 

detected intensity when the magnetization is −𝑴, so that 𝐼± = 𝐼(±𝛼, ±𝛽). These two 

magnetic states are achieved by applying an external magnetic field 𝐻, and the (𝐼+, 𝐼−) pairs 

are determined by the 𝐻 and the −𝐻 data from the two different branches of the hysteresis 

loop, as it can be seen in Fig. 2.9, because only those fulfill the requirement of time reversal, 

i.e., 𝑀(𝐻)  =   −𝑀(−𝐻), and thus the corresponding inversions of the MOKE contributions to 

the reflection matrix. We define 

𝛿𝐼 = 𝐼+ − 𝐼−     (2.10) 

and 

      𝐼 =
1

2
(𝐼+ + 𝐼−).    (2.11) 

Taking into account also a 𝐼0 term that represents the background signal and accounts 

for the aspects that are not considered in the model, e.g.  dark current, light that is not coming 

from the laser, the loss of complete polarization or imperfections of the polarizers, it can be 

proven that the relative change in intensity upon magnetic state reversal can be written as 

   
𝛿𝐼

𝐼
= 4

𝐵1𝑓1+𝐵2𝑓2+𝐵3𝑓3+𝐵4𝑓4

𝐼0+𝑓3+𝐵5𝑓5+2𝐵6𝑓4
.       (2.12) 

The 𝑓𝑖 functions depend on the angles of the 𝑃1 and 𝑃2 polarizers: 

𝑓1(𝜃1, 𝜃2) =  sin2 𝜃1 sin 𝜃2 cos 𝜃2 −  sin2 𝜃2 sin 𝜃1 cos 𝜃1   (2.13.a)  

𝑓2(𝜃1, 𝜃2) =  cos2 𝜃2 sin 𝜃1 cos 𝜃1 −  cos2 𝜃1 sin 𝜃2 cos 𝜃2  (2.13.b) 

𝑓3(𝜃1, 𝜃2) =  sin2 𝜃1 sin2 𝜃2    (2.13.c) 

𝑓4(𝜃1, 𝜃2) =  sin 𝜃1 cos 𝜃1 sin 𝜃2 cos 𝜃2    (2.13.d) 

𝑓5(𝜃1, 𝜃2) =  cos2 𝜃1 cos2 𝜃2.    (2.13.e) 

The 𝐵𝑖  parameters are related to the elements of the reduced reflection matrix �̃� 

𝐵1 = Re(�̃�)       (2.14.a) 

𝐵2 = Re(𝑟�̃� �̃�∗)     (2.14.b) 

𝐵3 = Re(�̃� )     (2.14.c) 

𝐵4 = Re(𝑟�̃� �̃�∗)     (2.14.d) 
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Fig. 2.9. Measured hysteresis loops for a given pair of (𝜃1, 𝜃2) polarizer angles. 𝛿𝐼 is represented for 

𝐻1 = 1500 Oe in red,  𝐻2 = 500 Oe in red and −𝐻2 = −500 Oe in purple. 

 

𝐵5 = |𝑟�̃�|2     (2.14.e) 

𝐵6 = Re(𝑟�̃� ).     (2.14.f) 

As one can see, 𝐵1 and 𝐵2 are related to the longitudinal MOKE, whereas 𝐵3 and 𝐵4 are 

related to the transverse one. Finally, 𝐵5 and 𝐵6 are purely optical constants. 

The determination of the 𝐵𝑖  parameters for each value of 𝐻 can be done 

experimentally by measuring the 
𝛿𝐼

𝐼
 quantity for various 𝜃1 and 𝜃2 angle pairs. Although in 

principle only six measurements of hysteresis loops with varying  (𝜃1, 𝜃2) polarizer angles 

would suffice for a complete determination of �̃� for all the available range of field values, it is 

much more precise to acquire a larger set of data, typically with more than 

400 (𝜃1, 𝜃2) configurations, building for each value of 𝐻 what we call a 
𝛿𝐼

𝐼
 (𝜃1, 𝜃2)  map (as the 

ones shown in Fig. 2.10). Then, the 𝐵𝑖  parameters are obtained by least-squares fits using Eq. 

(2.12). Furthermore, this over-determination of the 𝐵𝑖  factors allows one to check the 

consistency of the data sets, which is typically excellent. Two additional fitting parameters are 

introduced, namely, the corrections for the polarizer angles, which we call 𝜃1
0 and 𝜃2

0. These 

are included in the model because there might be a misalignment in the setup, as it is difficult 

to align the polarizers with a plane of incidence that one cannot see. We shall focus more on 

the quality of the data in Sec. 4.1, with the actual measurements performed in this thesis, but 

we should say that very good agreement is generally obtained between the measured and the 

fitted maps. Fig. 2.10 shows side by side a measured  
𝛿𝐼

𝐼
 (𝜃1, 𝜃2)  map and a fitted one, and we 

can see that the fit quality is exceptional. Typically, the obtained 𝑅2 values of these 

multiparameter fits are above 0.95. 
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Fig. 2.10. Side-by-side comparison of measured GME  
𝛿𝐼

𝐼
(𝜃1, 𝜃2) map at H = -1650 Oe and least-squares 

fit with equation (2.15). 

 

The actual GME setup that has been used in this work can be seen in Fig.2.11. All the 

optical elements are mounted on an optical table for the suppression of vibrational noise. The 

incidence angle in our experiment is Ω = 45°. We use a laser with 𝜆 = 635 nm, coherent and 

intensity-stabilized light. The polarization of the laser is linear, and the beam is passed through 

a 𝜆/4 retarder in order to obtain a circularly polarized light before the beam passes through 

the first rotatable polarizer 𝑃1. The presence of the retarder does not change the GME 

formulation, which does not assume a specific incident polarization of the beam before 

passing through 𝑃1. Moreover, if the beam were linearly polarized before passing through the 

first polarizer, rotating 𝑃1 would lead to different light intensity reaching the sample for 

different 𝜃1 angles. This is far from ideal, as the signal to noise ratio, for instance, would 

depend on 𝜃1. If the 𝜆/4 retarder is used, light coming out of 𝑃1 will always have the same 

intensity, regardless of 𝜃1. It can be proved analytically that having a circularly polarized 

incoming light in the first polarizer makes the 𝐼0 term independent of 𝜃1. After passing through 

the first polarizer, the light gets reflected by the sample, which is mounted on a computer-

controlled linear translation stage. This part of the setup permits the linear motion of 

elongated sample types, so that points with different overcoat thicknesses in our strip samples 

can be measured in an automatized fashion. The part of the sample that is illuminated by the 

laser is placed between the poles of an electromagnet that can achieve 1700 Oe at the sample 

position. The value of the field is measured by a Hall probe. Finally, the reflected beam passes 

through the second rotatable polarizer 𝑃2 and is detected in a photodiode detector.  
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Fig. 2.11. Experimental setup of the GME. The elements are indicated in the picture. 
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Chapter 3  

SAMPLE FABRICATION  

AND STRUCTURAL CHARACTERIZATION 

 

The technique that we have used to grow our samples is sputter deposition, which I 

have explained in Sec. 2.1. To obtain the desired crystal structure of Co, a series of processes 

has to be followed. The process to achieve epitaxial growth will be detailed in Sec. 3.2 and the 

explanation why this process works, together with the characterization of the crystal structure 

of the samples, will be shown in Sec. 3.3. As for now, all we need to know is that Si wafer has 

to be HF etched to remove the native SiO2 and that two template layers of 75 nm Ag and 40 

nm Cr have to be deposited before Co following the work in Refs. [21,34,35], so that Co grows 

showing the desired crystal structure. 

Figure 3.1 shows the structure of our samples. The samples are grown on Si wafers cut 

in 5 mm x 8 cm strips. Along the main axis of the strip, a wedge-shaped Pt layer with thickness 

ranging from 0.3 to 1.8 nm is deposited on top of Co. The wedge structure provides a complete 

set of subsamples with different Pt thicknesses fabricated at the same time. The Co thickness is 

either 20 nm or 100 nm thick and is deposited on top of the aforementioned template layers. 

Finally, a 10-nm-thick SiO2 protective layer is sputtered, to prevent the oxidation of the 

structure. Therefore, the sputter targets that are needed to fabricate the samples are Ag, Cr, 

Co, Pt and SiO2. 

Fig. 3.1. Sample structure (not in scale). Pt overcoat thickness ranges from 0.3 nm to 1.8 nm. 
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I have fabricated three different kinds of samples, and two sister samples (A and B) have been 

sputtered at the same time for each of the kinds: 

1) Pt20A and Pt20B: The Co layer is 20 nm thick and it has a Pt wedge-shaped 

overcoat. 

2) Pt100A and Pt100B: The Co layer is 100 nm thick and it has a Pt wedge-

shaped overcoat. 

3) Ref20A and Ref20B: The Co layer is 20 nm thick and it has no Pt overcoat. 

These are reference samples to check whether the effects we see in the 

other samples are overcoat-induced or produced by some inhomogeneity.  

 

3.1- Thickness calibrations 

In order to establish the deposition time for each of the layers, I have performed 

thickness calibrations. For these calibrations, the materials have been sputtered on Si wafers 

without further treatment, as we are not concerned about crystallinity in these preliminary 

tests. I will first explain the procedure to calibrate Ag, Cr, Co and SiO2, and I will then focus on 

the more complicated calibration of the Pt wedge.  

 

3.1.1 - Thickness calibrations of Ag, Cr, Co and SiO2 

For the calibrations of Ag, Cr and Co, I have sputtered these materials separately on Si 

wafer chips. Three different calibration samples have been deposited for each material, with 

different deposition times. As for the deposition conditions, the Ar pressure in the main 

chamber of the sputter tool has been chosen to be 3 mtorr and the sample holder has been 

rotating to obtain homogeneous thickness in the whole area of the sample, which is placed in 

the middle of the holder. Ag has been deposited at 40 W, Cr at 100 W and Co at 100 W.  

The thickness of the calibration samples has been measured with XRR technique. An 

example of the measurements is shown in Fig. 3.2, where the analysis of the Kiessig fringes  

Fig. 3.2. Kiessig fringes obtained from XRR measurements on a film of Cr for a deposition time 

of 10 minutes. The thickness is 51.6 nm.   
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yields a thickness of 51.6 nm for a Cr thin film deposited for 10 minutes. The measured 

thickness for all the calibration samples is depicted in Fig. 3.3, for Ag, Cr and Co. The (0,0) point 

is included in the figures, as no deposition time obviously implies zero deposited thickness. To 

calculate the deposition rate of each material, I have performed a linear fit to the thickness vs. 

deposition time data. The linear fits are shown as red lines in Fig. 3.3. As we can observe, the 

linearity is excellent in the three cases, indicating that the sputtering process is stable over the 

time. The slope of the fitted straight lines gives the deposition rates, which are shown in each 

case at the bottom of each graph. Once the deposition rates are known, we know how long it 

takes to deposit the amounts of Ag, Cr and Co necessary for the planned epitaxial base 

structure [21,34,35].  

75 nm Ag → 8 min 23 s at 40 W 

40 nm Cr → 7min 45 s at 100 W 

20 nm Co → 5min 50 s at 100 W,    100 nm Co → 29min 14 s at 100 W 

To calibrate the SiO2 deposition rate, I have used an Al2O3 substrate instead of a Si one, 

because the difference of densities between SiO2 and Al2O3 enables a better signal when using 

XRR. The sputtering of SiO2 has been performed at 200 W. As it is an insulator, it has to be 

deposited with RF sputtering. In order to be able to obtain a stable plasma, the Ar pressure of 

the main chamber has to be raised to 25 mtorr while the SiO2 target has a power of 60 W. 

After the plasma strike, the pressure has to be lowered to 3 mtorr to perform the deposition, 

and the power increased gradually, in about 100 s, to 200 W. The sample holder is rotating in 

order to ensure a homogeneous deposition, and the substrate placed in the middle of the 

sample holder. The calibration procedure explained above has been used to determine the 

deposition rate of SiO2, which turned out to be 0.0295 nm/s. Thus, to get a 10 nm layer, SiO2 

has to be deposited for 5 min 39 s. 

 

Fig. 3.3. Linear fit to determine deposition rate of Ag, Cr and Co.  
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3.1.2 - Thickness calibrations for the Pt wedge 

In order to grow the wedge-shaped structures, the sample holder has to be motionless 

to obtain a gradient of thickness, as opposed to the rotating sample holder for homogeneous 

thickness in the entire sample that was necessary in Sec. 3.1.1 (see Fig. 3.4). Moreover, to 

obtain the desired gradient, the tilting of the gun containing the Pt target has to be finely 

adjusted. For certain degrees of inclination of the Pt gun used in tests the deposition rates 

have proved to be too low or the gradient of thickness of the resulting wedge structure too 

high for our purpose6. The power at which Pt has been sputtered is 40 W. I have performed 

two types of calibrations for the Pt wedge, a first type by means of XRR to get an estimate of 

the necessary inclination of the Pt gun, and a second one via spectroscopic ellipsometry to get 

the profile of the wedge with bigger spatial resolution. 

 

a)  Preliminary calibration of the Pt wedge via XRR 

For the first type of calibrations three small chips of Si wafers have been placed on the 

sample holder. The chips have been placed in line at the positions that are indicated with “F”, 

“M” and “C” labels in Fig. 3.4, so that they are at different distances from the gun containing 

Pt. “F” indicates “far”, and the chip placed here will have the smaller thickness of Pt. “C” 

indicates “close”, so this chip will have the biggest amount of Pt. Finally, “M” is in the 

“middle”.  I have measured by means of XRR the Pt thickness in the chips, and I have found the 

proper tilting of the Pt gun in order to get close to the desired 1:6 ratio. For the selected tilting, 

the deposition rates are the following: 

“C”  → 0.1 nm/s 

“M” → 0.06 nm/s 

“F”  → 0.02 nm/s 

 

Fig. 3.4. Position of the gun and rotation of the sample holder for (a) uniform thickness samples 

and (b) wedge type samples. In (b) the labels “F”, “M” and “C” denote “Far”, “Middle” and “Close”, the 

positions on which the chips for a first calibration of the gradient of the wedge have been placed.  

 

                                                           
6
 We want to have a ratio of about 1:6 in the Pt thickness between the end points of the strip, with 

thicknesses ranging from about 1 atomic layer to 6 atomic layers. It is expected that interfacial effects 
will no longer depend on the Pt thickness above several atomic layers.  
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This procedure serves us to have a first estimate in order to choose the proper tilting 

of the Pt gun. A second more accurate calibration has been performed by means of 

spectroscopic ellipsometry, in order to have a measurement of the Pt thickness along the 

whole strip, with a better spatial resolution.  

 

a)  Calibration of the Pt wedge profile via spectroscopic ellipsometry 

 For the second type of calibrations I have fabricated a Pt wedge on a 8-cm-long Si 

substrate strip. With the tilting of the gun selected thanks to the previous calibration and 

keeping the sample holder motionless, I have sputtered Pt for 150s, which based on the 

previous calibration would lead to a wedge of about 3 nm Pt in the thin end and about 15 nm 

in the thick end. Right after the Pt deposition, I have deposited a 10 nm SiO2 layer to protect Pt 

from oxidation. During the deposition of SiO2 the sample holder has to rotate to obtain a 

homogeneous thickness of the protective layer. 

I have measured the thickness profile of this sample with spectroscopic ellipsometry. 

With this tool, as opposed to XRR, we can measure the thickness of the thin film at each point 

in an automatized way. I have measured the ellipsometric parameters and used the database 

of refractive indices available in the software to fit the data, thus obtaining the thickness of the 

Pt layer. Figure 3.5 shows the Pt thickness at each point of the calibration strip. It can also be 

observed that XRR data and spectroscopic ellipsometry data are consistent with each other. 

The left-hand side vertical axis represents the thickness of the calibration wedge, while the 

right-hand side corresponds to the Pt thickness of the wedges that are deposited in the 

Pt20A&B and Pt100A&B samples, which are 10 times thinner than the calibration wedge, with 

thicknesses ranging from 0.3 nm to 1.8 nm.  

 

Fig. 3.5. Profile of the calibration Pt wedge. Red circles are spectroscopic ellipsometry data and black 

squares indicate the thickness calculated from the deposition rates measured by means of XRR in the 

“F”, “M” and “C” chips. 
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3.2- Sample fabrication 

After having characterized properly all the thicknesses of the multilayer structure, I 

have proceeded to fabricate the samples listed at the beginning of the chapter. Figure 3.6 

schematizes all the fabrication steps.  

(1) First, a Si (110) wafer has to be cut into strips. This specific type of Si wafer is 

needed to ensure the growth of Co with the desired crystal structure and orientation. The 

strips have been cut in such way that, upon depositing the Ag and Cr template layers, the c-

axis of Co, which is the magnetic easy axis, will be 15˚ tilted with respect to the long axis of the 

strip, as it is shown in the figure. We have chosen this specific orientation of the EA because in 

the GME setup the field will be applied perpendicular to the axis of the strip. The choice of the 

tilting of the EA enables to have components of the magnetization that give rise to the 

longitudinal and the transverse Kerr effect.  

 (2) After cutting the strips, the native SiO2 of the wafer has to be removed by HF 

etching, so that the first template layer (Ag) can accommodate on the Si in order to achieve 

epitaxial growth. The HF etching is performed in a cleanroom. First the strips are immersed 

during 5 min in acetone, afterwards during 5 min in isopropanol and during 5 min in deionized 

water. Finally, the strips are immersed in 1% HF during 10 min. 

Immediately after performing this treatment, two strips are placed side by side on the 

sample holder, because in each deposition we fabricate two sister samples at the same time (A 

and B). The two strips have to be introduced into the vacuum system of the sputter as soon as 

possible, to avoid the formation of a new oxide layer on Si. Once the sample holder with the 

two strips is inserted in the chamber of the sputter, the deposition is started. We flow Ar until 

a pressure of 25 mtorr is obtained. We then produce a plasma strike in the SiO2 gun, with the 

power at the target being 60 W. After the plasma has been produced in the SiO2 gun, the 

pressure of the chamber is decreased to 3 mtorr, keeping the plasma in the SiO2 gun stable. 

The SiO2 target has plasma during the entire deposition sequence, but its shutter remains 

closed until the very last step, when the protective layer of 10 nm SiO2 has to be deposited7.  

Once the pressure of the sputter chamber is 3 mtorr, we proceed to sputter first Ag, 

then Cr and after that Co. These three guns point towards the sample holder, which has to be 

rotating for the thickness to be homogeneous. The procedure is detailed in the following 

paragraphs. 

(3) A power of 40 W is set to the Ag target and plasma is created. The Ag shutter is 

opened and a deposition of 8 min 23 s is carried out. When there are 2 min left of the Ag 

deposition, the Cr target is turned on at a power of 100 W, while its shutter remains closed, for 

the purpose of presputtering Cr. When the 8 min 23 s finish, the Ag shutter is closed and the 

power of this gun is stopped. 

                                                           
7
 The deposition of the materials is done at 3 mtorr, but SiO2 needs a plasma strike at 25 mtorr. By 

keeping the plasma on the SiO2 gun on during all the deposition, we avoid increasing the pressure of the 
chamber while the deposition is going on and we are thus able to deposit the protective layer right after 
the Pt wedge, minimizing the waiting time this ultrathin overcoat is unprotected.   
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(4) The shutter of the Cr gun is opened for a period of 7 min 45 s.  When there are two 

minutes left for the Cr deposition, the Co gun is turned on at 100 W for presputtering. After 

the deposition time of Cr is elapsed, its shutter is closed and the power of its gun stopped. 

(5) The Co shutter is opened. The sputtering time of Co is 5 min 50 s for the 20 nm Co 

samples (Ref20A&B and Pt20A&B), or 29 min 14 s, for the 100 nm Co samples (Pt100A&B). 

When one minute of Co deposition remains, Pt starts to be presputtered and the power of the 

SiO2 target is gradually increased to 200 W, in order to have it ready for the deposition of the 

protective layer. When the deposition of Co finishes, its shutter is closed and the power turned 

off. 

(6) For the deposition of the overcoat, the rotation of the sample holder is stopped 

and the sample is aligned with respect to the gun of Pt, which is properly tilted (See Sec. 3.1.2) 

to get the desired gradient of thickness. Pt is deposited in such way during 15 s at a power of 

40 W. This leads to a Pt wedge that is 10 times smaller than the calibration wedge. Right after 

the Pt deposition is finished, the corresponding shutter is closed and the deposition turned off. 

In the meantime, the power at the SiO2 has reached 200 W, the power at which it will be 

deposited. Step (6) is skipped for the reference samples RefA&B.  

(7) The shutter of the SiO2 gun is immediately opened. This material is deposited 

during 5 min 39 s. For the SiO2 deposition the rotation of the sample holder is switched on 

again to obtain a homogeneous thickness for the entire sample. When the deposition finishes, 

the shutter of the SiO2 gun is closed and its RF power removed. 

Finally, the Ar flow is stopped and when the pressure of the main chamber is lower 

than that of the load lock chamber the sample is extracted.  

                              

Fig. 3.6. Sample fabrication process. The steps are explained in the main text.  
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3.3- Crystallographic characterization. Epitaxy 

Discussing the structural characterization of our samples by means of XRD will allow 

me to explain more easily the relations that hold between the substrate, the template layers 

and the Co layer, which in combination give rise to the type of crystallinity that is desired. I will 

thus be able to justify the growth sequence that I have followed. 

X-ray diffractometry measurements have been performed on each sample in order to 

determine whether the desired crystalline structure has been achieved. Figure 3.7 shows the 

XRD 𝜃 − 2𝜃 scans of Pt100B, Pt20B and Ref20B. The peaks have been indexed using the 

available software. We identify the peaks of Co (101̅0), Si (220), Ag (220), Cr(211) and Co 

(202̅0). This scan serves us to check that, indeed, the Co has grown with the appropriate 

direction perpendicular to the sample surface, and that consequently the c-axis is in plane.  

 

Fig. 3.7. 𝜃 − 2𝜃 scan of Ref20B (blue), Pt20B (black) and Pt100B (red) samples. The peaks of the 

identified phases are labeled. 

 

One has to take into account that with 𝜃 − 2𝜃 scans one only probes the reciprocal 

lattice vectors perpendicular to the sample surface [24]. The diffraction peaks that are 

achieved and are shown in Fig. 3.7 are not a complete proof to ensure that the growth of the 

layers has been epitaxial. Instead, these materials could grow in these specific directions 

perpendicular to the sample surface not because of the matching between each material and 

the one deposited below, but simply because these structures are favored. In such case, the 

grains would not have a defined orientation in the plane of the sample. However, if the growth 

is epitaxial, the relations between the in-plane orientations of the crystallites of subsequent 

layers are fixed. To confirm that the growth is epitaxial, I have performed 𝜑-scans by tilting the 

plane of the sample by an angle 𝜓, in order to be able to probe reciprocal lattice vectors that 

are not perpendicular to the surface of the sample. 
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For this task, I have performed four different 𝜑-scans, for Si, Ag, Cr and Co. I have 

chosen different 𝜓 angles for each material. For Si, I have tilted the sample to 𝜓 = 44.34˚, and I 

have set 2𝜃 = 69.05˚. Thus, the reciprocal lattice vector we are sensitive to is (400). I have 

performed a 360˚ scan of the 𝜑 angle. Given the crystal structure of Si, a diffraction peak 

should only occur twice in the full scan, with an 180˚ difference in position. For Ag the selected 

𝜓 has been 45˚ and 2𝜃 = 44.30˚, enabling sensitivity to the (200) vector. By scanning 𝜑 two 

peaks are obtained, in the same position as the Si peaks. For Cr  𝜓 = 29.73˚ and 2𝜃 = 44.46˚, so 

that the diffraction peak that will be detected corresponds to the (110) plane. By scanning 𝜑 

two peaks appear, at angles that are 90˚ shifted with respect to the position of the Si and the 

Ag peaks. Finally, for Co 𝜓 = 27.74˚ and 2𝜃 = 47.47˚ and we are sensitive to the (101̅1) plane. 

The 𝜑-scan shows two peaks at the same positions as the Cr peaks, 90˚ shifted with respect to 

Si and Ag. These relationships are shown in Fig. 3.8. The fact that these peaks appear and that 

they are aligned this way is indicative of the epitaxial growth [34]. 

 

Fig. 3.8. 𝜑-scan of Ref20B sample.  

 

Figure 3.9 shows the epitaxial relation of the layers based on the bulk lattices of the 

materials [21,34]. The dimensions of the surface unit cells and the crystallographic directions 

are shown in the figure. As a summary of Fig. 3.9 we can say that Si, which exhibits a face-

centered diamond cubic crystal structure, has a (110) crystallographic plane with a rectangular 

cell. Ag has also fcc structure and the surface unit cell of its (110) orientation is a rectangle. 

According to the dimensions of the surface unit cells of Si and Ag in the (110) orientation, a 2x4 

Ag (110) [001] supercell mesh matches almost perfectly to half a 3 x 3 Si (110) [001] supercell 

mesh. Cr has a bcc structure and also shows a rectangular surface unit cell in the (211) 

direction, which can grow on top of the one of Ag. Cr grows onto Ag (110) [001]. Finally, the Cr 

(211) surface is an excellent template for hcp Co, which grows with its [0001] direction (the 

easy axis) aligned with the [110] direction of the Cr (211) surface. So in the end the EA of Co is 

aligned with the [001] direction of Si. Actually, the wafer is not completely round, as it may be 

seen in the first picture in Fig. 3.6. The cut it has, which is called the primary flat, indicates the 

[001] direction. Once the Co is grown epitaxially following the indicated sequence, its 

magnetic EA will be parallel to the primary flat. The primary flat has served as an indicator to 

cut the strips. 
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Fig. 3.9. Display of the epitaxial relations between subsequent layers in the stacking sequence 

Si(110)[001]/Ag(110)[001]/Cr(211)[01̅1]/Co(101̅0)[ 0001] by means of their respective 

crystallographic surface unit cells. (a) shows the epitaxy relation of Si(110)[001]/Ag(110)[001], (b) of 

Ag(110)[001]/Cr(211)[01̅1]and (c) of Cr(211)[01̅1]/Co(101̅0)[0001] [21]. 

 
 

Another thing that should be pointed out is the lack of diffraction peaks corresponding 

to Pt in the XRD scans. One reason could be that the thickness of the Pt overcoat is too thin to 

see any epitaxy. However, based on the dimensions of the cells and the lack of reports of 

epitaxy we believe that epitaxial overcoat growth is unlikely.  

To sum up, I have fabricated Co (101̅0) films with in-plane easy axis by means of 

epitaxial growth on macroscopic strips. The crystal structure of the samples has been 

confirmed by means of XRD. Additionally, I have successfully grown a wedge-shaped Pt 

overcoat of thicknesses ranging from 0.3 nm to 1.8 nm along the strip, for which I have 

carefully designed and followed the fabrication step, including calibrations of the wedge.  
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Chapter 4  

GENERALIZED MAGNETO-OPTICAL ELLIPSOMETRY 

RESULTS 

 

The magnetic and magneto-optical characterization of our three samples has been 

performed via GME measurements. The samples have been placed in an automatized linear 

motion stage, which enables us to control and vary in an automatic way the point of the 

sample on which the laser of the GME is hitting, i.e., the measurement point. Figure 4.1 

represents schematically the measurement configuration. The strip-type sample is placed 

perpendicular to the applied field. The EA (c-axis, green dashed line) is tilted by 15˚ from the 

vertical (x-axis). The angle of the magnetization (orange arrow) with the x-axis is called 𝜙. The 

piece of the sample that is illuminated by the laser (red spot in Fig. 4.1) is the one that is 

placed in between the poles of the electromagnet, and it is this subsample that is measured by 

means of a complete GME measurement set. The linear stage moves (1 or 2 mm) after the 

measurement at a given point is finished, so that a different part of the strip is placed between 

the poles and is hit by the laser. The samples that have been measured with in this way are 

Pt20B (20 nm Co with Pt overcoat wedge), Pt100B (100 nm Co with Pt overcoat wedge) and as 

reference, Ref20B (20 nm Co without Pt overcoat). 

I have aligned the setup before measuring the samples. All the optical elements and 

the linear motion stage have to be aligned, so that the plane of incidence is perpendicular to 

the axis of the strip sample. To ensure this, I have tested that upon moving the linear motion 

stage the reflected laser spot always follows the same path. Additionally, I have optimized the 

intensity at the detector. After ensuring that the experimental conditions are stable, I have 

proceeded to measure 
𝛿𝐼

𝐼
(𝜃1, 𝜃2) maps at different positions of the macroscopic strip sample. 

In the Pt20B and Pt100B samples, the different positions on the strip correspond to different 

Pt overcoat thicknesses. In sample Ref20B, the measured quantities should be independent of 

the measurement position. If this were not the case, point to point changes in the Pt20B and 

Pt100B measurements could be due to a nonuniform fabrication, and not to an overcoat-

induced effect. After the measurements, a multiparameter least-squares fit of the measured 

maps to Eq. (2.12) enables us to obtain the fitting parameters that are related to the reflection 

matrix of the sample.  

In this chapter, I will first discuss the quality of the data and perform a qualitative 

analysis of the data. For this purpose I will focus on a given measurement point (position -19.5 

mm of sample Pt20B, which has 1.36 nm of Pt overcoat). This point is representative and  
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Fig. 4.1. Measurement configuration. The sample (blue rectangle) is aligned perpendicular to 

the applied field, which is depicted as a black line and is contained in the plane of incidence of the light. 

The c-axis of Co, i.e., the easy axis of the magnetization, is 15˚ away from the main axis of the sample. 

The magnetization is represented by an orange arrow, and the angle it forms with the main axis of the 

sample is called 𝜙. 𝛾 is the angle between the EA and the magnetization. The red spot on the sample 

symbolizes the laser spot, indicating the measurement point in the GME experiment. 

 

shows the features displayed by the rest of measurements. After that, I will show a set of 

measurements and point out an apparent inconsistency of the data with the assumed model 

of a homogeneous magnetization rotating upon applying a field. I will then explain magneto-

optical anisotropy (MOA) and show how its inclusion can consistently explain our data. I will 

then show how MOA is enhanced by the Pt overcoat layer, and how this enhancement is 

affected by the Pt thickness. Finally, I will discuss the effect of the Pt overcoat on the 

magnetocrystalline anisotropy (MCA). 

 

4.1 - Data quality 

 As a representative measurement, I have selected the one performed on sample 

Pt20B, at the location where it has 1.36 nm of Pt overcoat thickness. The maps measured via 

GME in this subsample have been fitted with Eq. (2.12). Figure 4.2 shows 
𝛿𝐼

𝐼
(𝜃1, 𝜃2) maps for 

four different values of the applied field, namely the maximum field strengths that are 

achieved (H = ± 1650 Oe), an intermediate value (H = 875 Oe) and the remanence state (H = 0 

Oe). The left column shows the measured maps and the middle column shows the maps 

obtained by least-squares fits of Eq. (2.12). As it can be observed, both maps for each field 

value are virtually identical and the 𝑅2 values of the least-squares fits are very good. 

Moreover, in the third column, we observe that the difference between the measured and the 

fitted values are caused by randomly distributed noise (white noise).  
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Fig. 4.2. Comparison between measured (left column) and fitted (middle column) 
𝛿𝐼

𝐼
 maps for 

different values of the applied field. The right column shows the residuals of the least-squares fits. The 

color bar for the left and middle columns is placed on (b), the one for the right column on (c). 

 

It should be pointed out that the quality of the fits is decreased when the 

magnetization is near the switching point, i.e., in the vicinity of 𝐻𝑐, because in this field regime 

the sample can form a non-uniform magnetization state and the description of the experiment 

by a single reflection matrix is not as good as for truly uniform magnetization states. This can 

be observed in Fig. 4.3, where the 𝑅2 of the fit is plotted as a function of the applied magnetic 

field for the decreasing field branch. In the main figure we can see a sudden decrease of the 

quality of the fit at the H = -300 Oe, where the magnetization switches. In the inset, we can see 

that this decrease actually starts in a gradual way but still, the 𝑅2 values are very close to 1 

until the immediate vicinity of the coercive field.  

 

4.2 - Qualitative data from least-squares fitting of 
𝜹𝑰

𝑰
 maps 

The fit of the data to Eq. (2.12) enables the extraction of the six 𝐵𝑖  parameters for each 

value of the field, the corrections for the polarizer angles 𝜃1
0 and 𝜃2

0, and 𝐼0. Figure 4.4 shows 

the 𝐵𝑖  parameters as a function of the field for the selected sample we are discussing here. It 

has to be pointed out that these parameters have been extracted for the decreasing  
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Fig. 4.3.  𝑅2 values as a function of the applied field 𝐻. The arrow indicates the direction in 

which the field changes (decreasing field branch). Inset: zoom around the highest 𝑅2 values. 

 

field branch. There are some relevant observations that can be made in Fig. 4.4: 

- The shape of 𝐵1 to 𝐵4 is reminiscent of that of the decreasing branch of hysteresis 

loops (see, for instance, Fig 2.9). This is because these parameters depend on the 

magnetically induced elements of the reflection matrix in equation (2.9), namely 𝛼 and 

𝛽, and they change sign when the magnetization switches, at about 𝐻 = -300 Oe.  

 

- As the absolute value of the field increases, 𝐵1 and 𝐵2 also increase in absolute value. 

However, the absolute value of 𝐵3 and 𝐵4 decreases as the field gets larger. To 

understand this, we have to remember from Sec. 2.3.2 that 𝐵1 and 𝐵2 are related to 

the longitudinal magnetization, i.e., the magnetization component contained in the 

sample plane and in the plane of incidence (so, in our measurement configuration, 

along the axis of the applied magnetic field). Assuming a pure rotation of the 

magnetization, the Zeeman energy favors the alignment of the magnetization with the 

magnetic field and thus there is an increase of the magnetization component along its 

axis, and consequently of 𝐵1 and 𝐵2 as the field strength increases. On the other hand, 

as 𝐵3 and 𝐵4 are related to the transverse magnetization, i.e., the component which is 

perpendicular to the plane of incidence, their absolute value decrease when the 

absolute value of the magnetic field is increased.  

 

- 𝐵5 and 𝐵6 show no field dependence within the error bars, as can be seen in the insets 

of the corresponding figures. Overall, we see that only the point at which 𝑅2 decreases 

dramatically deviates from this field-independent characteristic. This is the expected 

behavior, because 𝐵5 and 𝐵6 only depend on the optical constants. 

The other three fitting parameters, namely 𝐼0, 𝜃1
0 and 𝜃2

0 are displayed in Fig. 4.5. The full-

scale graphs show a spike-like feature due to the points where 𝑅2 deviates significantly from 1. 

The corresponding zooms show a very minor field dependence of the parameters. 
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Fig. 4.4.  𝐵1 to 𝐵6 parameters vs. the magnetic field strength H. The error bars are hardly visible 

because the error is very small compared with the scale of the variation of the parameters. 

Fig. 4.5.  𝐼0, 𝜃1
0 and 𝜃2

0 parameters.  

 

Moreover, the size of  𝐼0 is small in comparison to the other terms of the denominator 

in Eq. 2.12, and the corrections of the polarizers are of the order of 1˚. The corrections of the 

polarizers are due to the fact that one cannot align them by eye with respect to a plane of 

incidence that is not visible.  
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4.3- Quantitative analysis of the data 

4.3.1- Pure rotation of magnetization without magneto-optical anisotropy 

In order to achieve a quantitative analysis, we have studied the data from the highest 

applied field to remanence, where the magnetization is homogeneous and the description of 

the sample by the reflection matrix in Eq. (2.6) is accurate. In this field range we can assume 

that the magnetization of our samples undergoes a pure rotation, so that upon applying a 

magnetic field the angle 𝜙 in Fig. 4.1 changes. In this field range the pure rotation assumption 

is confirmed by means of VSM measurements (Chapter 5), where the measured data are in 

very good agreement with the Stoner-Wohlfarth model, which assumes a homogeneous 

magnetization that rotates upon applying a magnetic field from saturation to remanence.  

Another assumption we have made in a first step is that the system displays no 

magneto-optical anisotropy (MOA), so that the magneto-optical coupling constant 𝑄 is 

independent from the magnetization direction. With these two assumptions, 𝐵1 and 𝐵2 have 

to be proportional to sin(𝜙), because they are related to the longitudinal magnetization, i.e., 

along the y-axis in Fig. 4.1. 𝐵3 and 𝐵4, which are related to the transverse magnetization, i.e., 

along  the x-axis in Fig. 4.1, have to be proportional to cos(𝜙). The proportionality constants 

are independent of the magnetic state, so that, within this model, the expected values (which 

we denote with a bar) of 𝐵1 to 𝐵4 normalized to their remanence values follow the relations 

𝑁𝐵̅̅ ̅̅
1 =

�̅�1(𝐻)

�̅�1(𝐻=0)
= 𝑁𝐵̅̅ ̅̅

2 =
�̅�2(𝐻)

�̅�2(𝐻=0)
=

sin(𝜙)

sin(𝜙0)
     (4.1.a) 

𝑁𝐵̅̅ ̅̅
3 =

�̅�3(𝐻)

�̅�3(𝐻=0)
= 𝑁𝐵̅̅ ̅̅

4 =
�̅�4(𝐻)

�̅�4(𝐻=0)
=

cos(𝜙)

cos(𝜙0)
,   (4.1.b) 

because for 𝐻 = 0 the magnetization lies along the EA, which is at an angle 𝜙 = 𝜙0, fixed in 

our experiment to 15˚. 

Each magnetic field value 𝐻 determines a corresponding magnetization angle 𝜙, which 

has to describe consistently the four measured data sets of the normalized 𝐵𝑖, 𝑖 = 1,4.  To 

obtain 𝜙(𝐻) we minimize numerically the 𝜒2(𝐻) function 

𝜒2(𝐻) =  (
𝐵1(𝐻)

𝐵1(𝐻=0)
− 𝑁𝐵̅̅ ̅̅

1)
2

+ (
𝐵2(𝐻)

𝐵2(𝐻=0)
− 𝑁𝐵̅̅ ̅̅

2)
2

+  (
𝐵3(𝐻)

𝐵3(𝐻=0)
− 𝑁𝐵̅̅ ̅̅

3)
2

+  (
𝐵4(𝐻)

𝐵4(𝐻=0)
− 𝑁𝐵̅̅ ̅̅

4)
2

. (4.2) 

Hereby, the number of experimental data is 4n (where n is the number of applied fields for 

which the normalized 𝐵𝑖’s are analyzed), and the number of fitting parameters 𝜙 is n. With the 

fitted values of 𝜙, we can calculate the expected 𝑁𝐵̅̅ ̅̅
𝑖, 𝑖 = 1,4. 

Figure 4.6 shows the four normalized experimental quantities with filled symbols. The 

red line represents the expected values from the fitted 𝜙’s. As it may be observed, according 

to the assumed model, the experimental 𝑁𝐵1 and 𝑁𝐵2 should be identical, as well as 𝑁𝐵3 and 

𝑁𝐵4. However, this is not the case. Moreover, the fit is inconsistent with the data: the 

decrease of 𝑁𝐵3 and 𝑁𝐵4 upon increasing the field strength is not compensated by a 

sufficiently large increase of 𝑁𝐵1 and 𝑁𝐵2. As the fitted values show, the model we have 

assumed leads to a smaller decrease of 𝑁𝐵3 and 𝑁𝐵4. This model clearly fails to explain the 

behavior of our samples, so that further refinement has to be incorporated to the model. 
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Fig. 4.6. 𝐵1and 𝐵2 (a), and 𝐵3 and 𝐵4 (b) normalized to their remanence value from the 

maximum applied field to remanence in the decreasing field branch. Data have been obtained from the 

measurements on the subsample of Pt20B with 1.36 nm thick Pt overcoat. Black squares and blue circles 

represent experimental values. The red lines represent the fitted values assuming pure rotation of the 

magnetization and no magneto-optical anisotropy.  

 

4.3.2- Pure rotation of magnetization with magneto-optical anisotropy 

The first thing one might question is whether the magnetization is indeed 

homogeneous and undergoes a pure rotation. Nevertheless, this assumption is well confirmed 

by means of our VSM measurements in Chapter 5.  Additionally, we see in Fig. 4.6 that the 

deviation of the data from the pure rotation model without magneto-optical anisotropy (red 

line) is bigger for high field values. However, it is precisely at high field values where the pure 

rotation of the magnetization is a better assumption. As a consequence, we stick to the 

assumption of pure magnetization rotation.  

However, the other assumption in Sec. 4.3.1, namely that the samples are magneto-

optically isotropic, has to be abandoned. Indeed, a recent study [11] has addressed that the 

level of MOA in Co (101̅0) films is very substantial. I will now show that the inclusion of MOA 

leads to a consistent interpretation of our results. 

 

a) Implications of magneto-optical anisotropy in the 𝑩𝟏, 𝑩𝟐, 𝑩𝟑 and 𝑩𝟒 parameters 

 MOA is a phenomenon that arises from the fact that the properties of a crystalline 

material depend on the direction.  One of these properties that depend on the crystal lattice is 

the magneto-optical coupling. In Sec. 4.3.1 and also in Sec. 2.3.2, where I have presented the 

GME technique, the magneto-optical coupling has been taken as a constant, 𝑄. Nevertheless, 

this quantity is in reality a tensor. In the case of having hcp Co (uniaxial) this tensor is defined 

by only two quantities, namely 𝑄∥, the magneto-optical coupling along the c-axis, and 𝑄⊥, the 

one perpendicular to the c-axis. The fact that these two couplings are different leads to a 

mixture between the longitudinal and transverse components of the magnetization. As a 

consequence, the GME parameters 𝐵1, 𝐵2, 𝐵3 and 𝐵4 cannot be interpreted as to be following 

the rotation of the magnetization as in Sec. 4.3.1.  
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 I have derived analytically the form of the 𝐵𝑖   (𝑖 = 1,4) parameters for a magneto-

optically anisotropic and optically isotropic system with in-plane magnetization and uniaxial 

symmetry in Appendix A. Here, I will just present the basic ideas and the final result.  

Let us suppose that we have a magneto-optically anisotropic uniaxial medium with in-

plane magnetization and the EA aligned with the x-axis in Fig. 4.1 (𝜙0 = 0°). The dielectric 

tensor would be 

�̅� = 𝜀 (

1 0 𝑖𝑄⊥𝑚⊥

0 1 −𝑖𝑄∥𝑚∥

−𝑖𝑄⊥𝑚⊥ 𝑖𝑄∥𝑚∥ 1
)     (4.3) 

with 𝑚⊥ = cos(𝜙 − 𝜙0) and 𝑚∥ = sin(𝜙 −  𝜙0). For a general orientation of the EA, 𝜙0 ≠ 0, 

the tensor (4.3) has to be rotated. This rotation leads to a mixture of the 𝑚⊥ and 𝑚∥ terms in 

the elements of the rotated dielectric tensor (See Eqs. (A.3.a-c)). If 𝑄∥ = 𝑄⊥, the elements of 

the matrix will only have either transverse of longitudinal magnetization, not a mixture of 

both.  

 One can solve Maxwell’s equations with the appropriate boundary conditions for a 

medium with the dielectric tensor (A.3.a) and get the reflection matrix [29]. From the 

reflection matrix and the relations (2.14.a-f) one can get the GME 𝐵𝑖   (𝑖 = 1,4) parameters. In 

Appendix A I show that the 𝐵𝑖  parameters normalized to their remanence value can be written 

as in Eqs. (4.4)-(4.7) with the definitions: 

 𝑁 = 𝑛 + 𝑖𝜅, the refractive index of the magnetic medium 

cos Ω1 = 𝑐 + 𝑖𝑑, where Ω1 is the refraction angle inside the magnetic medium 

Ω0 is the incident angle, which in our case is 45˚. 

𝑄⊥
(𝑟)

 and 𝑄⊥
(𝑖)

 are the real and imaginary parts of 𝑄⊥, and 𝑄∥
(𝑟)

 and 𝑄∥
(𝑖)

 are the real and 

imaginary parts of 𝑄∥. 

 

𝑵𝑩̅̅̅̅̅
𝟏 =

𝐬𝐢𝐧(𝝓−𝜟𝟏)

𝐬𝐢𝐧(𝝓𝟎−𝜟𝟏)
                        Δ1 = atan (−

𝐶1

𝐷1
)     (4.4.a) 

𝐶1 =  [𝐹1 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) − �̃�1 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0  (4.4.b) 

𝐷1 = −𝐹1 (𝑄⊥
(𝑖)

cos2 𝜙0 + 𝑄∥
(𝑖)

sin2 𝜙0 ) + �̃�1 (𝑄⊥
(𝑟)

cos2 𝜙0 + 𝑄∥
(𝑟)

sin2 𝜙0)  (4.4.c) 

𝐹1 = 𝑐[𝑛 cos2 Ω0 + cos Ω0 (𝑛2𝑐 − 𝑛𝜅𝑑 − 𝑐) − (𝑛𝑑 + 𝜅𝑐)(𝜅 cos Ω0 − 𝑑) − 𝑛𝑐2 + 𝜅𝑐𝑑] −

𝑑[(𝑛𝑑 + 𝜅𝑐)(𝑛 cos Ω0 − 𝑐) + (𝜅 cos Ω0 − 𝑑)(cos Ω0 + 𝑛𝑐 − 𝜅𝑑)]   (4.4.d) 

�̃�1 = 𝑑[𝑛 cos2 Ω0 + cos Ω0 (𝑛2𝑐 − 𝑛𝜅𝑑 − 𝑐) − (𝑛𝑑 + 𝜅𝑐)(𝜅 cos Ω0 − 𝑑) − 𝑛𝑐2 + 𝜅𝑐𝑑] +

𝑐[(𝑛𝑑 + 𝜅𝑐)(𝑛 cos Ω0 − 𝑐) + (𝜅 cos Ω0 − 𝑑)(cos Ω0 + 𝑛𝑐 − 𝜅𝑑)]     (4.4.e) 
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𝑵𝑩̅̅̅̅̅
𝟐 =

𝐬𝐢𝐧(𝝓−𝜟𝟐)

𝐬𝐢𝐧(𝝓𝟎−𝜟𝟐)
                        Δ2 = atan (−

𝐶2

𝐷2
)    (4.5.a) 

𝐶2 =  [−𝐹2 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) − �̃�2 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0  (4.5.b) 

𝐷2 = 𝐹2 (𝑄⊥
(𝑖)

cos2 𝜙0 + 𝑄∥
(𝑖)

sin2 𝜙0 ) + �̃�2 (𝑄⊥
(𝑟)

cos2 𝜙0 + 𝑄∥
(𝑟)

sin2 𝜙0)  (4.5.c) 

𝐹2 = −𝐹1(𝑇1𝑇3 + 𝑇2𝑇4) + �̃�1(𝑇2𝑇3 − 𝑇1𝑇4)     (4.5.d) 

�̃�2 =  𝐹1(𝑇2𝑇3 − 𝑇1𝑇4) + �̃�1(𝑇1𝑇3 + 𝑇2𝑇4)     (4.5.e) 

𝑇1 = 𝑛(cos2 Ω0 − 𝑐2 + 𝑑2) + 2𝜅𝑐𝑑 + 𝑐 cos Ω0 (1 − 𝑛2 + 𝜅2) + 2𝑛𝜅𝑑 cos Ω0 (4.5.f)  

     𝑇2 = 𝜅 cos2 Ω0 − 𝜅(𝑐2 − 𝑑2) − 2𝑛𝑐𝑑 + 𝑑 (1 − 𝑛2 + 𝜅2) − 2𝑛𝜅𝑐     (4.5.g) 

𝑇3 = 𝑛(cos2 Ω0 − 𝑐2 + 𝑑2) + 2𝜅𝑐𝑑 − 𝑐 cos Ω0 (1 − 𝑛2 + 𝜅2) − 2𝑛𝜅𝑑 cos Ω0  (4.5.h)  

𝑇4 = 𝜅 cos2 Ω0 − 𝜅(𝑐2 − 𝑑2) − 2𝑛𝑐𝑑 − 𝑑 (1 − 𝑛2 + 𝜅2) + 2𝑛𝜅𝑐   (4.5.i) 

 

𝑵𝑩̅̅̅̅̅
𝟑 =

𝐜𝐨𝐬(𝝓−𝜟𝟑
′ )

𝐜𝐨𝐬(𝝓𝟎−𝜟𝟑
′ )

                        𝛥3
′ = atan (

𝐷3

𝐶3
)   (4.6.a) 

𝐶3 =  𝐹3 (𝑄⊥
(𝑖)

sin2 𝜙0 + 𝑄∥
(𝑖)

cos2 𝜙0) − �̃�3 (𝑄⊥
(𝑟)

sin2 𝜙0 + 𝑄∥
(𝑟)

cos2 𝜙0)  (4.6.b) 

𝐷3 =  [−𝐹3 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) + �̃�3 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0    (4.6.c) 

𝐹3 = 𝑛 cos Ω0 − 𝑐     (4.6.d) 

�̃�3 = 𝜅 cos Ω0 − 𝑑         (4.6.e) 

 

𝑵𝑩̅̅̅̅̅
𝟒 =

𝐜𝐨𝐬(𝝓−𝜟𝟒
′ )

𝐜𝐨𝐬(𝝓𝟎−𝜟𝟒
′ )

                        𝛥4
′ = atan (

𝐷4

𝐶4
)     (4.7.a) 

𝐶4 = −𝐹4 (𝑄⊥
(𝑖)

sin2 𝜙0 + 𝑄∥
(𝑖)

cos2 𝜙0) − �̃�4 (𝑄⊥
(𝑟)

sin2 𝜙0 + 𝑄∥
(𝑟)

cos2 𝜙0)   (4.7.b) 

𝐷4 = [𝐹4 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) + �̃�4 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0  (4.7.c) 

𝐹4 = −𝐹3(𝑇1𝑇3 + 𝑇2𝑇4) + �̃�3(𝑇2𝑇3 − 𝑇1𝑇4)    (4.7.d) 

�̃�4 = 𝐹3(𝑇2𝑇3 − 𝑇1𝑇4) + �̃�3(𝑇1𝑇3 + 𝑇2𝑇4)    (4.7.e) 
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MOA thus introduces four different phase shifts for each of the  𝑁𝐵̅̅ ̅̅
𝑖  (𝑖 = 1,4) parameters. By 

looking at the equations, one can note that these phase shifts vanish if 𝑄∥ = 𝑄⊥ (See Appendix 

A). 

 

b) Simulations with the transfer-matrix method including MOA 

 The analytic derivation of the 𝐵𝑖  parameters with MOA assumes a bulk material. 

However, our samples are thin films that have a SiO2 protective layer. These facts do not alter 

the form of 𝑁𝐵̅̅ ̅̅
𝑖, and equations (4.4.a), (4.5.a), (4.6.a) and (4.7.a) still hold. To demonstrate 

that the fundamental form of the equations is not altered, I have performed numerical 

simulations that use the transfer-matrix method [36,37] to calculate the GME parameters. This 

approach enables us to calculate the reflection matrix of a multilayer system, formed of 

materials with different optical and magneto-optical properties. In the model I have used, I 

have included a 10 nm thick amorphous SiO2 layer, a 20 nm thick uniaxial Co layer with MOA, 

and finally an optically isotropic Cr substrate, because the light penetration depth at 𝜆= 635 

nm is significantly smaller than the combined thickness of Co and Cr layers. The values of the 

parameters that have been chosen for the calculation are the ones that have been reported 

for Co in the literature. 𝑛 = 2.22, 𝜅 = 4.17, [38] and 𝑄∥ = 0.03 − 0.01𝑖, a value that is 

typically measured in the kind of samples we have. 𝑄⊥ is a constant times 𝑄∥, 𝑄⊥ = 𝜎𝑄∥, with 

𝜎 ∈ ℂ. For the SiO2 layer, 𝜀 = 2.1316 [38]. For Cr, 𝑛𝐶𝑟 = 3.55, 𝜅𝐶𝑟 = 4.27 [38]. 

In Fig. 4.7 we can see the simulated 𝐵𝑖  , 𝑖 = 1, 4 values, normalized to the remanence 

value, as a function of the magnetization angle 𝜙, for two different values of 𝜎, namely 𝜎 = 1,  

(no MOA), and 𝜎 = 1.2 − 0.3𝑖.  For 𝜎 = 1, the case without MOA, represented in black lines in 

Fig. 4.7,  𝑁𝐵1 = 𝑁𝐵2 and 𝑁𝐵3 = 𝑁𝐵4
8. For 𝜙 = 0, 𝑁𝐵1 = 𝑁𝐵2 = 0 and 𝑁𝐵3 = 𝑁𝐵4 have 

their maximum, because the magnetization lies along the x-axis. For 𝜙 = ±90˚ the opposite 

happens, 𝑁𝐵1 = 𝑁𝐵2 are maximal and 𝑁𝐵3 = 𝑁𝐵4 are zero, because the magnetization is 

along the y-axis. When MOA is included, 𝑁𝐵1 and 𝑁𝐵2 are no longer identical, as it can be 

seen in the blue and red curves in Fig. 4.7(a), and neither are 𝑁𝐵3 and 𝑁𝐵4. The curves 

including MOA have a phase shift with respect to those without MOA. For 𝜙 = 0˚, 𝑁𝐵1 and 

𝑁𝐵2, which are related to the longitudinal Kerr effect, are different from zero even if the 

magnetization is completely transverse. Concomitantly, for 𝜙 = ±90˚, when the 

magnetization is completely longitudinal, 𝑁𝐵3 and 𝑁𝐵4 are not zero, even if they are related 

to the transverse Kerr effect. This arises because of the mixture of the longitudinal and 

transverse magnetizations that is a consequence of MOA. Another thing that is worth to point 

out is that, before normalizing the 𝐵𝑖’s to their remanence value, 𝐵1 and 𝐵2 on the one hand, 

and 𝐵3 and 𝐵4 on the other hand, take the same value for any value of 𝜎 at 𝜙 = 15˚ and 

𝜙 = 15˚ − 180˚. This is the case because, for this particular angle of the magnetization, the 

magnetization lies along the EA we are only sensitive to 𝑄∥. If we look at Eqs. (A.3 b-c), when 

𝜙 = 15˚ or  15˚ − 180˚, 𝜀13 and 𝜀23 depend on 𝑄∥ but not on 𝑄⊥, so that the values are 

independent of 𝜎.  

                                                           
8
 In fact, this is true for any real value of 𝜎, as it is shown in Appendix A. It can be deduced from the set 

of equations (4.4), (4.5), (4.6) and (4.7).  
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Fig. 4.7.  Simulated values of 𝑁𝐵1 and  𝑁𝐵2 in (a), and of 𝑁𝐵3 and 𝑁𝐵4 in (b), for two different values of 

𝜎, namely, 𝜎 = 1 (no MOA, black curve) and 𝜎 = 1.2 − 0.3𝑖 (with MOA, blue and red curves). 

 

I have fitted the curves in Figs. 4.7(a) and 4.7(b) with the corresponding equation 

(4.4.a), (4.5.a), (4.6.a) or (4.7.a). Table 4.1 summarizes the obtained values. The table also 

includes the case of 𝜎 = 1.2, a pure real number, in order to confirm that when 𝜎 ∈ ℝ 

Δ1 = Δ2 and Δ3
′ = Δ4

′ . In Appendix A I show this analytically, and closed forms for tan Δ1 =

tan Δ2 and  tan Δ3
′ = tan Δ4

′  are given for the case of 𝜎 ∈ ℝ as: 

tan Δ1 = tan Δ2 =
(𝜎−1) sin 𝜙0 cos 𝜙0

𝜎 cos2 𝜙0+sin2 𝜙0
   (4.8.a) 

tan Δ3
′ = tan Δ4

′ =
(1−𝜎) sin 𝜙0 cos 𝜙0

cos2 𝜙0+𝜎 sin2 𝜙0
   (4.8.b) 

The value of the phase shifts obtained analytically from (4.8.a) and (4.8.b) for the case with 

𝜎 = 1. 2 and 𝜙0 = 15˚ coincide with the fit of the simulations. Finally, we have to stress that 

the fact that the 𝑅2 of the fit is 1 indicates that Eqs. (4.4.a), (4.5.a), (4.6.a) and (4.7.a) still hold 

even if the SiO2 layer is included in the formulation. 

 

c) Least-squares fit of the experimental data 

The experimental data that we want to fit with this model consist of the measured 

𝑁𝐵𝑖 , 𝑖 = 1,4  parameters as a function of the applied field. When fitting the 4n experimental 

data with n + 4 parameters (n 𝜙’s, one for each field value, and 4 phase shifts Δ1, Δ2, Δ3
′  and 

Δ4
′  that do not depend on the field), we obtain a good fit to the measured quantities, as it may 

be observed in Fig 4.8. The fitting is performed by minimizing 𝜒2 given in Eq. (4.2) but the 

expected values of the normalized  𝐵𝑖’s (𝑁𝐵̅̅ ̅̅
𝑖) are given by Eqs. (4.4.a), (4.5.a), (4.6.a) and 

(4.7.a). 
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𝜎 = 1 

Δ1 = 0˚ 𝑅2 = 1 

Δ2 = 0˚ 𝑅2 = 1 
Δ3

′ = 0˚ 𝑅2 = 1 
Δ4

′ = 0˚ 𝑅2 = 1 
 

𝜎 = 1.2 − 0.3𝑖 
Δ1 = −4.9˚ 𝑅2 = 1 

Δ2 = −66.9˚ 𝑅2 = 1 
Δ3

′ = 7.4˚ 𝑅2 = 1 
Δ4

′ = 2.0˚ 𝑅2 = 1 
 

𝜎 = 1.2 
Δ1 = 2.4˚ 𝑅2 = 1 

Δ2 = 2.4˚ 𝑅2 = 1 
Δ3

′ = −2.8˚ 𝑅2 = 1 
Δ4

′ = −2.8˚ 𝑅2 = 1 
 

Table 4.1.  Fitted phase shifts using Eqs. (4.4.a), (4.5.a), (4.6.a) and (4.7.a) for 𝑁𝐵1, 𝑁𝐵2, 𝑁𝐵3 

and 𝑁𝐵4 respectively. 𝑅2 values are shown in the right column. 

 

 

Fig. 4.8.  𝐵1 and 𝐵2 (a), and 𝐵3 and 𝐵4 (b) normalized to their respective remanence values vs. 

applied field strength H. Black squares and blue circles represent experimental values. Lines represent 

the fits with equations (4.4.a), (4.5.a), (4.6.a) and (4.7.a). 

 

The inclusion of the Δ1, Δ2, Δ3
′  and Δ4

′  phase shifts affects the fit, and the 

magnetization angles 𝜙(𝐻) are changed with respect to the fit that assumes magneto-optical 

isotropy. Figure 4.9 shows the fitted 𝜙 values for the same 𝑁𝐵𝑖 data set corresponding to the 

subsample of Pt20B which has 1.36 nm Pt overcoat.  The red curve corresponds to the 𝜙(𝐻) 

that has been fitted assuming no MOA [(Eqs. (4.1.a-b)], while the blue curve corresponds to 

the fit that includes MOA [Eqs. (4.4.a), (4.5.a), (4.6.a) and (4.7.a)]. As it may be observed, if 

MOA is not included, the error in 𝜙 can be very large. A pure magnetometry interpretation of 

data obtained by means of magneto-optical measurements is not correct, and this is due to 

the fact that MOA mixes the components of the magnetization. However, when MOA is 

included, 𝜙 can be determined correctly and, moreover, the level of MOA can be quantified 

thanks to the Δ1, Δ2, Δ3
′  and Δ4

′  phase shifts.   
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Fig. 4.9. 𝜙 vs 𝐻 fitting the data to the model without MOA (red curve), and to the model 

including MOA (blue curve). 

 

4.4- Overcoat thickness dependence of magneto-optical anisotropy 

We have seen that the specific sample we selected to exemplify the data analysis (20 

nm Co with 1.36 Pt overcoat) shows MOA. We will now see that the effect of MOA is very 

substantially affected by the thickness of the Pt overcoat. This is readily visible in Fig.  4.10. In 

this figure one can see represented with filled squares the 𝑁𝐵1 and 𝑁𝐵3 values measured at 

different points in the Pt20B sample, corresponding to different overcoat thicknesses. The 

lines represent the fitted values with the assumption of pure rotation of the magnetization in 

the absence of MOA [Eqs (4.1a-b)]. As we can see, the accuracy of the fit, which is already poor 

for the thinnest Pt value, decreases even further when the Pt overcoat gets thicker: for the 

blue line (0.24 nm of Pt) there is a substantial discrepancy, but for the purple line (1.40 nm of 

Pt) the discrepancy is even larger. This is an indicator that the effect of MOA increases with Pt 

overcoat thickness. In Fig. 4.10 one can also observe that the effect of increasing the Pt 

thickness is mostly affecting 𝑁𝐵1 rather than 𝑁𝐵3. It is also confirmed, although it is not 

shown in Fig. 4.10, that 𝑁𝐵2 is affected very substantially, while 𝑁𝐵4 behaves similar to 𝑁𝐵3, 

changing very little from measurement point to measurement point.  

The inclusion of MOA and the corresponding fitting with Eqs. (4.4.a), (4.5.a), (4.6.a) 

and (4.7.a) recovers the consistency and the fitted curves are in very good agreement with the 

measured quantities, as it may be seen in Fig. 4.11. For each of the subsamples, corresponding 

to a different Pt overcoat thickness, we have a set of Δ1, Δ2, Δ3
′  and Δ4

′  phase shift fitting 

parameters, as well as as much 𝜙 magnetization angles as values of the applied field. The 

phase shifts are assumed to be independent from subsample to subsample.  

The values of Δ1, Δ2, Δ3
′  and  Δ4

′  obtained from the fitting for each subsample of Pt20B 

are represented in Fig. 4.12 as a function of the Pt overcoat thickness. As we can see, Δ3
′  and 

Δ4
′  are virtually identical and hardly vary with Pt thickness, even if there are some point-to-

point fluctuations. However, Δ1 and Δ2 show a clear modulation, and even if their values are 

not identical, they are very close to each other. 
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Fig. 4.10. 𝐵1 and 𝐵3 normalized to their remanence value as a function of the applied field, for 

different Pt overcoat thicknesses. Filled squares represent the experimental values, and lines the 

expected values assuming no MOA, calculated with Eqs. (4.1.a) and (4.1.b). 

 

Fig. 4.11. 𝐵1 and 𝐵3 normalized to their remanence value as a function of the applied field, for 

different Pt overcoat thicknesses. Open squares represent the experimental values and lines correspond 

to the fitted values assuming MOA. 

 

 

Fig. 4.12. Δ1, Δ2, Δ3
′  and Δ4

′  vs Pt overcoat thickness for the Pt20B sample. 
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Until now we have only focused on the Pt20B sample. However, the effect of MOA is 

also very important in Ref20B and Pt100B. As an indicative value of the level of MOA, Fig. 4.13 

shows the phase shift Δ1 obtained from fitting the 𝑁𝐵𝑖  data sets of each of the measured 

subsamples in samples Ref20B, Pt100B and Pt20B. The values of Δ1 are plotted as a function of 

the Pt thickness. The Pt thickness quantity is meaningless for the Ref20B sample, which does 

not have the Pt overcoat. In this case, the horizontal axis is the measurement position in the 

strip. The correspondence between Pt thickness and the position in the strip is given by the 

profile of the Pt wedge in the right-hand side axis of Fig. 3.5. The first thing I would like to 

stress about Fig. 4.13 is the fact that the Δ1 phase shift of the reference sample Ref20B does 

not show any position dependence. The mean value of Δ1 for Ref20B is -3.9˚ and is depicted as 

a horizontal green line in the figure. This confirms that the effect seen in the other two 

samples, the ones with a Pt overcoat, is related to the presence of the overcoat, and not to 

sample inhomogeneity or to possible misalignments in the experiment. On the other hand, we 

can observe that the dependence of Δ1 with Pt thickness in Pt100B and Pt20B is very well 

described by an exponential, with a multiplicative constant 𝐴, a decay length  𝑡0 and an offset 

𝑦0. 

Δ1(𝑡𝑃𝑡) = 𝐴 (1 − 𝑒
−(

𝑡𝑃𝑡
𝑡0

)
) + 𝑦0   (4.9) 

The exponential fits to the data are shown in red and black lines in Fig. 4.13. The decay length 

𝑡0 is found to be 0.60 nm for Pt100B and 0.73 nm for Pt20B. A saturation of the effect of the Pt 

thickness appears around 1.5 nm of Pt. Additionally, I would like to point out the 

extrapolations of Δ1 values to zero Pt thickness are very well in accordance with the Δ1 of the 

sample without an overcoat. Δ2 values for the three samples shows a behavior almost 

identical to the respective Δ1 phase shift, whereas Δ3
′  and Δ4

′  show no dependence on the 

overcoat thickness, as it is already seen in Fig. 4.12 for Pt20B. 

 

Fig. 4.13. Δ1 as a function of Pt thickness for Pt100B (red circles) and Pt20B (black squares). The 

values for Ref20B (green triangles) are data for different measurement positions on the strip. The green 

horizontal line represents the mean value of Δ1 for the Ref20B sample. Red and black lines are the 

exponential fit for the Pt100B and Pt20B data respectively. 
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We should also point out that behavior of Δ1 and Δ2 as a function of Pt thickness is 

very similar for samples Pt20B and Pt100B. This is the case because magneto-optical 

properties, which depend on the overlap of electronic wave-functions, have a short length-

scale. Thus, the effect of the Pt overcoat in the MOA is similar in samples with 20 nm or 100 

nm Co.  

From Eq. (4.8.a) we can estimate the value of 𝜎 in our samples assuming that 𝜎 ∈  ℝ. 

With a Δ1 ≈ −15˚ phase shift we get a value of 𝜎 = 0.46. This means that the value of 𝑄∥, the 

magneto-optical coupling along the EA, is more than double the value of 𝑄⊥, so obviously, the 

assumption of magneto-optical isotropy in this system is not justified. Without the Pt overcoat, 

Δ1 ≈ −4˚ and we get 𝜎 = 0.78, which is closer to the magneto-optically isotropic case 𝜎 = 1, 

but still shows a significant level of MOA.  

  

4.5- Overcoat thickness dependence of magnetocrystalline anisotropy 

Once we have corrected for the MOA, we can analyze the magnetocrystalline 

anisotropy (MCA) by studying the 𝜙 angle of the magnetization and dependence on the 

applied field. I have obtained the value of 𝜙 for each value of 𝐻 from the kind of fittings 

discussed in Sec. 4.3.2. Figure 4.14 shows 𝜙 as a function of 𝐻 for the three different 

subsamples of Pt20B that have been discussed in Figs. 4.10 and 4.11. For 𝐻 = 0 the angle of 

the magnetization is 𝜙 =  𝜙0 = 15˚. As 𝐻 increases, 𝜙 also increases, i.e., the magnetization 

rotates towards the axis of the applied field. However, the rotation is not the same for 

subsamples with different Pt overcoat thickness: the measurements on the thin end of the 

wedge show a bigger rotation of the magnetization than those on the thick end. 

Correspondingly, we can say, at least qualitatively, that increasing the Pt overcoat thickness 

increases magnetocrystalline anisotropy of Co, because for the same value of the applied field, 

the magnetization rotates less than for thinner Pt overcoats.  

Fig. 4.14. 𝜙 vs 𝐻 for different Pt overcoat thickness. For this fitting, Δ3=Δ4 are fixed to be the 

average of Δ3 for all Pt thicknesses, because its value does not change with the overcoat thickness.  Δ1 

and Δ2 are optimized as free fit parameters in each case. 
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This can also be observed in Fig. 4.15, where I have represented the maximum change 

of 𝜙, i.e.,  𝜙(𝐻max) − 𝜙0 = 𝛾max, as a function of the Pt overcoat thickness, for the Pt20B and 

Pt100B. Even if the noise level is quite high, the effect of the Pt overcoat thickness on the 

anisotropy is apparent for the Pt20B sample, as  𝛾max changes by 2˚ from the thinnest to the 

thickest overcoat. For Pt100B, however, the trend is not so clear as the Pt thickness increases. 

This smaller overcoat effect onto the MCA in the sample with a thicker Co film can be 

understood because Pt only affects the Co at the interface. The net Co quantity is 5 times 

larger in Pt100B than in Pt20B, and the magnetization reversal is collective behavior of the 

entire Co film, and not just the interface region. Thus, Pt20B is more sensitive to the change of 

MCA produced by the Pt overcoat. Finally, we corroborate that for the Ref20B sample there is 

not a trend of 𝛾max as a function of the sample position, as one would expect, confirming once 

again a good homogeneity in the Co layer. 

The change in the magnetocrystalline anisotropy can be quantified if we use the 

Stoner-Wohlfarth model to fit 𝜙(𝐻) for each subsample. From this fit we can extract the 

values of 𝐻𝐾1 =
2𝐾1

𝑀𝑠
 and 𝐻𝐾1 =

4𝐾2

𝑀𝑠
, where 𝐾1 and 𝐾2 are the first and second order anisotropy 

constants in Eq. (1.3). The values of such parameters as a function of the Pt thickness are 

depicted in Fig. 4.16 for the Pt20B and Pt100B samples. As we can observe, 𝐻𝐾1 shows a clear 

increase as a function of the Pt thickness. The data for 𝐻𝐾2 are more scattered and a clear 

trend as a function of the Pt thickness is not that clearly noticeable. The same happens for 

𝐻𝐾 = 𝐻𝐾1 + 𝐻𝐾2. The fitting we have performed takes 𝜙0 as a fitting variable, but we can see 

in Figs. 4.16(d) and 4.16(h) that the fitted value does not deviate from 15˚, showing 

consistency with nominal value of 𝜙0. These results indicate that there is an enhancement of 

magnetocrystalline anisotropy as the thickness of the Pt overcoat increases. 

 

Fig. 4.15. 𝛾max vs Pt overcoat thickness for Pt20B and Pt100B. 
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Fig. 4.16.  𝐻𝐾1, 𝐻𝐾2, 𝐻𝐾  and 𝜙0 values obtained from fitting with the Stoner-Wohlfarth model 

the 𝜙(𝐻) data. 
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Chapter 5 

VIBRATING SAMPLE MAGNETOMETRY RESULTS 

 

In this chapter I will show the vibrating sample magnetometry (VSM) measurements 

performed on the Pt20A sample, which confirm that the magnetization of our samples can be 

described by the Stoner-Wohlfarth model. Moreover, VSM measurements have been used to 

get a preliminary idea about the change in magnetocrystalline anisotropy upon increasing the 

Pt overcoat thickness, in order to confirm the results obtained with GME. 

To perform VSM measurements, the strip sample Pt20A has been cut into pieces of 5 

mm x 5 mm, a size that is suitable for the VSM system. This technique probes the magnetic 

properties of the sample as a whole, so it is convenient to ascribe to each of the pieces a single 

value for the Pt thickness. We ascribe to each of the pieces the Pt thickness corresponding to 

that of the middle point of the piece. Being the gradient of the overcoat wedge so small, it is 

sensible to neglect the variation of Pt thickness along 5 mm. I have performed VSM 

measurements on pieces of the Pt20A sample corresponding to Pt thickness values of 0.5 nm, 

0.8 nm and 1.4 nm.  

The first measurement that I have performed in each piece is intended to locate the 

easy and hard axes. A large magnetic field is applied (8 KOe in our case), so that saturation is 

achieved. Then the field is decreased to zero, and the magnetization will thus align with the 

EA. With the sample in the remanence state, a 360˚ rotation scan is performed by rotating the 

sample holder, and the magnetic moment of the sample parallel to the axis of the pickup coils 

is recorded as a function of the angle. Figure 5.1 shows the outcome of this kind of 

experiment. The sample is randomly oriented at the beginning, and upon rotating it, we reach 

a point where the measured magnetic moment is maximal (at 76˚). This is the point at which 

the EA is aligned with the pickup coils. In this way we can identify the EA, and 90˚ away from it 

is the HA.  

A second measurement is performed to test the orientation of the EA. From the 

estimate obtained from the first measurement, the sample is oriented with the estimated HA 

parallel to the pickup coils, and a hysteresis loop is measured, shown in Fig. 5.2(a). The first 

thing to point out is that the hysteresis loop does not achieve a constant value at large fields 

(saturation). At large values of the applied field the magnetic moment decreases linearly. The 

reason for this is that we are not only measuring the ferromagnetic signal of the sample, but 

also a diamagnetic background coming, for instance, from the substrate or the Si grease used 

to paste the sample to the sample holder. In order to obtain only the ferromagnetic signal,  
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Fig. 5.1. Magnetic moment parallel to the pickup coils as a function of the orientation of the 

sample for zero applied field (remanence). Starting point is random, depending on how the sample is 

placed in the instrument. 

 

which should saturate at high fields, one has to subtract the slope of the diamagnetic 

contribution, obtained from a linear fitting of the high field data points. From the corrected 

hysteresis loop [Fig. 5.2(b)], we get the value at which the magnetization saturates. In the case 

of Fig. 5.2(b) this happens at about 4700 Oe. Then, the same measurement as in Fig. 5.1 is 

performed, but now with an applied field that is enough to saturate the magnetization along 

the HA. The orientation dependent measurement is depicted in Fig. 5.3. In the Stoner-

Wohlfarth model one can fully saturate the sample only along the EA and the HA, and this is 

exactly what is observed in Fig. 5.3. At certain values of the rotation angle the magnetic 

moment shows two sudden peaks which correspond to the position of the HA. With this 

second measurement one can determine more precisely the orientation of the HA, and 

therefore of the EA.  

 

Fig. 5.2. Magnetic moment parallel to the pickup coils vs magnetic field hysteresis loop when 

the magnetic field is applied along the hard axis. (a) Measured hysteresis loop. (b) Hysteresis loop after 

correcting diamagnetic linear background. 
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Fig. 5.3. Magnetic moment parallel to the pickup coils as a function of the orientation of the 

sample for H = 4700 Oe (saturation).  

  

The sample is then rotated so that the EA is aligned with the direction along which the 

field is applied, which in our case is the one parallel to the pickup coils. This is set to be the 

origin of the rotation angle. With this choice, the angle of rotation of the sample is also the 

angle 𝛿 between the applied field 𝐻 and the EA. After the alignment, a series of measurements 

is performed: for each angle 𝛿 (in steps of 2˚), I have measured a hysteresis loop with applied 

field from +8 KOe to -8 KOe and back to +8 KOe.  

 To treat the data, I have first subtracted the linear background due to diamagnetism in 

each of the hysteresis loops, and correct for possible offsets. The corrected data for magnetic 

field values from 8 KOe to 0 (from saturation to remanence, the field range where the 

magnetization of the sample is assumed to be uniform) are shown in the left column of Fig. 5.4 

for different pieces corresponding to different Pt overcoat thicknesses. These color maps 

represent the value of the measured magnetic moment parallel to the pickup coils in color 

scale, as a function of 𝛿, the angle between the applied field and the EA, and as a function of 

the strength of the field. One can clearly distinguish the HA, at 𝛿 = 90˚ and 𝛿 = 270˚, where at 

zero field the magnetic moment is zero (blue color), because in such case the magnetization 

lies along the EA, which is 90˚ from the HA. As the field increases, above approximately 4500 

Oe, we obtain the same value of the magnetic moment at the HA and at the EA.  

 The right column of Fig. 5.4 shows the fitted maps with the Stoner-Wohlfarth model, 

including first and second order anisotropy constants. The quality of the fits is excellent, the 

average 𝑅2 value being 0.9849. Hence, this reinforces the assumption of pure rotation of the 

magnetization in this range of the applied field.  
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Fig. 5.4. Color maps showing the magnetic moment parallel to the pickup coils as a function of 

the angle between the applied field and the EA, and as a function of the field strength. Left column [(a) 

to (c)] are the measured data, right column [(d) to (f)] are the least-squares fits assuming the Stoner-

Wohlfarth model. 

 

 From the least-squares fits with the Stoner-Wohlfarth model (whose parameters 

depend on the total magnetic moment of the sample) and the ferromagnetic volume of the 

pieces (used to normalize the values) we can extract the parameters of the model, namely, the 

saturation magnetization 𝑀𝑠, and 𝐻𝐾1 and 𝐻𝐾2. Table 5.1 shows these three values for the 

different pieces. 

 

Table. 5.1.  𝑀𝑠, 𝐻𝐾1, 𝐻𝐾2 and 𝐻𝐾 = 𝐻𝐾1 + 𝐻𝐾2 for the different pieces of Pt20A. 

Pt thickness 
(nm) 

 𝑀𝑠   
(emu/cm3) 

𝐻𝐾1 
(Oe) 

𝐻𝐾2 
(Oe) 

𝐻𝐾 
(Oe) 

0.5 1400 ± 100 1740 ± 20 2390 ± 20 4130 ± 30 

0.8 1400 ± 100 2060 ± 40 2400 ± 20 4460 ± 50 

1.4 1400 ± 100 1950 ± 40 2590 ± 20 4540 ± 50 
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 There is an increase in 𝐻𝐾 = 𝐻𝐾1 + 𝐻𝐾2 upon increasing the Pt thickness. One may 

note that the values of 𝐻𝐾 , 𝐻𝐾1 and 𝐻𝐾2 do not coincide with the ones obtained from the GME 

measurements. Three factors may be relevant here. First, the sample measured via VSM is 

Pt20A, while GME measurements were performed on Pt20B and Pt100B, so there might be 

some sample-to-sample variability. Second, there may be a miscalibration of the applied field 

in the GME experiment that affects the determination of the anisotropy parameters. Finally, in 

GME we are sensitive to the topmost atomic layers of the structure, and even if in the Co film 

the magnetization corresponding to different depths is coupled by exchange coupling, the 

depth-dependent anisotropy coming from the interface-induced effect will cause a depth-

dependent magnetization orientation state. Thus, GME probes more the anisotropy near the 

surface, as opposed to VSM, which sensitive to all the volume.   

More measurements are needed to determine with more accuracy the increase of the 

anisotropy as the thickness of the overcoat increases.  In this regard, work is ongoing and we 

are measuring more samples with different Pt overcoat thicknesses and with higher precision. 

Still, the preliminary results shown here indicate an increase of magnetocrystalline anisotropy 

with the Pt thickness. I would also like to point out that complementary measurements using 

Brillouin light scattering (BLS) technique are ongoing on our samples, and the results we have 

obtained also show that the magnetocrystalline anisotropy varies with the Pt overcoat 

thickness. Thus, adding an ultrathin Pt overcoat could be promising pathway to increase the 

magnetocrystalline anisotropy of Co. 
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CONCLUSIONS 

  

This results show that magneto-optical anisotropy (MOA) can be substantial in 

crystalline Co thin films. Even if most MOKE studies neglect MOA by considering a constant 

magneto-optical coupling 𝑄, this approximation is not always valid. Here that not considering 

the tensor character of 𝑸 can lead to a substantial misinterpretation of the angle of 

magnetization. The generalized magneto-optical ellipsometry (GME) technique, which permits 

to measure the reflection matrix of the sample, and the analytic derivation of the parameters 

that we can measure experimentally have enabled me to separate the contribution of the 

MOA from the rotation of the magnetization. I have shown that the effect of the MOA is to 

produce a phase shift in the 𝑁𝐵𝑖 parameters. By performing least-squares fits of the measured 

data to the equations I have derived, I have quantified the MOA with the phase shifts Δ1, Δ2, 

Δ3
′  and Δ4

′ .  

The successful fabrication of epitaxial Co (101̅0) thin films with ultrathin wedge-

shaped Pt overcoats by means of sputter deposition has enabled me to investigate 

systematically how the MOA varies with the thickness of Pt. I have observed an increase of the 

Δ1 and Δ2 parameters upon increasing the Pt thickness up to a limit of 1.5 nm, where the 

enhancement of the MOA saturates. I also observe that the effect can be described by an 

exponential law. A very thin layer of Pt (below 2 nm) suffices to produce very substantial 

variations on the MOA of our samples. Indeed, the difference between the magneto-optical 

coupling along the easy axis 𝑄∥ and perpendicular to it 𝑄⊥ has been estimated for an overcoat 

thickness of 1.5 nm, and I have found that 𝜎 ≈ 0.5, indicating that 𝑄∥ is twice as big as  𝑄⊥. We 

conclude that MOA is very large in this case, with the Pt overcoat. However, we see that even 

in the case of Co without Pt overcoat MOA is substantial and we estimate a 𝜎 of 0.78.  

In this regard, we are planning to perform the analysis of the results by applying the 

transfer-matrix method with a complete optical model that includes magneto-optical 

anisotropy and possibly optical anisotropy, in order to determine by least-squares fits the 

optical constants of the Co, as well as 𝑄∥ and 𝑄⊥, for samples with different Pt overcoat 

thickness. We envision this model to provide valuable information about the physical 

mechanism for the MOA enhancement.   

As for the magnetocrystalline anisotropy (MCA), the rotation of the magnetization has 

also been quantified via GME. We observe that when the applied field is maximal the 

magnetization rotates more towards the field axis, deviating more from the easy axis, when 

the Pt overcoat is thinner. As the thickness of the overcoat increases, it is more difficult for the 

magnetization to go away from the easy axis, indicating that MCA is higher for thicker Pt 

overcoats. Least-squares fits with the Stoner-Wohlfarth model also indicate that MCA 

increases. Preliminary results obtained by vibrating sample magnetometry and Brillouin light 

scattering measurements also indicate that there is an increase of MCA when the thickness of 

the Pt increases. 

MCA enhancement has to be further investigated, by performing more accurate VSM 

measurements and combining these with other methods. This is something we are working on 
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in order to confirm the enhancement of MCA by Pt overcoats, as well as to find an explanation 

for the effect.  

 To sum up, the deposition of an ultrathin layer of Pt on epitaxial Co samples leads to a 

very substantial enhancement of the magneto-optical anisotropy of Co and could also be used 

as a pathway to enhance magnetocrystalline anisotropy, which could be relevant for 

technological applications.  
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Appendix A 

MAGNETO-OPTICAL ANISOTROPY:  

CALCULATION OF B1, B2, B3 AND B4 

 

For a uniaxial magnetic material with an in-plane magnetization of arbitrary angle and 

the crystallographic c-axis lying in the plane of the film, one finds a dielectric tensor: 

 

𝜀̿ = 𝜀 (

1 0 𝑖𝑄⊥𝑚⊥

0 1 −𝑖𝑄∥𝑚∥

−𝑖𝑄⊥𝑚⊥ 𝑖𝑄∥𝑚∥ 1
)     (A.1) 

 

if the c-axis is aligned with the x-axis of the coordinate system. Hereby, we assume the x-y-

plane to represent the surface plane of the magnetic material. Furthermore, the y-axis is 

assumed to be in the plane of incidence of the light path considered later.  𝑄∥ and 𝑄⊥ are the 

magneto-optical coupling constants for the magnetization orientation along the c-axis and 

perpendicular to it.  

If the c-axis is now rotated within the plane of the surface towards the y-axis by an 

angle 𝜙0 (see Fig. 4.1), we can calculate the new dielectric tensor within the x-y-z laboratory 

coordinate system as 

 

𝜀(̿𝜑0) = (
cos 𝜙0 −sin 𝜙0 0
sin 𝜙0 cos 𝜙0 0

0 0 1

) 𝜀̿ (
cos 𝜙0 sin 𝜙0 0

−sin 𝜙0 cos 𝜙0 0
0 0 1

)  (A.2) 

 

resulting in: 

�̅�(𝜙0) = 𝜀 (
1 0 𝜀13

0 1 𝜀23

𝜀31 𝜀32 1
),    (A.3.a) 

with  
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𝜀13 =  𝜀31
∗ = 𝑖𝑄⊥𝑚⊥ cos 𝜙0 + 𝑖𝑄∥𝑚∥ sin 𝜙0  (A.3.b)

 𝜀23 =  𝜀32
∗ = 𝑖𝑄⊥𝑚⊥ sin 𝜙0 − 𝑖𝑄∥𝑚∥ cos 𝜙0  (A.3.c) 

and using 𝑚⊥ = sin(𝜙 − 𝜙 0) and 𝑚∥ = cos(𝜙 − 𝜙 0) 

𝜀13 =  𝜀31
∗ = 𝑖𝜀[𝑚𝑦 (𝑄⊥ cos2 𝜙0 + 𝑄∥ sin2 𝜙0) − 𝑚𝑥  sin 𝜙0 cos 𝜙0 (𝑄⊥ − 𝑄∥)]  (A.3.d) 

𝜀23 =  𝜀32
∗ = 𝑖𝜀[𝑚𝑦  sin 𝜙0 cos 𝜙0 (𝑄⊥ − 𝑄∥) − 𝑚𝑥  (𝑄⊥ sin2 𝜙0 + 𝑄∥ cos2 𝜙0)]  (A.3.e) 

with 𝑚𝑥 = cos 𝜙 and 𝑚𝑦 = sin 𝜙, where 𝜙 is the magnetization angle visible in Fig. 4.1. 

It should be remarked that the dielectric tensor has the same shape and anti-

symmetric properties as the original one. Thus, the reflection matrix will have the same 

symmetry as well and can be calculated simply by replacing the dielectric tensor elements by 

these new ones. 

The reflection matrix can be computed by solving Maxwell’s equations with the 

appropriate boundary conditions [29]. The elements in the reflection matrix 

𝑹 =  (
𝑟𝑠 𝛼

−𝛼 𝑟𝑝 + 𝛽) = 𝑟𝑝 (
𝑟�̃� �̃�

−�̃� 1 + �̃�
) = 𝑟𝑝�̃�    (A.4.a) 

can be written as 

𝑟𝑝 =  
𝑛1 cos Ω0−𝑛0 cos Ω1

𝑛1 cos Ω0+𝑛0 cos Ω1
     (A.4.b) 

𝑟𝑠 =  
𝑛0 cos Ω0−𝑛1 cos Ω1

𝑛0 cos Ω0+𝑛1 cos Ω1
    (A.4.c) 

𝛼 =  
𝑛0𝑛1 cos Ω0 sin Ω1𝜀13

(𝑛1 cos Ω0+𝑛0 cos Ω1)(𝑛0 cos Ω0+𝑛1 cos Ω1) cos Ω1
   (A.4.d) 

𝛽 =  
2𝑛0𝑛1 cos Ω0 sin Ω1𝜀23

𝑛1 cos Ω0+𝑛0 cos Ω1
    (A.4.e) 

Here, 𝑛0 is the refractive index of the first medium. 𝑛1 is the refractive index of the magnetic 

material, which is complex. Ω0 and Ω1 are the incident and refraction angle respectively. Ω0 is 

real, while Ω1 is related to Ω0 via Snell’s law 𝑛0 sin Ω0 = 𝑛1 sin Ω1, so Ω1 will also be complex. 

By writing 𝑛1 = 𝑛 + 𝑖𝜅, we have that  sin Ω1 =
𝑛0 sin Ω0(𝑛−𝑖𝜅)

𝑛2+𝜅2 . cos Ω1 is also a complex 

quantity and we can write cos Ω1 = 𝑐 + 𝑖𝑑. In the calculation we take 𝑛0 = 1, as the first 

medium in our case is air. We also write 𝜀13 and 𝜀23, which are complex numbers, in the 

following manner: 

𝜀13 = 𝑖(�̃� + 𝑖�̃�) =  −�̃� + 𝑖�̃�       (A.5.a) 

𝜀23 = 𝑖(𝐴 + 𝑖𝐵) = −𝐵 + 𝑖𝐴      (A.5.b) 

 

For the calculation we want to perform we will find this quantities useful: 
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�̃� =
𝛼

𝑟𝑝
=

𝑛0𝑛1 cos Ω0 sin Ω1 𝜀13 

(𝑛0 cos Ω0 + 𝑛1 cos Ω1)(𝑛1 cos Ω0 − 𝑛0 cos Ω1) cos Ω1
=

=  
cos Ω0 sin Ω0 (−�̃� + 𝑖�̃�)

[cos Ω0 + 𝑛𝑐 − 𝜅𝑑 + 𝑖(𝑛𝑑 + 𝜅𝑐)][𝑛 cos Ω0 − 𝑐 + 𝑖(𝜅 cos Ω0 − 𝑑)](𝑐 + 𝑖𝑑)

=
cos Ω0 sin Ω0 (−�̃� + 𝑖�̃�)

𝐹1 + 𝑖�̃�1

 ∝ 

    ∝ (−�̃� + 𝑖�̃�)(𝐹1 − 𝑖�̃�1) =  −�̃�𝐹1 + �̃��̃�1 + 𝑖(�̃�𝐹1 + �̃��̃�1)           (A.6.a) 

with  

𝐹1 = 𝑐[𝑛 cos2 Ω0 + cos Ω0 (𝑛2𝑐 − 𝑛𝜅𝑑 − 𝑐) − (𝑛𝑑 + 𝜅𝑐)(𝜅 cos Ω0 − 𝑑) − 𝑛𝑐2 + 𝜅𝑐𝑑] −

𝑑[(𝑛𝑑 + 𝜅𝑐)(𝑛 cos Ω0 − 𝑐) + (𝜅 cos Ω0 − 𝑑)(cos Ω0 + 𝑛𝑐 − 𝜅𝑑)]     (A.6.b) 

�̃�1 = 𝑑[𝑛 cos2 Ω0 + cos Ω0 (𝑛2𝑐 − 𝑛𝜅𝑑 − 𝑐) − (𝑛𝑑 + 𝜅𝑐)(𝜅 cos Ω0 − 𝑑) − 𝑛𝑐2 + 𝜅𝑐𝑑] +

𝑐[(𝑛𝑑 + 𝜅𝑐)(𝑛 cos Ω0 − 𝑐) + (𝜅 cos Ω0 − 𝑑)(cos Ω0 + 𝑛𝑐 − 𝜅𝑑)]     (A.6.c) 

 

�̃� =
𝛽

𝑟𝑝
=

2𝑛0𝑛1 cos Ω0 sin Ω1 𝜀23

𝑛1 cos Ω0 − 𝑛0 cos Ω1
=

2 cos Ω0 sin Ω0 𝜀23

(𝑛 + 𝑖𝜅) cos Ω0 − (𝑐 + 𝑖𝑑)
∝  (−𝐵 + 𝑖𝐴)(𝐹3 − 𝑖�̃�3) = 

= (−𝐵𝐹3 + 𝐴�̃�3) + 𝑖(𝐴𝐹3 + 𝐵�̃�3)         (A.7.a) 

with  

𝐹3 = 𝑛 cos Ω0 − 𝑐     (A.7.b) 

�̃�3 = 𝜅 cos Ω0 − 𝑑    (A.7.c) 

 

𝑟�̃� =
𝑟𝑠

𝑟𝑝
=

(𝑛0 cos Ω0 − 𝑛1 cos Ω1)(𝑛1 cos Ω0 + 𝑛0 cos Ω1)

(𝑛0 cos Ω0 + 𝑛1 cos Ω1)(𝑛1 cos Ω0 − 𝑛0 cos Ω1)
=

=
𝑛1(cos2 Ω0 − cos2 Ω1) + cos Ω0 cos Ω1(1 − 𝑛1

2)

𝑛1(cos2 Ω0 − cos2 Ω1) − cos Ω0 cos Ω1(1 − 𝑛1
2)

=

=
(𝑛 + 𝑖𝜅)(cos2 Ω0 − 𝑐2 + 𝑑2 − 2𝑖𝑐𝑑) + cos Ω0 (𝑐 + 𝑖𝑑)(1 − 𝑛2 + 𝜅2 − 2𝑖𝑛𝜅)

(𝑛 + 𝑖𝜅)(cos2 Ω0 − 𝑐2 + 𝑑2 − 2𝑖𝑐𝑑) − cos Ω0 (𝑐 + 𝑖𝑑)(1 − 𝑛2 + 𝜅2 − 2𝑖𝑛𝜅)
=

𝑇1 + 𝑖𝑇2

𝑇3 + 𝑖𝑇4
∝ 

∝ (𝑇1 + 𝑖𝑇2)(𝑇3 − 𝑖𝑇4) = (𝑇1𝑇3 + 𝑇2𝑇4) + 𝑖(𝑇2𝑇3 − 𝑇1𝑇4)       (A.8.a) 
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with  

𝑇1 = 𝑛(cos2 Ω0 − 𝑐2 + 𝑑2) + 2𝜅𝑐𝑑 + cos Ω0 [𝑐(1 − 𝑛2 + 𝜅2) + 2𝑛𝜅𝑑]  (A.8.b) 

𝑇2 = 𝜅(cos2 Ω0 − 𝑐2 + 𝑑2) − 2𝑛𝑐𝑑 + cos Ω0 [𝑑 (1 − 𝑛2 + 𝜅2) − 2𝑛𝜅𝑐]  (A.8.c)  

𝑇3 = 𝑛(cos2 Ω0 − 𝑐2 + 𝑑2) + 2𝜅𝑐𝑑 − cos Ω0 [𝑐(1 − 𝑛2 + 𝜅2) + 2𝑛𝜅𝑑]  (A.8.d)  

𝑇4 = 𝜅(cos2 Ω0 − 𝑐2 + 𝑑2) − 2𝑛𝑐𝑑 − cos Ω0 [𝑑 (1 − 𝑛2 + 𝜅2) − 2𝑛𝜅𝑐]  (A.8.e)  

 

One can now calculate 𝐵1, 𝐵2, 𝐵3 and 𝐵4.From now on, 𝑄⊥
(𝑟)

 and 𝑄⊥
(𝑖)

 are the real and 

imaginary parts of 𝑄⊥, and 𝑄∥
(𝑟)

 and  𝑄∥
(𝑖)

 the real and imaginary parts of  𝑄∥ : 

 

𝐵1 =  Re(�̃�) ∝ −�̃�𝐹1 + �̃��̃�1 =

 −𝐹1 [𝑚𝑦 (𝑄⊥
(𝑖)

cos2 𝜙0 + 𝑄∥
(𝑖)

sin2 𝜙0) − 𝑚𝑥 sin 𝜙0 cos 𝜙0 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

)] +

�̃�1 [𝑚𝑦 (𝑄⊥
(𝑟)

cos2 𝜙0 + 𝑄∥
(𝑟)

sin2 𝜙0) − 𝑚𝑥 sin 𝜙0 cos 𝜙0 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)]    (A.9.a) 

Recalling that 𝑚𝑥 = cos 𝜙 and 𝑚𝑦 = sin 𝜙, we have that  

𝐵1 ∝ 𝐶1 cos 𝜙 + 𝐷1 sin 𝜙      (A.9.b) 

with  

𝐶1 =  [𝐹1 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) − �̃�1 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0    (A.9.c) 

𝐷1 = −𝐹1 (𝑄⊥
(𝑖)

cos2 𝜙0 + 𝑄∥
(𝑖)

sin2 𝜙0 ) + �̃�1 (𝑄⊥
(𝑟)

cos2 𝜙0 + 𝑄∥
(𝑟)

sin2 𝜙0)  (A.9.d) 

 

 

𝐵2 = Re(𝑟�̃� �̃�∗) ∝ (𝑇1𝑇3 + 𝑇2𝑇4)(−�̃�𝐹1 + �̃��̃�1) + (𝑇2𝑇3 − 𝑇1𝑇4)(�̃�𝐹1 + �̃��̃�1) = 

              =  �̃�𝐹2 + �̃��̃�2          (A.10.a) 

with  

𝐹2 = −𝐹1(𝑇1𝑇3 + 𝑇2𝑇4) + �̃�1(𝑇2𝑇3 − 𝑇1𝑇4)   (A.10.b) 

�̃�2 =  𝐹1(𝑇2𝑇3 − 𝑇1𝑇4) + �̃�1(𝑇1𝑇3 + 𝑇2𝑇4)    (A.10.c) 

 

By replacing �̃� and �̃� as before we get to 

𝐵2 ∝ 𝐶2 cos 𝜙 + 𝐷2 sin 𝜙       (A.10.d) 
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with  

𝐶2 =  [−𝐹2 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) − �̃�2 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0   (A.10.e) 

𝐷2 = 𝐹2 (𝑄⊥
(𝑖)

cos2 𝜙0 + 𝑄∥
(𝑖)

sin2 𝜙0 ) + �̃�2 (𝑄⊥
(𝑟)

cos2 𝜙0 + 𝑄∥
(𝑟)

sin2 𝜙0)   (A.10.f) 

 

𝐵3 = Re(�̃� ) ∝  −𝐵𝐹3 + 𝐴�̃�3 = −𝐹3 [𝑚𝑦  sin 𝜙0 cos 𝜙0 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) − 𝑚𝑥  (𝑄⊥
(𝑖)

sin2 𝜙0 +

𝑄∥
(𝑖)

cos2 𝜙0)] + �̃�3 [𝑚𝑦  sin 𝜙0 cos 𝜙0 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

) − 𝑚𝑥  (𝑄⊥
(𝑟)

sin2 𝜙0 + 𝑄∥
(𝑟)

cos2 𝜙0)] =

𝐶3 cos 𝜙 + 𝐷3 sin 𝜙           (A.11.a) 

with  

𝐶3 =  𝐹3 (𝑄⊥
(𝑖)

sin2 𝜙0 + 𝑄∥
(𝑖)

cos2 𝜙0) − �̃�3 (𝑄⊥
(𝑟)

sin2 𝜙0 + 𝑄∥
(𝑟)

cos2 𝜙0)  (A.11.b) 

𝐷3 =  [−𝐹3 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) + �̃�3 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0  (A.11.c) 

 

Finally, 

𝐵4 = Re(𝑟�̃��̃�∗) ∝ (𝑇1𝑇3 + 𝑇2𝑇4)(−𝐵𝐹3 + 𝐴�̃�3) + (𝑇2𝑇3 − 𝑇1𝑇4)(𝐴𝐹3 + 𝐵�̃�3) = 

              = 𝐵𝐹4 + 𝐴�̃�4           (A.12.a) 

with  

𝐹4 = −𝐹3(𝑇1𝑇3 + 𝑇2𝑇4) + �̃�3(𝑇2𝑇3 − 𝑇1𝑇4)   (A.12.b) 

�̃�4 = 𝐹3(𝑇2𝑇3 − 𝑇1𝑇4) + �̃�3(𝑇1𝑇3 + 𝑇2𝑇4)    (A.12.c) 

By replacing 𝐴 and 𝐵 as before we get to 

𝐵4 ∝ 𝐶4 cos 𝜙 + 𝐷4 sin 𝜙       (A.12.d) 

with  

𝐶4 = −𝐹4 (𝑄⊥
(𝑖)

sin2 𝜙0 + 𝑄∥
(𝑖)

cos2 𝜙0) − �̃�4 (𝑄⊥
(𝑟)

sin2 𝜙0 + 𝑄∥
(𝑟)

cos2 𝜙0)   (A.12.e) 

𝐷4 = [𝐹4 (𝑄⊥
(𝑖)

− 𝑄∥
(𝑖)

) + �̃�4 (𝑄⊥
(𝑟)

− 𝑄∥
(𝑟)

)] sin 𝜙0 cos 𝜙0  (A.12.f) 

 

I have proved that the expressions for these four 𝐵𝑖  parameters may be arranged in 

such way that they can all be written as  𝐵𝑖 ∝ 𝐶𝑖 cos 𝜙 + 𝐷𝑖 sin 𝜙, with real 𝐶𝑖 and 𝐷𝑖. 

This can be written as 𝐵𝑖 ∝ sin(𝜙 − 𝛥𝑖) or alternatively as 𝐵𝑖 ∝ cos(𝜙 − 𝛥𝑖
′). This 

enables us to write the 𝐵𝑖’s normalized to their remanence value in the form 
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𝑁𝐵𝑖 =
sin(𝜙−𝛥𝑖)

sin(𝜙0−𝛥𝑖)
, 𝑖 = 1,2    (A.13) 

with tan Δ1 = −
𝐶1

𝐷1
 and tan Δ2 = −

𝐶2

𝐷2
 

and  

𝑁𝐵𝑖 =
cos(𝜙−𝛥𝑖

′)

cos(𝜙0−𝛥𝑖
′)

, 𝑖 = 3,4    (A.14) 

with tan Δ3
′ =

𝐷3

𝐶3
 and tan Δ4

′ =
𝐷4

𝐶4
. 

The sine form is used for 𝑁𝐵1 and 𝑁𝐵2, because without MOA they have the form of a 

sine, being Δ1 = Δ2 = 0, while the cosine form  is used for 𝑁𝐵3 and 𝑁𝐵4, since in the case of 

having no MOA they have the form of a cosine, being 𝛥3
′ = 𝛥4

′ = 09. 

 The expressions that I have derived relate the phase shifts fitted in Sec. 4.3.2 to the 

optical and magneto-optical properties of the material. 

 I should also point out that even with MOA (𝑄⊥ ≠ 𝑄∥), if the 𝜎 proportionality constant 

between 𝑄⊥ and 𝑄∥, (𝑄⊥ = 𝜎𝑄∥) is real, then  𝑁𝐵1 = 𝑁𝐵2 and 𝑁𝐵3 = 𝑁𝐵4. If 𝜎 ∈ ℝ, then 

𝑄⊥
(𝑟)

= 𝜎𝑄∥
(𝑟)

 and 𝑄⊥
(𝑖)

= 𝜎𝑄∥
(𝑖)

. This simplifies the expressions for  tan Δ1, tan Δ2,tan Δ3
′  and 

tan Δ4
′  : 

tan Δ1 = tan Δ2 =
(𝜎−1) sin 𝜙0 cos 𝜙0

𝜎 cos2 𝜙0+sin2 𝜙0
   (A.15.a) 

tan Δ3
′ = tan Δ4

′ =
(1−𝜎) sin 𝜙0 cos 𝜙0

cos2 𝜙0+𝜎 sin2 𝜙0
     (A.15.b) 

These expressions are confirmed by the simulations with real values of 𝜎, and this 

approximation is used to estimate the value of 𝜎 in our samples.  

 

 

 

 

 

 

 

 

 

                                                           
9
 If 𝑄⊥ = 𝑄∥, 𝐶1 = 𝐶2 = 𝐷3 = 𝐷4 = 0, so Δ1 = Δ2 = Δ3

′ = Δ4
′ = atan 0 = 0. 
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