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We study the magnetization reversal in elliptical nanodots with the external field applied exactly along the
minor �hard� axis. By varying the magnitude of the applied field, several first and second order transitions take
place and the system proceeds through magnetic configurations characterized by different symmetry properties.
The dynamical matrix method is used to calculate the spin excitations as function of the applied field. This
model system allows us to investigate the relationship between the singularities of the magnetization, the
presence of soft spin excitations, and the symmetry properties of the static and dynamic magnetization fields.
Rules that govern the transitions are formulated.
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I. INTRODUCTION

The reversal of the magnetization in magnetic films and
particles is undoubtedly of great interest for practical appli-
cations due to its crucial role in any process for storing or
modifying information in magnetic memories and devices. In
addition, this subject is very important from the basic point
of view. During the process of reorientation fundamental
phenomena, such as phase transitions, symmetry changes or
singularities in the spin wave spectrum occur. Indeed, the
necessary ingredient for observing the phenomenon of reori-
entation is the presence of some kind of anisotropy �typi-
cally, uniaxial or shape anisotropy� that competes with the
tendency of the magnetization to align in the direction of the
applied magnetic field.

Here, we wish to investigate the relationship between soft
mode dynamics and discontinuities in the magnetization. In
order to do so, we must distinguish between nonlinear
dynamics,1 which corresponds to large amplitude perturba-
tions, and the linear dynamics of small amplitude magnetic
excitations.2 Here, we refer to the latter case. In this context,
our investigation corresponds to the zero temperature case.
In the present framework, it is not possible to investigate the
entire process of reorientation and the response to an instan-
taneous magnetic field pulse; our aim is to exploit the rela-
tively simpler case of linear spin dynamics to understand
what happens at the onset of the different discontinuities in-
volved in the reversal process.

Although there exists an extensive literature on spin dy-
namics of magnetic films, the study of small submicrometric
particles has only been developed recently.2 While for infi-
nitely extended films, the in-plane translational invariance
permits the development of analytical theories and the deri-
vation of explicit results for both the equilibrium states and
the magnetic excitations; a realistic treatment of confined
particles requires the inclusion of nonhomogeneous magne-
tization distributions. Apart from dots of highly symmetrical
shape, like cylinders, most of the published studies for con-
fined structures refer to numerical micromagnetic simula-
tions which determine the equilibrium state of the system

under the action of a given applied field, and occasionally,
the spectrum of the spin modes extracted from the time evo-
lution of the magnetization in condition of very small damp-
ing or by introducing a fluctuating �Langevin� field.2

In recent years, elliptical dots of different aspect ratios
have been considered as interesting systems to study static
and dynamic magnetic properties, when the applied field
changes in magnitude and/or direction. In particular, the
problem of magnetic instabilities and reversal has been tack-
led both theoretically3,4 and experimentally.5,6 Spin excita-
tions in elliptical particles have also been investigated with
different methods.7,8 However no attempt was made to estab-
lish a precise connection between magnetic instabilities and
soft modes in the spin excitation spectrum.

In a recent paper,9 we have shown that calculations of the
long-wavelength spin excitations provides an excellent de-
scription of the spectra of elliptical Permalloy nanodots mea-
sured by Brillouin light scattering. We furthermore pointed
out the dynamic origin of the reversal process by identifying
the spin modes responsible for the onset of the instabilities
that lead to reversal. The relevant spin modes soften at the
critical fields, i.e., their frequency vanishes, so that also the
restoring “forces” vanish and an instability occurs. In order
to reproduce the measured hysteresis loops, in Ref. 9, we
were obliged to make the assumption that the external field
was not exactly applied along a symmetry axis of the ellipse,
but was slightly misaligned by �1°, mimicking the real ex-
perimental situation. The consequence of this assumption is
to break the mirror symmetries typical of a perfectly aligned
saturated elliptical dot and allow both the static and dynamic
magnetic properties of the dots to be quantitatively repro-
duced. From a theoretical point of view, the disadvantage of
a misaligned magnetic field is that the equilibrium configu-
ration maintains the same symmetry at any field �invariance
for space inversion� and consequently, strictly speaking,
symmetry changes were eliminated from the problem in that
study.

In this paper, we consider the applied field to be exactly
aligned along the minor �hard� axis of an elliptical dot. In
this case, new and nontrivial effects arise because the initial
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symmetry of the system is high and is broken during rever-
sal. We will show that the magnetization exhibits several
discontinuities and symmetry changes. The elliptical dot thus
behaves as a model system for investigating the relationship
between phase transitions, symmetry changes, and soft mode
dynamics in nanometric particles. In Sec. II, the general fea-
tures of the low frequency spin excitations, calculated vs the
applied field, are presented and compared with the behavior
of the static magnetization. After a short discussion about the
symmetry of the problem, details of how the specific soft
modes are correlated with each phase transition in the ground
state are given in Sec III. Conclusions are drawn in Sec. IV.

II. NORMAL MODE CALCULATION

We use the dynamical matrix method10,11 to calculate the
magnetic normal modes of an elliptical dot. The method al-
lows us to evaluate both eigenvalues �mode frequencies� and
eigenvectors �amplitude distribution� directly, without the
need of integrating the Landau–Lifshitz equation and Fourier
transforming the time evolution of the magnetization field.
The eigenvectors yield the dynamic Cartesian components of
the magnetization �mi �mode profiles�.10 The calculation in-
cludes Zeeman, dipole, and exchange terms. We adopt a ref-
erence frame with the z axis normal to the particle surfaces,
the x axis along the minor axis of the ellipse, and the y axis
along the major axis.

We study an elliptical particle with dimensions
200�500�15 nm3, divided in small cells of size
5�5�15 nm3, for a total of 3144 cells. The large aspect
ratio �2.5� avoids the formation of vortex states.5 The mate-
rial parameters used in our simulations are saturation mag-
netization Ms=800 G, exchange stiffness A=1.3 �erg /cm,
and gyromagnetic ratio �=2.95 GHz /kOe. The external
field is applied exactly along the x axis; initially, it points in
the positive direction �H=1000 Oe�, decreases, and then be-
comes negative, down to H=−1000 Oe. The calculation of
the normal modes requires, for each value of the applied
field, the knowledge of the equilibrium state. This has been
obtained by using the micromagnetic simulator OOMMF.12

The hysteresis half cycle calculated from positive to nega-
tive fields is shown in Fig. 1�a� for both the longitudinal �x�
and the transverse �y� components of the magnetization. It
shows that the total dot magnetization rotates from the posi-
tive x axis to the positive y axis, and finally, to the negative
x axis. There are three large �at H equal to 530, 397, and
−519 Oe� and one small �at H equal to 805 Oe� discontinui-
ties in the magnetization during reversal corresponding to
first order transitions. It was shown in Ref. 9 that in a real
experiment �and in a calculation with a 1° misalignment of
the applied field with respect to the x axis�, three of these
four discontinuities are smeared out and only the sharp tran-
sition at about −500 Oe is still observed. In the previous
paper, we showed that the reorientation of the magnetization
occurs via a coherent rotation till to about H=−500 Oe. Al-
though some of the modes in Ref. 9 were found to develop
frequency minima in the vicinity of rapid changes in M, the
frequency of these modes did not reach zero. In the present
case, the reorientation toward the easy axis comes about via

two sudden discontinuities in the range 530−397 Oe. We
also find two other transitions �at H equal to 901 and
−901 Oe� that are not evident in Fig. 1. We will show that
these transitions are also induced by a soft mode but that
they are second order transitions and only result in a discon-
tinuity in the first derivative of the magnetization, as shown
in the inset in Fig. 1.

In Fig. 1�b�, the frequencies of the lowest spin modes
�quasiuniform or fundamental mode: F, symmetric end
mode: S-EM, and antisymmetric end mode: AS-EM� are
plotted as a function of the applied field. Obviously many
other modes are provided by the calculation8,9 but are not
shown here because they are of no interest in the present
framework. The comparison of the soft modes with the hys-
teresis cycle clearly shows a correspondence between the
discontinuities of the magnetization or of its first derivative
and the singularities of the modes. Detailed discussions of
the transitions will be given in the following section. We note
however, that apart from the soft mode at about −500 Oe,
the results with and without misalignment are surprisingly
different; these differences can be traced to the very different
nature of the equilibrium states that are reached during re-
versal.

Two other remarks are also needed. First, because hybrid-
ization effects are present, there are cases in which certain
modes are not “pure,” i.e., when hybridization occurs, the
profile of some modes can exhibit features of another mode.

FIG. 1. Upper panel �a�: magnetization components My �bold
line� and Mx �thin line� calculated from positive to negative fields.
The inset is a magnification of the behavior of Mx, close to the
critical field Hc=901 Oe, exhibiting a kink. The dashed line in the
inset is a straight line extrapolating the behavior of Mx for fields
greater than 901 Oe. Lower panel �b�: frequency of the three spin
modes of lowest energy. F: dashed line. S-EM: dotted line. AS-EM:
solid line. In the range −519– +397 Oe, the S and AS end modes
are almost degenerate, so that only one curve is drawn.
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Second is that the mode profiles that are shown in Figs. 2–4
represent a snapshot of given components of the spin preces-
sion. At a later time �e.g., half a precession cycle�, the light
areas will have become dark and vice versa.

We use S �symmetric� and AS �antisymmetric� to denote
the symmetry of modes under inversion operation. Although
strictly speaking, this can only be done if the ground state
has inversion symmetry, we also use the notation somewhat
more loosely to denote modes where the spin motion at op-
posite ends of the particle is in or out of phase. Notice that
the S-EM and the AS-EM in Fig. 1�b� are almost degenerate
in the field range −519– +397 Oe, while there is an appre-
ciable splitting for larger values of �H� even far from the
critical fields. This can be understood by considering that
each EM is strongly localized close to opposite edges of the

ellipse, along a direction that depends on the value of the
applied field.8 When H is in the range −519– +397 Oe, the
regions of localization of the end modes are located along
the major axis of the ellipse �500 nm� so that they are far-
away, do not overlap, and the modes are degenerate. Instead,
when H is large and the dot is almost saturated along the x
direction, these localized regions located along the minor
axis of the ellipse �200 nm� are rather close to each other and
do overlap. Therefore, in the latter case, the degeneracy is
broken and the splitting is observed.

III. PHASE TRANSITIONS

A. Symmetry considerations

Although the ellipse itself possesses D2h symmetry, appli-
cation of a magnetic field along a principal axis reduces the
number of symmetry elements to four, belonging to the point
group C2h: besides the identity �E�, a twofold rotation axis
�C2� about the field axis, the inversion symmetry �i�, and the
mirror plane perpendicular to the rotation axis ��h�. Note that
�h= i � C2. We remind the reader that the pseudovector na-
ture of the magnetization and applied field requires a sign
reversal after one of the improper rotations i and �h has been
applied. For a given ground state, the symmetry of �m, an
eigenvector of a dynamical problem, will belong to one of
the allowed representations; for C2h, for example, it will have
Ag, Bg, Au, or Bu symmetry. The latter two are odd under
inversion, the B modes are odd under the C2 operation, and
the Bg and Au are odd under �h.13

At high fields, where the magnetization aligns parallel to
the applied field, even including the remanent onion state,
the system has the full C2h symmetry discussed above. As
the field is lowered and the magnetization takes on either
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FIG. 2. Upper row: equilib-
rium states of the static magneti-
zation for a few positive applied
fields. H=901, 530, and 397 Oe
are critical fields. The gray levels
of the background have been cho-
sen to mark the magnitude and
sign of the y-magnetization com-
ponent. �a� Onion state; �b� C
state; �c� state with no symmetry
elements; �d� S state. Lower row:
y component �my of the dynamic
magnetization for three soft
modes calculated for the corre-
sponding equilibrium states.
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FIG. 3. x component �mx of the dynamic magnetization for two
soft modes calculated at the critical fields H=901 and 530 Oe.
Panel �a� corresponds to the y component of Fig. 2�e� and panel �b�
corresponds to the y component of Fig. 2�f�.
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“C” of “S” like character,2 a few symmetry elements are
spontaneously lost and we will show how it is the symmetry
of the soft mode that governs this symmetry breaking. Spe-
cifically, in a C state, the magnetization retains only the �h
element and in an S state, only the i element. The reader
should be aware that the symbol S, signifying a ground state,
should not be confused with the label S which refers to the
symmetric character of the modes.

B. Phase transitions

We will discuss the transitions in order as they occur as
the field is reduced from a large positive value. From the
inspection of the hysteresis cycle �Fig. 1�a�� and of the mode
frequency behavior �Fig. 1�b��, the first transition occurs at a
critical field Hc=901 Oe. Above this value, the “onion” state
shown in Fig. 2�a� is the ground state. Below this field, the
ground state slowly develops into a C state. By the time the
field reaches 530 Oe, the C state is clearly seen in Fig. 2�b�.
Figure 2�e� shows the profile of the dynamic magnetization
��my component� of the AS end mode that goes soft at 901
Oe. The out-of-plane component �mz is simply proportional
to �my, apart from a � /2 phase factor. It is useful to show
�Fig. 3�a�� also the other component �mx because it helps to
appreciate the symmetry properties of the mode. One can see
that when the restoring force for this mode goes to zero and
its displacements �Figs. 2�e� and 3�a�� are added to the
ground state �Fig. 2�a�� one of the two possible C states will
ensue. In fact, the spontaneous symmetry breaking of the
onion state may lead to two degenerate final C states, ob-
tained by the rotation C2, which is symmetry operation of the
initial �onion� configuration. The choice of Fig. 2�b� is sim-
ply due to numerical reasons and does not affect the succes-
sive discussion.

As mentioned earlier, the ground state shown in Fig. 2�a�
has symmetry elements C2, �h, and i. An analysis of Figs.
2�e� and 3�a� shows straight away that the eigenvector �m of
the AS soft mode is odd under inversion i �according to the
Bu representation�, while the ground state is even �Ag repre-
sentation�. Direct inspection of the symmetry properties of
the ground state and of the soft mode, as well as comparison
of the characters of the representation Ag and Bu,13 show that
the common shared symmetry operator is the mirror element
�h. As a consequence, the new ground state—which must
contain all the symmetry operations common to both the
original ground state and the soft mode—keeps the �h sym-
metry, i.e., is a C state belonging to the A� representation
�even under �h� of the group Cs.

13 The state C evolves under
the application of the external field and is shown in Fig. 2�b�
for H=530.

The transition occurring at H=901 Oe is of second order,
as proved both by the continuity of the soft mode frequency
plot, which vanishes on both sides of the critical field and by
the behavior of the Mx component of the magnetization of
the dot. As can be seen in the inset of Fig. 1�a�, for H
=901 Oe, Mx is continuous but its first derivative is discon-
tinuous. We remark that this second order transition exhibits
a behavior very similar to that of spin wave theory for films
with in-plane uniaxial anisotropy.14,15 Uniaxial anisotropy in
films plays the same role of the shape anisotropy in our dot.
In the case of the film, a discontinuity of the first derivative
of the longitudinal component of the magnetization corre-
sponds to a second order transition and a zero gap in the
magnon frequency, at least in mean field theory or in the
T→0 limit of the Green’s function approach.15 In our ellip-
tical dots, we have found a similar behavior, i.e., the soft
mode frequency vanishes like �+=A+�H−Hc�	 for H
Hc
and �−=A−�Hc−H�	 for H�Hc, with a critical exponent
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FIG. 4. Upper row: equilib-
rium states of the static magneti-
zation for a few negative applied
fields. The gray levels of the back-
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component of the magnetization.
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zation for three modes calculated
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	=1 /2 and a ratio A− /A+ close to �2, as in films.14,15 We
have also found that at the critical field Hc, the axial ratio of
the elliptical precession of the soft mode �defined as the ratio
�mz /�mxy between the out-of-plane dynamic component �mz
and the in-plane component �mxy� goes to zero, in agreement
with an instability occurring in the dot plane.

There is another interesting aspect of the transition dis-
cussed above. One could wonder what would have happened
if the soft mode had been the S-EM instead of the AS-EM.
Depending on the size and aspect ratio of the ellipse, this is
indeed a possible scenario. If the S-EM goes soft, it is visu-
ally clear that an S-like state would ensue. From the symme-
try standpoint, we note that the S-EM is even with respect to
inversion i; following the arguments given above, we would
expect the new ground state to lose the �h mirror symmetry
but retain the inversion symmetry. Indeed, the resulting S
state does have inversion symmetry. An example of an S
state is shown in Fig. 4�b�.

It is worthwhile to note that in the case of a small mis-
alignment of the applied field, as in the calculations in Ref.
9, this second order phase transition disappears because the
full symmetry of the onion ground state is broken for any
applied field and the equilibrium state is already a rotated
S-like state even for strong applied fields.

The next transition in the hysteresis loop is at 530 Oe and
is again driven by a soft mode, which we loosely call a
S-EM. In this case, the behavior is typical of first order tran-
sitions. We have numerically verified that, before the critical
field, the frequency of the soft mode goes to zero with the
same square root dependence already found for the second
order transitions. Also, the ratio �mz /�mxy vanishes. The na-
ture of the transition can be understood by inspection of Fig.
2. Figure 2�b� shows the ground state just prior to the dis-
continuity. The profile of the soft mode, shown in Figs. 2�f�
and 3�b� for �my and �mx, respectively, shows elements of
hybridization of the uniform and a S-EM. The eigenvector
�m belongs to the A� representation �odd under �h� of the
group Cs,

13 and since the ground state belongs to the A�
representation, the combination of a ground state and a soft
mode with symmetry elements of void intersection leads to a
ground state with no symmetry. Equivalently, we can also
state that the soft mode of magnetization �m does not pos-
sess symmetry operations because the symmetry operation of
the ground state does not bring �m back to itself. The new
ground state evolves into the state shown just above the next
transition at 397 Oe in Fig. 2�c�. The soft mode at this field is
shown in Fig. 2�g� and it induces a transformation to the
state shown in Fig. 2�d�, which is a rotated S-like state with
inversion symmetry i, belonging to the even Ag representa-
tion of the group Ci.

13 This state is identical to the state that
evolved continuously from the high fields when the field was
misaligned by 1°.9 It is worth emphasizing that that simple
misalignment eliminated all three of the phase transitions
discussed up to now. The latter transition is an example of
“symmetry raising,” with a final ground state with more
symmetry elements than the initial state. This process is
reached by a local reorientation of the magnetization in the
lower-left quadrant of the ellipse, evidenced by comparing
Fig. 2�c� and 2�d�.

As already shown in Ref. 9, between 397 and –519 Oe,
the system evolves by a coherent rotation of the S-like state,

shown in Fig. 2�d�. The S-like ground state at H=−519 Oe
is shown in Fig. 4�a�. As already explained in the previous
section, in the range from 397 to −519 Oe, the S and AS end
modes are nearly degenerate in frequency, as it is visible in
Fig. 1�b�, where only one end mode is drawn for clarity.

The next first order transition occurs for H=−519 Oe, as
shown in Fig. 1. The ground state and the soft mode profile
at H=−519 Oe are shown in Figs. 4�a� and 4�e�, respec-
tively. The ground state is invariant for space inversion �it is
an S state�, while the soft mode has no symmetry compatible
with the ground state. As argued above, the resulting new
ground state has no symmetry. However, on decreasing the
applied field by a few oersteds, this new state again becomes
unstable. We have found that this instability is also driven by
a soft mode that, for the sake of simplicity, will not be dis-
cussed here. The resulting ground state is again an S state, of
the kind shown in Fig. 4�b�.

By further decreasing the applied field �viz. making it
more negative�, the new S state becomes unstable at
−805 Oe, giving rise to yet another first order transition, as
witnessed by the small discontinuity of the y component of
the magnetization �Fig. 1�a�� and a corresponding soft mode
�Fig. 1�b��. Just before the transition, for H=−805 Oe, the
calculated magnetization of the ground state is shown in Fig.
4�b� and the profile of the soft AS-EM in Fig. 4�f�. The S
ground state possesses inversion symmetry i, differently
from the AS-EM which has no compatible symmetry. Since
the intersection is void, the symmetry operation i is lost. This
actually happens, but the novelty is that the new ground state
�Fig. 4�c�� has acquired the symmetry �h. It is therefore a C
state, belonging to the A� representation of Cs, already met in
a previously discussed transition.

By increasing the modulus of the applied field, the ground
state continuously develops into the onion state, which is
finally reached for H=−910 Oe �Fig. 4�d��. This transition is
second order because it is driven by a soft mode �Fig. 4�g��
that goes continuously to zero frequency on both sides of the
transition. It is the reciprocal of the transition at H
=901 Oe, so that it does not deserve explicit discussion.

The outcome of our calculations allows us to draw impor-
tant conclusions concerning the symmetry of the soft modes
and the evolution of the system at the onset of the transitions
they drive. If at a critical field, one mode becomes soft so
that its symmetry controls the transition, the new ground
state after the transition will contain all the symmetry opera-
tors common to both the original ground state and the soft
mode. If the intersection of the symmetry operators is void,
the final state either has no symmetry or it gains a symmetry
not present in the original ground state before the transition
�symmetry raising�. In the latter case, it is not possible to
make a priori a prediction on the basis of the soft mode only
and the final ground state depends on the nearest available
states in the phase space.

IV. CONCLUSIONS

An elliptical Permalloy dot subjected to an external field
applied exactly along the minor axis of the ellipse proved to
be an excellent model system to investigate a significant
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number of phase transitions between magnetic states differ-
ing from each other by the intrinsic symmetry properties of
the magnetization and to draw important rules on symmetry.
Since the symmetry operations we consider here include im-
proper rotations such as space inversion and reflection at a
mirror plane, it is necessary to recall that the magnetization
vector is an axial vector and must be treated accordingly. The
frequencies and the profiles of the spin excitations are calcu-
lated in the framework of micromagnetics by the dynamical
matrix method, i.e., directly in the frequency domain. We
have found the existence of a one-to-one correspondence be-
tween magnetic phase transitions and soft modes, i.e., spin
excitations of vanishing frequency. This demonstrates the in-
timate relationship between the dynamics of small amplitude
excitations of the nonhomogeneous magnetization in con-
fined structures and the onset of phase transitions. In the
sense that we have dealt only with small amplitude spin
waves, our approach should be seen as a zero temperature
approximation. At finite temperatures, where the amplitudes
of the soft modes could be large, nonlinear effects in the
dynamics of the spin modes themselves could also affect the
reversal mechanisms.

The model system turns out to be particularly interesting
because it shows both first and second order transitions. In
the former case, the frequency of the soft mode is discon-
tinuous and vanishes only on one side of the transition. For
the second order case, it approaches zero continuously on
both sides of the transition. On the basis of physical argu-
ments, relating the symmetry properties of the equilibrium

states and the corresponding excited states that are corrobo-
rated by the analysis of the numerical simulations, we have
formulated rules concerning the symmetry changes across
each critical field, as a function of the symmetry properties
of the initial state and of the soft mode. These considerations
hold when the system reverses via equilibrium states having
different symmetries, such as the onion, C, and S states of
the elliptical dot studied here. Consequently, this can happen
only for highly symmetric systems, e.g., in our case, an ob-
ject with elliptical symmetry with the external field aligned
exactly along with one of the principal axes of the ellipse.
When the states accessible to the system are all of the same
symmetry �e.g., for an ellipse in a misaligned applied field�,
phase transitions clearly lead to no symmetry changes. Nev-
ertheless, first order phase transitions may also occur, trig-
gered by a soft mode, whenever an abrupt rotation of the
magnetization within a region of a dot produces a disconti-
nuity in the total magnetization.

The present kind of investigation provides a deeper un-
derstanding of the outcome of more realistic calculations at-
tempting to simulate actual experimental situations.
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