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A long-standing puzzle in density functional theory is the issue of the long-range behavior of the Kohn-
Sham exchange-correlation potential at metal surfaces. As an important step toward its solution, it is proven
here, through a rigorous asymptotic analysis and an accurate numerical solution of the optimized-effective-
potential integral equation, that the Kohn-Sham exact exchange potential decays as ln�z� /z far into the vacuum
side of an extended semi-infinite jellium. In contrast with the situation in localized systems, such as atoms,
molecules, and slabs, this dominant contribution does not arise from the so-called Slater potential. This exact
exchange result provides a strong constraint on the suitability of approximate correlation-energy functionals.
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I. INTRODUCTION

In their seminal density-functional-theory �DFT� investi-
gation of the electronic structure of metal surfaces, Lang and
Kohn1 pointed out that far outside the surface the Kohn-
Sham �KS� exchange-correlation �xc� potential Vxc�z� of
DFT should behave like the classical image potential −e2 /4z,
with z being the distance from the surface. While from the
physical viewpoint this suggestion is attractive and reason-
able, 40 years later its rigorous proof is still an open ques-
tion. Two kinds of approaches are possible to address this
difficult problem. One, followed already by some authors,2–4

is to consider exchange and correlation contributions to the
KS xc potential together; we note, however, that as the cor-
relation contribution should always be approximated, great
care must be taken in approximating the corresponding ex-
change contribution in a compatible way. Within this context,
it is not surprising that various asymptotics have been sug-
gested for the KS exchange-only �x-only� potential along this
pathway.2–4

A second way to proceed, followed in the present Rapid
Communication, is to exploit the fact that since the
exchange-energy functional is known exactly, the corre-
sponding KS exchange potential Vx�z� can also be known
exactly, by using the optimized-effective-potential �OEP�
method of DFT.5 Moreover, knowing the exact Vx�z�, the
analysis of the more elusive KS correlation potential Vc�z�
may be advanced on firmer grounds than previously. We
have succeeded along this second type of approach by prov-
ing rigorously that the asymptotic behavior of the KS ex-
change potential far into the vacuum side of a semi-infinite
�SI� jellium is of the form ln�z� /z. This analytical result is
supported by a fully self-consistent numerical solution of the
OEP integral equation, which describes accurately the KS
exact exchange potential at the bulk, interface, and vacuum
regions of our semi-infinite system.

II. BASIC OEP EQUATIONS FOR A METAL SURFACE

The calculations presented below focus on the SI jellium
model of a metal surface, where the discrete character of the
positive ions inside the metal is replaced by a uniform dis-
tribution of positive charge �the jellium�. The positive jellium
density is given by n+�z�= n̄��−z�, which describes a sharp
jellium �z�0� vacuum �z�0� interface at z=0. The model is
invariant under translations in the x ,y plane �of normaliza-
tion area A�, so the single-particle KS orbitals of DFT can be
rigorously factorized as �k�,k

�r�=eik�·��k�z� /�AL, where �
and k� are the in-plane coordinate and wave vector, respec-
tively. k and L refer to the remaining �continuous� quantum
number and the normalization length, both along the z direc-
tion. The effective one-dimensional KS spin-degenerate or-
bitals �k�z� are the solutions of the KS differential equation
�atomic units are used throughout�

ĥKS
k �z��k�z� ª �−

1

2

�2

�z2 + VKS�z� − �k��k�z� = 0, �1�

where �k are the KS eigenvalues, and VKS�z�=VH�z�+Vxc�z�.
VH�z� is the Hartree potential, and Vxc�z�ª�Exc /�n�z�, with
ExcªExc���k	 , ��k	
 and Vxc�z� being the xc energy functional
and potential, respectively, and n�z� as the ground-state elec-
tron density. The OEP integral equation whose solution pro-
vides the KS xc potential Vxc�z� is compactly given as6

�
0

kF

�kF
2 − k2��k

��z��k�z�dk + c.c. = 0. �2�

Here, �k�z� are the so-called orbital shifts, defined by

�k�z� = �
−	

	

�k�z��
Vxc
k �z��Gk�z�,z�dz�, �3�

with
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Gk�z,z�� =
1

�
P�

0

kF �k�
� �z��k��z��

��k − �k��
dk� �4�

being the KS Green’s function, 
Vxc
k �z�=Vxc�z�−uxc

k �z�, and
uxc

k �z�= �4� /A�kF
2 −k2��k

��z�
�Exc /��k�z�; uxc
k �z� are usually

referred to as orbital-dependent xc potentials. The symbol
“P” in Eq. �4� denotes the “principal value” and kF repre-
sents the magnitude of the Fermi wave vector.7 The exact
Vxc�z� entering Eq. �2� is obtained as the solution of this
integral equation, which must be solved self-consistently to-
gether with Eq. �1�.

While for formal discussions the integral form of the OEP
equation �Eq. �2�
 is useful, it is often more convenient to
recast it in the following fully equivalent form, after a well-
established sequence of transformations:5,6

Vxc�z� = Vxc
KLI�z� + Vxc

Shift�z� , �5�

where Vxc
KLI�z� represents the so-called Krieger-Li-Iafrate

�KLI� contribution,8,9

Vxc
KLI�z� = �

0

kF ��k�z��2

2�2n�z�
�uxc

k �z� + 
Vxc
k 
 dk˜, �6�

and

Vxc
Shift�z� = − �

0

kF ��kF
2 − k2��k�z��k�z� + �k��z��k��z�


2�2n�z�
dk˜,

�7�

with dk˜= �kF
2 −k2�dk, primes denoting derivatives with re-

spect to the coordinate z and the ground-state electron den-
sity n�z� being given by the following expression:

n�z� =
1

2�2�
0

kF

�kF
2 − k2���k�z��2dk . �8�

Now we focus on the exchange contribution Vx�z� to the
KS xc potential of Eq. �5�, as obtained by replacing the
orbital-dependent xc potentials uxc

k �z� entering Eqs. �6� and
�7� by their x-only counterparts ux

k�z� which are known
exactly.10 In this case, the first term on the rhs of Eq. �6� is
easily recognized to be twice the position-dependent ex-
change energy per particle �x�z�, defined as the interaction
between a given electron at z and its exact exchange hole.10

Noting that 2�x�z�=Vx
S�z�, with Vx

S�z� being the so-called
Slater potential,8 we write

Vx�z� = Vx
S�z� + Vx


�z� + Vx
Shift�z� , �9�

where Vx

�z� represents the contribution to the exchange po-

tential Vx�z� from the x-only counterpart of the second term
on the rhs of Eq. �6�.

III. NUMERICAL RESULTS

In the case of the SI jellium, we have achieved the self-
consistent numerical solution of the x-only counterparts of
Eqs. �1� and �5�. The KS equations have been solved by
following the procedure explained in Ref. 10; the orbital

shifts were directly calculated from its definition in Eq. �3�,
with the KS Green’s function computed using the procedure
of Ref. 11.

The correct asymptotics �at z→	� of the Slater potential
Vx

S�z� have been reported for a SI jellium12–14 and for jellium
slabs,10 with the result that Vx

S�z� decays in both cases as
−� /z but with a coefficient � that in the case of a SI jellium
is electron-density-dependent while for jellium slabs �=1.
Hence, here we focus on the remaining contributions: Vx


�z�
and Vx

Shift�z�.
OEP self-consistent calculations of Vx


�z� and Vx
Shift�z� for

an electron-density parameter rs corresponding to the aver-
age density of valence electrons in Al �rs=2.07� are plotted
in Fig. 1 for the SI geometry and for jellium slabs of
various thicknesses. We note that the bulk limit is correctly
reproduced: Vx


�z→−	�=kF /2�0.148 Hartree,15 while
Vx

Shift�z→−	� presents small oscillations around zero, as it
should be. In the case of jellium slabs, the numerical results
were obtained using the procedure followed in Ref. 6.

In the vacuum, both Vx

�z� and Vx

Shift�z� decay exponen-
tially for jellium slabs, as discussed before.6 In the case of a
SI jellium, however, the decay of Vx


�z� and Vx
Shift�z� turns out

to be qualitatively different. This is seen in Fig. 2, where
these quantities are plotted for rs=6, together with the Slater
potential Vx

S�z� and the total Vx�z�. This figure shows that in
the case of an extended SI jellium the asymptotics of Vx�z�
are dominated by Vx


�z�, which at large z is positive.

IV. ANALYTICAL ASYMPTOTICS

In order to determine the actual asymptotic behavior of
Vx�z� in the vacuum region of a SI jellium, we first appeal to
the asymptotic analysis of the KS orbitals �k�z� entering Eq.
�1�. One finds13,14
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FIG. 1. �Color online� OEP self-consistent calculations of Vx

�z�

�top panel� and Vx
Shift�z� �lower panel� for the SI geometry �solid

line� and jellium slabs of various thicknesses d, for rs=2.07.
F=2� /kF is the Fermi wavelength. The jellium-vacuum interface
is at z=0.
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�k�z → 	� → �kF
�z → 	�e−�z
k �10�

and

n�z → 	� →
3n̄

4��kFz�2 ��kF
�z → 	��2, �11�

with �=kF /�2W, with W being the work function, and

k=kF−k. This result is perfectly plausible: for zkF�1, the
only k’s that matter are those close to kF and such that
z
k�1, so the “window” for the relevant k’s decreases lin-
early with distance. As for the electron density, it is interest-
ing to note that it decays with an extra power z2 in the de-
nominator that is absent in the case of jellium slabs;10 this is
due to the fact that as zkF�1 the factor �kF

2 −k2� in the inte-
grand of Eq. �8� becomes effectively small, while in the case
of jellium slabs this factor is always finite and the electron-
density decay is purely exponential. This anticipates that
qualitative differences might be expected between the as-
ymptotics of localized �slabs� and extended �SI� systems.

By introducing Eqs. �10� and �11� into the expression for
the Slater potential �the x-only counterpart of the first term
on the rhs of Eq. �6�
, one finds the known result10,12–14

Vx
S�z → 	� = −

�� + 2� ln ��
��1 + �2�

1

z
. �12�

Solamatin and Sahni �SS� �Ref. 12� then derived the
asymptotic structure of Vx�z� from an approximate form of
the so-called Sham-Schlüter integral equation relating Vx�z�
to the nonlocal Hartree-Fock self-energy and concluded that
the asymptotics of Vx�z� are embodied by half the Slater
potential; i.e., Vx�z→	�= 1

2Vx
S�z→	�. SS supported their re-

sult by applying the definition of Vx�z� as the functional de-

rivative of the exchange energy �expressed in terms of the
Slater potential�,

Vx�r� =
1

2
Vx

S�r� +
1

2
� dr�n�r��

�Vx
S�r��

�n�r�
, �13�

and then suggesting that the contribution of the second term
of Eq. �13� in the vacuum region is zero in the leading order
of 1 /z. It is well known, however, that the second term of
Eq. �13� contains another term of the form 1

2Vx
S�r�,15 leading,

therefore, to an expression for Vx�z� that contains the full
Slater potential Vx

S�z� and not one-half of it, as noted by
Nastos13 and correctly given in Eq. �9� above. Moreover,
here we prove that at large z the full Vx�z� of Eq. �9� is not
dominated by the Slater potential Vx

S�z� but by Vx

�z� instead.

Here we have succeeded, by introducing Eqs. �10� and
�11� into the x-only counterpart of the second term on the rhs
of Eq. �6�, in obtaining the following neat �positive� expres-
sion for the leading contribution of Vx


�z� to the long-range
exchange potential:

Vx

�z → 	� = �

0

kF 
Vx
k

2�2n�z → 	�
��k�z → 	��2 dk˜

=
1

2��z
�ln��kFz� + C
 , �14�

where C�0.963 51. In passing from the first to the second
line we have replaced 
Vx

k�z�, which enters the calculation of

Vx

k, by its bulk value. That is, 
Vx
k�z�
Vx

k�z→−	�
=−kF /�−ux

k�z→−	�. The explicit �analytic� expression for
ux

k�z→−	� is obtained through a k� Fourier transform of the
orbital-dependent exchange potential of a three-dimensional
electron gas.16

As for Vx
Shift�z�, we have first analyzed the asymptotics of

Eq. �2� and then applied to it the operator ĥKS
kF �z�. Solving the

resulting equation for Vx�z→	�, one recovers the asymptotic
expressions for Vx

S�z� and Vx

�z� given by Eqs. �12� and �14�,

and one also obtains

Vx
Shift�z → 	� =

�2z2

kF�kF
�z → 	��0

kF


ke−�z
k

���kF −
�2
k

2
� + �

�

�z
��k�z → 	�dk˜.

�15�

At this point, we need �k�z→	�, which we obtain from the
asymptotics of the orbital-shifts differential equation

ĥKS
k �z��k�z�=−�
Vx

k�z�−
Vx
k
�k�z�. Noting that at zkF�1 all

contributions in 
Vx
k�z� tend to zero, the asymptotics of the

orbital shifts are found to be given by the following expres-
sion:

�k�z → 	� → �f�k� + zg�k�
�k�z → 	� , �16�

where the first and second terms on the rhs are,
respectively, the homogeneous and particular solutions
of the orbital-shifts differential equation at z→	. Here,
2g�k�=−
Vx

k / ��2W+�
k�, and the explicit expression for
f�k� is not needed. After introduction of Eq. �16� into Eq.
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FIG. 2. �Color online� OEP self-consistent calculations of
Vx

S�z�, Vx

�z�, and Vx

Shift�z� for the SI geometry and rs=6. The
jellium-vacuum interface is at z=0. The bulk limits for
Vx

S�z�, Vx

�z�, and Vx�z� are correctly reproduced: Vx

S�z→−	�
=−3kF /2�−0.153 Hartree �Ref. 16�, Vx


�z→−	�=kF /2�
0.051 Hartree, and Vx�z→−	�=−kF /�−0.102 Hartree. The
analytical asymptotes of Eqs. �12� and �14� are shown by dotted
lines. An enlarged view of the far-vacuum region is exhibited in the
inset.
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�15�, we find that Vx
Shift�z→	� decays as ln�z� /z2. Hence,

putting this together with Eqs. �12� and �14�, we conclude
that far outside a semi-infinite jellium the KS exact exchange
potential decays as follows:

Vx�z → 	� =
ln��kFz�

2��z
. �17�

Equation �17� represents the main result of this work. The
asymptotics of Eqs. �12� and �14� are plotted in Fig. 2
�dotted lines�, showing that they are in excellent quantitative
agreement with our fully self-consistent OEP numerical
calculations at z�F. In retrospect, the result of Eq. �17�
looks natural for the SI case. For slabs, Eq. �9� yields
Vx�z→	�=−1 /z+
Vx

m, with m being the quantum number
corresponding to the highest occupied slab level;6 the first
contribution is brought by the slab Slater potential Vx

S�z�, and
the second contribution �brought by the slab Vx


�z�
 is a con-
stant which is chosen to be zero.5,6 In the SI case, however,
while it is still true that the quantity 
Vx

kF entering Eq. �14�
is zero, the non-negligible contribution from 
Vx

k at
kF−k�1 /z yields a Vx


�z� potential that decays as ln�z� /z
and dominates the asymptotics of the full Vx�z�.

V. CONCLUSIONS

In summary, we have solved a long-standing problem
relative to the long-range behavior of the KS exact exchange

potential at metal surfaces as an important step toward the
understanding of the actual asymptotic behavior of the full
KS xc potential. Through a rigorous asymptotic analysis and
an accurate numerical solution of the OEP integral equation,
we have shown that far into the vacuum side of a semi-
infinite jellium the KS exact exchange potential decays as
ln�z� /z �positive�. This analytical result, which does not arise
from the Slater potential and is supported by a fully self-
consistent numerical solution of the OEP integral equation, is
in contrast with the situation in localized systems, such as
atoms, molecules, and slabs; as in the case of finite systems,
for jellium slabs the asymptotics of the KS exchange poten-
tial arise from the full Slater potential, which decays as
−1 /z.6 Finally, we note that due to the fact that the full KS xc
potential of a semi-infinite metal should be expected to be
absent of the dominant ln�z� /z exchange asymptotics, our
exact exchange result provides a strong constraint on the
suitability of approximate correlation-energy functionals.
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