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We study the electronic transport across an electrostatically gated lateral junction in a HgTe quantum
well, a canonical 2D topological insulator, with and without an applied magnetic field. We control the
carrier density inside and outside a junction region independently and hence tune the number and nature of
1D edge modes propagating in each of those regions. Outside the bulk gap, the magnetic field drives the
system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe
fractional plateaus that reflect the equilibration between 1D chiral modes across the junction. As the carrier
density approaches zero in the central region and at moderate fields, we observe oscillations in the
resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time
reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of
helical states when band inversion is lifted.
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Above a certain critical thickness, the two-dimensional
electron gas (2DEG) of a HgTe quantum well presents an
inverted band structure characteristic of a 2D topological
insulator (2D TI) [1,2]. At the edge of the topological
insulator, quantum spin Hall (QSH) helical states propagate
[3,4]. When the Fermi level lies in the bulk gap of a 2D TI,
conduction is dominated by those edge states [5,6] and
is in principle protected by time-reversal symmetry (TRS)
against single-electron backscattering processes. The appli-
cation of a magnetic field is expected to lift such protection.
Nonetheless, band inversion and counterpropagating QSH-
like edge states are predicted to persist up to a critical
magnetic field Bc. Above this field, band inversion should
disappear, leaving a 2D band structure identical to that of a
topologically trivial [7] semiconductor in the quantum Hall
(QH) regime [5,6,8].
Previous experiments on HgTe quantum wells in this

thickness range show that the resistance in the bulk gap
increases in the presence of moderate magnetic fields
[6,9,10] as predicted [8,11], but our understanding of the
evolution of edge conduction with a magnetic field is
incomplete. For the related problem of assigning quantum
numbers to different chiral QH modes, a fruitful approach
has been to study scattering between those modes by
measuring transport through junctions between regions
of different carrier density. This approach has been widely

applied in GaAs quantum wells (for a review see Ref. [12])
and more recently in the Dirac 2DEG of graphene [13–16].
Thus, to characterize helical modes under broken TRS,
studying their interplay with quantum Hall chiral states
could be a promising strategy.
In this Letter, we explore electronic transmission across a

lateral heterojunction fabricated on a HgTe quantum well
with an inverted band structure. Above a critical field, our
results are consistent with expectations for equilibration of
QH edge modes. Results are similar below the critical field
for high carrier densities, but clearly differ when the
junction is tuned through zero density. There, we first
observe how the maximum of the resistance associated with
the bulk gap narrows and shifts towards lower values of the
carrier density. We find this to be a consequence of the
remaining band inversion and the existence of helical edge
states. Over the density regime corresponding to the peak
shift, the resistance of our device presents oscillations that
we attribute to the Fabry-Perot interference of helical states
enabled by the lifting of TRS protection.
Figure 1(a) presents the geometry of our device. A Hall

bar mesa is defined following the method described in
Refs. [17,18] on aHgTe quantumwell with an inverted band
structure. The 2DEG is formed in a quantumwell epitaxially
grown over a conductive substrate [18,34], allowing for
the application of an overall back-gate voltage. A narrow
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top-gate electrode is placed at the center of the device,
defining two regions with separately tunable density [inset
of Fig. 1(c)]. The central region refers to the area covered by
the top-gate electrode and the outer region to its surround-
ings. The carrier density in the outer regionn can be tuned by
the applied back-gatevoltageVBG,while the densityn0 in the
central region depends on both the back- and top-gate (VTG)
voltages. Both n and n0 can be estimated using a simple
capacitor model [18].
The evolution of the four-terminal resistance Rmeasured

across the junction at 2.1 K [inset of Fig. 1(c)] as a function
of both VBG and VTG at a zero applied magnetic field is
shown in Fig. 1(b). As previously reported [5], the resistance
presents a finite maximum when the chemical potential lies
in the bulk gap and conduction is dominated by the QSH
edge states. As a function of spatially uniform carrier
density, the four-terminal resistance [curve 2 in Fig. 1(c)]
shows a maximum value higher than h=2e2, the value
associated with the ballistic quantum spin Hall regime.
This is expected: the edge mean free path in similar
heterostructures has been reported to be a few microns
[5], substantially less than the edge length between contacts
in the present geometry, so backscattering should result in
increased resistance. In contrast, as a function only of
the density in the central region n0 [curve 1 in Fig. 1(c)]
the maximum resistance is lower than h=2e2, suggesting the
presence of bulk conduction in parallel to the QSH edge
states. A detailed look at the data (Fig. S2 of Ref. [18])
reveals oscillations in the resistance that likely arise from the

Fabry-Perot-like interference of bulk conduction paths (for a
detailed analysis see Ref. [18]).
The locations of resistance maxima in the ðVTG; VBGÞ

parameter space [Fig. 1(a)] fall along two lines: a horizontal
line around VBG ¼ VBG0 ¼ 0 V representing zero density
in the outer region, and a diagonal line representing zero
density in the central region of the junction (n0 ¼ 0) (see
Ref. [18]). The two lines define four quadrants of electron
and hole densities in the central and outer regions of the
junction, labeled in Fig. 1(b).
At finite fields, the four-terminal resistanceR in then-n0-n

quadrant shows a sharp tiled pattern of fractional resistance
values ranging from 0 to h=e2 [Figs. 2(a) and 2(b), B ¼ 3
and 5 T, respectively]. The Landauer-Büttiker formalism
describes those fractional values as the result of the full
equilibration between copropagating edge states in the
junction (cf. Refs. [12,14,35]). In the unipolar regime and
in a four-terminal configuration, the predicted resistance
across the junction is given by

R ¼ h
e2

N − N0

NN0 ; ð1Þ

where N and N0 are the number of quantum Hall states
propagating in the outer and central regions of the junction,
respectively. The bottom row of tiles in Figs. 2(a) and 2(b)
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FIG. 1. (a) Electron micrograph of a Hall bar device with a
narrow top gate. The geometry of the device is sketched in the
inset of panel (c). The width (W) of the Hall bar is 10 μm and the
physical length (L) of the top gate is 2 μm. The carrier density in
the outer and central regions of the junction are denoted by n and
n0, respectively. (b) Four-terminal resistance R across the top-
gated region measured as a function of the top-gate and back-gate
voltages at a zero applied magnetic field. The diagonal black line
marks the estimated position of n0 ¼ 0. (c) Selected linecuts
extracted from panel (b): linecut 1 (blue) shows the evolution of R
as a function only of VTG, that is, as a function of n0 while the
outer region is kept at constant n ¼ 1011 cm−2. Linecut 2 shows
R as function solely of VBG, which changes the density of the
whole device, for a value of VTG ¼ VTG0 such that the device
density is homogeneous, that is, n0 ≃ n.
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FIG. 2. (a),(b) 2D maps of the resistance obtained at B ¼ 3 and
5 T respectively. The color scale has been chosen to enhance the
contrast in the n-n0-n region between 0 and 1h=e2. The fractional
resistance values match predictions for electron transmission
from N QH edge modes in the outer regions of the junction into
N0 modes in the central region in the presence of edge mode
equilibration. (c) Horizontal linecuts from panel (a), at VBG ¼
3.5 V (blue) and 7 V (red), corresponding to N ¼ 1 and N ¼ 2.
N0 is tuned by the top-gate voltage VTG. (d) Four-terminal
resistance R as a function of density in the junction for B ¼ 0
(blue), B ¼ 3 (magenta), and B ¼ 5 T (yellow) for a density in
the outer region of n ¼ 5 × 1010, 5 × 1010, and 8 × 1010 cm−2,
respectively. For the cases with a finite applied field, those carrier
densities correspond to N ¼ 1.

PRL 119, 226401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 DECEMBER 2017

226401-2



corresponds to N ¼ 1, with N0 increasing from left to right.
Our data show a good agreement with the fractional plateaus
at R ¼ 0; 1=2; 2=3; 3=4;… expected for N0 ¼ 1; 2; 3; 4;…
[N ¼ 1 linecut in Fig. 2(c)]. Similarly, a second row of
tiles appears for N ¼ 2, and in the corresponding linecut of
Fig. 2(a), plateaus of resistance can be observed near the
expected values for N ¼ 2 paired with a range of N0,
although deviations from the ideal behavior are larger here
than forN ¼ 1. Similarly, plateaus are observed near but not
exactly at the expected values for the p-p0-p and the n-p-n
quadrants (see Ref. [18] for details).
These results highlight the role of the strong spin-orbit

interaction and inversion symmetry breaking in HgTe. If
the sz component of spin were conserved, transmission
would then be spin selective and only those states with the
same spin polarization would equilibrate with each other,
leading to fewer plateaus in the resistance R. In contrast,
our data suggest that full equilibration occurs for all
possible values of N and N0. Inversion symmetry breaking
provides a mechanism for spin mixing that allows this to
happen [36]. Adapting the theory in Ref. [37], we estimate
that the equilibration length for our system is around 2 μm
at 2 T, which is indeed smaller than the junction width.
In the n-n0-n quartet, the tiled structure of fractional

resistance values associated with a given pair of values
(N, N0) is similar at both 3 and 5 T [Figs. 2(a) and 2(b),
respectively]. A contrasting behavior emerges around zero
density. First, the zero density n0 ¼ 0 line determined from
zero magnetic field data in Fig. 1(b) is overlaid for reference
on Figs. 2(a) and 2(b). The maximum of resistance at
B ¼ 3 T is clearly shifted towards lower values of VTG
with respect to that line. Remarkably, it returns to the
original position at B ¼ 5 T [Fig. 2(b)]. This effect can
be also observed in the horizontal linecuts taken from the
corresponding 2D resistance plots at similar outer densitiesn
for 0, 3, and 5 T [Fig. 2(d)]. Furthermore, at 3 Tand near zero
density, in the range of voltages where the resistance peak
was found at a zero field, this plot now shows strong
oscillations in the resistance.
To explicate these results, we present calculations of the

band structure below and above the critical field (details in
Ref. [18]) for the magnetic fields considered in the experi-
ment: B ¼ 0, 3, 5 T [Fig. 3(a)]. At a zero field, when the
Fermi energy lies in the bulk gap, we find the usual
counterpropagating helical edge states. At both B ¼ 3 and
5 T the conduction and valence bands turn into a set of
discrete Landau levels. One chiral quantum Hall state
propagates at the edge for each filled Landau level in the
bulk, so the total number of modes N is given by the integer
part of the filling factor ν. For fieldsB < Bc such asB ¼ 3 T,
the lowest order holelike and electronlike Landau levels are
inverted in the bulk and cross near the edge, so when the
Fermi level is in the bulk gap there are counterpropagating
helical edge states (below we refer to this regime as ν ¼ 0).
By 5 T, which is above Bc, band inversion has disappeared,

and the band structure resembles that of a trivial semi-
conductor, with a gap between the electron and hole Landau
levels.
In the junction geometry considered in our experiment,

at a finite field the electronic transmission across the device
will result from the matching of edge modes corresponding
to different fillings in the central and outer regions of the
junction (ν0 and ν, respectively).
When the central region has ν0 ≠ 0, the edge mode

structure is the usual one observed in quantum Hall experi-
ments with standard 2DEGs [see Figs. 3(b) and 3(c)] and the
resulting resistance is given by a Landauer-Büttiker expres-
sion [Eq. (1)]. When ν0 ¼ 0, however, the situation changes
drastically depending on whether B is larger or smaller than
Bc. Above the critical field, the Fermi level always lies in a
bulk gap with no edge modes, and incoming modes are
always reflected, as illustrated in Fig. 3(d) for the case 1-0-1.
Below the critical field, in contrast, band inversion implies
the presence in the inner region of two QSH-like edge states
with opposite chiralities [Fig. 3(e)]. Edge modes cannot
simply terminate, so a mode must also propagate along the
1-0 and 0-1 interfaces.
We believe that the matching of chiral to helical edge

states in the 1-0-1 scenario is the origin of the resistance
oscillations and the shift in the position of the resistance
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FIG. 3. (a) Computed band structure of a strained 7.5 nm HgTe
quantum well at 0, 3, and 5 T. The critical field Bc ¼ 3.8 T in the
model. See Ref. [18] for calculation details. (b),(c) Sketch of the
band structure and edge states in different scenarios at 3 and 5 T
where the outer region hosts one chiral edge state and the inner
region hosts either two or one, respectively. (d),(e) Similar
sketches for the case N ¼ 1 and N0 ¼ 0 for 5 and 3 T. (d) Above
Bc a broad gap opens between the electron and hole Landau
levels so no states propagate at the junction. (e) Below Bc, band
inversion remains and at ν ¼ 0 a helical mode propagates in the
junction.
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maximum we observe at 3 T [Fig. 2(d)]. To understand
this, we first note that since TRS is broken at a finite
field, the crossing of QSH edge modes when B < Bc is
only protected in the presence of extra symmetries
such as mirror symmetry. In the experiment, such sym-
metries are absent, so there should always be a small
minigap [Figs. 4(a)–4(c)]. The location of this edge
minigap within the bulk gap depends on details such as
the potential at the edge. Therefore, the edge and bulk
charge neutrality points do not necessarily occur for the
same value of the gate voltage, and accordingly the center
of the resistance maximum originating from the minigap at
a finite field does not necessarily align with the center of
the bulk gap. The observed gate voltage position shift and
narrowing of the resistance maximum at 3 T compared to 0
or 5 T [see Fig. 2(d)] is consistent with an origin in the edge
state minigap.
In the 1-0-1 configuration, when the incoming chiral

edge mode from the outer region reaches the junction it can
scatter into two possible outgoing modes: the copropagat-
ing helical edge mode or the chiral mode parallel to the
junction. When the chemical potential in the central region
is very close to the bottom of the lowest Landau level, the
incoming edge mode is almost perfectly matched to the
copropagating helical one, while the counterpropagating
edge mode forms a loop spanning the whole junction
[Fig. 4(a)]. This must be so because the counterpropagating
mode has a smaller momentum and therefore is located
farther from the edge. Transport in this scenario is almost
equivalent to the 1-1-1 situation, seen in the experimental
data as an extension of the R ¼ 0 plateau to lower densities
[Fig. 2(a)].
As the chemical potential approaches the crossing of the

helical edge modes, the chiral mode connects to the one
parallel to the junction, while the helical modes form a loop
at either edge [Fig. 4(b)]. These loops should disappear at
the minigap, and reappear with opposite orientation below

it [Fig. 4(c)]. The existence of these loops, allowed because
the protection from backscattering is lifted by B, implies
that coherent transport should be affected by multiple
reflections at the interfaces. This effect should manifest in
Fabry-Perot type oscillations as a function of the chemical
potential, because the accumulated phase δ ¼ kL depends
smoothly on the chemical potential. This explains the
oscillations observed at 3 T in Fig. 2(d), in the density
range assigned to the bulk gap and adjacent to the edge
minigap, and their disappearance beyond Bc (i.e., at 5 T)
where no helical modes exist.
Resistance oscillations are also present at a zero field in

a similar density regime—these we associate with bulk
states. However, at 3 T, the oscillations present an ampli-
tude about an order of magnitude higher than their
zero field counterparts. Moreover, our data [Fig. 2(c) and
Fig. S4(d) [18]] indicate that the bulk states causing the
oscillations at a zero field must be fully localized at 3 T (see
Ref. [18]), further suggesting that oscillations at 3 T have
their origin in edge rather than bulk states.
Furthermore, the oscillations are periodic in n0, with no

substantial dependence on n [Fig. 4(d)]. This is consistent
with our interpretation: changing n0 will change the edge
momentum of the loop modes and hence the phase, while n
only determines the momentum of the incoming modes,
which should have no effect on the phase of the oscil-
lations. Figure 4(d) also shows that oscillations are present
for n values corresponding to N ¼ 1, but they disappear
when approaching N ¼ 2. This is consistent with the
N ¼ 2 quantum Hall chiral edge modes not being fully
established at B ¼ 3 T, as already seen in the imperfectly
quantized equilibration plateaus in Fig. 2(c).
Taken together, the amplitude, position, and field and

carrier density dependence of the resistance oscillations
support our interpretation of their origin in the constructive
interference of helical edge states.
Finally, assuming a Fabry-Perot scenario yields some

quantitative estimates for the system parameters. Based on
the bulk 2D Fabry-Perot oscillations at B ¼ 0 we estimate
the effective length L� of the central region to be 0.6 μm
(see Sec. 4 of Ref. [18] for details). This length need not be
the same as the physical top-gate length, due to the smooth
shape of the gate-induced potential. Given that we observe
coherent Fabry-Perot oscillations from the QSH edge states
as well, a lower bound on the edge localization length can
be set at L�. We expect that at larger channel lengths or with
higher disorder, the QSH loop responsible for interference
will break up into more loops and coherence will gradually
be lost, in a way similar to Ref. [11]. We may also estimate
the 1D edge mode carrier density: given the above value of
L� we infer C1D ¼ δðn1DÞ=δðVTGÞ≃ 1.4 × 106 cm−1V−1

(see Sec. 6 of Ref. [18] for details).
While our results below the critical field are compatible

with those in Ref. [38], we present here evidence for
physical scenarios that were not accessible in that work.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

n 
(1

0
11

 c
m

-2
)

(d)

n’  (1011 cm -2)

δR (kΩ)0-1 -1μ

μ

μ

(a)

(b)

(c)

N=1

N=2

FIG. 4. (a)–(c) Possible scenarios for edge state matching in the
1-0-1 situation. (d) Enlargement in the δR oscillations (obtained
by removal of a smoothed background resistance [18]) as a
function of the 2D density in the central and outer regions of the
junction, n, n0, at an applied field of B ¼ 3 T. Areas with
different numbers of quantum hall modes (N ¼ 1 and N ¼ 2),
i.e., an integer filling factor, in the outer region are separated by
dotted lines.

PRL 119, 226401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

1 DECEMBER 2017

226401-4



More specifically, the dual-gate configuration of our device
allows us to perform a detailed study of the equilibration of
QH states in HgTe quantum wells and to infer the role
played here by spin-orbit interaction. More importantly, we
present one of very few indications for a transition between
QSH and QH regimes in a 2D TI. Finally, we observe
signatures of coherent interference on helical states, likely
due to the geometry of our junction. Our results suggest that
valuable information about the QSH state under broken
TRS can be inferred from the electronic transmission across
a QH-QSH-QH heterojunction.
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