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Theoretical and numerical investigation of the size-dependent optical effects in metal nanoparticles
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We further develop the theory of quantum finite-size effects in metallic nanoparticles, which was originally
formulated by F. Hache, D. Ricard, and C. Flytzanis [J. Opt. Soc. Am. B 3, 1647 (1986)] and (in a somewhat
corrected form) by S. G. Rautian [Sov. Phys. JETP 85, 451 (1997)]. These references consider a metal nanoparticle
as a degenerate Fermi gas of conduction electrons in an infinitely high spherical potential well. This model
(referred to as the HRFR model below) yields mathematical expressions for the linear and the third-order
nonlinear polarizabilities of a nanoparticle in terms of infinite nested series. These series have not been evaluated
numerically so far and, in the case of nonlinear polarizability, they cannot be evaluated with the use of conventional
computers due to the high computational complexity involved. Rautian has derived a set of remarkable analytical
approximations to the series but direct numerical verification of Rautian’s approximate formulas remained a
formidable challenge. In this work, we derive an expression for the third-order nonlinear polarizability, which
is exact within the HRFR model but amenable to numerical implementation. We then evaluate the expressions
obtained by us numerically for both linear and nonlinear polarizabilities. We investigate the limits of applicability
of Rautian’s approximations and find that they are surprisingly accurate in a wide range of physical parameters.
We also discuss the limits of small frequencies (comparable to or below the Drude relaxation constant) and of
large particle sizes (the bulk limit) and show that these limits are problematic for the HRFR model, irrespective
of any additional approximations used. Finally, we compare the HRFR model to the purely classical theory of
nonlinear polarization of metal nanoparticles developed by us earlier [G. Y. Panasyuk, J. C. Schotland, and V. A.
Markel, Phys. Rev. Lett. 100, 47402 (2008)].
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I. INTRODUCTION

Metal nanoparticles have received an extraordinary amount
of attention recently because of their ability to greatly enhance
local fields. The enhancement is attributed to the excitation
of surface plasmons and it has a variety of applications
in photovoltaics,1 sensing,2 and surface-enhanced Raman
scattering.3–5 Currently, nanoparticles of very small sizes, up
to a few nanometers, are customarily used in experiments.
The theoretical description of the optical properties of such
nanoparticles is most frequently based on the macroscopic
electrodynamics. At least, this is typical in the field of
plasmonics. However, macroscopic electrodynamics cannot
capture certain effects of finite size. Hache, Ricard, and
Flytzanis6 and Rautian (in a somewhat modified form)7 have
developed an elaborate theory of quantum finite-size effects in
metal nanoparticles. In Refs. 6,7, a nanoparticle was modeled
as degenerate Fermi gas confined in an infinite potential well
of spherical shape (below, the HRFR model). Despite being
fairly simple, the HRFR model results in very complicated
formulas, which cannot be evaluated numerically even with
the aid of modern computers. For example, the expression
for the third-order nonlinear polarizability involves a twelve-

fold nested summation. Rautian has reduced the number of
summations from twelve to eight by performing summation
over the magnetic sublevels analytically; he then obtained
a number of remarkable approximations to the resulting
eightfold summation.7 However, these approximations have
never been verified directly due to the overwhelming numerical
complexity involved.

In this paper, we develop the analytical theory of Rautian
a step further by reducing the number of nested summations
involved from eight to five without making any additional
approximations. This turns out to be sufficient to render the
formulas amenable to direct numerical implementation. We
then compare the results of numerical evaluation of the fivefold
series derived by us to the results which follow from Rautian’s
approximate formulas, and discuss various physical limits,
including the limits of low frequency and large particle size.

In Sec. II we review Rautian’s theory. Here we use
somewhat simplified notation and, in particular, avoid the
use of irreducible spherical tensors and 6j symbols. In
Sec. III, we develop the theory further by utilizing the orbital
selection rules and reduce the nested summation involved in
the definition of the third-order nonlinear polarizability from
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eightfold to fivefold. In Sec. IV, we describe a simple method
to relate the internal and applied fields, which is to the first
order consistent with the approach proposed in Ref. 8, but
is more mathematically rigorous. In Sec. V, the results of
numerical computations are reported. A summary of obtained
results and a discussion are contained in Sec. VI.

II. RAUTIAN’S THEORY

We start by reviewing Rautian’s theory of quantum finite-
size effects in conducting nanoparticles.7 The physical system
under consideration is a gas of N noninteracting electrons
placed inside a spherical, infinitely deep potential well of
radius a and subjected to a harmonically oscillating, spatially
uniform electric field,

Ei(t) = Ai exp(−iωt) + c.c. (1)

Note that Ei is the electric field inside the nanoparticle. It will
be related to the external (applied) field Ee in Sec. IV below.

Since the nanoparticle is assumed to be electrically small
(that is, a � λ = 2πc/ω), the electron-field interaction can be
described in the dipole approximation by the time-dependent
operator

V (t) = −d · E(t), (2)

where d is the dipole moment operator. Under the additional
assumption that Ei(t) is linearly polarized with a purely real
amplitude Ai = Ai ẑ, we can write

V (t) = G exp(−iωt) + c.c., (3)

where

G = −d · Ai . (4)

Rautian made use of the interaction representation in which
the wave function is expanded in the basis of the unperturbed
Hamiltonian eigenstates. The single-electron unperturbed
states are

φnlm(r) = 1

Znl

jl(ξnlr/a)Ylm(r̂), (5)

where jl(x) are the spherical Bessel functions of the first kind
and order l; ξnl is the nth positive root (n = 1,2, . . .) of the
equation jl(x) = 0, Ylm(r̂) are the spherical functions (viewed
here as functions of the polar and azimuthal angles of the unit
vector r̂ = r/r), and

Znl =
√

a3

2
jl+1(ξnl) (6)

are normalization factors. The energy eigenstates are labeled
by the main quantum number n, the orbital number l, and the
magnetic number m. The unperturbed energy levels are given
by the formula

Enl = E0ξ
2
nl, (7)

where

E0 = h̄2

2mea2
(8)

and me is the electron mass.

In what follows, we use the composite indices μ, ν, η, and
ζ to label the eigenstates. Each composite index corresponds
to the triplet of quantum numbers (n,l,m). By convention, if
μ = (n,l,m), then μ′ = (n′,l′,m′). The matrix elements of the
z projection of the dipole moment operator are given by

ẑ · dμμ′ = ea
μμ′ , (9)

where


μμ′ = δmm′Rn′l′
nl (blmδl−1,l′ + bl+1,mδl+1,l′ ), (10)

δll′ are the Kronecker delta symbols, l,l′ � 0, and

blm =
√

l2 − m2

4l2 − 1
, Rn′l′

nl = 4ξnlξn′l′(
ξ 2
nl − ξ 2

n′l′
)2 . (11)

Note that the diagonal elements of 
 are all equal to zero, as
is the case for any system with a center of symmetry. Finally,
the matrix elements of the operator G are given by

Gμμ′ = −ea
μμ′Ai. (12)

The density matrix of the system, ρ, can be written in the
form ρμν(t) = ρ̃μν(t) exp(iωμνt), where ωμν = (Eμ − Eν)/h̄
are the transition frequencies and ρ̃μν(t) is the so-called
slow-varying amplitude, which obeys the following master
equation:9(

∂

∂t
+ iωμν + �μν

)
ρ̃μν

= δμν�μμNμ − i

h̄

∑
η

[Vμη(t)ρ̃ην − ρ̃μηVην(t)]. (13)

Here Nμ are the equilibrium-state populations and �μν are
phenomenological relaxation constants. Following Rautian,
we assume that

�μν = �1δμν + �2(1 − δμν). (14)

Equation (14) is the least complex assumption on �μν , which
still distinguishes the relaxation rates for the diagonal and
off-diagonal elements of the density matrix.

It can be seen that, for the case of zero external field,
ρ̃μν = δμνNμ. The Fermi statistics is introduced at this point
by writing

Nμ = 2

exp[(Eμ − EF )/(kBT )] + 1
, (15)

where EF is the Fermi energy, kB is Boltzmann’s constant,
T is the temperature, and the factor of two in the numerator
accounts for the electron spin. Conservation of particles reads∑

μ Nμ = N . When N � 1, the well-known analytical
formula for the Fermi’s energy,

EF = E0(3π2)2/3
(a

�

)2
= (3π2)2/3 h̄2

2me�2
, (16)

holds with a good accuracy. Here � is the characteristic atomic
scale, defined by the relation

�3 = �/N , (17)

where

� = 4πa3/3 (18)
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is the nanoparticle volume. Thus, �3 is the specific volume per
conduction electron. We note that � is, generally, different from
the lattice constant h. Many metals of interest in plasmonics
have an fcc lattice structure with four conduction electrons
per unit cell. In this case h = 41/3�. For example, in silver,
� ≈ 0.26 nm, h ≈ 0.41 nm, and EF ≈ 5.51 eV. At room
temperature (T = 300 K), kBT ≈ 0.026 eV, so that T = 0
is a good approximation. In this case, Nμ = 2 if Eμ � EF

and Nμ = 0 otherwise. Most numerical results shown below
have been obtained in this limit. However, to illustrate the
effects of finite temperature, we have also performed some
computations at T = 300 K. Finally, the Fermi velocity is
given by the equation

vF =
√

2EF

me

= (3π2)1/3 h̄

me�
. (19)

In silver, vF ≈ 1.2 × 108 cm/sec and, correspondingly,
c/vF ≈ 250. Electron velocities in excited states are expected
to be no larger than a few times Fermi velocity, still much
smaller than c. This justifies the use of nonrelativistic quantum
mechanics.

The solution to (13) has the form of a Fourier series:

ρ̃μν(t) =
∞∑

s=−∞
ρ̃(s)

μν exp(−isωt). (20)

The expansion coefficients ρ̃(s)
μν obey the system of equations:

ρ̃(s)
μν = δμνδs0Nμ − �(s)

μν(ω)

h̄ω

∑
η

[
Gμη

(
ρ̃(s−1)

ην + ρ̃(s+1)
ην

)
−Gην

(
ρ̃(s−1)

μη + ρ̃(s+1)
μη

)]
, (21)

where

�(s)
μν(ω) = ω

ωμν − sω − i�μν

(22)

are Lorentzian spectral factors. The optical response of
the nanoparticle is determined by the quantum-mechanical
expectation of its total dipole moment, which is given by

〈d(t)〉 = ea
∑
μν


μνρ̃μν(t). (23)

Upon substitution of (20) into (23), we obtain the expansion
of 〈d(t)〉 into temporal Fourier harmonics. We now consider
the optical response at the fundamental frequency ω, which
describes degenerate nonlinear phenomena such as the four-
wave mixing. Denoting the component of 〈d(t)〉, which
oscillates at the frequency ω, by 〈dω(t)〉, we can write

〈dω(t)〉 = D exp(−iωt) + c.c., (24)

where

D = ea
∑
μν


μνρ̃
(1)
μν . (25)

The coefficients ρ̃(1)
μν and the amplitude D in (24) can be

expanded in powers of Ai . Namely, we can write

D = �χ (Ai)Ai, (26)

where

χ (Ai) = χ1 + χ3(Ai/Aat)
2 + χ5(Ai/Aat)

4 + · · · . (27)

Here we have introduced the characteristic atomic field

Aat = e/�2 (28)

and have used the assumption that Ai is real valued; in the
more general case, the expansion contains the terms of the
form χ3|Ai/Aat|2, etc. Note that the definition of χ3 in (26) and
(27) is somewhat unconventional. The nonlinear susceptibility
χ (3), as defined in standard expositions of the subject,10 has
the dimensionality of the inverse square of the electric field,
that is, of cm2/statvolt2 = cm3/erg in the Gaussian system of
units. Here we find it more expedient to define dimensionless
coefficients χ1, χ3, χ5, etc., and expand the dipole moment
amplitude D in powers of the dimensionless variable Ai/Aat.

The first two coefficients in the expansion (27), χ1 and χ3,
have been computed by Rautian explicitly and are given by the
following series:

χ1 = (ea)2

(h̄ω)�

∑
μν

Nμν�
(1)
μν
μν
νμ, (29a)

χ3 = (ea)4A2
at

(h̄ω)3�

∑
μνηζ

Bζη
μν
μζ
ζη
ην
νμ, (29b)

where

Bζη
μν = �(1)

μνNζμ

[
�(0)

μη

(
�

(1)
μζ + �

(−1)
μζ

) + �(2)
μη�

(1)
μζ

]
+�(1)

μνNνη

[
�

(0)
ζν

(
�(1)

ην + �(−1)
ην

) + �
(2)
ζν �

(1)
ην

]
−�(1)

μνNηζ

(
�

(1)
ζη + �

(−1)
ζη

)(
�

(0)
ζν + �(0)

μη

)
−�(1)

μνNηζ �
(1)
ζη

(
�

(2)
ζν + �(2)

μη

)
. (30)

Here Nμν = Nμ − Nν . Note that all quantities inside the
summation symbols are dimensionless and so are the factors
in front of the summation symbols.

The expression (29b) involves a staggering 12-fold summa-
tion (recall that each composite index μ, ν, η, and ζ consists
of three integer indices). Rautian used the mathematical
formalism of irreducible spherical tensors and 6j symbols to
perform summation over magnetic sublevels analytically and
to reduce the expression to an 8-fold summation. However,
this approach does not make use of the orbital selection
rules, which are explicit in (10). In Sec. III, we will use
the orbital selection rules to analytically reduce (29b) to a
5-fold summation. The resultant formula is amenable to direct
numerical implementation, as will be illustrated in Sec. V.

Having performed the summation over the magnetic sub-
levels, Rautian has evaluated the resulting series by exploiting
the following two approximations:

(1) Adopt the two-level approximation.6 In this approxima-
tion, only the terms with μ = η and ν = ζ are retained in the
right-hand side of (29b).

(2) Assume that there are two dominant contributions to the
series (29). The off-resonant (Drude) contribution is obtained
by keeping only the terms with ωμν � ω in the Lorentzian
factors �(s)

μν(ω). The resonant contribution is obtained by
keeping only the terms with ωμν ≈ ω. Each contribution is then
evaluated separately by replacing summation with integration.
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Using the same approximations, we have reproduced
Rautian’s analytical results. For χ1, we obtained

χ1 = − 1

4π

ω2
p

ω + i�2

[
F1

ω + i�2
− ig1

vF /a

ω2

]
, (31)

where

ωp =
√

4πe2

me�3
(32)

is the plasma frequency and F1, g1 are dimensionless real-
valued functions, which weakly depend on the parameters of
the problem and are of the order of unity. More specifically,
F1 is very close to unity for all reasonable particle sizes
and approaches unity asymptotically when a → ∞ (we have
verified this numerically). In what follows, we assume that
F1 = 1. The function g1 depends most profoundly on the ratio
κ = h̄ω/EF . We can write, approximately,

g1 ≈ 1

κ

∫ 1

1−κ

x3/2(x + κ)1/2dx, κ = h̄ω

EF

. (33)

An analytical expression for this integral and a plot are given
in the Appendix.

Equation (31) is equivalent to combining Eqs. (3.16) and
(3.23) of Ref. 7. On physical grounds, one can argue that these
expressions are applicable only if �2/ω � 1. Indeed, in the
classical Drude model, we have

χDrude
1 = − 1

4π

ω2
p

ω(ω + iγ )
, (34)

where γ is a relaxation constant. We expect the Drude model
to be accurate in the limit a → ∞, when the second term in the
square brackets in (31) vanishes. Thus, (31) has an incorrect
low-frequency asymptote. We argue that the asymptote is
incorrect because the HRFR model disregards the Hartree
interaction potential. This will be discussed in more detail
in Sec. IV below. At this point, we assume that �2/ω � 1 and
expand (31) in �2/ω, neglect the correction to the real part of
the resulting expression, and obtain

χ1 ≈ − 1

4π

(ωp

ω

)2
[

1 − i
2�2 + g1vF /a

ω

]
. (35)

This expression corresponds to Eq. (3.28) of Ref. 7. Note
that neglecting the correction to the real part but retaining
the correction to the imaginary part in the above equation is
mathematically justified because the terms 2�2 and vF /a can
be of the same order of magnitude, as we will see below.

Comparing (35) to a similar expansion of (34), we conclude
that the size-dependent relaxation constant γ is given by

γ ≈ γ∞ + g1
vF

a
, γ∞ = 2�2, (36)

where γ∞ is the relaxation constant in bulk. It can be seen that
the ratio vF /a plays the role of the collision frequency. The
analytical result (36) is widely known and frequently used;
it will be confirmed by direct numerical evaluation of (29a)
below.

For the third-order nonlinear susceptibility χ3, we obtain,
with the same accuracy as above,

χ3 = �2

�1

α2

10π3

(a

�

)2
(

λp

�

)2 (ωp

ω

)4

×
[
F3 − i

(
F3

γ∞
ω

+ g3
(vF /a)5

ω3γ 2∞

)]
. (37)

Here α = e2/h̄c ≈ 1/137 is the fine-structure constant, λp =
2πc/ωp is the wavelength at the plasma frequency (≈ 138 nm
in silver), and F3, g3 is another set of dimensionless real-valued
functions of the order of unity. For realistic parameters, the
function F3 varies only slightly7,8 between 0.30 and 0.33; we
have taken F3 = 0.33 in the numerical computations of Sec. V.
The function g3 can be approximated by the following integral:

g3 ≈ 1

κ

∫ 1

1−κ

x5/2(x + κ)3/2dx, κ = h̄ω

EF

. (38)

The approximate formula (38) applies only for h̄ω < EF .
However, we are interested in the spectral region ω � ωp.
In silver, h̄ωp ≈ 8.98 eV and h̄ωp/EF ≈ 1.63. This leaves us
with the spectral range EF /h̄ < ω < ωp in which (38) is not
applicable. The integral (38) can be evaluated analytically; the
resulting expression and plot are given in the Appendix.

Expression (37) contains several dimensionless parameters.
For a silver nanoparticle of the radius a = 10 nm,

α2

10π3

(a

�

)2
(

λp

�

)2

≈ 71.6.

The ratio �2/�1 is more puzzling. While �2 can be related
to the Drude relaxation constant through (36), �1 does not
enter the analytical approximations (31) and (35) or the
exact expression (29a). Therefore, �1 cannot be directly
related to any measurement of the linear optical response.
It was previously suggested8 that, based on the available
experimental studies of nonequilibrium electron kinetics in
silver,11–13 �2/�1 ∼ 10. This ratio will be employed below.

Another interesting question is the dependence of the
results on the particle radius, a. It follows from the analytical
approximation (35) that χ1 approaches a well-defined “bulk”
limit when a → ∞. The characteristic length scale is vF /γ∞
(≈44 nm in silver). Of course, direct numerical evaluation of
χ1 according to (29a) is expected to reveal some dependence of
χ1 on a, which is not contained in the analytical approximation
(35), and this fact will be demonstrated below in Sec. V B.
However, it will also be demonstrated that (35) becomes very
accurate in the spectral range of interest when a � 5 nm. Thus,
the HRFR model yields a result for χ1, which is consistent with
the macroscopic limit.

The situation is dramatically different in the case of the
nonlinear susceptibility χ3. It follows from (37) that χ3

a→∞−→
O(a2). Therefore, there is no “bulk” limit for χ3. This is
an unexpected result. While some studies suggest that a
positive correlation between χ3 and a in a limited range of
a is consistent with experimental measurements,8 we cannot
expect this correlation to hold for arbitrarily large values of
a, as this would, essentially, entail an infinite value of χ3 in
bulk. Such a prediction appears to be unphysical. Of course,
Rautian’s theory is not expected to apply to arbitrarily large
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values of a because the interaction potential (2) is written
in the dipole approximation and, moreover, it assumes that
the electric field inside the nanoparticle is potential; that is,
∇ × E = 0 is a good approximation. Still, the absence of
a “bulk” limit for χ3 is troublesome. We, therefore, wish
to understand whether the quadratic dependence of χ3 on
a is a property of the HRFR model itself or an artifact of
the additional approximations made in deriving the analytical
expression (37). More specifically, we can state the following
two hypotheses:

(1) The quadratic dependence of χ3 on a is an artifact of
the approximations made in deriving the analytical expression
(37) from (29b) [these approximations are listed explicitly
between Eqs. (30) and (31)]. In this case, we can expect that
direct evaluation of (29b) will not exhibit the quadratic growth.

(2) The quadratic dependence of χ3 on a is a property of the
HRFR model itself. In particular, the absence of a “bulk” limit
for χ3 can be caused by the following reasons: (i) The HRFR
model neglects the retardation effects in large particles. (ii)
The HRFR model does not account for the Hartree interaction
potential. (In reality, interaction of the conduction electrons
with the induced charge density may be important, especially,
for computing nonlinear corrections.) (iii) The HRFR model
makes use of a phenomenological boundary condition at the
nanoparticle surface.

Verification of these hypotheses was previously hindered by
the computational complexity of the problem. In what follows,
we render Rautian’s theory amenable to direct numerical
validation. Then we show that the analytical approximation
(37) is surprisingly good. Therefore, the second hypothesis
must be correct.

III. RAUTIAN’S THEORY FURTHER DEVELOPED

It is possible to simplify (29b) without adopting any approx-
imations. To this end, we deviate from Rautian’s approach of
using irreducible spherical tensors and 6j symbols. Instead,
we directly substitute the expressions (9), (10), and (11) into
(29b). We use the selection rules in (10) and the results

Zl ≡
l∑

m=−l

b4
lm = l(4l2 + 1)

15(4l2 − 1)
, (39a)

Sl ≡
l∑

m=−l

b2
lmb2

l+1,m = 2l(l + 1)

15(2l + 1)
(39b)

to evaluate summations over all magnetic quantum numbers
and over all orbital quantum numbers but one. This leaves us
with a fivefold summation over four main quantum numbers
and one orbital quantum number. After some rearrangements,
we arrive at the following expression:

χ3 = (ea)4A2
at

(h̄ω)3�

∞∑
l=1

(ZlPl + SlQl), (40)

where

Pl =
∑

n1,n2,n3,n4

[
B

n1,l,n2,l−1
n3,l−1,n4,l

+ B
n2,l−1,n4,l
n1,l,n3,l−1

]
×R

n1,l
n3,l−1R

n2,l−1
n1,l

R
n4,l
n2,l−1R

n3,l−1
n4,l

, (41a)

Ql =
∑

n1,n2,n3,n4

[
B

n1,l,n2,l+1
n3,l−1,n4,l

+ B
n2,l+1,n4,l
n1,l,n3,l−1

+B
n4,l,n3,l−1
n2,l+1,n1,l

+ B
n3,l−1,n1,l
n4,l,n2,l+1

]
×R

n1,l
n3,l−1R

n2,l+1
n1,l

R
n4,l
n2,l+1R

n3,l−1
n4,l

. (41b)

This expression is exact within the HRFR model. The two-
level approximation corresponds to keeping only the first term
in the brackets in (40) and, further, keeping only the terms with
n2 = n3 and n1 = n4 in (41a).

IV. RELATING THE INTERNAL AND THE
APPLIED FIELDS

In the HRFR model, electrons move in a given, spatially
uniform internal field (1). In practice, one is interested in the
optical response of the nanoparticle to the external (applied)
field. We denote the amplitude of the external field by
Ae = Aeẑ. The two fields differ because of a charge density
induced in the nanoparticle. The interaction of the conduction
electrons with the induced charge density is described by
the Hartree potential. However, rigorous introduction of the
Hartree interaction into the HRFR model is problematic.
Doing so would require the mathematical apparatus of density-
functional theory. We can, however, apply here the classical
concept of the depolarizing field, although this approach is less
fundamental.

In the macroscopic theory, a sphere (either dielectric or
conducting), when placed in a spatially uniform, quasistatic
electric field of frequency ω and amplitude Ae, is polarized
and acquires a dipole moment of an amplitude D. The
electric field inside the sphere is also spatially uniform and
has the amplitude Ai . The induced charge accumulates at the
sphere surface in a layer whose width is neglected. Under these
conditions, Ai = Ae − D/a3. Note that a linear dependence
between D and Ae is not assumed here. The form of the
depolarizing field, −D/a3, follows only from the assumption
of spatial uniformity of the internal field and from the usual
boundary conditions at the sphere surface. Then the Hartree
interaction can be taken into account as follows.

Let us introduce the dimensionless variables x = Ai/Aat

and y = Ae/Aat. Then we can expand D in both variables:

D = �Aat(χ1x + χ3x|x|2 + χ5x|x|4 + · · ·), (42a)

D = �Aat(α1y + α3y|y|2 + α5y|y|4 + · · ·), (42b)

where

x = y − D

Aata3
= y − 4π

3
(α1y + α3y|y|2 + · · ·). (43)

Here we have accounted for the fact that there can be a phase
shift between the internal and the external fields; therefore,
Ai and Ae cannot be real valued simultaneously. In the theory
presented above, we assume that Ai is real valued, and this
can always be guaranteed by appropriately choosing the time
origin. In this case, Ae is expected to be complex.

The coefficients χk in (42a) can be found from Rautian’s
theory; our task is to find the coefficients αk in (42b) given
the constraint (43). To this end, we substitute (43) into (42a)
and obtain a series in the variable y. We then require that the
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coefficients in this series and in (42b) coincide. This yields an
infinite set of equations for αk , the first two of which read

χ1

(
1 − 4π

3
α1

)
= α1, (44a)

χ3

(
1 − 4π

3
α1

) ∣∣∣∣1 − 4π

3
α1

∣∣∣∣
2

− χ1
4π

3
α3 = α3. (44b)

It is convenient to introduce the linear field enhancement factor
f1 according to

f1 = 1

1 + (4π/3)χ1
= 3

ε1 + 2
, (45)

where ε1 = 1 + 4πχ1 is the linear dielectric permittivity. Then
the solutions to (44) have the form

α1 = f1χ1, α3 = f 2
1 |f1|2χ3. (46)

The factor f , which relates the external and internal field
amplitudes according to Ai = f Ae, is then found from

f = x

y
= 1 − 4π

3
(α1 + α3|y|2 + · · ·). (47)

Using (46), we find that, to first order in I/Iat ≡ |y|2 =
|Ae/Aat|2,

f = f1 − 4π

3
f 2

1 |f1|2χ3
I

Iat
. (48)

Here we have introduced the intensity of the incident
beam, I = (c/2π )|Ae|2, and the “atomic” intensity Iat =
(c/2π )|Aat|2.

Note that our approach to finding the field enhancement
factor f is somewhat different from that adopted in Ref. 8,
where the expansion (42a) has been truncated at the third
order and the truncated expression was assumed to be exact.
The results obtained in the two approaches coincide to first
order in I/Iat. In Ref. 8, higher order corrections to this result
have also been obtained. In our approach, these corrections
depend on the higher order coefficients χ5, χ7, etc., which
have not been computed by Rautian.

We finally note that the phenomenological accounting
for the Hartree interaction described in this section, while
necessary for comparison with the experiment, does not
remove the two main difficulties of the HRFR model.
Specifically, it does not fix the low-frequency limit for χ1

and does not affect the ∝ a2 dependence of χ3. Regarding
the low-frequency limit, we note that limω→0 f = 0 and the
internal field in the nanoparticle tends to zero in this limit. The
induced macroscopic charge is localized at the sphere surface
where the electric field jumps abruptly. In a more accurate
microscopic picture, the width of this surface layer is finite
and the electric field changes smoothly over the width of this
layer. Unfortunately, the classical concept of depolarizing field
cannot capture surface phenomena of this kind.

V. NUMERICAL RESULTS

A. Convergence

We have computed the Bessel function zeros ξnl using the
method of bisection and achieved a numerical discrepancy of
the equation jl(ξnl) = 0 of less than 10−15 for all values of

nmax = 120
lmax = 120

EF

E0

l

Enl

E0

12080400
1

102

104

106

FIG. 1. (Color online) Energy eigenstates, which enter the sum-
mation according to (40) and (41), for a = 10 nm and lmax = nmax =
120. The horizontal blue line shows the Fermi energy. In this example,
the total number of states below the Fermi surface is N ≈ 2.4 × 105

(counting all degeneracies) and the total number of states shown in
the figure is 2nmaxlmax(lmax + 2) ≈ 3.5 × 106.

indices. Since the function jl(x) is approximately linear near
its roots, we believe that we have computed ξnl with sufficiently
high precision.

The summation over l in (40) was truncated so that l � lmax

and the quadruple summation in (41) was truncated so that
n1,n2,n3,n4 � nmax. A typical set of energy levels used in the
summation is shown in Fig. 1 for the case a = 10 nm, lmax =
nmax = 120. Here the energy levels (normalized to E0) are
shown by dots and the horizontal axis corresponds to the orbital
number, l. Referring to Fig. 1, we note that lmax has been chosen
so that all states with l � lmax are above the Fermi surface.
Since the electron transitions occur between two states with l

and l′ such that l′ = l ± 1, the factors Nμν for any transition
involving the states with l � lmax are zero (or exponentially
small at finite temperatures). It can be seen that convergence
with l is very fast—the contribution of the terms in (40) with
l � lmax is either zero (at T = 0) or exponentially small.

The choice of nmax is a more subtle matter. Since there
are no selection rules on n, transitions can occur between
two states (one below and one above the Fermi surface) with
very different values of n and, correspondingly, very different
energies. However, transitions with energy gaps much larger
than h̄ω are suppressed by the Lorentzian factors (22). In most
numerical examples, we have chosen nmax so as to account
for, at least, all transitions with the energy gaps of 
E � 3h̄ω.
Many (but not all) transitions with larger energy gaps were
also accounted for. This approach yields a result with seven
significant figures. However, it results in too many terms in the
summation when h̄ω ∼ EF and a � 10 nm. For these values
of parameters, we have used a smaller nmax so as to account
for, at least, all transitions with 
E � h̄ω. We estimate that
the relative error incurred by this truncation is � 10%.

B. Linear response

We begin by considering the linear susceptibility χ1. In
computations, we use the commonly accepted parameters
for silver, h̄ωp = 8.98 eV (λp = 2πc/ωp = 138 nm) and
γ∞/ωp = 0.002. Here the relaxation constant �2, which enters
(29a), is determined from γ∞ = 2�2 [see (36)]. The frequen-
cies used satisfy the condition γ∞/ω � 1. More specifically,
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Analytical
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FIG. 2. (Color online) The quantity −Reχ1 as a function of
frequency for particles of different radius a, as labeled. Centered
symbols correspond to direct numerical evaluation of (29a) and
continuous curves show the Drude formula (34) in which the
size-corrected relaxation constant γ (36) has been used.

the ratio ω/ωp varies in the range 0.02 � ω/ωp � 1. We do
not consider the frequencies above ωp because silver exhibits
strong interband absorption in that spectral range. Except when
noted otherwise, all computations have been carried out at
T = 0.

Figure 2 displays the quantity −Reχ1 computed numeri-
cally by direct evaluation of (29a) and by the Drude formula
(34) with the size-corrected relaxation constant γ (36). The
factor g1 in (36) has been computed using the analytical
formula (A1). At sufficiently high frequencies, the Drude
model predicts that −4πReχ1 ≈ (ωp/ω)2 and this behavior
is reproduced for all radiuses considered with good precision.
However, at smaller frequencies, there are differences between
the analytical approximation and the numerical results. These
differences are especially apparent for a = 2 nm. In this case,
the optical response of the sphere is, effectively, dielectric
rather than metallic for ω � 0.06ωp. A similar behavior has
been observed at a = 4 nm (data not shown). The emergence

γ∞/ωp

γ/ωp

Numerical

(a) a = 2nm

Z

ω/ωp 10.1

1

0.1

0.01

0.001

γ∞/ωp

γ/ωp

Numerical

(b) a = 8nm
Z

ω/ωp 10.1

0.1

0.01

0.001

γ∞/ωp

γ/ωp

Numerical

(c) a = 16nm

Z

ω/ωp 10.1

0.1

0.01

0.001

FIG. 3. (Color online) The quantityZ defined in (49) as a function
of frequency for different particle radiuses, as labeled. Results of
direct numerical computation are compared to the size-corrected
Drude relaxation constant γ [given by (36)] and to its bulk value
γ∞ (obtained in the limit a → ∞).

of a dielectric response in metal nanoparticles of sufficiently
small size at sufficiently low frequencies has been overlooked
in the past. It occurs due to discreteness of the energy states.
Consider a particle with a = 2 nm at zero temperature. In this
case, the lowest energy electronic transition, which is allowed
by Fermi statistics (that is, a transition with Nμν 
= 0), occurs
between the states (n = 1,l = 18) and (n′ = 1,l′ = 19). The
corresponding transition frequency is ωmin ≈ 0.056ωp. It can
be seen from Fig. 2(a) that the particle becomes dielectric for
ω � ωmin.

We now turn to consideration of the relaxation phenomena.
To this end, we plot in Fig. 3 the quantity

Z = − 1

4π

ωp

ω
Im

1

χ1
(49)

as a function of frequency. We note that Z , as defined
in (49), is positive for all passive materials and, in the
Drude model, Z = γ /ωp; here γ is size corrected. It can be
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seen that the analytical formula (36) captures the relaxation
phenomena in the nanoparticle surprisingly well. However,
as in Fig. 2(a), the analytical approximation breaks down
when a = 2 nm and ω � 0.06ωp. A similar breakdown was
observed for a = 4 nm (data not shown). For all other values of
parameters, the numerically computedZ is reasonably close to
the size-corrected value of γ /ωp and exhibits the same overall
behavior. The small systematic error at higher frequencies is,
most likely, caused by the approximation (33) for g1. It was, in
fact, mentioned by Rautian that (33) is hardly accurate when
h̄ω ∼ EF .

The fine structure visible in Figs. 3(a) and 3(b) is due
to discreteness of electron states. The allowed transition
frequencies can be “grouped,” which results in the appearance
of somewhat broader peaks, clearly seen in Figs. 3(b) and
3(c). While spectral signatures of discrete states in metal
nanoparticles have been observed experimentally (including
the effect of “grouping”),14 the positions of individual spectral
peaks should not be invested with too much significance. In any
realistic system, these peaks will be smoothed out by particle
polydispersity, by variations in shape, and by nonradiative
relaxation and energy transfer to the surrounding medium.

The finite-size correction (36) to the Drude relaxation
constant is widely known and used. However, the derivations
of (36) have been, so far, either heuristic or relied on poorly
controlled approximations. In Fig. 3, we have provided, to the
best of our knowledge, the first direct, first-principle numerical
verification of (36) and of its limits of applicability.

C. Nonlinear response

We next turn to the nonlinear susceptibility χ3. The same
parameters for silver as before will be used. In addition,
the calculations require the relaxation constant �1. As was
mentioned above, the experimental value of �1 cannot be
inferred by observing the linear optical response. It was
previously suggested8 that �2/�1 ≈ 10. This value will be
used below.

In Fig. 4, we plot the absolute value of χ3 as a function of the
particle radius a for ω = 0.1ωp and for the Frohlich frequency
ω = ωp/

√
3 ≈ 0.58ωp, and compare the results of direct

numerical evaluation of (40) to the analytical approximation
(37). In the case ω = 0.1ωp, the analytical approximation is
very accurate for a � 8 nm and gives the correct overall trend
for a � 4 nm. A systematic discrepancy of unknown origin
between the approximate and the numerical results is observed
for 4 nm < a < 8 nm. In the case ω = ωp/

√
3, the analytical

approximation gives the correct trend in the whole range of
a considered. Note that, in the case ω = 0.1ωp, the absolute
value of χ3 is dominated by Reχ3 and Imχ3 for large and small
values of a, respectively. When ω = ωp/

√
3, the real part of

χ3 is dominating for all values of a used in the figure.
Consider first particles with a � 4 nm. As expected, the

discreteness of energy levels plays an important role in this
case and results in a series of sharp maxima and minima of
|χ3(a)|. As is shown in the inset of Fig. 4(a), the function
|χ3(a)| is discontinuous. These discontinuities are artifacts
of the zero-temperature approximation. The introduction of
a finite temperature (T = 300 K) removes the discontinuities
(see the inset) but does not eliminate the fine structure of

T = 300K
T = 0

3.4 3.6 3.8
105

106

107

108

Analytical
Numerical (T = 0)

(a) ω = 0.1ωp

a, nm

|χ3|

2 4 8 16 32 64

105

106

107

108

Analytical
Numerical (T = 0)

(b) ω = ωp/
√

3

a, nm

|χ3|

2 4 8 16 32 64
10

102

103

104

105

FIG. 4. (Color online) Absolute value of the nonlinear suscepti-
bility, |χ3|, computed by direct evaluation of (40) and by analytical
approximation (37) as a function of the particle radius for ω = 0.1ωp

(a) and for ω = ωp/
√

3 ≈ 0.58ωp (b). Logarithmic scale is used
on both axes. The inset in panel (a) shows a zoom of the plot for
3.4 nm � a � 3.7 nm. In the inset, the results of evaluating (40) at
T = 0 and at T = 300 K are shown.

the curve. Note, however, that the computations have been
carried out with a very fine step in a, which is, arguably,
unphysical: The parameter a in a real nanosphere can change
only in quantized steps of the order of the lattice constant h (≈
0.41 nm in silver). Moreover, the fine structure of χ3 is unlikely
to be observable experimentally due to the unavoidable effects
of particle polydispersity. Therefore, the general trend given
by the analytical approximation (37) can be a more realistic
estimate of χ3 for a � 4 nm.

Next consider the large-a behavior. For a � 8 nm, the
analytical and the “exact” formulas yield results, which are
scarcely distinguishable. In particular, the quadratic growth
of χ3 with a has been confirmed up to a = 64 nm in the
case ω = 0.1ωp—the largest radius for which numerical
evaluation of (40) is still feasible. This confirms hypothesis
2 stated above, namely, that the quadratic growth of χ3(a)
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(a) a = 4nm
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FIG. 5. (Color online) Absolute value of the nonlinear suscepti-
bility, |χ3|, computed by direct evaluation of (40) at zero temperature
and by analytical approximation (37) as a function of the frequency
for a = 4 nm (a) and for a = 10 nm (b).

is a property of the HRFR model itself rather than of the
additional approximations, which were made to derive the
analytical results.

In Fig. 5, we study the dependence of |χ3| on the frequency
ω for fixed values of a. It can be seen that the accuracy
of Rautian’s approximation improves for larger particles and
higher frequencies. At a = 10 nm, the approximation is nearly
perfect in the full spectral range considered.

D. Magnitude of the nonlinear effect and comparison with the
classical theory of electron confinement

In the previous subsection, we have plotted the coefficient
χ3, which appears in the expansion (27). The dimensionless
parameter of this expansion, Ai/Aat, contains the amplitude of
the internal electric field, Ai . However, it is the amplitude of the
external (applied) field, Ae, which can be directly controlled
in an experiment. The incident beam intensity is given by
I = (c/2π )|Ae|2. We can use the results of Sec. IV to write

D = �Ae[α1 + α3(I/Iat) + · · ·], (50)

where α1 and α3 are related to χ1 and χ3 by (46) and Iat =
(c/2π )A2

at is the characteristic “atomic” intensity. The quantity
Iat can be expressed in terms of the fundamental physical
constants and the material-specific parameter �. In the case of
silver, Iat ≈ 2.3 × 1014 W/cm2. Obviously, intensities of such
magnitude are not achievable in any experiment. However,
the magnitude of the nonlinear correction can be amplified
by the two important effects:10 the effect of synchronism
(constructive interference), which is not considered here, and

the effect of local field enhancement, which will be taken into
account by using the expressions derived in Sec. IV.

We will also compare the expression (50) to the results
obtained from the purely classical arguments.15 In Ref. 15,
we have argued that the surface charge in a polarized metal
nanoparticle cannot be confined to an infinitely thin layer.
When the width of this layer is not negligible (compared
to the particle radius), a nonlinear correction to the particle
polarizability is obtained. After some rearrangement of the
formulas derived in this reference, we can express the
amplitude D, defined analogously to (24), as

D = �Ae[β1 + β3

√
I/Iat + · · ·], (51)

where

β1 = 3

4π

ω2
p/3

ω2
p/3 − ω2 − iγ ω

, (52a)

β3 = − 3

π

�

a
β1|β1|. (52b)

We note that α1
ω/γ→∞−→ β1. That is, the linear polariz-

abilities of both theories are the same in the region of
parameters where the theories are applicable. The classical
theory, however, does not contain the low-frequency anomaly
in the linear polarizability. On the other hand, relaxation is
introduced in Ref. 15 through the phenomenological parameter
γ whose dependence on a cannot be deduced theoretically.
Below, we use the result of the quantum theory, namely,
Eq. (36), for the relaxation constant γ (52a).

It can be seen that the classical and quantum expressions
for D are quite different. The first nonvanishing nonlinear
correction in (52b) is of the order of

√
I/Iat but contains an

additional small parameter �/a. Thus, the nonlinear correction
depends differently on the incident intensity, frequency, and
particle radius a in the two theories. Additionally, Rautian’s
theory contains the parameter �1/�2, which does not enter
into the classical theory. These factors complicate a direct
comparison of the two results. We will, therefore, focus on
the trends for one particular value of the incident power,
I = 10 kW/cm2. One should bear in mind that the nonlinear
corrections depend on the incident power differently in the two
theories.

In Fig. 6, we plot the absolute value of the nonlinear
correction to the particle polarizability normalized by its
volume as a function of radius for the same values of frequency
as were used in Fig. 4. We denote the quantity being plotted
by DNL, and

DNL ≡
{

α3(I/Iat), in the “quantum” case,

β3
√

I/Iat, in the “classical” case.
(53)

The nonlinear effects should be observable in measurements
with incoherent light if |DNL| � 1. If |DNL| � 1, detection
of the nonlinear effects requires coherent laser excitation and
utilization of the effect of synchronism.

The parameters used in Fig. 6 are such that the approximate
analytical formulas for χ1 (34) and χ3 (37) are fairly accurate,
as was demonstrated above. Correspondingly, we have used
these formulas to generate the curves, which are displayed
in Fig. 6. To obtain the “quantum” curves, the following
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FIG. 6. (Color online) Absolute value of the nonlinear correction
to the nanoparticle polarizability, DNL, computed using Eq. (50) (the
“quantum” curves) and Eq. (51) (the “classical” curves) for ω =
0.1ωp (a) and ω = ωp/

√
3 ≈ 0.58ωp (b). Here DNL = α3(I/Iat) (the

“quantum” curves) and DNL = β3
√

I/Iat (the “classical” curves). The
incident power is I = 10 kW/cm2, I/Iat ≈ 4.3 × 10−11. To compute
α3, the internal field enhancement factor has been taken into account
according to (46).

procedure has been followed. First, we have computed the
function χ3(a) according to (37) for each frequency consid-
ered. Then we have computed χ1(a) according to (34) for
the same frequencies. In Eq. (34), we have accounted for
the dependence of the relaxation constant γ on a according
to (36). The computed function χ1(a) was used to compute
the linear field enhancement factor f1(a) according to (45).
Finally, we have used the functions f1(a) and χ3(a) to
compute α3(a) according to (46). The result was multiplied by
I/Iat ≈ 4.3 × 10−11. In the “classical” case, β3 was computed
according to (52), where the relaxation constant γ was size
corrected according to (36).

We now discuss the curves shown in Fig. 6 in more detail.
First, in the “quantum” case, DNL exhibits an unlimited growth
with a when a → ∞. In the classical case, this growth is
suppressed. As can be seen, the “classical” DNL decreases with
a in the case ω = 0.1ωp and seems to reach a finite limit in the
case ω = ωp/

√
3. In reality, however, the “classical” curve in

Fig. 6(b) reaches a maximum at a ≈ 44 nm and then slowly
approaches zero (the range of radiuses, which is necessary to
see this behavior clearly, is not shown in the figure). In the
classical theory, the nonlinearity is an effect of the finite size,
which vanishes in the limit a → ∞.

Second, when ω = 0.1ωp, the local-field enhancement
factor in the “quantum” theory is |f1|4 ∼ 10−8. That is, the
field is effectively screened in the interior of the nanoparticle.
Correspondingly, the nonlinear effect is very weak. In the
“classical” theory, the field enhancement factor is different;
namely, it is |β1|2 ∼ 1. This dramatic difference is explained by
the fact that the classical theory considers the induced electron

density near the nanoparticle surface where the electric field is
not entirely screened. At the Frohlich frequency, ω = ωp/

√
3,

the situation is quite different: We have

|f1|4 ∼ ω4
p/9γ 4 a→∞−→ ω4

p/9γ 4
∞ ≈ 7 × 109.

Correspondingly, the “quantum” nonlinear correction can
become very large at the Frohlich frequency; this is illustrated
in Fig. 6(b). This result is probably unphysical—one cannot
expect that DNL ∼ 103 at the modest incident intensity of
10 kW/cm2. The classical curve, however, is still bounded at
the Frohlich frequency below 10−4. We can conclude therefore
that the local-field correction plays a disproportionate role in
the quantum theory and that, if used unscrupulously, it can
predict utterly unrealistic magnitudes of the nonlinear effect.

VI. SUMMARY OF FINDINGS AND DISCUSSION

In this paper, we have further developed the quantum theory
of Refs. 6,7 (the HRFR model). The goal was to describe
the frequency and size dependence of linear and nonlinear
optical susceptibilities of spherical metal nanoparticles. We
have used the HRFR model without modification but have
managed to simplify the previously published expressions to
a point where these expressions became amenable to direct
numerical implementation. Then, we have computed the linear
and nonlinear susceptibilities numerically for various frequen-
cies and various particle sizes and compared the obtained
results to Rautian’s analytical approximations. Previously,
numerical computations of this kind have been hindered by
the overwhelming computational complexity of the problem.
We have also compared the predictions of the quantum theory
of size-dependent optical susceptibilities with the predictions
of a purely classical theory of Ref. 15. The following findings
can be reported:

(1) We have found that the approximate formulas derived
by Rautian7 are surprisingly accurate in a wide range of
parameters despite the use of a number of approximations.
In particular, we have, for the first time, verified from
first principles the correctness of the widely used finite-size
correction to the Drude relaxation constant (36).

(2) We have found that, for sufficiently small values of
radius and frequency, Rautian’s approximations break down
due to the discreteness of electron energy levels. At sufficiently
small frequencies, a silver particle with a � 4 nm in radius
behaves as a dielectric. This effect is illustrated in Fig. 2(a) for
a = 2 nm.

(3) We have found that phenomenologically accounting for
the local-field correction (see Sec. IV for details) does not
remove the two main difficulties, which are encountered in
the HRFR model, namely, the incorrect small-ω asymptote for
the linear susceptibility χ1 and the absence of a “bulk” limit
for the nonlinear susceptibility χ3. It appears that obtaining
the correct asymptotes requires the rigorous account for
the Hartree interaction potential. It is also conceivable that
obtaining the correct large-a asymptote requires accounting
for the retardation effects. However, the classical theory of
Ref. 15 is quasistatic but does not possess a large-a anomaly.
This suggests that the main focus in further development of
Rautian’s theory should be on a more accurate inclusion of
Hartree interaction.
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FIG. 7. (Color online) Functions g1(κ) and g3(κ).

One additional comment on the theory developed here
is necessary. First, we have computed only a particular
case of the nonlinear susceptibility χ (3)(ω; ω1,ω2,ω3). More
specifically, the coefficient χ3 defined in (27) is related to
the latter quantity by χ3 = A−2

at χ (3)(ω; ω, − ω,ω). However,
consideration of transient processes, generation of combi-
nation frequencies, and harmonics requires the knowledge
of χ (3)(ω; ω1,ω2,ω3) as a function of all of its arguments.
This is an important consideration. High incident intensities
are usually obtained in short laser pulses. Moreover, many
modern photonics applications such as waveguiding, etc.,
utilize short wave packets. Therefore, a proper description
of optical nonlinearities in a transient process is very im-
portant. Generalizing the mathematical formalism described
in this work to include three independent frequencies is not
conceptually difficult, although it can lead to cumbersome
calculations.

In summary, the HRFR model forms a perfect theoretical
framework for studying optical nonlinearities and finite-size
effects in nanoparticles. The only viable alternative to using
this model is to resort to density functional theory (DFT).
In a recent paper,16 we have applied DFT to study the
nonlinear electromagnetic response of metal nanofilms, but
only at very low frequencies, well below plasmonic resonance
of the system, and neglecting the relaxation phenomena.
Higher frequencies, which are of interest in plasmonics, can

be studied with the use of time-dependent DFT (TDDFT).
Although TDDFT has been used successfully to compute
linear response of nanoparticles,17–19 and, in particular, to
study the effects of surface adsorption of various molecules
on the relaxation phenomena in metal,20,21 the difficulties here
are formidable. Most importantly, there is almost no hope of
obtaining analytical approximations within DFT. It appears,
therefore, that devising a way to include the Hartree interaction
potential in the master equation (13) would be a useful and
practically relevant development of the HRFR model and of
Rautian’s theory. Perhaps, some elements of DFT can be used
to achieve this.
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APPENDIX: FUNCTIONS g1(κ) AND g3(κ)

The integrals (33) and (38) can be evaluated analytically
with the following results:

κg1(κ) = −2

9
+ 6κ

7
− 6κ2

5
+ 2κ3

3
+ 2

√
1 + κ

315
× (35 + 5κ − 6κ2 + 8κ3 − 16κ4), (A1)

640κg3(κ) = {128 + κ(κ + 2)[88 + 5κ(3κ − 8)]}√1 + κ

−{128 + κ(κ − 2)[168 − 5κ(3κ + 8)]}√1 − κ

+ 15κ5 ln
1 + √

1 − κ

1 + √
1 + κ

. (A2)

The above expressions have been obtained from (33) and (38)
without using any approximations. However, it should be kept
in mind that (33) is valid for −1 � κ , while (38) is valid for
−1 � κ � 1. Since κ = h̄ω/EF , we are interested only in the
region κ > 0. The functions g1(κ) and g3(κ) in the interval
0 � κ � 1 are shown in Fig. 7.
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