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Analytical derivation of critical exponents of the dynamic phase transition
in the mean-field approximation
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We have analyzed the dynamic phase transition of the kinetic Ising model in mean-field approximation by
means of an analytical approach. Specifically, we study the evolution of the system under the simultaneous
influence of time-dependent and time-independent magnetic fields. We demonstrate that within the approximate
analytical treatment of our approach, the dynamic phase transition exhibits power-law dependencies for the order
parameter that have the same critical exponents as the mean-field equilibrium case. Moreover we have obtained an
equation of state, with which we can prove that the time-independent field component is effectively the conjugate
field of the order parameter. Our analysis is limited to the parameter range, in which only second-order phase
transitions occur, i.e., for small applied field amplitudes and temperatures close to the Curie point. In order to
ensure the reliability of our analytical results we have corroborated them by comparison to numerical evaluations
of the same model.

DOI: 10.1103/PhysRevE.86.051101 PACS number(s): 75.10.Hk, 77.80.B−, 64.60.−i, 05.50.+q

I. INTRODUCTION

A ferromagnetic system under a time-dependent magnetic
field can exhibit a dynamic phase transition (DPT) associated
to the delayed response of the spins. The relaxation delay
of the magnetization opens up the possibility that the spins
can or cannot follow a time-dependent driving field [1,2].
The delay depends on the competition between two time
scales, namely, the period P of the driving oscillatory
field and the relaxation time τ of the magnetization itself
[1]. If the magnetization can (cannot) follow the external
field, a symmetric (nonsymmetric) phase is observed. The
symmetric and nonsymmetric phases are also referred to
as the dynamic paramagnetic and ferromagnetic phases,
respectively.

In the seminal work of Tomé and Oliveira [2], the
phenomenon of the dynamic phase transition was studied
in the mean-field approximation of the kinetic Ising model.
They showed that the order parameter Q, defined as the
mean magnetization in a full field oscillation cycle, vanishes
depending on the temperature and amplitude of the external
field for a given field frequency. Also they identified a
tricritical point that separates continuous or second-order
phase transitions from discontinuous first-order phase tran-
sitions. In the discontinuous phase transition, which appears
at low temperatures and high applied field amplitudes, the
order parameter goes to zero discontinuously and there is
a parameter range, in which symmetric and nonsymmetric
solutions are both stable or metastable. However, the origin of
this discontinuous phase transition is under controversy due
to later results, which indicate that it may be an artifact of the
mean-field approach used in these initial calculations [3,4]. On
the other hand, for small field amplitudes and temperatures
near the Curie point only continuous phase transitions are
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expected. In this case, the order parameter goes to zero
continuously, as can be seen in Fig. 1.

Given the scientific interest in dynamically ordered phases
and related phase transitions, many theoretical studies have
been performed, primarily based on the mean-field approach
[5–8] and Monte Carlo simulations [9–17]. Hereby, the author
in Ref. [5] considers the dynamics of a soft-spin Ising magnet
modeled by means of the time-dependent Ginzburg-Landau
equation. The imaginary and real parts of the susceptibility
near the dynamic transition point are studied in Ref. [6]. In
Ref. [7], analytical relations were obtained for the hysteresis
loop area, order parameter, and dynamic correlations. The
dynamic behavior of Heisenberg magnets was also studied
by several authors [10,14]. A stochastic resonance manifes-
tation of the dynamic transition was observed in Ref. [11].
Fluctuations of the order parameter and specific heat as a
function of the temperature were studied near the dynamic
phase transition in Ref. [12]. The universality aspects of
the kinetic Ising model have also been studied via dynamic
Monte Carlo simulations [13,15], showing consistence with
the critical exponents in the equilibrium case.

In spite of the many different aspects of the dynamic
phase transition that were investigated in previous works
[5–7,9–23], all these studies share a relevant common aspect.
In all of them, only an oscillating external field component
was considered. Thus, the possible role of an additionally
applied time-independent field, referred to as the bias field
Hb, and its possible role as the conjugate field to the order
parameter Q has been treated only very recently. Monte
Carlo numerical simulations [24], experimental observations
in Co/Pt multilayers [25], and numerical results based on the
mean-field approach [8] strongly suggest that Hb is at least a
significant part of the conjugate field of the order parameter Q.
While the rigorous identification of Hb as the conjugate field to
Q would be in itself a valuable contribution, it has additional
far-reaching consequences. Without having a well-established
conjugate field, investigations of the dynamic phase transition
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FIG. 1. (Color online) Phase diagram for the order parameter Q as
a function on T and h0 for P = 7τ and τ = 1. At small fields and high
temperatures the order parameter goes to zero continuously, while for
high fields and low temperatures, it goes to zero discontinuously. The
point that joins the two zones is the tricritical point (TCP).

are limited to the one-dimensional exploration of the external
parameter space, namely, by varying the period P only, once
temperature and oscillating field amplitude are chosen. This
aspect is hereby equally true for theoretical, numerical, or
experimental studies. If, however, the conjugate field h∗ can
be identified, then studies of the DPT can be extended to
the two-dimensional critical regime, which is surrounding
the critical point in the P − h∗-plane. Such two-dimensional
analyses allow for far more precise and robust identifications
of critical phenomena, as is well known from equilibrium
studies of magnetic phase transitions (see, for instance,
Ref. [26]).

In this work we present analytically derived results, which
allow us to demonstrate that in the framework of the mean-field
approximation, the DPT exhibits a power-law dependence of
the order parameter with the same critical exponents as the
mean-field equilibrium case. From our results we also extract
an equation of state that clearly identifies Hb as the conjugate
field to the order parameter Q. The analytical results have been
verified by comparing them to numerical calculations based
on the same mean-field approach.

The outline of the paper is as follows. In Sec. II, we present
the mean-field dynamic equation, upon which our theory is
based. From this dynamic equation, we derive by means of a
series expansion analytical expressions for the order parameter
Q as a function of the period P and the bias field Hb, which
show critical behavior in the form of power laws. In Sec. II, we
also describe the numerical method that is being used for the
verification of our analytical results. In Sec. III we compare the
analytical and numerical results, and in Sec. IV final remarks
are presented. Finally, in the Appendix we discuss the small
numerical differences between the analytical and numerical
results with respect to the exact values of the critical period Pc

(the period for which Q starts to deviate from zero at Hb = 0)
and verify that they are only due to the finite lattice size used
for our numerical evaluations.

II. MODEL CALCULATIONS

For a magnetic system with N spins under the influence
of a time-dependent field, the mean-field Hamiltonian of the
kinetic Ising model can be written as [2]

H = − J

N

∑
i,ji<j

SiSj − H (t)
∑

i

Si, (1)

where J > 0 is the exchange interaction constant, defined in
units of energy. In this Ising model the dimensionless spin
variables Si can only take the values ±1. The time-dependent
magnetic field H (t) is composed of an oscillating part and
a time-independent static part (the bias field), for which we
assume here

H (t) = H0 cos(ωt) + Hb, (2)

where ω and H0 are the angular frequency and the amplitude
of the oscillating field, while Hb is the bias field. In our
notation both H0 and Hb have units of energy. Even if we
consider here only the specific case of a sinusoidal oscillating
field contribution, one should notice that our results will have
applicability for systems in which the periodic time sequence
of the field is different, because the specific shape of the
time-dependent field does not affect the universal aspects
of the DPT [13]. If the system evolves according to the
Glauber stochastic dynamics [27], it is possible to show that
the magnetization of the system is given by

2πτ

P

dm(η)

dη
= −m(η) + tanh

[
m(η) + h0 cos(η) + hb

T

]
,

(3)

where h(0,b) = H(0,b)/J , η = ωt , and T is the temperature
normalized to the Curie point. The time τ corresponds to the
single spin-flip relaxation time of the magnetic system [6]. The
order parameter Q is defined as the mean magnetization in a
full field oscillation cycle [1,2]

Q = 1

2π

∫ η′+2π

η′
m(η′)dη′, (4)

where η is taken in the steady state regime of the time evolution
for m(t).

Notice that by solving numerically Eqs. (3) and (4), we can
evaluate the order parameter Q as a function of the temperature
T and the oscillating field amplitude h0, as shown in Fig. 1
for the zero-bias-field case and P = 7. Besides the general
behavior of the phase diagram, we observe a tricritical point,
which separates the discontinuous (first-order) transitions at
low temperature from the continuous (second-order) transi-
tions at higher temperatures. We have determined this point by
means of numerical inspections. However, we have not further
investigated the tricritical or low-temperature regime here,
because it has been reported that this tricritical behavior is an
artifact of the mean-field model [3,4]. We therefore decided to
focus on the second-order phase transition regime exclusively,
for which more relevant predictions for dynamic phase transi-
tions are expected in the framework of the mean-field model.
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A. Analytical method

In this section, we analytically derive the critical behavior
for the two limiting cases, in which the order parameter Q

goes to zero under the following conditions: P → Pc; hb = 0
and P = Pc; hb → 0. Here, P is the period of the oscillating
external field, i.e., P = 2π/ω, and the critical period Pc is
defined as the period, for which Q starts to deviate from
Q = 0 at zero-bias field. Above (below) this period the order
parameter is zero (nonzero). We have limited our analysis
to the parameter regime, in which only second-order phase
transitions occur, i.e., the high T and low h0 parameter
range, so that we avoid the complications of first-order phase
transitions and its uncertain origin as mentioned before [3,4].

In the equilibrium case, i.e., an Ising system without
oscillating magnetic field, the magnetization can be regarded
as a small quantity in the vicinity of the Curie temperature.
Thus, making dm/dt = 0 in Eq. (3) and considering m → 0
near to the transition point allows for an accurate analysis

of the phase transition by means of a series expansion
up to third order in m. In this way, one can obtain in a
straightforward fashion the well-known critical exponents
β = 0.5 and δ = 3 for the equilibrium mean-field theory. In the
dynamic system, however, the magnetization will oscillate in
time with amplitudes that are not necessarily small, because it
is only the dynamic order parameter Q, which will be small in
the vicinity of the dynamic phase transition. Therefore, it is not
trivial to derive analytical expressions for the dynamic phase
transition and the corresponding order parameter behavior and
associated power laws. Instead, we need to consider some
approximations, which are discussed in the following.

For the purpose of our analysis, we write the magnetization
as

m(η) = Q + �(η), (5)

with a time-periodic term �(η) and the nonperiodic term, given
by the order parameter Q. Inserting Eq. (5) into Eq. (3), we
obtain

2πτ

P

d�(η)

dη
+ Q + �(η) = tanh

[
Q + �(η) + h0 cos(η) + hb

T

]
. (6)

Close to critical point the order parameter is a small quantity, therefore we expand the right-hand side of Eq. (6) up to third order
with respect to Q and to first order in hb, which gives us

2πτ

P

d�(η)

dη
= −Q − �(η) + tanh [X(η)] + sech2 [X(η)]

hb

T

+
{

sech2 [X(η)] − 2 sech2 [X(η)] tanh [X(η)]
hb

T

}
Q

T

+
{
−sech2 [X(η)] tanh [X(η)] + (−2 + cosh [2X(η)] sech4 [X(η)]

) hb

T

}
Q2

T 2

+
{
−2 + cosh [2X(η)] sech4 [X(η)] − sech5 [X(η)] (−11 sinh [X(η)] + sinh [3X(η)])

hb

T

}
Q3

3T 3
, (7)

where we have defined the periodic function

X(η) = �(η) + h0 cos(η)

T
. (8)

One should notice that the previous expansion can be justified
since we want to analyze the dynamic behavior of the order
parameter in the case P → Pc, which implicates that Q is
small. We also consider hb to be a small quantity, because
the critical point is associated with hb = 0, so that hb can be
made arbitrarily small for the exploration of the critical regime.
After integrating Eq. (7) for a period of length P , we obtain
the following equation:

Q3

3T 2
=

(
I1(P ) − 2πT

I2(P )

)
Q +

(
I1(P )

I2(P )
+ Q2

T 2

)
hb, (9)

where the integrals Ii(P ) in Eq. (9) are defined as

I1(P ) =
∫ 2π

0
sech2 [X(η)] dη (10)

and

I2(P ) =
∫ 2π

0
(cosh [2X(η)] − 2) sech4 [X(η)] dη. (11)

In Eq. (9), we can neglect the term Q2hb, because in the case
hb → 0 the order parameter goes to zero at Pc, while I1/I2

does not, which can be seen in Fig. 2. Therefore we arrive to

hb = 2πT − I1(P )

I1(P )
Q + I2(P )

3T 2I1(P )
Q3. (12)

With Eq. (12), we have obtained the so-called state equation,
which connects the key quantities of our system, namely,
the order parameter Q, the period P , and the nonoscillating
external field hb for every choice of T and h0.

In Eqs. (10) and (11) we have highlighted the P dependence
of I1 and I2 since �(η) depends on P , although they also
depend on the other relevant parameters such as h0, T ,
etc. It should also be mentioned that Eq. (12) has exactly
the same form as the equation of state for the equilibrium
mean-field model, if one replaces hb with h and Q with m.
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FIG. 2. (Color online) Integrals (a) I1 and (b) I2 defined in
Eqs. (10) and (11) as a function of P for several combinations of
T and h0. The respective T and h0 values for both plots are given
by the legend in (b). In (a) all curves have a highlighted dot, which
is the point that is associated with the critical period Pc condition,
Eq. (14). We consider τ = 1 everywhere.

This equivalency can be considered to be the formal proof that
hb is the conjugate field to Q, just as h is the conjugate field
to m.

In the case hb = 0, Eq. (12) reduces to Q = 0 or

Q2 = 3T 2

(
I1(P ) − 2πT

I2(P )

)
. (13)

Equation (13) allows us to derive the critical point condition,
because when P = Pc, the order parameter Q is zero and
therefore, the critical point is defined by

I1(P = Pc) = 2πT . (14)

One should notice that in the absence of an oscillating
applied field (h0 = 0), the periodic function �(η) is zero, and
according to Eq. (10), I1 = 2π . Correspondingly, Eq. (14)
establishes that the normalized temperature T = 1 is a critical
point, a result that reflects exactly the equilibrium case. In
others words, we have derived a critical condition for the
dynamic phase transition that also applies to the equilibrium
case, where the Curie temperature gives the critical point, at
which the order parameter vanishes.

Now, we consider the bias field in the limit hb → 0 with
P = Pc. Using the condition (14) in Eq. (12) we arrive at
the following critical behavior for the order parameter as a

function of the bias field:

Q = T

(
6π

I2(Pc)

)1/3

h
1/3
b . (15)

This formal equivalency to the equilibrium case corroborates
the bias field as the conjugate field, and also results in a critical
exponent δ = 3 that is identical to the exponent obtained in
mean-field approximation for the equilibrium system. The
relevant aspect here is that this result is valid for any periodic
function �(η) and therefore underscores the generality of our
claim.

With respect to Eq. (13), one needs to carefully analyze
the behavior of the integrals Ii(P ) as a function of the period
P . In the approximation (7) we assume that we are close to
the critical period Pc, because in this case we can consider
Q as a small quantity, but this condition is not explicit in
the definitions (10) and (11). Thus, we need to evaluate the
integrals Ii(P ) for P in the vicinity of Pc. In Fig. 2, we solved
numerically the integrals I1(P ) and I2(P ) for several values of
T and h0. The dots in Fig. 2 are representations of the critical
condition Eq. (14) and thus, they indicate the critical period.
As is shown in this figure, the behavior of the integrals around
the critical period is that of a regular function, meaning that
they do not show any critical behavior themselves. This regular
behavior of the integrals can be understood because they are
defined according to the Taylor expansion done to derive Eq.
(7), which implies that they are evaluated near Q = 0 and
therefore they do not have irregularities at P = Pc. Based on
this idea, we are going to expand the integrals (10) and (11) for
P close to the critical period, namely, we expand the right-hand
side of Eq. (13) near P = Pc, and we obtain

Q = T

(
3|∂P I1(P )|P=Pc

I2(Pc)

)1/2

(Pc − P )1/2 . (16)

Equation (16) allows us to establish the critical behavior
Q (P → Pc; hb = 0) ∝ (Pc − P )β with the critical exponent
β = 0.5, which also coincides with the critical exponent
obtained in the mean-field approximation at equilibrium [28].

The equation of state, Eq. (12), its implications, and the
critical behavior given by relations (15) and (16) are the main
results presented in this paper. They establish the identity of
the conjugate field to the order parameter Q and demonstrate
that the critical exponents of Q have the same values that apply
to the magnetization vs temperature and field relations in the
equilibrium case.

B. Numerical method

As mentioned before, the analytical results have been
corroborated by numerical calculations based also on the
mean-field approach [Eq. (1)]. Even though details of our
calculations have been described previously in Ref. [8], we
report key aspects here again for transparency.

By means of discretizing the differential equation, Eq. (3),
into K points we obtain

m(k) = F [m(k)] = −K

2

ωτ

2π
[m(k + 1) − m(k − 1)]

+ tanh

{
m(k) + h0 sin (2πk/K) + hb

T

}
, (17)
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as a system of coupled nonlinear algebraic equations, where
k is the discretization index running from 1 to K to represent
a complete oscillation cycle within the calculation. The order
parameter Q is then given as the magnetization average over
all k points:

Q = 1

K

K∑
k=1

m(k). (18)

Contrary to analytical calculations where the approach to the
dynamically stable state solution is described by the actual
dynamic solution of the differential equation, the discretized
equation system (17) requires an iterative process to achieve
a steady-state solution. In order to minimize the calculation
time, we have chosen the magnetization m(k) for the first
iteration step to be initialized as a sinusoidal function with the
same period as the applied field and in phase with it plus a
continuous magnetization term, namely,

mi=1 = 0.15 + 0.4 sin

(
2π

k

K

)
. (19)

For iteration i + 1, m(k) is calculated from m(k) for iteration
i by evaluating

mi+1(k) = mi(k) + s {F [mi(k)] − mi(k)} , (20)

whereby F [m(k)] for every i is determined by utilizing
Eq. (17). In order to keep the iteration procedure stable we
have chosen s < 1 and specifically implemented s = 0.5 in
our iteration scheme. We consider the numerical solution of the
dynamically stable state achieved, when the cut-off condition,
which is defined as

max {F [mi(k)] − mi(k)} < 10−10,

is fulfilled. This means that the maximum difference between
the F [m(k)] and mi(k) is lower than 10−10 for all k = 1 to
K . If not stated otherwise, K was set to 200 for our numerical
calculations. Numerical evaluations for larger K were also
performed, as discussed in the Appendix, but did not result in
any relevant difference, except for the absolute value of the
critical period Pc, which is K dependent.

III. RESULTS AND DISCUSSION

In this section we compare the analytically derived critical
behavior given by Eqs. (15) and (16), with the numerical
results. First, we analyze the behavior of the order parameter
vs P/Pc in the case hb = 0, i.e., Eq. (16). Second, we check
the critical behavior given by Eq. (15), i.e., we discuss the case
P = Pc when a small external field hb is applied to the system.

The behavior in the case Q(P → Pc; hb = 0) vs P/Pc

[29] is displayed in Fig. 3, where several curves are shown
for different h0 and T parameters calculated using Eq. (16)
(solid lines) and obtained by numerical evaluations (dots). As
expected, for lower T and higher h0 one begins to see some
small discrepancies between both methods, but overall, there
is very good agreement between the analytical and numerical
results, thus validating our analytical approximations. Hereby,
it is important to highlight that in all of the analytic results
presented here, we have not used any fitting or calibration
factor.

FIG. 3. (Color online) Order parameter as a function of P/Pc.
The solid lines represent analytical results and the dots are numerical
results. From (a) to (d) the temperature changes from 0.95 to 0.8,
illustrating that the quality of our analytical approach degrades with
decreasing temperature. We consider τ = 1 everywhere.

The small discrepancies can be explained as follows. At
lower temperatures, the order parameter Q is higher for the
same P/Pc ratio (see Fig. 3), therefore our approximation of
small Q used to derive Eq. (7) begins to lose its validity and the
analytical approach is less precise. Thus, we do not expect that
our results can be applied in the entire temperature range in the
same way, because the resulting Q values change substantially
for identical P/Pc ratios, as can be observed in Fig. 3 for the
different temperatures. But despite these limits, the analytical
expression has a substantial reliability range.

In Fig. 4 we show the case Q(P = Pc; hb → 0), where
we compare the results from Eq. (15) with the numerical
solutions. Also here, one can see that the analytical critical
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104 hb 

FIG. 4. (Color online) Order parameter as a function of the bias
field. The solid lines are the analytical results from Eq. (15) and the
dots correspond to the numerical results. The temperature decreases
from (a) 0.95 to (d) 0.8, showing that, for the lower temperatures [(c)
and (d)], the analytical curve starts to deviate from the numerical one
as the bias field increases.

behavior obtained in Sec. II A is in very good agreement with
the numerical results, and therefore corroborates the validity of
our analytical approach. But despite this very good quantitative
agreement, it is also evident from Fig. 4 that the precision
deteriorates in terms of the applicable hb range, as one moves
to lower temperatures.

IV. FINAL REMARKS

We have developed an analytical method to study the
dynamic phase transition in an Ising ferromagnet in mean-field
approximation. We have obtained an analytic state equation
[Eq. (12)], which allowed us to demonstrate the power-law

behavior of the order parameter as a function of the bias field
[Eq. (15)] and the period [Eq. (16)]. We have also shown that
the bias field plays the role of the conjugate field here, as
well as exhibits the same critical exponent (δ = 3) as in the
mean-field equilibrium case.

We have compared the analytical results with precise nu-
merical evaluations, and we have found very good agreement
between both approaches. Therefore, we can conclude that the
theory and approximations presented in this work are valid
and useful in a considerable temperature range close to the
Curie point, where second-order dynamic phase transitions
occur. The reason for the observed agreement between the
analytical and numerical approach is of course the fact that
both methods are derived from the same starting point, namely,
the dynamic equation (3). However, in contrast to any direct
numerical solution of Eq. (3), the analytical method allows
us to derive the universal aspects of the critical behavior in
closed form and furthermore, enables us to derive the state
equation, Eq. (12). However, it is clear that further results based
on more advanced (non-mean-field) models, such as dynamic
Monte Carlo simulations, for instance, will be most helpful to
obtain a more detailed understanding of the critical behavior
of dynamic phase transitions. It would be most interesting
to demonstrate, if the here obtained results, especially the
existence of a state equation could be verified by such advanced
method, and it is our hope that this work will stimulate exactly
these types of investigations.

While previous numerical results suggested the same
critical exponents as for the equilibrium mean-field theory,
our analytical treatment can be considered a real proof since
we have derived the critical exponents β = 0.5 and δ = 3
in a formally closed analytic form. Therefore, our theory
identifies the universal aspects of the second-order dynamic
phase transition in mean-field Ising ferromagnets in the
presence of both an oscillating external field and a static bias
field.

FIG. 5. (Color online) Order parameter as a function of the period
normalized to the analytical critical period for numerical evaluations
of different lattice sizes. The agreement between analytical and
numerical results continuously improves for increasing K . The inset
shows an extrapolation for the numerically determined Pc(K) values
in the limit of 1/K → 0.
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APPENDIX

As mentioned in Secs. II B and III, the numerically extracted
critical period Pc depends on the lattice size K , and thus
differs from the corresponding Pc values that are obtained

analytically. Thus, in order to verify that this difference is
due to the finite lattice size K only, we calculated Q versus
P for different K values by means of numerical evaluations
for h0 = 0.25 and T = 0.95. In Fig. 5 we show the influence
of the lattice size on Pc by representing the order parameter
versus period normalized to the critical period calculated from
the analytical solution Pc. One can observe that the Pc(K)
values extracted from the numerical calculations approach
the analytical Pc value as K increases. The inset of Fig. 5
shows the critical period Pc(K) extracted from the Q vs P

data sets and normalized to the analytical value of Pc as a
function of 1/K . Using a linear approximation, shown as a
dashed line in the inset of Fig. 5, we find that the extrapolated
Pc(K)/Pc value is 0.999 ± 0.001 for K → ∞, which confirms
that the Pc differences in between our numerical calculations
and the analytical formulation are solely due to finite lattice
size effects.
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[2] T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
[3] G. Berkolaiko and M. Grinfeld, Phys. Rev. E 76, 061110 (2007).
[4] X. Shi and G. Wei, Phys. Lett. A 374, 1885 (2010).
[5] M. F. Zimmer, Phys. Rev. E 47, 3950 (1993).
[6] M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550

(1995).
[7] M. Acharyya, Phys. Rev. E 58, 179 (1998).
[8] O. Idigoras, P. Vavassori, and A. Berger, Physica B 407, 1377

(2012).
[9] W. S. Lo and R. A. Pelcovits, Phys. Rev. A 42, 7471 (1990).

[10] M. Acharyya, Phys. Rev. E 69, 027105 (2004).
[11] M. Acharyya, Phys. Rev. E 59, 218 (1999).
[12] M. Acharyya, Phys. Rev. E 56, 1234 (1997).
[13] G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys.

Rev. E 63, 016120 (2000).
[14] H. Jang, M. J. Grimson, and C. K. Hall, Phys. Rev. B 67, 094411

(2003).
[15] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett.

81, 834 (1998).
[16] G. Korniss, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 66,

056127 (2002).
[17] G. M. Buendı́a and P. A. Rikvold, Phys. Rev. E 78, 051108

(2008).
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