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The van der Waals coefficients between quasispherical nanostructures can be modeled accurately and

analytically by those of classical solid spheres (for nanoclusters) or spherical shells (for fullerenes) of

uniform valence electron density, with the true static dipole polarizability. Here, we derive analytically

and confirm numerically from this model the size dependencies of the van der Waals coefficients of all

orders, showing, for example, that the asymptotic dependence for C6 is the expected n2 for pairs of

nanoclusters An-An, each containing n atoms, but n2:75 for pairs of single-walled fullerenes Cn-Cn. Large

fullerenes are argued to have much larger polarizabilities and dispersion coefficients than those predicted

by either the standard atom pair-potential model or widely used nonlocal van der Waals correlation energy

functionals.

DOI: 10.1103/PhysRevLett.109.233203 PACS numbers: 34.20.Gj, 36.40.�c, 68.65.�k

The van derWaals attraction between two distant objects
arises from correlations between density fluctuations on
each, and can bind closed-shell objects. In particular, nano-
clusters can form a molecular solid with a high sublimation
point [1]. For two spherical objects A and B with centers
separated by distance d, the nonretarded van der Waals
interaction is [2]

EvdW ¼ � CAB
6 =d6 � CAB

8 =d8 � CAB
10 =d

10 � . . . (1)

The coefficients can be computed accurately from corre-
lated wave functions only when the objects are atoms or
small molecules. Standard semilocal density functionals
for the exchange-correlation energy fail for the coeffi-
cients, predicting no interaction between nonoverlapped
densities. This error is standardly corrected by using long-
range additive pair potentials between atoms or effective
atoms [3–6], or by using nonlocal correlation energy
functionals developed to yield such a long-range inter-
action [7–11].

Recently, in an extension of our earlier work [12,13], we
have found [14,15] a way to estimate the van der Waals
coefficients accurately between large quasispherical nano-
structures, by modeling them as classical solid spheres or
spherical shells of uniform valence electron density, with
the outer radii fixed by accurate values for the static dipole
polarizability of each nanostructure. Reference [15] pre-
sented the needed formulas for the coefficients of all
orders, neglecting the energy gap except insofar as it
affects the outer radius via Eq. (5) below. Reference [15]
also discovered numerically that the size dependence of C6

was the expected n2 (the number of ways of pairing one
atom in object A with one in B) for solid nanocluster pairs

An-An, but showed a much stronger increase with the
number of atoms n for single-walled fullerene pairs
Cn-Cn. Here we will derive the asymptotic (n ! 1) de-
pendence of the van der Waals coefficients of all orders for
both kinds of nanostructures, arguing that large fullerenes
are unsuited to description either by atom pair potentials or
by standard nonlocal van der Waals correlation energy
functionals, and explaining why.
We begin with the second-order perturbation expression

[2] for the van der Waals coefficient

CAB
2k ¼ ð2k� 2Þ!

2�

Xk�2

l1¼1

1

ð2l1Þ!ð2l2Þ!
Z 1

0
du�A

l1
ðiuÞ�B

l2
ðiuÞ;

(2)

where l2 ¼ k� l1 � 1. Here, �A
l ðiuÞ is the 2l-pole

dynamic polarizability (multipole linear response to an
applied uniform electric field) of system A, evaluated at
imaginary frequency iu (l ¼ 1 dipole, 2 quadrupole, 3
octupole). Now consider a classical electrodynamic model,
in which the N valence electrons of the nanostructure
are distributed with uniform density � ¼ N=fð4�=3Þ½R3 �
ðR� tÞ3�g over the spherical shell of inner radius R-t and
outer radius R. For a solid sphere, the shell thickness t
reduces to the outer radius R. The dielectric function is [16]

"ðiuÞ ¼ 1þ!2
p=ð!2

g þ u2Þ; (3)

where !p ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
is the plasma frequency and !g is the

energy gap. Equation (5) of Lucas et al. [17] with this "
(and "i ¼ "e ¼ 1) then gives the polarizability of this
model system,
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�lðiuÞ ¼ R2lþ1 !2
l

!2
l þ!2

g þ u2
1� �l

1� �lðiuÞ�l ; (4)

where !l ¼ !p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð2lþ 1Þp

is the natural frequency of

the lth normal mode or surface plasmon in a solid
metal sphere, �l ¼ ½ðR� tÞ=R�2lþ1 ¼ ð1� t=RÞ2lþ1, and
�lðiuÞ ¼ !2

l ~!
2
l =½ð!2

l þ!2
g þ u2Þð ~!2

l þ!2
g þ u2Þ�. Here,

~!l ¼ !p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 1Þ=ð2lþ 1Þp
. The integration over u in

Eq. (2) can be done analytically, and the result is presented
in the Appendix.

It is clear that the energy gap !g can be ignored (as it

has been in our previous work and will be here) when
!2

g � !2
p. Table I shows that even for the fullerene with

the largest energy gap [16], C60, this is a valid approxima-
tion. Then the solid sphere or spherical shell is treated
as metallic, �lð0Þ ¼ 1, and the static dipole polarizability
is just

�1ð0Þ ¼ R3 ð0< t � RÞ: (5)

Eq. (5) is independent of t=R for a familiar classical reason
from freshman physics: The equilibrium charge density on
a conductor is distributed over its surface to create an
induced field that cancels the external electric field inside
the conductor. Because the van der Waals coefficients are
sensitive to the static dipole polarizability, we employ the
most sophisticated and realistic values of it that we can find
to define the outer radius R. Then, for a single-wall fuller-
ene with a known radius Rn for the nuclear framework [18],
we define the thickness t as 2ðR� RnÞ.

For a variety of real nanoclusters and fullerenes
(Tables II and III, S2), this model predicts C6 coefficients
that agree well (mean absolute relative error about
7% [15]) with the best reference values we can find (typi-
cally time-dependent density functional or Hartree-Fock
values for Nan-Nan;Nan-C60, and C60-C60). It also predicts
higher-order van der Waals coefficients which we believe
are realistic. For example, it predicts C8 for a pair of C60

fullerenes within 8% [15] of a reference value [19].
[Higher accuracy, e.g., 3% for atom pairs, seems attainable

from formulas [12,13,15] that employ a more-realistic
radially varying density �ðrÞ.]
To understand how this model can be accurate, even

when the real system has an energy gap and a highly
nonuniform density (and even for atoms [15]), consider
Eq. (2) for C6 (k ¼ 3). The model smoothly interpolates
the dynamic dipole polarizability �1ðiuÞ from its exact
static (u ¼ 0) limit to zero (u ! 1), in a way that is exact

TABLE I. Effect of the energy gap !g on the static multipole
polarizabilities of a fullerene otherwise resembling C60, and on
the van der Waals coefficients for a pair of such identical
fullerenes, according to Eq. (4) and the Appendix. The outer
radius is R ¼ 8:11 bohr and the shell thickness is t ¼ 2:76 bohr
from Table 4. The calculated gap in the Kohn-Sham orbital-
energy spectrum for C60 is 0.0764 hartree [18,19]. (atomic units)

!g
�1ð0Þ
103

�2ð0Þ
105

�3ð0Þ
107

C6

103ð60Þ2
C8

105ð60Þ2
C10

107ð60Þ2

0 0.533 0.351 0.231 0.038 0.138 0.414

0.0764 0.526 0.348 0.229 0.037 0.136 0.408

0.382 0.497 0.335 0.222 0.034 0.127 0.385

0.764 0.465 0.320 0.214 0.031 0.117 0.359

7.64 0.220 0.182 0.130 0.010 0.045 0.150

TABLE III. Model outer radius R ¼ �1ð0Þ1=3, shell thickness
t ¼ 2ðR� RnÞ, and van der Waals coefficients for single-walled
fullerene pairs Cn-Cn, in atomic units, demonstrating the pre-
dicted asymptotic behavior of Eq. (8). Four valence electrons per
atom. The realistic reference values for �1ð0Þ and the coeffi-
cients C6, C8, and C10 for n � 60 are from Ref. [15]. For n > 60,
see the explanation in the second paragraph following Eq. (10).
From n ¼ 20 to 3840, C6 increases by a factor of more than
394 000, and C10 by more than 5:5� 109. Note that the asymp-
totic limit (n ! 1) is reached slowly when t=R differs from 1.
To the extent that the larger fullerences are nonspherical (e.g.,
icosahedral in C540) or have an unusual band structure [24], the
predictions in this table may deviate from realism, but they
suffice to establish in principle the failure of the atom pair-
interaction model, in which C6 � n2 as n ! 1.

n R t C6

n11=4
C8

10n15=4
C10

100n19=4

20 5.13 2.40 2.75 1.98 1.14

60 8.11 2.76 1.75 1.07 0.53

240 14.46 2.76 1.00 0.37 0.20

540 20.88 2.76 0.82 0.23 0.14

960 26.91 2.76 0.70 0.16 0.11

2160 40.12 2.76 0.67 0.11 0.10

3840 51.95 2.76 0.57 0.08 0.09

TABLE II. Model radius R ¼ �1ð0Þ1=3 and van der Waals
coefficients for Nan-Nan, in atomic units, demonstrating the
predicted asymptotic behavior of Eq. (7). One valence electron
per atom. The realistic reference value for �1ð0Þ and the
coefficients C6, C8, and C10 (from the Appendix with !g ¼ 0)

are from Ref. [15]. From n ¼ 2 to 92, C6 increases by a factor of
more than 1000, and C10 by more than 150,000.

n R C6

103n2
C8

105n8=3
C10

107n10=3

2 6.38 1.11 1.49 1.65

4 8.00 1.08 1.44 1.59

6 9.06 1.04 1.34 1.45

8 9.60 0.87 1.05 1.05

10 10.17 0.81 0.95 0.91

12 11.03 0.89 1.08 1.08

14 11.82 0.96 1.21 1.26

18 11.99 0.70 0.77 0.70

20 12.57 0.74 0.83 0.78

40 15.18 0.61 0.63 0.54

58 16.98 0.58 0.59 0.49

92 19.56 0.55 0.54 0.44
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for a classical metallic spherical shell and useful for many
other densities. (For the solid-sphere u dependence, see
figures in Ref. [13].)

What is the asymptotic (n ! 1) behavior of the coeffi-
cient CAA

2k between two identical quasispherical nanostruc-

tures, each containing n atoms? We may expect that the
density � tends to a constant in this limit, as does the
thickness t of a single-walled fullerene. (In fact, we find
only weak variation of the density from the smallest to the
largest clusters of a given chemical element.) Then the
asymptotic behavior is controlled by R, and by simple
geometry

n� R�; (6)

where � is the dimensionality (3 for a solid sphere where
the atoms are distributed over the three-dimensional
interior, or 2 for a single-walled fullerene where the atoms
are distributed over the two-dimensional surface of the
sphere). If we ignore the dependence of �l upon R (as we
can for a solid sphere where �l ¼ 0 for all R), we easily
find from Eqs. (2) and (4) that

CAA
2k � R2k � n2k=� ð� ¼ 3Þ: (7)

In particular, Eq. (7) makes CAA
6 � n2 for � ¼ 3 (solid

spheres), but CAA
6 � n3 for � ¼ 2 (fullerenes). The atom

pair-potential picture predicts n2 for both, since n2 is the
number of ways to pair an atom in the first nanostructure
with one in the second. Within the atom pair-potential
model, this n2 dependence applies only for C6, because
r�6
ij equals d�6 plus higher-order corrections that contrib-

ute to C8 and higher-order coefficients. We will show
elsewhere [20] that the pair interaction model of Ref. [3]

predicts C8 � n8=3 and C10 � n10=3, also in agreement with
Eq. (7) for � ¼ 3.

The simple analysis leading to Eq. (7) is not quite
right for a single-walled fullerene, for which �l !
1� ð2lþ 1Þt=R as R ! 1. In this case, we have to revert
to the equations in the Appendix, which show that

CAA
2k � R2kðt=RÞ2=ðt=RÞ3=2 � R2k�1=2 � nð2k�1=2Þ=�

ð� ¼ 2;metallicÞ (8)

Then CAA
6 � n2:75 for a pair of identical single-walled

fullerenes. All of the van der Waals coefficients between
identical single-walled fullerenes grow much faster with n
than the atom pair-potential model predicts. For example,
if we use the same C6 for a pair of bound carbon atoms
that was used in Ref. [6], we find C6 for C20-C20 to be
ð20Þ2ð26:4Þ ¼ 10 500 (10 400), for C60-C60 ð60Þ2ð26:4Þ ¼
94 900 (137 000), and for C3840-C3840 ð3840Þ2ð26:4Þ ¼
3:9� 108ð4:1� 109Þ (where the values in parentheses
are accurate ones from our spherical-shell model [15]).
The simple explanation is that the fullerene is essentially
metallic with all its atoms distributed abnormally far from
its center, so these atoms can make a larger static dipole

polarizability [Eq. (5)] and van der Waals interaction than
they could if distributed with the same density over a
solid sphere.
The fullerenes have an energy gap !g that tends to zero

as n ! 1 and the surface tends to graphene. In fact, as
discussed in the Appendix, it seems that

lim
n!1ð2=3Þð!g=!pÞ2=ðt=RÞ ¼ 0 (9)

for the fullerenes. If Eq. (9) did not hold, we would have

CAA
2k � R2kðt=RÞ2 � R2k�2 � nð2k�2Þ=�

ð� ¼ 2; nonmetallicÞ: (10)

Eq. (10) would predict the normal behavior CAA
6 � n2.

Tables II and III and S1 [21] show that our analytic
asymptotic behaviors are nicely confirmed for C6, C8,
and C10 by our model calculations for the solid-sphere
clusters Nan-Nan and Sin-Sin and the hollow-sphere
single-walled fullerene clusters Cn-Cn. Most of the input
used to construct these tables was taken from Ref. [15],
which also lists the sources for the accurate reference
values.
In our earlier work [15], we took the static dipole polar-

izabilities �1ð0Þ for the larger fullerenes Cn (n > 60) from
a tight-binding model [18,19]. But we were suspicious of
these values, because they made the thickness t increase
from the reasonable t ¼ 2:76 bohr for n ¼ 60 to the unrea-
sonably large t ¼ 20:97 bohr for n ¼ 3840. Here we have
instead fixed t ¼ 2:76 bohr for all n � 60, which leads to a
static dipole polarizability ðRn þ t=2Þ3 for n ¼ 3840 that is
only 60% of that predicted by the tight-binding model. We
believe that our revised static polarizabilities for the larger
fullerenes are essentially correct.
We can also predict and confirm the asymptotic size de-

pendenceofCAB
2k forNan-C60. Thehighest contributingpower

of RNa is ðRNaÞ2k�3, so C2k � nð2k�3Þ=3 (Table S2 [21]).
The larger single-walled fullerenes pose a challenge

not only to the atom pair-potential model but also to a
nonlocal van der Waals correlation energy functional of the
form [7–11]

Ec½n�¼
Z
d3r

Z
d3r0gðnð~rÞ;rnð~rÞ;j~r0 � ~rj;nð ~r0Þ;rnð ~r0ÞÞ:

(11)

These functionals are designed to produce the leading
term of Eq. (1), but not necessarily with the correct value
for the coefficient CAB

6 . By comparison with Eq. (2), it is

clear that these functionals make a generalized gradient
approximation for the static dipole polarizability

�A
1 ð0Þ ¼

Z
d3rhA½nð~rÞ;rnð ~rÞ�: (12)

Vydrov and Van Voorhis [22] have extracted the corre-
sponding CAB

6 coefficients between small molecules for

several of the van der Waals correlation functionals. The
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Langreth-Lundqvist 2004 (vdW-DF) [7] has a mean abso-
lute relative error of 20%, which increases to 60% (with all
coefficients underestimated) in the Langreth-Lundqvist
2010 (vdW-DF2) [8]. Their own Vydrov-Van Voorhis
2009 [9] and 2010 [10] functionals both have the same
CAB
6 , with a mean absolute relative error of only 10%. But it

is clear that Eq. (12) can be right for solid spheres only by
being wrong for hollow conducting spheres. If we regard
our sharply cutoff densities as limits of smoother exponen-
tially decaying densities, we easily find that the Vydrov-
Van Voorhis ‘‘local polarizability model’’ [22] of the form
of Eq. (12) predicts for a spherical shell

�VV
1 ð0Þ ¼ R3 � ðR� tÞ3: (13)

At constant density, Eq. (13) is proportional to the
number of atoms n and thus consistent with the atom
pair-potential model. Comparison with Eq. (5) shows that
Eq. (13) is correct for a solid sphere (t ¼ R), but not for a
hollow conducting sphere, where it predicts a static dipole
polarizability smaller than the exact R3 (0:85R3 forC20 and
0:71R3 for C60, etc.). The polarizability itself can be a
radically nonlocal functional of the electron density. This
effect is captured by our present approach, by the random
phase approximation [23,24], and by time-dependent den-
sity functional theory. A nonlocal polarizability model is
also employed, at low computational cost, in Ref. [25],
where it was found to work well for normal molecules and
clusters.

To confirm the conclusions of the preceding paragraph,
we have used the Vydrov-Van Voorhis 2010 functional
to evaluate the C6 coefficients for Na20-Na20, C20-C20,
and C60-C60. For spherical shells, Eq. (14) of Ref. [22]
has been evaluated exactly by solid geometry: CVV10

6 ¼
0:006766!p½ð2RÞ3 � ð2R� 2tÞ3�2. The results (in com-

parison to accurate values from Ref. [15]) are respectively
297 000 (297 000), 8200 (10 400), and 86 200 (137 000)
atomic units. Moreover, the accurate values cited here are
evaluated for the same model conducting spherical-shell
density to which we have applied the VV10 functional.
Thus, we have identified a fundamental limitation to the
improvement of functionals with the form of Eq. (11).

Dobson and collaborators [24,26,27] argued that pair-
interaction models and functionals of the form of Eq. (11)
fail for interactions between zero-gap systems that are
extended in at least one spatial dimension (so that electrons
can flow over large distances) but are constricted in another
dimension (so that the screening is reduced compared to
that in bulk 3D metals). They considered specifically one-
dimensional and planar two-dimensional systems, but a
more significant difference between their work and ours
lies in the order of limits. They considered the case in
which a large dimension of the system tends to infinity
before the separation between systems does, leading to an
unexpected asymptotic dependence of the interaction upon
separation. We consider the case in which the separation

goes to infinity first, so that the asymptotic dependence on
separation is the expected one but the van der Waals
coefficients grow with the large dimension of the system
in an unexpected way. In either case, the van der Waals
interaction is stronger than expected. The case of Dobson
and collaborators is most relevant to condensed matter
physics, while our case is most relevant to chemistry.
(For a third case, consider an atom interacting with a
distant but fully extended metal surface, as discussed by
Cole et al. [28].)
In separate work [20], we have used the exact CAA

2k for

our classical metallic spherical shell to show that the van
der Waals series can be summed geometrically and that the
resulting divergence at d ¼ 2R can be removed by an
exponentially-decaying correction which does not change
the asymptotic series to any order in d�1. In that work, we
have also extracted the size dependence of the van der
Waals coefficients of all orders as predicted by the pair-
interaction model of Ref. [3].
In summary, the van der Waals coefficients CAB

6 between

solid quasispherical nanoclusters are normal, and can be
predicted by effective-atom pair potentials or by nonlocal
correlation energy functionals of the form of Eq. (9). But
the van der Waals coefficients of all orders between single-
walled fullerenes are abnormally large, because of the
abnormal distribution of atoms away from the centers
and the asymptotic metallicity, and cannot be so described.
This work was supported in part by the National

Science Foundation under Grant No. DMR-0854769 and
Cooperative Agreement No. EPS-1003897, with additional
support from the Louisiana Board of Regents.

APPENDIX

Detailed expressions for the van der Waals coefficients
from Eqs. (2) and (4).

CAB
2k ¼ ð2k� 2Þ!

2�

Xk�2

l1¼1

R2l1þ1
A

ð2l1Þ!
R2l2þ1
B

ð2l2Þ!
� ð!A

l1
Þ2ð!B

l2
Þ2ð1� �Al1Þð1� �Bl2ÞIABl1;l2 : (A1)

IABl1;l2 ¼
�

2QAB
l1;l2

X3
i¼1

�fiðaAl1 ;aBl2 ;bAl1 ;bBl2Þ
DðaAl1 ;aBl2Þ

þfiðbAl1 ;bBl2 ;aAl1 ;aBl2Þ
DðbAl1 ;bBl2Þ

�
:

(A2)

QAB
l1;l2

¼½ðaAl1Þ2�ðbAl1Þ2�½ðaAl1Þ2�ðbBl2Þ2�
�½ðaBl2Þ2�ðbAl1Þ2�½ðaBl2Þ2�ðbBl2Þ2�: (A3)

Dðx; yÞ ¼ xyðxþ yÞ: (A4)

al ¼ 1ffiffiffi
2

p ½ð!2
l þ ~!2

l þ 2!2
gÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2

l � ~!2
l Þ2 þ 4�l!

2
l ~!

2
l

q
�1=2: (A5)
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bl ¼ 1ffiffiffi
2

p ½ð!2
l þ ~!2

l þ 2!2
gÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2

l � ~!2
l Þ2 þ 4�l!

2
l ~!

2
l

q
�1=2: (A6)

f1ðp; q; s; tÞ ¼ ðpqÞ4 þ ðpqÞ3ðs2 þ t2Þ
� pqðstÞ2ðp2 þ pqþ q2Þ: (A7)

f2ðp;q;s;tÞ¼�fð ~!A
l1
Þ2þð!A

g Þ2þð ~!B
l2
Þ2þð!B

g Þ2g
�½ðpqÞ2ðp2þpqþq2�s2� t2Þ�pqðstÞ2�:

(A8)

f3ðp;q;s;tÞ¼½ð ~!A
l1
Þ2þð!A

g Þ2�½ð ~!B
l2
Þ2þð!B

g Þ2�
�½p4þp3qþp2q2þpq3þq4

�ðp2þpqþq2Þðs2þ t2ÞþðstÞ2� (A9)

The corresponding expressions for !g ¼ 0 were pre-

sented in Ref. [15]. Now consider A ¼ B. For a solid
sphere, �l ¼ 0 and all the asymptotic size dependence
is in the factor R2k. For a single-walled fullerene, the
energy gap !g vanishes asymptotically as the fullerene

shell becomes graphene, and �l tends to 1. The factor
ð1� �l1Þð1� �l2Þ is asymptotically proportional to

ðt=RÞ2. al is asymptotically proportional to ðt=RÞ1=2, and
Dðal1 ; al2Þ to ðt=RÞ3=2. Hence, Eq. (8).

To be very careful about the asymptotics, we should
also consider the size dependence of the band gap !g,

which has been calculated for Cn in Ref. [19]. Using those
values, we find that ð2=3Þð!g=!pÞ2=ðt=RÞ is very small

and deceases monotonically from n ¼ 60 to n ¼ 3840,
suggesting that al does indeed behave asymptotically

like ðt=RÞ1=2.
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