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The interaction and exchange-correlation contributions to the ground-state energy of an arbitrary many-
electron system can be obtained from a spherical average of the wave-vector-dependent diagonal structure
factor �SF�. We model the continuous-k spherically averaged SF using quantum Monte Carlo calculations in
finite simulation cells. We thus derive a method that allows us to substantially reduce the troublesome Coulomb
finite-size errors that are usually present in ground-state energy calculations. To demonstrate this, we perform
variational Monte Carlo calculations of the interaction energy of the homogeneous electron gas. The method is,
however, equally applicable to arbitrary inhomogeneous systems.
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Together with density-functional theory,1,2 quantum
Monte Carlo �QMC� calculations belong to the bedrock of
computational solid-state physics.3 One major problem, the
focus of this paper, encountered in QMC solid-state applica-
tions are the Coulomb finite-size effects. These originate in
the periodic Ewald interaction that is typically used to model
the electron-electron Coulomb interaction in a periodic
geometry.4 When using the Ewald interaction, the long-range
nature of the Coulomb interaction yields spurious contribu-
tions to the interaction energy caused by the interaction of an
electron with the periodically repeated copies of its
exchange-correlation �xc� hole. Such finite-size effects are
usually dealt with by increasing the system size and moni-
toring the convergence of the relevant data. However, the
Coulomb finite-size errors of the interaction energy are
known to scale as 1/N, N being the number of electrons in
the supercell, and convergence is therefore slow.5,6 An alter-
native involves replacing the periodic Ewald interaction by a
“model periodic Coulomb” �MPC� interaction that converges
faster.7,8

In this paper, we present an approach that reduces finite-
size errors by keeping the true Coulomb interaction and go-
ing to the core of the issue by using QMC to model the
spherical average of the diagonal structure factor �SF� of
extended systems. This is in contrast to a paper by Chiesa et
al.9 We recently learn of that using the random-phase ap-
proximation �RPA� in conjunction with the �nonspherically
averaged� SF to correct QMC data at long wavelengths for
the homogeneous electron gas and silicon �diamond struc-
ture� at ambient pressure. While their method also allows for
the correcting of some finite-size errors appearing in the ki-
netic energy, our method has several advantages. Apart from
the density, the sampling of the spherically averaged SF only
needs the electron separation �r j −ri�, which is readily avail-
able in QMC codes, making our method easy to implement.
In addition, no spherical self-averaging need be assumed. It
is not obvious why this should happen in strongly inhomo-
geneous systems where our method still yields a smooth and
continuous curve. The last property—continuity—implies
that we are describing an infinite system right from the out-
set.

Our starting point is the link between the interaction en-
ergy and the spherically averaged wave-vector-dependent di-
agonal SF Sk of an arbitrary many-electron system. Since
large k wave vectors are related to small electron separa-
tions, the large-k behavior of QMC simulations ought to be
correct. This is not the case for the small-k behavior �long
wavelengths�, which, in the case of a finite simulation cell,
yields spurious Ewald interactions. However, the long-range
�small-k� behavior can be obtained differently, either from
the known constraint Sk→0=0 �Ref. 10� or from alternative
calculations based on, e.g., the RPA, which is known to de-
scribe collective excitations correctly and becomes exact at
long wavelengths.11 We aim to have the best of both worlds.

The method we propose bears some resemblance to the
MPC interaction. However, while the MPC modifies the in-
teraction, here we keep the standard Coulomb interaction and
model the QMC correlations in a k-dependent way. The ad-
vantage is that our method ought to yield improvements
where others fail,12 e.g., the exchange hole is known to be
long ranged, decaying as 1/r4. In a finite simulation cell, this
results in a finite-size error of the exchange energy �N−2/3.
The error at large r, however, corresponds to Sk at small k,
where it can be replaced easily by the correct asymptotic
value.

The interaction energy of an arbitrary many-electron sys-
tem is usually expressed as the sum of the Hartree energy
�which, in the case of an infinite jellium model, is exactly
canceled by the Coulomb energy due to the presence of the
positive background� and the so-called xc interaction energy
Uxc. Uxc corresponds to the attractive interaction between
each electron and its own xc hole. Starting from the spherical
average nxc�r ,u� of the xc hole density nxc�r ,r�� at r� around
an electron at r, one finds,13 in atomic units which we use
throughout the paper,

Uxc =
N

�
� dk�Sk − 1� , �1�

where Sk is the spherical average of the diagonal structure
factor Sk,k:
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Sk = 1 +
4�

N
� drn�r� � duu2sin�ku�

ku
nxc�r,u� , �2�

with n�r� being the electron density at r.
Implicitly, we are considering an infinite system: k is a

continuous variable. However, Sk for a QMC system contains
irregularly spaced delta peaks that on integration give the
QMC Uxc. Our model �see Fig. 1� assumes that correlations
are nonperiodic and, beyond a cutoff radius u0, are due only
to variations in the density, so that beyond u0 there is no
contribution to Uxc. For u0, we choose the Wigner-Seitz ra-
dius uWS of the simulation cell, and the structure factor Sk
can then be sampled directly during the QMC run. We find

Sk = 1 + Sk
I + Sk

II, �3�

Sk
I =

1

N��
i�j

sin k�r j − ri�
k�r j − ri�

��u0 − �r j − ri���
QMC

, �4�

Sk
II = −

3

2

f

N
�

q
g̃�k̃, q̃�ñqñ−q, �5�

g̃�q̃, k̃� =
1

k̃q̃
� sin�k̃ − q̃�

k̃ − q̃
−

sin�k̃ + q̃�

k̃ + q̃
	 , �6�

using the dimensionless quantities ñq=Vnq, k̃=ku0, and q̃
= �q�u0. f =4�u0

3 / �3V� is the volume fraction of the supercell
that contributes to Sk

I , V is its total volume, and nq denotes
the Fourier transform of the electron density n�r�. Sk

II, which
is due solely to variations in the density, cancels the Hartree
contribution14 to Eq. �4�. Note that the k is continuous even

in the case of a periodic system for which the q vectors are
discrete. This is deliberate, as the sampling of a periodic
QMC system models an extended �nonperiodic, continuous
k� system.

Equations �4� and �5� do not include the entire xc hole in
the QMC sampling, as f �1. As a result, our raw SF differs
from zero at k=0. This corresponds to the amount of the xc
hole that is missed and which is located in the corners of the
simulation cell beyond the cutoff radius.15 However, due to
the periodic boundary conditions, the QMC description in
these corners is unlikely to be accurate, so not much infor-
mation is lost. Below we show that some of the residual error
can be corrected easily and efficiently.

We performed Hartree-Fock �HF� and variational Monte
Carlo �VMC� calculations for the homogeneous electron gas
using the CASINO package.16 The calculations employ plane-
wave Slater determinants with and without a Jastrow factor.
The latter corresponds to HF calculations where the exact
result is known.11 The systems we studied are nonpolarized
in a face-centered-cubic simulation cell with the number of
electrons ranging from 2�27 to 2�307 at rs=1. This cor-
responds to a Wigner-Seitz radius uWS ranging from 3.420 to
7.689. The interaction energy is evaluated using either our
SF-based approach or the standard Ewald interaction. The SF
is sampled at 1000 equally spaced points ranging from 0 to
10. In the case of VMC calculations, the Jastrow factor was
converged using several iterations of variance minimization.

Let us first look at a pure Slater determinant of plane
waves. Figure 2 plots our HF calculation of the SF next to
the exact Hartree-Fock SF. Figure 3 shows the convergence
of Uxc to the known HF �exchange� energy. The Ewald data
show the familiar finite-size errors, while the SF yields an
interaction �exchange� energy that is essentially flat, consis-
tent with the elimination of the Coulomb finite-size error.

A similar analysis can be performed with the correlated
Slater-Jastrow many-electron wave function �Figs. 4 and 5�.
For this system, we also plot the total energy in Fig. 6, where
the kinetic term has been corrected by subtracting �T

FIG. 1. An electron at u=0 inside a box of size L is surrounded
by a periodic xc hole nxc

QMC. Uxc is the Coulomb energy between the
electron and its xc hole nxc. Our method �the bold line in the figure�
effectively replaces n−nxc

QMC �EWALD in the figure� by the density
n �SF in the figure� beyond a given cutoff u0. Clearly, the interac-
tion between an electron and its xc hole at u=L ,2L , . . ., is more
accurate �i.e., closer to REAL� and converges much faster than in
the standard QMC case �EWALD�. Close to the boundary of the
box, nxc and nxc

QMC diverge as both have to integrate to −1. Since nxc

in the SF case jumps to 0 at u0, this sum rule is violated, but the
resulting error can be corrected easily �see text�. Due to the effec-
tive nonperiodicity of the xc hole marked SF, the resulting structure
factor is continuous from the outset.

FIG. 2. This figure shows the raw and corrected Hartree-Fock
SFs for the smallest and the largest system �2�27 and 2�307
electrons, respectively� as well as the exact result. For details of the
correction, see main text. The vertical lines indicate the cutoffs
used.
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=THF�N�−THF�N=��, which reduces the finite-size errors of
the kinetic energy. The corresponding total energy for HF is
not shown; once it has been corrected using �T, it is just the
same as the HF Uxc shifted by a constant THF�N=��
=1.1050. In contrast, the corrected TQMC still contains finite-
size errors of a similar order as the finite-size errors in SF
Uxc.

As in the case of the HF calculation, the Ewald data ex-
hibit finite-size errors, which should scale as 1/N. In con-
trast, our SF-based calculations exhibit a systematic error
with the opposite sign. The Coulomb finite-size error has
been eliminated, but we are missing a bit of the xc hole
�located at the corners of the simulation cell�, which yields a
structure factor Sk that differs from zero at k=0, resulting in
an erroneous xc interaction energy.

We now analyze the behavior of the structure factor Sk at
small k. As the system size increases, one would expect the
SF to improve at small k. Figure 2 shows our variational HF
calculation of the SF for two systems. The SF is essentially
correct beyond a system-size dependent minimum k0. At

k�k0, the SF levels off, and at k=0, approaches a value that
equals the error in the magnitude of the xc hole. The cross-
over k0 obviously goes to zero as the system size increases.
Since our xc hole is expected to be accurate inside a sphere
of radius u0, one expects the SF to be accurate beyond
2� / �2u0�, with 2u0 being the characteristic length scale of
the simulation cell. Indeed, a cutoff k0=� /u0 seems plau-
sible. We have looked at the k0 values at which our HF
structure factor and the exact one start to diverge markedly,
and we have found k0
4.2/u0. This rough estimate implies
an accurate HF xc hole within a radius of 
3u0 /4 from a
given electron. Using k0=4.2/u0 and letting our calculated

FIG. 3. Convergence of the potential energy with system size
�2�27 to 2�307 electrons� using a Slater determinant only. The
solid line is the HF result for an infinite system.

FIG. 4. This figure shows the raw and corrected Slater-Jastrow
SFs for the smallest and the largest system �2�27 and 2�307
electrons, respectively�. For details of the correction, see main text.
The vertical lines indicate the cutoffs used. The RPA SF is also
shown. It seems incorrect for k	0.5. Hence, only for systems large
enough such that 0.5
kc would the interpolation with the RPA SF
improve Uxc.

FIG. 5. Convergence of the potential energy with system size
�2�27 to 2�307 electrons� using a Slater-Jastrow wave function.
The standard Ewald result is shown next to the raw and corrected
SF results.

FIG. 6. Convergence of the total energy with system size �2
�27 to 2�307 electrons� using a Slater-Jastrow wave function.
This figure shows the sum of Uxc, as in Fig. 5 and TQMC−�T �see
main text for details�. The standard Ewald result is shown next to
the raw and corrected SF results. The scale is the same as for Uxc in
Fig. 5. The improvement for the total energy using the SF seems
better than that for Uxc alone. This is due to the residual systematic
1 /N error in �T being additive in the case of the Ewald data but
canceling a residual 1 /N error in the SF Uxc with opposite sign �not
shown, probably an artifact�. Also the fluctuations at large N appear
smaller.
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HF structure factor go to 0 linearly at smaller k produce a
new corrected estimate of Uxc shown in Fig. 3. There is no
longer a systematic error due to the system size, and the
corrected SF exhibits fluctuations that are considerably
smaller than those of the uncorrected SF. Statistical noise
and a shell structure remain, of course.

Figures 4 and 5 repeat the analysis for the correlated
Slater-Jastrow wave function. Additionally, Fig. 6 plots the
total energy. Here, we use the VMC SF of the largest system
as the reference.18 Interestingly, the VMC structure factor
seems to remain correct at unexpectedly small values of k.
We have found k0
2.1/u0, corresponding to a correct xc
hole up to a surprisingly large u=1.5u0. For k	k0, the SFs
were essentially identical to our best SF coming from the
largest system with 2�307 electrons. Possibly, S0=0 poses
such a strong constraint on the relatively shapeless17 SF that
the SF has little choice but to be accurate at “too small” k;
especially, in contrast to the HF case, the true interacting SF
is also quadratic for k→0.18 The behavior of the SF around
k=0 is therefore qualitatively correct. Nevertheless, a correc-
tion is needed. It is easy to think of and implement interpo-
lation schemes. We looked at many different ones, but in the
end, we chose to present results using the simplest one, mul-
tiplying Sk by k /k0 when k�k0. This turned out to be suffi-
cient as the details of the interpolation �e.g., a small incorrect
linear term at k=0 when using the simple scheme, see Fig. 4�
do not matter, as they only have a small effect on the total k
integral that yields Uxc. We did not use the RPA for interpo-
lation, as its region of validity seems to begin at values of k
smaller than our smallest k0 �i.e., for very large system, see
also Fig. 4�. By looking at the final convergence of the xc
interaction energy Uxc with system size, we see again that the
estimates for Uxc are noisy but essentially flat, which is a
signature of Coulomb finite-size errors having been elimi-
nated.

With QMC being inherently statistical in nature, we close
with a discussion of error bars. Errors of the SF at different k
are correlated, and so the direct evaluation of an error for an
xc interaction energy Uxc derived in the way described here
is nontrivial. However, observe that in a finite system, the
SF-based Uxc and the usual Uxc coincide. Even for a infinite
system, as the simulation cell increases, their values become
more and more similar as they contain similar if not identical
information. Hence, it seems reasonable to assume that the
error bars of the standard Uxc can be used for the SF data.

We have evaluated both the SF-based and the standard Uxc
for a homogeneous electron gas with 2�51 electrons for ten
statistically independent yet identical runs averaging over
1000 QMC steps. The estimates for Uxc differ by an offset,
due to the different finite-size errors; nevertheless, the esti-
mated standard deviations for a single run are similar:
0.001 82 using the Ewald interaction, 0.002 16 using the un-
corrected SF, and 0.001 73 using the corrected SF. These
results are consistent with an error bar of the Ewald energy
of 0.0015 derived for in single run by blocking. The esti-
mates for Uxc were correlated, with the correlation between
the Ewald calculation and the uncorrected and corrected SF-
based calculations being 0.64 and 0.74, respectively. The two
SF-based calculations had a correlation coefficient of 0.88.
Thus, the error bars for the standard Ewald data can be used
also for the SF-based data.

In conclusion, we have devised a method to evaluate
QMC xc interaction energies Uxc that do not suffer from
spurious interactions of electrons with periodic copies of
their xc hole. The method is robust17 and easy to implement.
Applying our method to Slater and Slater-Jastrow-type
many-body wave functions of a homogeneous electron gas,
we have shown how to efficiently handle and eliminate re-
sidual Coulomb finite-size errors. Our approach is equally
applicable to arbitrary inhomogeneous many-electron sys-
tems. Spherical averaging reduces the information contained
in any QMC system to a smooth one-dimensional curve.
Each value of Sk therefore contains more information �hence
less statistical noise� than Sk,−k, and no spherical self-
averaging need be assumed. In the future, we aim to apply
our method to the case of jellium surfaces and real solids. In
the case of the homogeneous electron gas that we have con-
sidered here, we have shown that SF-based calculations of
the xc interaction energy can be improved considerably by
simply letting the SF go to the correct long-wavelength limit
at k=0. For more complex inhomogeneous many-electron
systems such as surfaces, it might be advantageous, however,
to splice together structure factors obtained, e.g., from RPA
at small k and QMC at larger k.
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