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Magnetic molecules adsorbed on a superconductor give rise to a local competition of Cooper pair and Kondo
singlet formation inducing subgap bound states. For manganese-phthalocyanine molecules on a Pb(111) substrate,
scanning tunneling spectroscopy resolves pairs of subgap bound states and two Kondo screening channels. We
show in a combined approach of scaling and numerical renormalization group calculations that the intriguing
relation between Kondo screening and superconducting pairing is solely determined by the hybridization strength
with the substrate. We demonstrate that an effective one-channel Anderson impurity model with a sizable
particle-hole asymmetry captures universal and nonuniversal observations in the system quantitatively. The
model parameters and disentanglement of the two screening channels are elucidated by scaling arguments.
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I. INTRODUCTION

Metals become superconducting when their electrons form
singlet Cooper pairs via an attractive interaction. On the
other hand, electrons in metals can also undergo another
type of singlet formation, namely to form a Kondo screening
cloud, when magnetic impurities are present. The fascinating
interplay of Cooper pair and Kondo singlet formation1–10

can be microscopically observed when magnetic atoms or
molecules are adsorbed on superconducting surfaces. The
ground state of such a combined system has been predicted
to be either a Kondo screened singlet state (S = 0), if the
Kondo scale kB TK is much larger than the superconducting
pairing energy �sc, or an unscreened multiplet state (S > 0)
for kB TK � �sc. Characteristic features include subgap states
with bound state energies Eb—often called Shiba states. For
the singlet ground state with screened impurity spin, the bound
states are S > 0 excitations, where the Kondo singlet is broken,
and for the multiplet ground state the bound states are singlet
excitations including Kondo screening. When the energy scale
for Kondo singlet formation becomes smaller and comparable
with the Cooper pairing energy kB TK ∼ �sc, the bound state
energies at Eb go to 0, and the S > 0 state becomes the
ground state. At this point a quantum phase transition (QPT)
occurs. The Cooper pair breaking effect is expected to behave
like 1 − (Eb/�sc)2 and thus is most effective here leading
to a strong suppression of the superconducting Tc for larger
impurity concentrations.4,5,7

For a long time the accurate resolution of the subgap bound
states and their dependence on TK and �sc have remained
elusive. Recently, the bound states have been analyzed in
tunable mesoscopic superconductor-quantum dot-normal lead
structures.11 Scanning tunneling microscopy (STM) has been
used to detect the local influence of single magnetic atoms
on a superconducting substrate.12 To study the interplay,
an experiment with variable magnetic interaction strengths
is desirable. Manganese-phthalocyanine (MnPc) molecules
on a Pb(111) substrate form a Moire-like superstructure.

Tunneling spectroscopy on different Mn sites reveals two
Kondo screening channels and pairs of bound states of varying
energy Eb. The large number of different adsorption sites leads
to a variety of magnetic interactions and Kondo scales. The
smaller Kondo scale lies in the interesting regime kB TK ∼
�sc. Shiba states crossing the Fermi level and the predicted
QPT could be observed.13 A number of important questions
remained, however, unresolved. What is the role of the second
Kondo screening channel and does it give rise to a shift of
the critical point of the QPT? Which microscopic parameter
drives the behavior of the system across the QPT? Does the
asymmetry in the STM intensity of the bound states reveal the
particular physical properties of the system?

Our theoretical approach to address these questions is a
combination of scaling arguments and numerical renormal-
ization group (NRG) calculations.14–18 The former are used to
connect the complex experimental situation to an effective An-
derson impurity model with one relevant channel and its model
parameters. NRG calculations for this model demonstrate that
the experimental behavior can be quantitatively understood by
only varying the hybridization between MnPc and the sub-
strate. The results are reliable as the NRG is known to capture
the Kondo effect accurately in contrast to many other methods,
used to describe impurities in superconductors, which contain
mean field aspects like classical spins.2–6,19–21 The accuracy
of the theoretical modeling is tested by the direct comparison
of the experimental and theoretical results for the point of the
QPT and the positions and weights of the bound states.

II. EXPERIMENTAL RESULTS

As detailed in Ref. 13, the MnPc molecules [see Fig. 1(a)]
have been deposited on an atomically clean Pb(111) substrate
at room temperature under ultra-high vacuum conditions. STM
at 4.5 K resolves highly ordered islands [Fig. 1(b)]. Tunneling
spectroscopy has been used to resolve the superconducting gap
structure and its subgap states, as well as Kondo resonances
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FIG. 1. (Color online) (a) Molecular structure of manganese-
phthalocyanine (MnPc). (b) Constant-current STM image of highly
ordered island of MnPc on Pb(111) (I = 23 pA, V = 100 mV).
(c) Tunneling spectra taken on different molecules on top of the Mn
center (feedback opened at I = 450 pA, V = 8.6 mV). Also shown
are the fits used to derive the deconvoluted spectra below in (d). (e) Ex-
amples of NRG spectra with broadened subgap peaks for similar Eb,α .

on different molecules. The superconducting state of the
Pb(111) substrate and Pb tip shows as pronounced differential
conductance peaks at E = ±2�sc with �sc = 1.1 meV.

Three differential conductance spectra taken on different
MnPc molecules are shown in Fig. 1(c). Two larger peaks as
well as the two smaller peaks are located at symmetric bias
voltages within the gap of the superconductor-superconductor
tunneling barrier. The larger peaks are an expression of the
Shiba states and indicate the magnetic interaction with the
superconducting substrate. The smaller peaks are a result of
thermal excitations at the measurement temperature of 4.5 K
across the gap. To remove the effect of the superconducting tip
and finite temperature on the tunneling spectra, we developed a
deconvolution method.13 This procedure consists of extracting
the superconducting density of states of the tip from spectra on
the bare surface and using the result for fitting the differential
conductance spectra of the MnPc spectra assuming a set of
Shiba states (for details see Ref. 13, and the Appendix).
The result is representative for the quasiparticle density of
states (DOS) of the MnPc molecule on the superconducting
Pb surface [Fig. 1(d)]. From these plots we can deduce the
energy of the Shiba states and their intensity. Eb,g (Eb,s) is the
energy for the bound state with larger (smaller) weight wb,g

(wb,s), where Eb,g = −Eb,s . We observe a gradual increase in
the asymmetry of the weights when Eb,g shifts from negative
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FIG. 2. (Color online) Ratio of bound state weights wb,g/wb,s

vs. bound state energy Eb,g/�sc. Comparison of experimental results
with theory. In all the range of bound state energy we used the model
parameters εd/�sc ≈ −73, and U/�sc ≈ 91 and the overlap � was
varied.

values to positive ones. This is shown in Fig. 2 as the ratio
wb,g/wb,s .

We additionally identify a broad peak at the MnPc center
around the Fermi energy [see Fig. 3(b)], which can be fitted
by two Fano lineshapes, representing two different Kondo
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FIG. 3. (Color online) (a) Tunneling spectrum showing the Shiba
states (feedback opened at I = 450 pA, V = 8.6 mV). (b) Tunneling
spectrum on the same molecule as in (a) in a larger energy scale
evidencing a broad background, which can be fitted by two Kondo
resonances (feedback opened at I = 470 pA, V = 130 mV).
(c) Bound state energies Eb,α/�sc vs Kondo temperature TK/�sc.
Comparison of experimental results with theory for the same choice
of model parameters as in Fig. 2.
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screening processes with TK,2 � TK,1 (Ref. 13). TK,2 with
≈ 15–45 meV scales with TK,1 ≈ 1–5 meV (for details see the
Appendix). The occurrence of two Kondo screening channels
can be related to the spin state of the MnPc molecule. For
the isolated MnPc complex, density functional theory (DFT)
calculations have found that the high spin configuration of Mn
(S = 5/2) is reduced to S = 3/2 and the unpaired electrons
occupy the b2g(dxy), the eg(dπ ), and the a1g(dz2 ) orbital (the x

axis along an arm of MnPc) and are aligned due to Hund’s
rule coupling.22 When adsorbed on the Pb surface (in the
z direction), the dz2 orbital hybridizes strongly with the Pb
states and is therefore assumed to be quenched.23 Hence, the
observation of two screening channels suggests a spin state of
S = 1. Since kBTK,2 � �sc, Kondo screening dominates for
this channel.7 Therefore, we only correlate TK,1 ≡ TK ∼ �sc

with the appearance of the bound states inside the gap.
Figure 3 shows the dependence of Eb,α on RK,sc =

kB TK/�sc. At large RK,sc, the Kondo screening is efficient
and the many-body ground state is a singlet. Here tunneling
can occur via the doublet state which involves breaking
of the Kondo singlet and rearrangement of Cooper pairs.
With decreasing RK,sc this requires less energy and we find
Eb,α → 0. The level crossing occurs at Rc

K,sc � 1.2. This point
can be regarded as the critical point of the QPT and is a
universal feature. The further decrease of RK,sc leads to the
unscreened doublet ground state.

III. THEORETICAL RESULTS FOR THE
ONE-CHANNEL MODEL

For the theoretical description we use an Anderson impurity
model (AIM) Hamiltonian of the form

H = Hsc + Hd + Hmix. (1)

The superconducting medium reads

Hsc =
∑

k,m,σ

εk,mc
†
k,m,σ cm,k,σ

−
∑
k,m

(�scc
†
k,m,↑c

†
−k,m,↓ + H.c.), (2)

where c
†
k,m,σ creates a band electron with momentum k, spin

σ , and band index m, where m = 1, . . . ,Nc, and there are
Nc available channels. εk,m is the corresponding electronic
dispersion and �sc the gap parameter chosen real. The band
electrons hybridize with the impurity states via

Hmix =
∑

k,m,σ

(Vmc
†
k,mσ cd,m,σ + H.c.), (3)

where c
†
d,m,σ creates a d-level impurity electron with spin

σ and index m = 1, . . . ,Nd . In the present situation, the
number of conduction channels which hybridize is equal to
the d-orbital states, i.e., Nd = Nc. We will assume different
matrix elements Vm due to different overlapping integrals.
These matrix elements determine the energy scale for the
hybridization of d states with the substrate through �m =
πV 2

mρm,c, where ρm,c is the DOS of the conduction band at the
Fermi level εF. Despite the experimental observation of two
Kondo screening channels, we will now show that the behavior

of the Shiba states can be well described by a single-channel
model (N = 1), suggesting a low energy decoupling of the
Kondo channels. For the single-channel case the “d-orbital”
term Hd simply reads

Hd =
∑

σ

εdnσ + Un↑n↓, (4)

with the d-level position εd relative to εF = 0 and the on-site
Coulomb interaction with strength U , where nσ = c

†
d,σ cd,σ .

For this model we perform NRG calculations14 to calculate
the lowest energy excitations and their spectral weights, which
characterize the subgap bound states. Examples for the low
energy spectra can be seen in Fig. 1(e).

We now explain how to choose the model parameters for
the different MnPc molecules on the Pb(111) surface. We
expect that the main difference for the MnPc molecules in the
different adsorption sites is the magnitude of the hybridization
�, which in turn leads to different TK. The energy level
alignment of the d states εd and Coulomb energy U are, on the
contrary, expected to change little with the site.24 We therefore
only vary � to explain the data. The superconducting gap
�sc = 1.1 meV sets the energy scale. The relation of values
for εd , � and U is constrained to give suitable values for
the Kondo temperature TK ∼ �sc. Their actual value can be
fixed by matching the strong experimental weight asymmetry
wb,g/wb,s of the Shiba states for the maximal Eb,g > 0 on the
doublet side in Fig. 2. This yields εd/�sc ≈ −73, U/�sc ≈ 91,
and �/�sc = 16. This corresponds to an asymmetric AIM,
with ξ = εd/U + 1/2 ≈ 0.3. A variation of �/�sc from
16–46 then reproduces accurately the weight asymmetry in
Fig. 2 on decreasing Eb,g and also the variation of Eα

b

with RK,sc in Fig. 3. NRG calculations for an asymmetric
one-channel AIM can thus account for the experimentally
observed universal features such as Rc

K,sc and nonuniversal
ones like wb,g/wb,s .25

Most important for the understanding of the physical
processes is the correct description of the QPT. For the
one-channel nondegenerate AIM and the Kondo model, NRG
studies15–18 have estimated that the phase transition occurs
when Rc

K,sc � 0.3. A deviation from this would indicate that a
different number of channels contribute to the Kondo screening
of the same electron spin state.26 In particular, this may
illustrate the role of the second Kondo channel observed in
the experiment.

At first sight the experimental result for the QPT, Rc
K,sc �

1.2 (Fig. 3), seems to suggest a more complicated situation
than a one-channel model. However, we find that the origin
of this discrepancy is the use of different definitions of TK,
which can vary by a prefactor. In the theoretical works15–18 the
definition27

TK = 0.29[U�]1/2e
πεd(εd+U )

2�U (5)

was used. For the experimental values of TK, we employ the
widely used definition,28,29 based on the width of the Kondo
resonance �K (half width at half maximum) in the limit T →
0. We adopt the same definition in our NRG calculations (TK =
�K) and find that �K and the definition in Eq. (5) can differ by
a factor of 4 (see also Ref. 30). Taking this into account, our
result for the QPT in Fig. 3 is in excellent agreement with the
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theoretical prediction for a one-channel model. We can thus
conclude that the second Kondo screening channel does not
shift the transition point.

IV. DERIVATION OF THE EFFECTIVE MODEL AND
SCALING THEORY

We now discuss the emergence of the low energy ef-
fective one-channel model and its parameters using scaling
arguments. First notice that the magnitudes of εd , U , and
� do not correspond to usual atomic values ∼O(eV), but
rather to values of the order 100 meV.31 This is related to
the fact that the AIM under consideration is an effective
model valid for low energies. Using insights from the DFT
calculations for MnPc (Ref. 22), and the observation of two
Kondo channels, we start with a model of the form of Eq. (1)
with the two d levels coupled to two bands (Nc = Nd = 2) with
the hybridization terms �1 < �2. Channel 1 thus describes the
physical processes related to the smaller Kondo temperature.
We assign it to the dxy orbital since due the spatial orientation
the overlap with the substrate is much larger for the dπ

orbital.32 The impurity term can be written in terms of the
level positions εd,m relative to εF, intra-orbital Coulomb energy
Um, interorbital Coulomb interaction U12, and a Hund’s rule
interaction JH,

Hd =
∑
σ,m

εd,mc
†
d,m,σ cd,m,σ +

∑
m

Umnd,m,↑nd,m,↓

+
∑
σ,σ ′

U12nd,1,σ nd,2,σ ′ − JH Sd,1 · Sd,2, (6)

where Sα
d,m = ∑

σ1,σ2
c
†
d,m,σ1

σα
σ1,σ2

cd,m,σ2 with the Pauli matrix
σα . The complete set of bare parameters of this model cannot
be extracted from existing DFT calculations,22 or experimental
observations. Therefore, the following are qualitative argu-
ments on general grounds.

We now derive scaling equations,27,33 which connect the
original model and its parameters at a high energy scale

 of the order of the electronic bandwidth to the low
energy effective ones at 
 ∼ TK,2, where the second channel
decouples due to its complete Kondo screening. We focus on
the quantities in channel 1, where the Shiba states occur. We
only include processes with matrix elements ∼V 2

1 explicitly,
where the level occupations of εd,1 changes. There are also
contributions ∼V 2

2 , whose inclusion leads to quantitative
changes in the equations but does not alter the conclusions (for
details see the Appendix). Band structure calculations34 for Pb
suggest a situation, where the band (−Dl,Du) is asymmetric
with respect to εF, Dl < Du. Then, we have two scaling
regimes (I, II, see Fig. 4): I, where the scaling process has no
counterpart in the occupied states, and II, where the residual
band structure is symmetric around εF. The scaling equations
for the energies εd,1 and U in regime I, i.e., in 
 ∈ (Dl,Du)
read9,27

dεd,1

d

� �1

π

1


 − εd,1
, (7)

dU1

d

� 2�1

π

U1

(
 − εd,1)(
 − ε̄d,1)
, (8)
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FIG. 4. (Color online) Left: Schematic plot of the bare band
and impurity energy scales and depiction of two scaling regimes
(I,II). Right: Schematic plot of the scaling of the effective level εd,1

and εd,1 + U1 in the two regimes 
 ∈ (Dl,Du) and 
 ∈ (TK,2,Dl).
Scaling stops at 
 ∼ TK,2, and the effective one-band model is used
to compute the low energy properties.

where ε̄d,1 = εd,1 + U1. Different from the usual approaches
we also use a scaling equation for �1, which is derived from
dTK,1/d
 = 0, assuming TK,1 as a scaling invariant. Such a
scaling procedure can be continued as long as the levels |εd,1|,
|εd,1 + U1| lie within (−
,
) and do not interfere with the
Kondo scale. We find dεd,1

d

> 0 and dU1

d

> 0, such that εd,1 < 0

is shifting away from εF when scaling to lower energy and
U decreases. The model becomes more asymmetric in this
regime. When 
 ∼ Dl , we reach the scaling regime II, with
the corresponding scaling equations

dεd,1

d

� �1

π

2εd,1(εd,1 + 
) + U1(3εd,1 − 
)(

2 − ε2

d,1

)
(
 + ε̄d,1)

, (9)

dU1

d

� 4�1

π

ε̄d,1
(

2 − ε2

d,1

) − εd,1
(

2 − ε̄2

d,1

)
(

2 − ε2

d,1

)(

2 − ε̄2

d,1

) . (10)

For starting values εd,1(Dl) < 0, U1(Dl) > 0, one has dεd,1

d

<

0. In this case εd,1 is shifting towards εF . Due to the term in the
denominator the effect becomes strong when 
2 ∼ ε2

d,1 [see
Fig. 4 (right)]. For the same effective starting values we have
dU1
d


> 0. Hence, U1 and (εd,1 + U1) decrease further under the
scaling. This scaling can be continued until we reach 
 ∼ JH.
We have Dl ∼ 3 eV, and for the usual estimates for JH we
expect TK,2 < JH < Dl . At this scale the spins lock into the
high spin S = 1 configuration due to the dominating Hund’s
coupling. As shown in Ref. 35, this leads to a reduction of
the magnetic coupling J → J/(2S) and the Kondo scale.
In our approach it can be included in �1, such that the
scaling is slowed down.35 The scaling can then be continued
until 
 ∼ T2,K. Then one part of the impurity spin becomes
Kondo screened and decouples. At this scale we have an
effective single band model with S = 1/2. Its parameters are
substantially reduced from the bare values and generically
asymmetric, which clarifies our choice in the earlier NRG
calculations. Since NRG calculations for multichannel models
are very challenging, our approach combined with scaling
equations could be useful in other situations for complex
molecules on surfaces.

In conclusion, we provide a unified experimental and
theoretical perspective of the microscopic interplay of Kondo
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screening and superconducting pairing for MnPc on lead,
as manifested in the subgap bound states. We identify the
change of hybridization as the relevant quantity and show
that in spite of the complex spin state of MnPc and two
Kondo screening channels, an effective description based on
the one-channel AIM captures both universal aspects like Rc

K,sc
and nonuniversal ones like the asymmetry of the weights very
well. In the future it would be interesting to envisage situations
where different impurity spins can interact, such that different
kinds of quantum phase transitions can occur.
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APPENDIX A: DECONVOLUTION PROCEDURE

In conventional STM experiments, to first order approxi-
mation the dI/dV spectra resemble the density of states of
the sample. This relies on a constant density of states of the
STM tip. In the presented experiment, the tip is coated with
the superconducting material of the substrate, thus exhibiting
a Bardeen-Cooper-Schrieffer-like (BCS) density of states. To
interpret the measured dI/dV spectra as the density of states
of the sample, the influence of the tip DOS has to be extracted.
We do this by a deconvolution procedure, which has been
described and tested in the supplementary material of Ref. 13.

The STM current I as a function of voltage V has the
following form:

I (V,r) ∼
∫

dωρs(ω,r)ρt (ω)[f (ω) − f (ω − eV )], (A1)

where ρs(ω,r) is the local density of states of the sample
at position r , ρt (ω) the one of the tip, and f (ω) is the
Fermi function. The deconvolution method consists of a
two-step process based on fitting the experimental spectra
with a simulated density of states. In the first step, the
experimental spectrum of the clean surface ρs(ω,r) = ρs(ω)
is measured and fitted. The density of states of sample and tip
are equal, ρs(ω) = ρt (ω), and follow a BCS density of states
broadened by a Lorentzian function. To reproduce the dI/dV

spectra, we calculate the tunneling current at each bias voltage
and numerically derive the dI/dV function. This function
is then fitted to the experimental data to extract the tem-
perature, superconducting gap, and broadening. Since the
same tip and experimental conditions are used to measure the
dI/dV (V,r = RMnPc) spectra on the MnPc molecules, these
parameters remain fixed for modeling the tip density of states
ρt (ω), which is necessary in the next step. The Shiba states
are simulated by two Lorentz peaks inside a symmetric gap
(modeled by two broadened step functions) around the Fermi
level. With this model density of states, the tunneling current
is again calculated at each bias voltage and the dI/dV signal
derived numerically. The fitting procedure then gives a result

TABLE I. Exemplary values for TK,1 and TK,2 on different
molecules with the energy of the larger Shiba state Eb,g/�sc.

Eb,g/�sc TK,1 (K) TK,2 (K)

−0.76 52 ± 5 480 ± 60
−0.69 53 ± 8 330 ± 40
−0.46 38 ± 2 280 ± 50
−0.29 29 ± 5 420 ± 30

0.24 14 ± 10 210 ± 50

for the local ρs(ω,r = RMnPc) from which the position, width,
and amplitude of the Shiba states can be extracted.

To show the validity and precision of the procedure, we
present in Fig. 1(c) a direct comparison of the measured and
fitted spectra for a number of examples.

APPENDIX B: DEFINITION OF THE KONDO
TEMPERATURE

For a quantitative comparison between the experiment
and theory it is important that the same definition of the
Kondo temperature TK is used. In the literature one can find
different definitions for the Kondo temperature TK (Ref. 9).
Theoretically, it is convenient to define it via the magnetic
susceptibility of the impurity in the limit T → 0, χm =
x/(4TK) with a suitable prefactor x. This quantity is, however,
not experimentally measured in the present context. The
quantity which is most easily accessible experimentally is
the width of the Kondo resonance �K (half width at half
maximum). To make the comparison of the experiment and
theory consistent we have used this definition also in the theory,
i.e., �K = TK. The experimental data are well understood in
terms of an overlap of two Fano functions for the two Kondo
channels with two different Kondo temperatures TK,1, TK,2.
For details Ref. 13 can be consulted. In Table I we display a
number of values found on different molecules.

APPENDIX C: SCALING EQUATIONS FOR THE
TWO-CHANNEL MODEL

Here we present the complete set of scaling equations for
the two-channel model. We will argue that the conclusions
in the main text are not changed qualitatively due to the
additional terms proportional to V 2

2 . The starting point is the
effective two-orbital model in Eq. (1) together with Eq. (6).
In the following we focus on the complete scaling equations
in regime II. The scaling equations in regime I only contain a
part of the terms and show how the asymmetry is increased for
an asymmetric band. They can be derived and discussed in a
similar fashion. For each orbital there are four possible states,
such that there are 16 atomic states which can be described
by the occupation numbers n1,σ , n2,σ for orbitals 1 and 2,
respectively. Due to the Hund’s rule term (JH > 0)

HH = −JH Sd,1 · Sd,2, (C1)

the atomic eigenbasis for the singly occupied situation n1,σ =
n2,σ = 1 is given by singlet and triplet states |S,Sz〉, and hence
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we use those quantum numbers, where S is the total spin with
z-component Sz. One has

HH |1,Sz〉 = −JH|1,Sz〉, HH |0,Sz〉 = 3JH|0,Sz〉, (C2)

i.e., the triplet state has the lowest energy, and the energy
difference is 4JH for our definition of Sd,i , which does not
include a factor of 1/2. For the derivation of the scaling
equations it is useful to define the Hubbard operators Xab =

|a〉〈b| for the atomic states.9 The atomic terms can be given
in diagonal energy representation with En1,σ ,n2,σ

and ĒS,Sz
.

The hybridization term constitutes a lengthy expression in
terms of those Hubbard operators taking into account all
possible processes of different occupation. The single particle
occupation parameters of the Hamiltonian can be expressed
as εd,1,σ = En1,σ =1,0 − E0,0. By projecting out high energetic
particle and hole states in the bath9 we find the equations

dεd,1

d

= �1

π

[
1


 − εd,1
+ 1


 + εd,1 + U1
− 2


 + εd,1

]

+ �2

π

[
3/2


 + εd,2 + U12 − JH
+ 1/2


 + εd,2 + U12 + 3JH
− 2


 + εd,2

]
, (C3)

dU1

d

= 2�1

π

[
1


 + εd,1
− 1


 − εd,1
+ 1


 − εd,1 − U1
− 1


 + εd,1 + U1

]

+ �2

π

[
2


 + εd,2 + 2U12
− 3


 + εd,2 + U12 − JH
− 1


 + εd,2 + U12 + 3JH
+ 2


 + εd,2

]
. (C4)

Similar equations are found for εd,2 and U2, where one has to interchange the indices α = 1,2 in εd,α , �α , and Uα on the right-hand
side. An equation for JH follows from 4JH = ĒS=0,Sz=0 − ĒS=1,Sz=1,

dJH

d

=

2∑
m=1

�m

4π

[
1


 − (εd,m + U12 + 3JH)
+ 1


 + εd,m + U12 + U1 − 3JH

− 1


 − (εd,m + U12 − JH)
− 1


 + εd,m + U12 + U1 + JH

]
.

We can represent U12 as U12 = ĒS=1,Sz=1 − E0,0 − εd,1 − εd,2 + JH, and find

dU12

d

=

2∑
m=1

�m

π

[
3/4


 − (εd,m + U12 − JH)
+ 3/4


 + εd,m + U12 + Um + JH
+ 1/4


 − (εd,m + U12 + 3JH)

+ 1/4


 + εd,m + U12 + Um − 3JH
− 3/2


 + εd,m + U12 − JH
− 1/2


 + εd,m + U12 + JH

− 1


 + εd,m + Um

− 1


 − εd,m

+ 2


 + εd,m

]
.

We can use the Kondo scales in the two channels TK,m

as scaling invariants. There is an approximate form TK,m �
T 0

K,m exp(−αJH) for the situation with Hund’s rule coupling,36

where T 0
K,m is the Kondo scale for JH = 0. From this we can

also derive scaling equations for �m. If one neglects JH in
the denominator as being smaller than the other scales then
one finds dJH/d
 � 0, such that the Hund’s coupling varies
little.35

Equations (9) and (10) in the main text for regime II
correspond to Eqs. (C3) and (C4) without the terms pro-
portional to �2. To have Kondo physics in both channels,
we need the atomic ground state to be one where both
orbitals are singly occupied, which implies εd,m + U12 < 0
and εd,m + U12 + Um > 0. We also expect a deviation from
particle-hole symmetry εd,m = −U12 − Um/2. In the main

text we have argued that from the term proportional to �1

one finds dεd,1

d

< 0. It is easy to see that for 
 + εd,2 > 0,


 + εd,2 + U12 − JH > 0, and 
 + εd,2 + U12 − JH > 0 the
term proportional to �2 is also negative, such that dεd,1

d

< 0

is reinforced. Similarly, the additional term ∼�2 in Eq. (C4)
has the same sign as the first term and therefore dU1

d

> 0 is

maintained. Hence, the qualitative picture remains unchanged,
when these additional terms are taken into account. There
will, however, be quantitative changes in the scaling. The
quantities in channel 2, εd,2, U2 possess a similar scaling
flow, but are not of major interest here as the corresponding
Kondo temperature TK,2 largely exceeds the superconducting
gap. A more complete discussion of the different regimes of the
scaling equations and the different resulting behavior is beyond
the scope of this work, but can be the subject of a separate study.
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