
Performance Analysis of Electronic Structure Codes on
HPC Systems: A Case Study of SIESTA
Fabiano Corsetti*

CIC nanoGUNE, Donostia-San Sebastián, Spain

Abstract

We report on scaling and timing tests of the SIESTA electronic structure code for ab initio molecular dynamics simulations
using density-functional theory. The tests are performed on six large-scale supercomputers belonging to the PRACE Tier-0
network with four different architectures: Cray XE6, IBM BlueGene/Q, BullX, and IBM iDataPlex. We employ a systematic
strategy for simultaneously testing weak and strong scaling, and propose a measure which is independent of the range of
number of cores on which the tests are performed to quantify strong scaling efficiency as a function of simulation size. We
find an increase in efficiency with simulation size for all machines, with a qualitatively different curve depending on the
supercomputer topology, and discuss the connection of this functional form with weak scaling behaviour. We also analyze
the absolute timings obtained in our tests, showing the range of system sizes and cores favourable for different machines.
Our results can be employed as a guide both for running SIESTA on parallel architectures, and for executing similar scaling
tests of other electronic structure codes.

Citation: Corsetti F (2014) Performance Analysis of Electronic Structure Codes on HPC Systems: A Case Study of SIESTA. PLoS ONE 9(4): e95390. doi:10.1371/
journal.pone.0095390

Editor: Danilo Roccatano, Jacobs University Bremen, Germany

Received February 6, 2014; Accepted March 26, 2014; Published April 18, 2014

Copyright: � 2014 Fabiano Corsetti. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by CIC nanoGUNE (www.nanogune.eu) and PRACE (www.prace-ri.eu). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: f.corsetti@nanogune.eu

Introduction

The use of first principles atomistic simulations with density-

functional theory [1,2] (DFT) has grown from a cottage industry in

the early 1990s to a routine and integral part of many

contemporary scientific disciplines, at the meeting point between

condensed matter physics, physical chemistry, and the new range

of nanosciences [3,4]. Potential practitioners have a large number

of ready-made codes to choose from (see, e.g., Refs. [5–16]), which

distinguish themselves in their licensing models, the range of

features they offer, the specifics of the technical implementation,

and, generally, where they lie on the (computational) cost–

accuracy curve.

An important consideration for all modern DFT codes is their

parallel scalability on high-performance computer (HPC) archi-

tectures, that open up the possibility of simulating very large

physical systems entirely ab initio. Consequently, a substantial effort

has gone into the development and optimization of many of these

codes for the specific purpose of running on massively parallel

systems [11,17–28]. Articles describing such developments typi-

cally illustrate the scaling performance of the code with an

example of strong scaling [9–27], i.e., the wall time speedup

obtained for a simulation of fixed size over a range of number of

cores. Less frequently, weak scaling performance (i.e., an increase

of the problem size proportionally with the number of cores) is also

shown [22,25,28].

The use of a strong scaling example can be an effective way of

giving a qualitative idea of the parallel efficiency of the code and

the scale of problems which can realistically be solved with it.

However, there are a number of issues in using the information as

it is usually presented for extracting, even approximately, a

generalized, quantitative measure of performance, such as could

be used to attempt a comparison between codes.

Firstly, the range of cores over which this strong scaling is

investigated is not fixed (as must be the case, since time and

memory requirements restrict the lower bound, and computation-

al resources the upper bound). The significance of the demon-

strated speedup depends crucially on the lower bound of this

range; furthermore, the dependence is non-trivial. If we assume a

constant rate of loss of efficiency as the parallelization is increased,

a speedup of 3.9 when going from 8 to 32 cores should be better

than a speedup of 3.8 when going from 2048 to 8192 cores;

however, this is obviously not the case, as it is clear from

experience that the actual rate increases significantly with the

number of cores. Closer comparisons are even harder to judge: is a

speedup of 3.8 between 512 and 2048 cores better or worse than a

speedup of 3.7 between 1024 and 4096 cores? There is effectively

no way to answer this question without making an assumption

about how to model parallel performance in general. A well-

known and popular, albeit extremely idealized, way to do is by

Amdahl’s law [29], that describes the overall speedup in terms of

the parallelizable fraction of the code P. To the best of our

knowledge, only one published strong scaling test for a DFT code

[20] has reported on a fitted value for P.

Secondly, there is no standard physical system on which to test

strong scaling. From the point of view of the material itself, this is

somewhat understandable, as different codes specialize in different

areas of modelling; a more fundamental problem, however, is that

strong scaling efficiency changes with system size for a given

material. Although some studies report system size dependent

results [9,12], this is generally not the case. How, then, to compare

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e95390

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095390&domain=pdf

between, e.g., a strong scaling test on a 1532-atom carbon

nanotube between 2048 and 32768 cores [27], and one on a 1003-

atom polyalanine peptide between 512 and 65536 cores [23]?

In this paper, we discuss these issues while reporting on tests of

the parallel scaling performance of SIESTA [7], a well-established

DFT code based on norm-conserving pseudopotentials [30], a

basis of finite-range numerical atomic orbitals (NAOs), and an

auxiliary real-space grid for representing the electronic density.

The tests are performed on six supercomputers (Table 1), currently

forming the network of Tier-0 systems of the Partnership for

Advanced Computing in Europe [31] (PRACE). Our aims,

therefore, are twofold:

N to give the most up-to-date, comprehensive and reliable results

of the timing and scaling of SIESTA on modern HPC systems,

so as to allow users of the code to calculate realistic timing

estimates over a wide range of number of cores, and therefore

plan how to make the best use of their computational

resources;

N to propose a simple framework in which to analyze parallel

scaling results for all electronic structure codes, arguing in

particular for the use of Amdahl’s law to quantify strong

scaling performance, and for the importance of investigating

and reporting this measure as a function of system size.

Computational Methods

Our scaling tests are performed on snapshots of liquid water in

cubic boxes with periodic boundary conditions. This is the same

system used previously for parallel benchmarking of the Quickstep

[9] (CP2K) code; as noted by its authors, liquid water is ideal for

this purpose, since boxes of any arbitrary number of molecules can

be created while maintaining the same density and cell shape.

Furthermore, the lack of crystalline symmetry and the 3D

periodicity of the material ensure a sufficiently challenging task

that we expect to give a fair idea of worst-case timings for most

typical uses of the code, while the presence of a band gap ensures

that we do not have to worry about convergence issues arising

during the tests.

We simultaneously test weak and strong scaling (again similarly

to Ref. [9], by varying both the number of cores, from 32 to 4096

(Nc~2n,5ƒnƒ12), and the number of water molecules per core,

from 1 to 32 (Nm=Nc~2n,0ƒnƒ5). The resulting suite of tests is

shown in Fig. 1. The maximum system size tested is of 4096 water

molecules (12288 atoms) for all values of Nm=Nc, except for one

test of 8192 molecules (24576 atoms) on 8192 cores. We note,

however, that due to the limited computational time available on

each machine, not all tests are run on all machines. Weak scaling

corresponds to moving perpendicular to the Nm=Nc axis, while

strong scaling corresponds to moving diagonally. Instead, system

size scaling (parallel to the Nm=Nc axis) does not explicitly test

parallelization, although it is affected by it, as we shall discuss. The

snapshots for all system sizes are extracted from classical molecular

dynamics (MD) runs using the TIP4P force field [32] in the

GROMACS [33] code, equilibrated to 300 K; the cell shape and

volume are kept fixed at the experimental equilibrium density [34]

(1.00 g/cm3).

The tests are performed at the C point only (multiple k points

being almost embarrassingly parallel), using the semi-local PBE

[35] functional for exchange and correlation (xc), a 150 Ry cutoff

energy for the real-space auxiliary grid, and, unless otherwise

stated, a double-f polarized basis [36] (dfzp), corresponding to

23 NAOs per water molecule; the fraction of occupied eigenstates

T
a

b
le

1
.

Sp
e

ci
fi

ca
ti

o
n

s
fo

r
th

e
si

x
P

R
A

C
E

T
ie

r-
0

sy
st

e
m

s.

S
y

st
e

m
A

rc
h

it
e

ct
u

re
T

o
p

o
lo

g
y

P
ro

c.
ty

p
e

P
ro

c.
sp

e
e

d
(G

H
z

)
T

o
t.

co
re

s
T

o
t.

n
o

d
e

s
C

o
re

s/
n

o
d

e
C

o
re

s/
p

ro
c.

M
e

m
./

co
re

(G
B

)

H
e

rm
it

C
ra

y
X

E6
3

D
to

ru
s

A
M

D
O

p
te

ro
n

2
.3

1
1

3
6

6
4

3
5

5
2

3
2

1
6

2
/4

JU
Q

U
EE

N
IB

M
B

lu
e

G
e

n
e

/Q
5

D
to

ru
s

IB
M

P
o

w
e

rP
C

A
2

1
.6

4
5

8
7

5
2

2
8

6
7

2
1

6
8

1

FE
R

M
I

IB
M

B
lu

e
G

e
n

e
/Q

5
D

to
ru

s
IB

M
P

o
w

e
rP

C
A

2
1

.6
1

6
3

8
4

0
1

0
2

4
0

1
6

8
1

C
u

ri
e

B
u

llX
Fa

t
tr

e
e

In
te

l
Sa

n
d

yB
ri

d
g

e
2

.7
8

0
6

4
0

5
0

4
0

1
6

8
4

Su
p

e
rM

U
C

IB
M

iD
at

aP
le

x
Fa

t
tr

e
e

In
te

l
Sa

n
d

yB
ri

d
g

e
2

.7
1

4
7

4
5

6
9

2
1

6
1

6
8

2

M
ar

e
N

o
st

ru
m

IB
M

iD
at

aP
le

x
Fa

t
tr

e
e

In
te

l
Sa

n
d

yB
ri

d
g

e
2

.6
4

8
3

8
4

3
0

2
4

1
6

8
2

W
e

n
o

te
th

at
so

m
e

sy
st

e
m

s
in

cl
u

d
e

se
co

n
d

ar
y

ty
p

e
s

o
f

n
o

d
e

s
w

it
h

d
if

fe
re

n
t

sp
e

ci
fi

ca
ti

o
n

s;
th

e
se

ar
e

n
o

t
lis

te
d

h
e

re
,

an
d

ar
e

n
o

t
u

se
d

fo
r

o
u

r
te

st
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

5
3

9
0

.t
0

0
1

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e95390

is 4=23 (*17%). All system sizes employ 13 self-consistent field

(SCF) iterations to reach convergence.

We use the most recent development version of the code

(siesta-trunk-438), available on the SIESTA website [37]. The

tests are run with the code’s default options for diagonalization,

employing routines from the ScaLAPACK [38] library: the

problem is first transformed from generalized to standard form

by Cholesky factorization with the pdpotrf and pdsygst
routines, and then the diagonalization itself is performed with

the pdsyevd divide-and-conquer routine; finally, the back

transform is performed with the pdtrsm routine. A 2D block-

cyclic data distribution of the matrices is used, with the matrix

dimension being an exact multiple of the block size in all cases

(tests show the ideal block size to be equal to the number of

orbitals per molecule).

We choose the standard solver for our tests, as this is currently

by far the most widely used by the SIESTA community; however,

we note that several new alternatives are being developed and

tested: (i) a solver based on the orbital minimization method

(OMM), which has already been demonstrated to exhibit better

parallel scaling than explicit diagonalization up to 64 cores [39]

(available in the development version of the code), (ii) two new

solvers based on ScaLAPACK, the MRRR algorithm [40] and the

ELPA library [23] (not yet released), and (iii) a solver based on the

pole expansion and selected inversion method [41], specifically

designed for massively parallel architectures (not yet released).

Finally, the original linear-scaling DFT method implemented in

SIESTA is also in the process of being redesigned; in its current

implementation it does not scale well on large clusters.

The code was compiled on each of the six machines listed in

Table 1 using the native Fortran compiler and optimized linear

algebra and communication libraries provided by the system

administrators. The Intel compiler and MKL library are used for

Intel-based machines (IBM iDataPlex and BullX architectures),

the Cray compiler and ACML library for the AMD-based

machine (Cray XE6 architecture), and the IBM XL compiler

and ESSL library for the IBM PowerPC-based machines (IBM

BlueGene/Q architecture). The MPI-2 libraries used are as

follows: IBM MPI for SuperMUC, Open MPI for MareNostrum,

BullX MPI for Curie, and MPICH2 for Hermit, JUQUEEN and

FERMI.

Results and Discussion

Strong scaling
As previously mentioned, Amdahl’s law provides a simple model

of strong scaling. It states that

S1 Nc; Sð Þ~ t1

tNc

~
1

Sz
1{S

Nc

, ð1Þ

where S1 is the speedup obtained on Nc cores with respect to a

serial run, t1 and tNc
are the total execution times in serial and on

Nc cores, respectively, and S~1{P is the fraction of the code

that is not parallelizable (we prefer using S instead of the more

usual P, as the former tends to zero in the limit of ideal scaling).

Since it is usually not possible in practice to measure t1 for large

systems, it is useful to define the speedup with respect to a baseline

number of cores b instead:

Sb Nc; Sð Þ~ tb

tNc

~
Nc

b

� �
S b{1ð Þz1

S Nc{1ð Þz1
: ð2Þ

Using this equation, we can fit our strong scaling data over any

arbitrary range of number of cores, and obtain a single value S
that is in principle independent of this range, and which therefore

defines the efficiency of the code for any value of Nc as

1= 1zS Nc{1ð Þð Þ. The efficiency is invariantly 100% for a serial

run, and decreases to zero as Nc??, since the execution time

tends to a finite minimum value t1S.

It is important to note that the conventional interpretation for S
and P is necessarily an over-simplification, and should not be

taken too literally; nevertheless, Amdahl’s law qualitatively

reproduces some universal features of strong scaling, and is

generally found to provide a good fit to real data. However, such a

basic one-parameter model can only describe an average scaling

trend, ignoring any system dependent effects that might favour

particular values of Nc, e.g., differences in load balancing. Using a

homogeneous, scalable system such as liquid water and a regular

grid of tests as shown in Fig. 1 can be effective in minimizing these

variations, and therefore help to extract clearer general trends.

Using our timing tests for SIESTA on the six different

machines, we can analyze the strong scaling of the code for

system sizes ranging from 64 to 4096 water molecules; however,

we restrict our fitting of S to systems with at least four data points

(§256 molecules). As a representative example, Fig. 2 shows the

speedup obtained on SuperMUC (IBM iDataPlex architecture) for

four different system sizes, together with the curve fitted from Eq.

2. The resulting S values are robust to fitting over different ranges

(within an order of magnitude), as is the trend of decreasing S with

increasing system size. It is worth noting that this example clearly

illustrates the difficulty in comparing between scaling tests using

different ranges of number of cores: despite the steady increase in

efficiency revelead by the S values, the speedups shown in the plots

appear extremely similar due to the different baselines used.

The top panel of Fig. 3 summarizes the strong scaling results

obtained for all six machines: the fitted value of S is given as a

function of system size (i.e., the number of water molecules), for

systems between 256 and 4096 molecules. Tests for smaller

systems (32, 64, and 128 molecules) and larger ones (8192

molecules) are not represented, as there are insufficient data points

for a reliable fit.

Figure 1. Three types of scaling that can be investigated by
systematically varying the number of molecules per core and
the number of cores. The shaded cells show the suggested set of
tests to perform on a typical HPC system.
doi:10.1371/journal.pone.0095390.g001

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e95390

For all HPC systems, S is observed to decrease with the size of

the physical system being simulated. This should not be surprising,

as it is reasonable to expect efficiency to be related to the number

of matrix elements/core (which in turn determines the ratio of

intracore to intercore operations), and, hence, that the larger the

system being simulated, the larger the number of cores on which

the calculation can be performed before the efficiency drops below

a given threshold. However, the detailed form of this decrease

depends on many factors related to the nature of the operations

being performed and the computational architecture, and is

therefore strongly dependent on the code and the HPC system

used.

We can see some interesting distinctions in the S Nmð Þ curves for

the six machines. There is a very close agreement between the

three machines implementing torus topologies (Hermit, JUQU-

EEN, FERMI), despite Hermit being quite distinct from

JUQUEEN and FERMI in most other respects, e.g., architecture

type (Cray XE6 for the former, IBM BlueGene/Q for the latter)

torus dimension, processor type and speed, number of cores per

node and amount of memory per core. Instead, the three

machines implementing fat tree topologies (Curie, SuperMUC,

MareNostrum), even though they do not exhibit the same level of

agreement amongst each other, give consistently higher S values

than the torus machines.

Furthermore, despite the limited data available, our results

suggest a qualitatively different form of the decrease of S with Nm

for machines with torus and fat tree topologies. The former show

an approximately linear decrease with slope B on the log–log scale

(S!N{), while the latter exhibit a slowing down of the rate of

decrease. This is confirmed by fitting the data for each machine to

a quadratic polynomial on the log–log scale; we find that the

quadratic coefficient, positive in all cases, is an order of magnitude

(*3–15 times) smaller for the machines with torus topologies

compared to those with fat tree topologies.

Using the S value as a measure of strong scaling, we can

attempt a quantitative comparison between SIESTA and other

DFT codes; this is given alongside our results in the top panel of

Fig. 3. The fits are performed using publicly available scaling test

data for the codes, published on the website [42] of the FERMI

IBM BlueGene/Q machine, which we also use for our tests of

SIESTA; the same data for the Quantum ESPRESSO (QE) code

has also been published in an article describing development work

on the code [27]. The only exception is the Qbox code, for which

we used previously published tests [11] performed on an IBM

BlueGene/L machine. Where possible, we select tests performed

C-only. All codes considered employ a plane-wave basis, in

contrast to SIESTA’s much smaller NAO basis.

It is important to stress that this comparison serves mainly to

highlight the inadequacy of the available data; indeed, the change

in S over more than three orders of magnitude for SIESTA at

different system sizes is similar to the range spanned by the results

Figure 2. Strong scaling on SuperMUC for four different system
sizes. The full black lines gives the ideal scaling relative to the smallest
system size. The fit to Amdahl’s law is shown by the dashed black line,
and the corrsponding S value is given above the plot.
doi:10.1371/journal.pone.0095390.g002

Figure 3. Strong scaling and efficiency. Top panel: S value as a
function of system size fitted to strong scaling data obtained with
SIESTA on the six machines; also included are values calculated with
other DFT codes for a single system size on IBM BlueGene architectures
(ABINIT: 108 atoms, 1188 electrons, 3D system, 4 k points [42]; VASP: 87
atoms, 822 electrons, 2D system, 14 k points [42]; CPMD: 284 atoms,
1192 electrons, 3D system, k-point sampling unspecified [42]; QE: 1532
atoms, 5232 electrons, 1D system, C point [27,42]; Qbox: 1000 atoms,
12000 electrons, 3D system, C point [11]). Bottom panel: relationship
between S and core hour efficiency as a function of the number of
cores, for four different values of S given by the black dashed lines, and
the fitted values of S obtained with SIESTA on four different machines
for a system of 4096 water molecules; the number of cores at which the
efficiency is equal to 50% is labelled in each case.
doi:10.1371/journal.pone.0095390.g003

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e95390

B
m

obtained for the other codes, each available at a single system size.

Both the system size and type vary greatly between codes, from an

87-atom 2D system for VASP to a 1532-atom 1D system for QE.

Other important factors (k-point sampling, xc functional, basis

accuracy, code optimization) are also not controlled for.

Nevertheless, Qbox stands out from all other codes for the

impressive strong scaling performance demonstrated, with an S
value more than an order of magnitude lower than that obtained

by its closest competitor, QE, despite using a smaller system size

(1000 atoms). Indeed, Qbox has been developed not only for

massively parallel calculations in general, but specifically for

running on IBM BlueGene architectures [11,43]; based on these

results, it is the only DFT code to have demonstrated the potential

to make efficient use (w50%) of the entirety of a large BlueGene

machine such as JUQUEEN or FERMI for a single C-point

calculation.

System size scaling and absolute timings
Strong scaling is purely a test of parallel scalability, for which

the code is, by definition, taken to be 100% efficient when run in

serial. The results presented so far, therefore, contain no

information about absolute timings. Although it is convenient to

separate these two aspects of the code’s performance, we should

remember that the execution time is the only factor of importance

to the end user. Therefore, strong scaling data on its own can

sometimes be misleading, as a code that is very fast in serial but

which exhibits poor strong scaling might nevertheless achieve a

lower execution time on a medium-sized cluster than one that is

very slow in serial but with exceptional scalability.

In order to extract a measure of absolute timing from our tests,

we need to be able to effectively model system size scaling. For a

conventional DFT code that calculates the eigenvalues and

eigenvectors of the Kohn-Sham equation [2], either by explicit

diagonalization (as we do here) or by an iterative minimization

algorithm, it is well known that the calculation time scales

cubically with system size (i.e., the number of atoms/molecules/

basis orbitals). Linear-scaling methods [44], which make use of

approximate spatial truncations based on the principle of

electronic nearsightedness [45], are also now well established

and have been implemented in a number of popular codes.

The bottom panel of Fig. 4 shows the results of all timing tests

performed on two machines, JUQUEEN and SuperMUC; we plot

the execution time for all number of cores, extrapolated to that of

a single core as tNc
S1 (from Eq. 1), against the system size (the

number of water molecules Nm). The estimated speedup S1 is

obtained for any value of Nm by using the fits of S Nmð Þ to the data

in the top panel of Fig. 3, as described in the previous section. The

resulting plot very clearly shows an almost pure cubic scaling with

system size for both machines (the linear fits on the log–log scale

have a fixed slope of 3). There is an excellent agreement in the

extrapolated timings for each system size independently of the

number of cores, and, even more encouragingly, our estimate of

S1 appears to be robust even when extrapolating beyond the

range of Nm used in the fitting of S.

From these results, we can justify the use of a basic single-

parameter model for system size scaling, of the form t1~aN3
m;

lower-order terms are negligible even for the smallest system sizes

considered here; this is because all the default routines in SIESTA

other than the diagonalization procedure itself are linear-scaling

by design. Within an SCF iteration, the contribution from building

the sparse Hamiltonian matrix only become comparable to

diagonalization for very high values of the cutoff energy defining

the real-space grid, or non-local xc functionals such as those

including dispersion interactions. We note here that we have also

analyzed the strong scaling of individual SIESTA modules, finding

diagonalization to be the bottleneck within an SCF iteration, while

Hamiltonian construction is very efficient when using the

parallelization strategy for the grid operations of Sanz-Navarro et

al. [21] (accessible via the flag -DBSC_CELLXC at compilation).

The parameter a, obtained by the fits shown in the bottom

panel of Fig. 4, can therefore be used to compare the speed of the

various machines, independently of differences in scaling perfor-

mance. The values of a obtained for all six machines are shown in

the top panel of Fig. 4. The large variation in a over almost two

orders of magnitude is a reflection not simply of the machines’

processor speeds (listed in Table 1), but also of numerous other

interacting factors, such as the efficiency of the different compilers

and libraries. In general, torus machines, which exhibit the best

scaling, are predicted to be the slowest in serial, while fat tree

machines, which do not scale as well in parallel, are predicted to

be the fastest.

We can now calculate a rough estimate of the execution time on

each machine for any number of water molecules on any number

of cores, by using our fits of the function S Nmð Þ and the parameter

a, and, hence, build up a Nm–Nc ‘hase diagram’ of the machine

with the lowest execution time. This is shown in Fig. 5: the main

panel compares real timings, while the inset uses the estimates

based on our fits. The agreement is best for large system sizes and

number of cores, with some discrepancies appearing for Nmƒ256;

this is not surprising, due both to the extrapolation of S Nmð Þ to

low values, and the fact that the timings are very close for more

than one machine.

The machines which gives the lowest absolute timings over the

entire tested range of Nc are overwhelmingly those with fat tree

topologies, despite their inferior strong scaling performance with

respect to torus machines. Two large regions can be clearly

Figure 4. Absolute timings on the six machines. Top panel:
prefactor a for the cubic scaling with system size of the execution time
in serial for the self-consistent calculation of the liquid water system (13
SCF iterations). Bottom panel: two examples of the fitting of a to
absolute timing data, extrapolated for all number of cores to serial
timings using Amdahl’s law and a fitted analytical expression of the
strong scaling performance as a function of system size.
doi:10.1371/journal.pone.0095390.g004

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e95390

identified: Curie (BullX architecture) is the fastest machine for

simulations with Nc 128, while SuperMUC (IBM iDataPlex

architecture) is the fastest above this value. There is some

indication, confirmed by the model, that for large system sizes

(Nm *> 4096) MareNostrum (IBM iDataPlex architecture) becomes

faster than both of these machines (this might seem surprising,

since it has the lowest value of a, and, hence, should be the fastest

in serial at all system sizes; however, it also exhibits the worst

parallel scaling, making it less efficient than other machines for

parallel calculations on even very few cores at modest system sizes).

It is only for extremely large Nc that the qualitatively different

decrease in S Nmð Þ of the torus machines is predicted to lead to the

lowest absolute timings, in particular for Hermit (Cray XE6

architecture), as it has a significantly lower a value than the IBM

BlueGene/Q machines.

Our fitted models for the six supercomputers can also be used in

a broader context, to estimate the execution time for any typical

SIESTA calculation on HPC systems similar to the ones tested

here. In fact, since the timing is dominated by the diagonalization

procedure, especially for large system sizes, we can base our

estimation on only two parameters, the total number of basis

orbitals and the number of SCF iterations; we can safely neglect, to

a first approximation, other parameters such as the number of

electrons and the number and type of ions. This is illustrated in

Fig. 6, in which we compare calculations using the standard dfzp
basis to ones using a larger qfzdp basis [46] (twice the number of

NAOs per water molecule) over a wide range of number of cores;

as can be seen, timings on a given number of cores depend only on

the total number of basis orbitals, and so a calculation using the

larger basis takes the same time as one using the smaller basis with

twice the system size. We note that this simple behaviour is due to

the use of a solver which computes all eigenvalues by explicit

diagonalization. Instead, solvers based on iterative minimization

techniques (typically employed by plane-wave codes) scale only

quadratically with the number of basis functions [39]; for such

codes, we would expect the dependence of S Nmð Þ on basis size to

be non-trivial. Unfortunately, we are not aware of published data

for any other DFT code that could help in investigating this issue.

In order to allow SIESTA users to obtain absolute timing

estimates for their parallel calculations, we have released a web

applet [47] based on the model we have described and the

quantitative data obtained from our scaling tests. We also include

a version of the applet for offline use in the Supporting

Information (Code S1); details of the fits and the final set of

parameters for the six machines can be easily found within the

code.

Weak scaling
Finally, we briefly discuss the weak scaling behaviour demon-

strated by the code. Weak scaling is of most interest to linear-

scaling DFT codes [22,25], for which the objective is to obtain a

constant time-to-solution as the problem size is increased together

with the number of cores (this is also known as Gustafson’s law

[48]). Cubic-scaling codes, instead, can achieve at best a quadratic

weak scaling behaviour, which is rarely investigated [28,39];

nevertheless, it can provide useful information on the limits of

efficiency of the code.

We find it convenient to plot the execution time divided by the

square of the number of cores, so that ideal weak scaling behaviour

will appear flat, analogously to the case of a linear-scaling code. A

representative example for one machine, JUQUEEN, is shown in

Fig. 7. Surprisingly, we observe better than ideal weak scaling,

tending towards ideal as the number of cores is increased. The

effect becomes more pronounced as the number of water

molecules per core is decreased. These trends are almost perfectly

reproduced by the timing estimates provided by our combined

modelling of strong scaling and system size scaling.

We can understand this behaviour as a change in efficiency (as

defined in the bottom panel of Fig. 3) due to the interplay between

the decrease of S with Nm and the increase of Nc. Similarly, it is

interesting to note that system size scaling at a fixed number of

cores w1 deviates from its ideal cubic behaviour in serial.

If we assume S Nmð Þ to be of the form AN{ , it is easily

verified from the model that the weak scaling behaviour will tend

towards ideal for B§1; in the case of JUQUEEN, the fit gives a

value of 1.8. This result applies equally to linear- and cubic-scaling

codes, when using the appropriate definition of ideal weak scaling

Figure 5. Phase diagram of supercomputers. The machine with
the lowest execution time is shown for a given system size and number
of cores. The colours used are the same as those shown in the top panel
of Fig. 4. Boxes with dashed lines indicate that the data for one or more
machines is not available; sparse dashed lines indicate that only one
machine was run with these parameters. The inset shows the idealized
diagram over the same range, using the timing estimates given by the
fits of S Nmð Þ and a.
doi:10.1371/journal.pone.0095390.g005

Figure 6. Timing comparison on Curie for two different SIESTA
basis sets. Each data point plots the execution time of a particular
system size simulated with the dfzp basis (23 NAOs/H2O molecule)
against that of a different system size simulated with the qfzdp basis
(46 NAOs/H2O molecule), chosen so that the two systems have the
same total number of basis orbitals. The two system sizes are shown in
brackets (dfzp/qfzdp); in each case, both simulations are performed
on the same number of cores, equal to the number of molecules in the
qfzdp system.
doi:10.1371/journal.pone.0095390.g006

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e95390

.

B
m

for each; indeed, a strikingly similar behaviour is reported for the

linear-scaling Conquest code [22]. As noted previously, the three

machines with fat tree topologies appear to exhibit a slowing down

in the decrease of S with system size; although this should

eventually make the weak scaling less than ideal, in practice it is

not noticeable within the range of cores considered.

Conclusions

In this paper, we have investigated the performance of the

SIESTA code on the six supercomputers of the PRACE Tier-0

network, currently amongst the largest in Europe. We propose a

systematic investigation of parallel scaling using self-consistent

calculations of snapshots of liquid water, varying both the number

of cores on which the simulation is run and the number of water

molecules per core; the largest simulation performed in our tests is

of 8192 molecules on 8192 cores.

The results are analyzed using Amdahl’s law to fit the data for

each system size, providing a quantitative estimate of the code’s

efficiency over all number of cores based on a single parameter S;

the scaling performance of the code, therefore, is completely

described by the curve of S as a function of system size. We find a

qualitative difference in this curve depending on the topology of

the connections between nodes in the supercomputer, with

machines implementing torus topologies demonstrating a better

scalability to large system sizes than those implementing fat tree

topologies. Despite this, however, the latter group is shown to give

lower absolute timings for almost all simulations within the tested

range, as the performance on individual cores is significantly

faster; furthermore, such architectures tend to offer a larger

amount of memory per core, which can become an important

issue either when running on few cores, or as the size of the

simulation is increased (the memory requirements scale approx-

imately quadratically with system size).

Combining Amdahl’s law for strong scaling with a basic one-

parameter model for system size scaling, both of which are fitted to

the data provided by our tests, we can calculate a simple estimate

of the execution time on a given number of cores for a generic

total energy calculation with SIESTA; a new web applet [47]

developed in conjunction with the paper allows users of the code to

employ this model for planning their projects on parallel

architectures. An estimate of the memory requirement per core

is also included.

Throughout the paper we have emphasized potential points of

comparison with other DFT and electronic structure codes.

Investigating and reporting S Nmð Þ curves for different HPC

systems could provide valuable information to practitioners in the

field, as well as for the ongoing development of the codes

themselves. Care must be taken, however, when interpreting the

results of comparisons based on strong scaling data, due to the

fundamental differences between codes. Basis sets offer perhaps

the most important example: is it meaningful to compare the

strong scaling performance of a localized-orbital code and a plane-

wave code for the same physical system? It is clear that S varies

with basis size, and so is crucially dependent in both cases on the

precision level of the calculation; even disregarding the technical

challenges involved [46], attempting to equate the two bases is not

necessarily appropriate, as the codes are designed from the outset

to be used with different aims. For this reason, we suggest that the

best approach should not be overly competitive; rather, the

objective should be to report on calculations using the typical setup

appropriate for each code (e.g., the default dfzp basis for

SIESTA), or possibly a range of different setups, as this will

provide the most useful information for its users.

Supporting Information

Code S1 Bash script for calculating SIESTA timing
estimates. These are based on the fits to the data presented in

the paper. Instructions for using the script are included as a

comment at the start of the code. The script is also available as a

web applet [47].

(TXT)

Acknowledgments

We thank Emilio Artacho, Alberto Garcia, and Georg Huhs for useful

discussions. We acknowledge PRACE for awarding us access to the

following resources: Hermit based in Germany at the High Performance

Computing Center Stuttgart (HLRS), JUQUEEN based in Germany at the

Jülich Supercomputing Centre, FERMI based in Italy at the CINECA

SuperComputing Application and Innovation Department, Curie based in

France at the Très Grand Centre de Calcul du CEA (TGCC), SuperMUC

based in Germany at the Leibniz Supercomputing Centre, and

MareNostrum based in Spain at the Barcelona Supercomputing Center.

Author Contributions

Conceived and designed the experiments: FC. Performed the experiments:

FC. Analyzed the data: FC. Wrote the paper: FC.

References

1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:

B864–B871.

2. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and

correlation effects. Phys Rev 140: A1133–A1138.

3. Hafner J, Wolverton C, Ceder G (2006) Toward computational materials design:

The impact of density functional theory on materials research. MRS Bull 31:

659–668.

4. Marzari N (2006) Realistic modeling of nanostructures using density functional

theory. MRS Bull 31: 681–687.

5. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set. Phys Rev B 54: 11169–11186.

6. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem

Phys 113: 7756–7764.

7. Soler JM, Artacho E, Gale JD, Garcı́a A, Junquera J, et al. (2002) The SIESTA

method for ab initio order-N materials simulation. J Phys: Condens Matter 14:

2745–2779.

8. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, et al. (2005) First

principles methods using CASTEP. Z Kristallogr 220: 567–570.

Figure 7. Weak scaling on JUQUEEN for different numbers of
water molecules per core. The execution time is divided by the
square of the number of cores. The dashed lines show the estimates
given by the fits of S Nmð Þ and a.
doi:10.1371/journal.pone.0095390.g007

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e95390

9. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, et al.

(2005) Quickstep: Fast and accurate density functional calculations using a

mixed Gaussian and plane waves approach. Comput Phys Commun 167: 103–

128.

10. Skylaris CK, Haynes PD, Mostofi AA, Payne MC (2005) Introducing ONETEP:

Linear-scaling density functional simulations on parallel computers. J Chem

Phys 122: 084119.

11. Gygi F (2008) Architecture of Qbox: A scalable first-principles molecular

dynamics code. IBM J Res Dev 52: 1–8.

12. Genovese L, Neelov A, Goedecker S, Deutsch T, Ghasemi SA, et al. (2008)

Daubechies wavelets as a basis set for density functional pseudopotential

calculations. J Chem Phys 129: 014109.

13. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, et al. (2009) QUANTUM

ESPRESSO: A modular and open-source software project for quantum

simulations of materials. J Phys: Condens Matter 21: 395502.

14. Blum V, Gehrke R, Hanke F, Havu P, Havu V, et al. (2009) Ab initio molecular

simulations with numeric atom-centered orbitals. Comput Phys Commun 180:

2175–2196.

15. Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, et al. (2009) ABINIT:

First-principles approach of materials and nanosystem properties. Comput Phys

Commun 180: 2582–2615.

16. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Du lak M, et al. (2010)

Electronic structure calculations with GPAW: A real-space implementation of

the projector augmented-wave method. J Phys: Condens Matter 22: 253202.

17. Plummer M, Hein J, Guest MF, D9Mellow KJ, Bush IJ, et al. (2006) Terascale

materials modelling on high performance system HPCx. J Mater Chem 16:

1885–1893.

18. Bottin F, Leroux S, Knyazev A, Zérah G (2008) Large-scale ab initio

calculations based on three levels of parallelization. Comp Mater Sci 42: 329–

336.

19. Genovese L, Ospici M, Deutsch T, Méhaut JF, Neelov A, et al. (2009) Density

functional theory calculation on many-cores hybrid central processing unit-

graphic processing unit architectures. J Chem Phys 131: 034103.

20. Hine NDM, Haynes PD, Mostofi AA, Skylaris CK, Payne MC (2009) Linear-

scaling densityfunctional theory with tens of thousands of atoms: Expanding the

scope and scale of calculations with ONETEP. Comput Phys Commun 180:

1041–1053.

21. Sanz-Navarro CF, Grima R, Garcı́a A, Bea EA, Soba A, et al. (2010) An

efficient implementation of a QM–MM method in SIESTA. Theor Chem Acc

128: 825–833.

22. Bowler DR, Miyazaki T (2010) Calculations for millions of atoms with density

functional theory: Linear scaling shows its potential. J Phys: Condens Matter 22:

074207.

23. Auckenthaler T, Blum V, Bungartz HJ, Huckle T, Johanni R, et al. (2011)

Parallel solution of partial symmetric eigenvalue problems from electronic

structure calculations. Parallel Comput 37: 783–794.

24. Maniopoulou A, Davidson ER, Grau-Crespo R, Walsh A, Bush IJ, et al. (2012)

Introducing k-point parallelism into VASP. Comput Phys Commun 183: 1696–

1701.

25. VandeVondele J, Borštnik U, Hutter J (2012) Linear scaling self-consistent field

calculations with millions of atoms in the condensed phase. J Chem Theory

Comput 8: 3565–3573.

26. Hacene M, Anciaux-Sedrakian A, Rozanska X, Klahr D, Guignon T, et al.

(2012) Accelerating VASP electronic structure calculations using graphic

processing units. J Comput Chem 33: 2581–2589.

27. Varini N, Ceresoli D, Martin-Samos L, Girotto I, Cavazzoni C (2013)

Enhancement of DFTcalculations at petascale: Nuclear magnetic resonance,

hybrid density functional theory and Car–Parrinello calculations. Comput Phys

Commun 184: 1827–1833.
28. Hakala S, Havu V, Enkovaara J, Nieminen R (2013) Parallel electronic structure

calculations using multiple graphics processing units (GPUs). In: Manninen P,

Öster P, editors, Applied parallel and scientific computing, Lecture notes in
computer science, Heidelberg: Springer, volume 7782. pp. 63–76.

29. Amdahl GM (1967) Validity of the single processor approach to achieving large-
scale computing capabilities. In: Proceedings of the April 18–20, 1967, spring

joint computer conference. New YorkACM, volume 30 of AFIPS ‘67

(Spring)483–485.
30. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave

calculations. Phys Rev B 43: 1993–2006.
31. PRACE website. Available: http://www.prace-ri.eu/. Accessed 2014 Mar 28.

32. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983)
Comparison of simple potential functions for simulating liquid water. J Chem

Phys 79: 926–935.

33. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A
message-passing parallel molecular dynamics implementation. Comput Phys

Commun 91: 43–56.
34. Wagner W, Prus A (2002) The IAPWS formulation 1995 for the thermodynamic

properties of ordinary water substance for general and scientific use. J Phys

Chem Ref Data 31: 387–535.
35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation

made simple. Phys Rev Lett 77: 3865–3868.
36. Wang J, Román-Pérez G, Soler JM, Artacho E, Fernández-Serra MV (2011)

Density, structure, and dynamics of water: The effect of van der Waals
interactions. J Chem Phys 134: 024516.

37. SIESTA website. Available: http://departments.icmab.es/leem/siesta/. Ac-

cessed 2014 Mar 28.
38. Blackford LS, Choi J, Cleary A, D9Azevedo E, Demmel J, et al. (1997)

ScaLAPACK users’ guide. Philadelphia: Society for Industrial and Applied
Mathematics.

39. Corsetti F (2014) The orbital minimization method for electronic structure

calculations with finiterange atomic basis sets. Comput Phys Commun 185: 873–
883.

40. Antonelli D, Voemel C (2005) LAPACK working note 168: pdsyevr.
ScaLAPACK’s parallel MRRR algorithm for the symmetric eigenvalue.

Technical Report UCB/CSD-05-1399, EECS Department, University of
California, Berkeley.

41. Lin L, Chen M, Yang C, He L (2013) Accelerating atomic orbital-based

electronic structure calculation via pole expansion and selected inversion. J Phys:
Condens Matter 25: 295501.

42. FERMI Software Benchmarks webpage. Available: http://www.hpc.cineca.it/
content/fermi-software-benchmarks/. Accessed 2014 Mar 28.

43. Gygi F, Draeger EW, Schulz M, de Supinski BR, Gunnels JA, et al. (2006)

Large-scale electronic structure calculations of high-Z metals on the BlueGene/
L platform. In: Proceedings of the 2006 ACM/IEEE conference on super-

computing. New YorkACM, SC ‘0645–52.
44. Bowler DR, Miyazaki T (2012) O(N) methods in electronic structure

calculations. Rep Prog Phys 75: 036503.
45. Kohn W (1996) Density functional and density matrix method scaling linearly

with the number of atoms. Phys Rev Lett 76: 3168–3171.

46. Corsetti F, Fernández-Serra MV, Soler JM, Artacho E (2013) Optimal finite-
range atomic basis sets for liquid water and ice. J Phys: Condens Matter 25:

435504.
47. Siestimator webpage. Available: http://departments.icmab.es/leem/siesta/

siestimator/. Accessed 2014 Mar 28.

48. Gustafson JL (1988) Reevaluating Amdahl’s law. Commun ACM 31: 532–533.

Performance Analysis of the SIESTA Code on HPC Systems

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e95390

http://www.prace-ri.eu/
http://departments.icmab.es/leem/siesta/
http://www.hpc.cineca.it/content/fermi-software-benchmarks/
http://www.hpc.cineca.it/content/fermi-software-benchmarks/
http://departments.icmab.es/leem/siesta/siestimator/
http://departments.icmab.es/leem/siesta/siestimator/

