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Diffusion Monte Carlo (DMC) calculations typically yield highly accurate results in solid-state and
quantum-chemical calculations. However, operators that do not commute with the Hamiltonian are at best
sampled correctly up to second order in the error of the underlying trial wave function once simple
corrections have been applied. This error is of the same order as that for the energy in variational
calculations. Operators that suffer from these problems include potential energies and the density. This
Letter presents a new method, based on the Hellman-Feynman theorem, for the correct DMC sampling of
all operators diagonal in real space. Our method is easy to implement in any standard DMC code.
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Diffusion Monte Carlo (DMC) calculations are widely
used for the computation of properties of solids and mole-
cules [1]. Frequently, it is used as a check on other methods
[2] or even as an input [3]. It is therefore very important
that DMC calculations be as accurate as possible. How-
ever, other than for the total energy, standard DMC calcu-
lations are not as definitive as one would hope, since
operators that do not commute with the Hamiltonian
cannot be sampled exactly within standard DMC calcula-
tions. Here we present a simple yet effective addition to
standard DMC calculations that plugs that gap and is easy
to implement.

DMC calculations by construction yield the normalized
expectation value hÔiDMC � h�T jÔj�

fn
0 i=h�T j�

fn
0 i,

which is generally not the true ground-state expectation
value hÔi � h�0jÔj�0i=h�0j�0i. In fact, it is not even
hÔifn � h�

fn
0 jÔj�

fn
0 i=h�

fn
0 j�

fn
0 i, the ground-state expecta-

tion value constrained by the nodal structure of the fermi-
onic many-body wave function that is given by �T . �T is a
trial wave function that approximates the generally un-
known ground-state wave function �0 and is real. In its
basic form, �fn

0 is the ground state for a fixed nodal
structure given by that of �T . In addition, operators that
do not commute with the Hamiltonian are generally subject
to a further error, the leading term of which is linear in the
difference between �T and �fn

0 . In conjunction with varia-
tional Monte Carlo (VMC) calculations, this error can be
reduced by one order [4] by using hÔicDMC � 2hÔiDMC �

hÔiVMC. Correct sampling can be achieved, e.g., by using
forward-walking [5], reptation Monte Carlo [6] calcula-
tions, and other methods [7]. Many of these methods aim to
sample �fn

0 �fn
0 , rather than the usual DMC distribution

�T�fn
0 . They are therefore not straightforward additions to

the DMC algorithm. Alternatively, the Virial theorem or
the related Hellman-Feynman (HF) theorem [8] can be
used to evaluate operator expectation values [9] which in

the case of DMC calculations, however, involves numeri-
cal derivatives of noisy data.

In this Letter, we present a method based on the appli-
cation of the HF theorem to the DMC algorithm directly.
Our method—Hellman-Feynman sampling (HFS)—can
be tagged onto the usual sampling of operators with nearly
no extra computational overhead. The aim is to maintain
the basic DMC algorithm that samples �T�fn

0 . The total
energy is evaluated correctly within standard DMC calcu-
lations, and crucially operator expectation values can be
cast as HF derivatives of the total energy. Keeping in mind
that ultimately the DMC algorithm is nothing but a large
sum that yields the total energy, we see the HF derivative
can be applied without problem to the algorithm itself. One
advantage over numerical derivatives is that the resulting
formula can handle several operators simultaneously in a
single DMC calculation and maintaining orbital occupancy
for perturbed Hamiltonians ceases to be a problem. The
DMC algorithm only involves numbers, so noncommut-
ability of operators—the source of the difficulties—is no
issue, either. Writing down the DMC algorithm as a mathe-
matical formula and applying the HF derivative to it yields
an object that when sampled using standard DMC calcu-
lations produces the exact operator expectation value. It
has to by construction.

In the following, we present a schematic overview of the
DMC algorithm, which, however, is sufficient to derive the
relevant formulas. The basic idea is to split the imaginary-
time propagator exp���tĤ� � exp���tT̂� exp���tV̂�
for sufficiently small time intervals �t into a kinetic and
a potential term and then to iterate it. This ultimately [10]
gives rise to a real-space drift-diffusion process sampled
using the Monte Carlo (MC) method, augmented by an
exponential growth term wherebyNw so-called walkers are
propagated in parallel. Courtesy of this growth term, at
each propagation or (imaginary) time step i the walker j
acquires a multiplicative weight: e��t�ELi;j� ~E0

i �, where
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ELi;j � Ĥ�T=�T evaluated at the real-space position of
walker j at time step i and ~E0

i is an estimate for the
ground-state energy also at time step i. The total weight
of walker j at time step i becomes

 !i;j �
Yi

k�1

e��t�ELk;j�E
0
i �; where E0

i �
1

i

Xi

l�1

~E0
l (1)

and the presence of E0
i ensures normalization. At time step

i the estimator for an operator that a DMC code yields is

 OL
i �

XNw
j

!i;jO
L
i;j; (2)

where OL
i;j � Ô�T=�T and the wave function �T is eval-

uated for walker j at time step i. For brevity, we use this bar
average OL

i where applicable and note that OL
i has to be

averaged over all i to yield the final DMC estimate hÔiDMC.
Since the ground-state energy is not known, an estimate
chosen such that Eq. (1) remains normalized has to be
used. This is the growth estimator E0

i [11] and is updated
at each step, hence the index i. Note that E0

i is independent
of j; i.e., it is the same for every walker and thus a property
of the DMC process as a whole. For reasons of numerical
stability, DMC implementations often allow walkers to die
or multiply such that the walker’s survival probability op-
tionally augmented by residual weights corresponds to
Eq. (1).

Given a perturbed Hamiltonian Ĥ��� � Ĥ � �Ô and
the associated fixed-node ground-state energy Efn��� �
hĤiDMC, first-order perturbation theory for �fn

0 yields a
fixed-node equivalent of the HF theorem [12]

 hOifn �
@Efn���
@�

����������0
; (3)

where hOifn converges to the correct ground-state expec-
tation value as the nodes of �T become exact though �T

itself need not. Note that while hĤiDMC � hĤifn we have
hÔiDMC � hÔifn, unless �Ô; Ĥ� � 0, so Eq. (3) is not triv-
ial. The energy Efn��� is accessible exactly within standard
DMC calculations as the Hamiltonian Ĥ��� commutes
with itself. Analytic operator estimators can then be de-
rived by applying the HF theorem to the formula express-
ing the DMC algorithm Eq. (2). Using Eqs. (1) and (2) the
expectation value at time step i becomes

 Ei��� �
XNw
j

ELi;j���
Yi

k�1

e��t�ELk;j����E
0
i ����: (4)

Here, ELi;j��� � ELi;j � �O
L
i;j and E0

i ��� � E0
i � �E0

i ���,
so the weight of the wave function is
 

�i �
XNw
j

expf��t
Xi

k�1

�ELk;j � E
0
i �g

|���������������������{z���������������������}
!i;j

	 expf��t
Xi

k�1

��OL
k;j ��E0

i ����g (5)

 � exp��t�Xi� exp�t�E0
i ����; (6)

where Xi;j �
1
i

Pi
k�1 O

L
k;j and t � i�t, and we have made

use of the fact that the growth estimator �E0
i ��� is inde-

pendent of the index j. �E0
i ��� ensures that �i��� � 1,

hence �E0
i ��� � �

1
t log�exp��t�Xi��. Equation (4) then

becomes

 Ei��� �
ELi ���e

�t�Xi

e�t�Xi
: (7)

Evaluating �E0
i to first order gives the growth estimator of

an operator:

 OGR
i �

@E0
i ���
@�

����������0
�
@�E0

i ���
@�

����������0
� Xi (8)

In other words, the DMC sampling of Xi;j by virtue of the
HF theorem yields a growth estimator of the true expecta-
tion value of Ô. Interestingly, the growth estimator, if the
residual weights are chosen to be zero, appears to be
similar to Eq. (13) of Ref. [7]. Applying the HF theorem
to Ei��� in Eq. (7) yields a second estimator

 OE
i �

@Ei���
@�

����������0
� OL

i � t�E
L
i Xi � E

L
i 
 Xi�: (9)

Equations (8) and (9) are of course evaluated at � � 0 and
are therefore accessible in a regular DMC calculation. We
see that for OE

i the standard estimator OL
i is augmented by

a correction term �OE
i � �t�E

L
i Xi � E

L
i 
 Xi�. Several ob-

servations can be made. First, in the case of the �T being
the ground state �fn

0 for a given nodal structure, the cor-
rection term is zero (ELi;j is a constant) and only OL

i con-
tributes as it should. Furthermore, the new estimator OE

i

and the usual one OL
i sample an observable and are both

independent of the auxiliary DMC parameter t. It follows
that ELi Xi � E

L
i 
 Xi �

1
t . Third, since the growth estimator

Eq. (8) is derived from the ‘‘averaged’’ quantity E0
i rather

than ~E0
i , Eq. (8) is itself already averaged over i and

therefore the final estimate at i. This is in contrast to
Eq. (9) which still has to be averaged over all i to yield
the final DMC estimate. Using ~E0

i yields an estimator ~OGR
i

which when averaged over i gives OGR
i . Finally, within the

fixed-node approximation the correction term in Eq. (9)
can be viewed as a direct measure of the error of the trial
wave function with respect to a certain operator. In the
remainder of the Letter we will only discuss the direct
estimator Eq. (9).

An important question is which operators are admissible
and can be sampled using the HF estimator Eq. (9) or, for
that matter, the growth estimator Eq. (8)? Looking at the
definition of the DMC algorithm one sees that it is based on
splitting the Hamiltonian into a kinetic energy kernel that
gives rise to the diffusion part of the algorithm and a
potential energy term that has to be diagonal in real space.
The diffusion part always being the same it follows that
�Ĥ � �Ô has to be diagonal in real space, too. Using, for

example, OL � TL � T̂�T
�T

therefore actually corresponds
to sampling the real space many-body operator given by
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the function TL, rather than the kinetic energy. The result

using Eq. (9) is
R T̂�T

�T
��fn

0 �
2dV which in general is not

the desired expectation value hT̂ifn �
R T̂�fn

0

�fn
0

��fn
0 �

2dV.

Nevertheless, hT̂ifn is accessible within DMC calculations
by using hT̂ifn � hĤifn � hV̂ifn since the last two quantities
can be sampled using standard DMC calculations and HFS,
respectively.

In the following, we give a few examples to demonstrate
the applicability of HFS. We apply the method to sample
(i) the density of helium and (ii) the Ewald energy of a
homogeneous electron gas with and without interactions.
All data are given in atomic units and we used the CASINO

[13] package. The target for the number of walkers was
between 200 and 400 and the residual weights were al-
lowed to fluctuate between 0.5 and 2. While we did not
perform extensive studies it seems the algorithm works
with and without residual weights. The only modification
to the code consisted of adding a variable X to each walker,
updating X, and applying Eq. (9). Other than that we used
the code as-is in a standard setup.

Figure 1 shows the electron density (arbitrary units) of
He, as obtained from standard DMC calculations and from
our new HFS method. When the well-converged (i.e.,
�OE

i � OE
i ) correlated wave function supplied with

CASINO is used both calculations yield essentially the
same result (solid line); when an ‘‘incorrect’’ trial wave
function (which we have chosen to be the same as the
‘‘correct’’ one but with the radial term heavily skewed) is
used, only our new method (dotted line) recovers the
correct density, albeit the noise in the data is larger.
Equally, the interaction energy is also recovered (DMC
calculations correct wave function: 0.947, incorrect wave
function: 0.791, incorrect wave function HFS: 0.958). We

have also performed DMC calculations of the hydrogen
density, where we systematically deformed the known
exact wave function. Suffice it to say, as for He we again
see confirmation of our algorithm. An interesting point to
add here regards the extent to which the wave function
could be skewed. It turns out—rather plausibly—that if
the wave function ceases to actually sample certain parts of
phase space HFS cannot recover the true form. Never-
theless it seems capable of correcting relatively strong
errors in the wave function (viz. the rarely sampled asymp-
totically decaying part of the wave function in Fig. 1), but
the details are clearly a topic for further investigation.

As in standard DMC sampling, the worse the trial wave
function �T , the larger the noise when using HFS.
However, when looking at the raw data before averaging
over i (not shown) we observed that the noise in the HFS
data rises during the progression of the sampling; hence,
standard error estimation does not work. The source can be
traced to sampling over histories Xi. Limiting their depth
results in a constant noise term though also reintroduces a
systematic bias. Also, in a recent paper [14] Warren and
Hinde observe that using the forward-walking method in
DMC calculations necessitates a rapidly growing number
of walkers as the dimensionality of the quantum system is
increased. These two issues then lead us to the question as
to whether HFS works for larger systems. We have there-
fore looked at an unpolarized homogeneous electron gas at
rs � 1. We used a finite simulation cell (periodic boundary
condition) with 54 electrons. The data we plot show the
Ewald interaction energy with no additional finite size
corrections. We show in Fig. 2 results for a fully interacting
system that we have obtained by using trial wave functions
with either no Jastrow factor, a partially optimized Jatrow
factor, or a fully optimized one. We show the mixed DMC
estimate hÔiDMC, the corrected estimate hÔicDMC �

2hÔiDMC � hÔiVMC which contains a second-order error,

0 0.5 1 1.5
r

0

1

2

3

ρ(
r)

Exact
DMC
HFS

0.15 0.2 0.25

2.8

3

3.2

3.4

FIG. 1. The ‘‘exact’’ helium density (solid line) was derived
using the well-optimized wave function provided by the CASINO

package: the difference (not shown) between standard DMC
sampling and HFS is essentially zero (�OE

i � OE
i ). In addition,

results using a trial wave function with wrong radial function are
presented. Standard DMC calculations yield a smooth but rather
poor density. HFS, while noisier (see inset), follows the correct
density even in the asymptotic region far from the nucleus where
despite little information HFS corrects for the wrong behavior.

5000 10000 15000
t

-31

-30,5

-30

-29,5

-29

-28,5

-28

〈V
〉 HFS

full Jastrow
no Jastrow
partial Jastrow

DMC

FIG. 2. Results for the Ewald energy of an unpolarized homo-
geneous electron gas (rs � 1) with 54 electrons. Standard DMC
sampling, hÔiDMC, yields the relatively smooth curves at the top
(see arrows). The noisier data below use HFS (see arrows) and
the thin straight lines correspond to hÔicDMC at the end of the
run. The partial Jastrow factor contains a correlation term
without cusp.
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and the results for HFS. The DMC calculations start at 0
with a short equilibration phase and we start sampling at
time step 2000. The corrected estimate using the fully
optimized Jastrow factor ought to give the best result.
Clearly all three HFS estimates are very close but espe-
cially the nonoptimized wave functions yield quite noisy
data. Nevertheless, even in that case the results are a lot
better than using the standard DMC output for the best
wave function. However, they are all also better than the
corrected hÔicDMC results of the partially or nonoptimized
wave function. Regarding the noise one also has to keep in
mind the difficulty of the task: the interaction energy is
dominated by the region where the electrons get close to
each other but that is where the error of the nonoptimized
wave functions is largest. HFS essentially has to build a
cusp from scratch.

Figure 3 repeats the same analysis for a noninteraction
Hamiltonian where the Slater determinant (no Jastrow
factor) is the exact solution, whence the HFS data and
the standard DMC data in that case being identical. This
is of course consistent with Eq. (9) and proves that given
the correct nodes, HFS yields the correct answer. Apart
from that Fig. 3 is essentially a mirror image of Fig. 2. In
general, we see that unless the wave function is well
optimized the HFS estimate is considerably better, despite
the noise in the data. Such situations might occur when the
system is dominated by the bulk while we are interested in
sampling data in the surface region. Optimization based on
the total energy or variance would result in a suboptimal
wave function away from the bulk and hence erroneous
standard sampling.

In conclusion, by applying the HF theorem directly to
the DMC algorithm we have introduced a new method to
sample a large class of operators exactly within standard

DMC calculations. Our method works for both small and
large systems and is easy to add to standard DMC calcu-
lations, enabling the sampling of a large class of operators
(densities, interaction energies, etc.): only one extra vari-
able per operator (Xi;j) needs be added to the walkers,
involving no more than an extra summation step during
sampling; simple algebra [Eqs. (8) and (9)] does the rest.
Future work is needed to better understand, estimate, and
deal with the noise and its slow increase with simulation
time. This is currently under investigation. Similarly, the
effect of residual weights needs to be looked at in more
detail. A promising line of research already under way is to
look at the second derivative. This might allow efficient
DMC sampling of the fixed-node density-response func-
tion and related quantities, the study of which is currently
not feasible due to being numerically too demanding.
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FIG. 3. As in Fig. 2, but for an interaction-free Hamiltonian.
The noisier data at the top have been sampled using the HFS
estimator (see arrows). Below follow the relatively smooth
standard DMC results (see arrows) sampling hÔiDMC, except
for the no-Jastrow case where the two estimators yield the same
data as �OE

i � 0. The thin straight lines correspond to hÔicDMC

at the end of the run, except in the case of no Jastrow factor
where the thin line gives the essentially exact VMC value.
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